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PREFACE

PHILOSOPHY AND GOALS

The purpose of the third edition of this book is to provide a basis for understanding
the characteristics, operation, and limitations of semiconductor devices. In order to
gain this understanding, it is essential to have a thorough knowledge of the physics of
the semiconductor material. The goal of this book is to bring together quantumn me-
chanics, the quantum theory of solids, semiconductor material physics, and semicon-
ductor device physics. All of these components are vital to the understanding of both
the operation of present day devices and any future development in the field,

The amount of physics presented in this text is greater than what is covered in
many introductory semiconductor device books. Although this coverage is more ex-
tensive, the author has found that once the basic introductory and material physics
have been thoroughly covered, the physics of the semiconductor device follows quite
naturally and can be covered fairly quickly and efficiently. The emphasis on the un-
derlying physics will also be a benefit in understanding and perhaps in developing
new semiconductor devices.

Since the objective of this text is to provide an introduction to the theory of
semiconductor devices, there is a great deal of advanced theory that is not consid-
ered. In additien, fabrication processes are not described in detail. There are a few
references and general discussions about processing techniques such as diffusion
and ton implantation, but only where the results of this processing have direct im-
pact on device characteristics.

PREREQUISITES

This book is intended for junior and senior undergraduates. The prerequisites for un-
derstanding the material are college mathematics, up to and including differential
equations, and college physics, including an introduction to modern physics and
electrostatics. Prior completion of an introductory course in electronic circuits is
helpful, but not essential.

ORGANIZATION

The text begins with the introductory physics, moves on to the semiconductor mate-
rial physics, and then covers the physics of semiconductor devices. Chapter ! presents
an introduction to the crystal structure of solids, leading to the ideal single-crystal
sermiconductor material. Chapters 2 and 3 introduce quantum mechaitics and the
quantum theory of solids, which together provide the necessary basic physics.
Chapters 4 through 6 cover the semiconductor material physics. Chapter4 presents
the physics of the semiconductor in thermal equilibrium; Chapter 5 treats the transport
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phenomena of the charge carriers in a semiconducter. The nonequilibrium excess car-
rier characteristics are then developed in Chapter 6. Understanding the behavior of ex-
cess carriers in a semiconductor is vital to the goal of understanding the device physics.

The physics of the basic semiconductor devices is developed in Chapters 7 through
13. Chapter 7 treats the electrostatics of the basic pn junction. and Chapter 8 covers the
current-voltage characteristics of the pn junction, Metal-semiconductor junctions, both
rectifying and nonrectifying, and semiconductor heterojunctions are considered in
Chapter 9, while Chapter 10 treats the bipolar transistor. The physics of the metal-
oxide-semiconductor field-effect transistor is presented in Chapters 11 and 12, and
Chapter 13 covers the junction field-effect transistor. Once the physics of the pn junc-
tion is developed, the chapters dealing with the three basic transistors may be covered
in any order—these chapters are written so as not to depend on one another. Chapter 14
considers optical devices and finally Chapter 15 covers power semiconductor devices.

USE OF THE BOOK

The text is intended for a one-semester course at the junior or senior level. As with
most textbooks, there is more material than can be conveniently covered in one
semester; this allows each instructor some flexibility in designing the course to his/her
own specific needs. Two possible orders of presentation are discussed later in a sepa-
rate section in this preface. However, the text is not an encyclopedia. Sections in each
chapter that can be skipped without loss of continuity are identified by an asterisk in
both the table of contents and in the chapter itself. These sections, although important
to the development of semiconductor device physics, can be postponed to a later time.

The material in the text has been used extensively in a course that is required
for junior-level electrical engineering students at the University of New Mexico.
Slightly less than half of the semester is devoted to the first six chapters; the remain-
der of the semester is devoted to the pn junction, the bipolar transistor, and the metal-
oxide-semiconductor field-effect transistor. A few other special topics may be briefly
considered near the end of the semester.

Although the bipolar transistor is discussed in Chapter 10 before the MOSFET or
JFET, each chapter dealing with one of the three basic types of transistors is written
to stand alone. Any one of the transistor types may be covered first.

NOTES TO THE READER

This book introduces the physics of semiconductor materials and devices. Although
many electrical engineering students are more comfortable building electronic cir-
cuits or writing computer programs than studying the underlying principles of semi-
conductor devices, the material presented here is vital to an understanding of the
limitations of electronic devices, such as the microprocessor.

Mathematics is used extensively throughout the book. This may at times seem
tedious, but the end result is an understanding that will not otherwise occur. Although
some of the mathematical models used to describe physical processes may seem
abstract, they have withstood the test of time in their ability to describe and predict
these physical processes.
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The reader is encouraged to continually refer to the preview sections so that the ob-
Jective of the chapter and the purposes of each topic can be kept in mind. This constant
review is especially important in the first [ive chapters, dealing with basic physics.

The reader must keep in mind that, although some sections may be skipped without
loss of continuity, many instructors will choose to cover these topics. The fact that sec-
tions are marked with an asterisk does not minimize the importance of these subjects.

It is also important that the reader keep in mind that there may be questions still
unanswered at the end of a course. Although the author dislikes the phrase, “it can be
shown that. ..,” there are some concepts used here that rely on derivations beyond
the scope of the text. This book is intended as an introduction to the subject. Those
questions remaining unanswered at the end of the course, the reader is encouraged to
keep “in a desk drawer.”” Then, during the next course in this area of concentration,
the reader can take out these questions and search for the answers.

ORDER OF PRESENTATION

Each instructor has a personal preference for the order in which the course material
is presented. Listed below are two possible scenarios. The first case, called the clas-
sical approach, covers the bipolar transistor before the MOS transistor. However,
because the MOS transistor topic is left until the end of the semester, time constraints
may shortchange the amount of class time devoted to this important topic.

The second method of presentation listed, called the nonclassical approach, dis-
cusses the MOS transistor before the bipolar transistor. Two advantages to this ap-
proach are that the MOS transistor will not get shortchanged in terms of time devoted
to the topic and, since a “real device™ is discussed earlier in the semester, the reader
may have more motivation to continue studying this course material. A possible
disadvantage to this approach is that the reader may be somewhat intimidated by
Jumping from Chapter 7 to Chapter 11. However, the material in Chapters 11 and 12
is written so that this jump can be made.

Unfortunately, because of ume constraints, every topic in every chapter cannot
be covered in 4 one-semester course. The remaining topics must be left for a second-
semester course or for further study by the reader.

Classical approach

Chapter 1 Crystal structure

Chapters 2, 3 Selected wpics from guantum
mechanics and theory of solids
Chapter 4 Semiconductor physics
Chapter 5 Transport phenomena
Chapter 6 Selected topics from nonequilibrium characteristics
Chapters 7, 8 The pn junction and diode
Chapter 9 A brief discussion of the Schottky diode
Chapter 10 The bipolar transistor

Chapters 11, 12 The MOS transistor

xili
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Preface

Nonclassical approach

Chapter | Crystal structure

Chapters 2, 3 Selected topics from quantem
mechanics and theory of solids

Chapter 4 Semiconductor physics

Chapter 5 Transport phenomena

Chapter 7 The pn junction

Chapters 11, 12 The MOS transistor

Chapter 6 Selected topics from nonequilibrium characteristics

Chapter 8 The pn junction diode

Chapter 9 A brief discussion of the Schottky diode

Chapter 10 The bipolar transistor

FEATURES OF THE THIRD EDITION

B Preview section: A preview section introduces each chapter. This preview
links the chapter to previous chapters and states the chapter’s goals, i.e., what
the reader should gain from the chapter.

B Examples: Anextensive number of worked examples are used throughout the
text to reinforce the theoretical concepts being developed. These examples
contain all the details of the analysis or design, so the reader does not have to
fill in missing steps.

B Test your understanding:  Exercise or drill problems are included throughout
each chapter. These problems are generally placed immediately after an
example problem, rather than at the end of a long section. so that readers can
immediately test their understanding of the material just covered. Answers are
given for each drill problem so readers do not have to search for an answer at
the end of the book. These exercise problems will reinforce readers’ grasp of
the material before they move on to the next section.

B Swmmary section: A summary section, in bullet form, follows the text of each
chapter. This section summarizes the overall results derived in the chapter and
reviews the basic concepts developed.

B Glossary of important terms: A glossary of important terms follows the
Summary section of each chapter. This section defines and summarizes the
most important terms discussed in the chapter.

8 Checkpoint: A checkpoint section follows the Glossary section. This section
states the goals that should have been met and states the abilities the reader
should have gained. The Checkpoints will help assess progress before moving
on to the next chapter,

B Review questions: A list of review questions is included at the end of each
chapter. These questions serve as a self-test to help the reader determine how
well the concepts developed in the chapter have been mastered.

B End-of-chapter problems: A large number of problems are given at the end of
each chapter, organized according to the subject of each section in the chapter
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body. A larger number of problems have been included than in the second
edition. Design-oriented or open-ended problems are included at the end in a
Summary and Review section.

B Computer simulation:  Computer simulation problems are included in many
end-of-chapter problems. Computer simulation has not been directly
incorporated into the text. However, a website has been established that
considers computer simulation using MATLAB. This website contains
computer simulations of material considered in most chapters. These computer
simulations enhance the theoretical material presented. There also are exercise
or drill problems that a reader may consider.

B Reading list: A reading list finishes up each chapter. The references, that are
at an advanced level compared with that of this text, are indicated by an
asterisk.

B Answers to selected problems:  Answers 1o selected problems are given in the
last appendix. Knowing the answer to a problem is an aid and a reinforcement
in problent solving.
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SUPPLEMENTS
This book is supported by the following supplements:

B Solutions Manual available to instructors in paper form and on the website.
B Power Point slides of important figures are available on the website.
B Computer simulations are available on the website.
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Semiconductors and the
Integrated Circuit

PREVIEW

e often hear that we are living in the information age. Large amounts of

information can be obtained via the Internet, for example, and can also be

obtained quickly over long distances via satellite communication sys-
tems. The development of the transistor and the integrated circuit (1C) has lead to
these remarkable capabilities. The IC permeates almost every facet of our daily lives,
including such things as the compact disk player, the fax machine, laser scanners at
the grocery store, and the cellular telephone. One of the most dramatic examples of
IC technology is the digital computer—a relatively small laptop computer today has
more computing capability than the equipment used to send a man to the moon a few
years ago. The semiconductor electronics field continues to be a fast-changing one,
with thousands of technical papers published each year. B

HISTORY

The semiconductor device has a fairly long history, although the greatest explosion
of IC technology has occured during the last two or three decades.! The metal-
semiconductor contact dates back to the early work of Braun in 1874, who discov-
ered the asymmetric nature of electrical conduction between metal contacts and
semiconductors, such as copper, iron, and lead sulfide. These devices were used as

'This brief introduction is intended to give a flavor of the history of the semiconductor device and
integrated circuit. Thousands of engineers and scientists have made significant contnbutiens to the
development of semiconductor electronics—the few events and names mentioned here are not meant
to imply that these are the only significant events or people involved in the semiconductor history.

xwvii
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detectors in early experiments on radio. In 1906, Pickard took out a patent for a point
contact detector using silicon and, in 1907, Pierce published rectification character-
istics of diodes made by sputtering metals onto a variety of semiconductors.

By 1935, selenium rectifiers and silicon point contact diodes were available for
use as radio detectors. With the development of radar, the need for detector diodes
and mixers increased. Methods of achieving high-purity silicon and germanium were
developed during this time. A significant advance in our understanding of the metal-
semiconductor contact was aided by developments in the semiconductor physics.
Perhaps most important during this period was Bethe’s thermionic-emission theory
in 1942, according to which the current is determined by the process of emission of
electrons into the metal rather than by drift or diffusion.

Another big breakthrough came in December 1947 when the first transistor was
constructed and tested at Bell Telephone Laboratories by William Shockley, John
Bardeen, and Walter Brattain. This first transistor was a point contact device and used
polycrystalline germanium. The transistor effect was soon demonstrated in silicon as
well. A significant improvement occurred at the end of 1949 when single-crystal
material was used rather than the polycrystaltine material. The single crystal yields
uniform and improved properties throughout the whole semiconductor material.

The next significant step in the development of the transistor was the use of the
diffusion process to form the necessary junctions. This process allowed better control
of the transistor characteristics and yielded higher-frequency devices. The diffused
mesa transistor was commercially available in germanium in 1957 and in silicon in
1958. The diffusion process also allowed many transistors to be fabricated on a sin-
gle silicon slice, so the cost of these devices decreased.

THE INTEGRATED CIRCUIT (IC)

Up to this point, each component in an electronic circuit had to be individually con-
nected by wires. In September 1958, Jack Kilby of Texas Instruments demonstrated
the first integrated circuit, which was fabricated in germanium. At about the same
time, Robert Noyce of Fairchild Semiconductor introduced the integrated circuit in
silicon using a planar technology. The first circuit used bipolar transistors, Practical
MOS transistors were then developed in the mid-"60s. The MOS technologies, espe-
cially CMOS, have become a major focus for IC design and development. Silicon is
the main semiconductor material. Gallium arsenide and other compound semicon-
ductors are used for special applications requiring very high frequency devices and
for optical devices.

Since that first IC, circuit design has become more sophisticated, and the infe-
grated circuit more complex. A single silicon chip may be on the order of 1 square
centimeter and contain over a million transistors. Some 1Cs may have more than a
hundred terminals, while an individual transistor has oniy three. An IC can contain
the arithmetic, logic, and memory functions on a single semiconductor chip—the
primary example of this type of IC is the microprocessor. Intense research on silicon
processing and increased automation in design and manufacturing have led to lower
costs and higher fabrication yields.
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FABRICATION

The integrated circwit is a direct result of the development of various processing tech-
niques needed to fabricate the transistor and interconnect lines on the single chip.
The total collection of these processes for making an IC is called a rechnology. The
following few paragraphs provide an introduction to a few of these processes. This
introduction is intended to provide the reader with some of the basic terminology
used in processing.

Thermal Oxidation A major reason for the success of silicon ICs is the fact that an
excellent native oxide, $i0,, can be formed on the surface of silicon. This oxide is
used as a gate insulator in the MOSFET and is also used as an insulator, known as the
field oxide. between devices. Metal interconnect lines that connect various devices
can be placed on top of the field oxide. Most other semiconductors do not form na-
tive oxides that are of sufficient quality to be used in device fabrication.

Silicon will oxidize at room temperature in air forming a thin native oxide of ap-
proximately 25 A thick. However, most oxidations are done at elevated temperatures
since the basic process requires that oxygen diffuse through the existing oxide to the
silicon surface where a reaction can occur. A schematic of the oxidation process
is shown in Figure 0.1. Oxygen diffuses across a stagnant gas layer directly adjacent
to the oxide surface and then diffuses through the existing oxide layer to the silicon
surface where the reaction between O3 and Si forms 510>. Because of this reaction,
silicon is actually consumed from the surface of the silicon. The amount of silicon
consumed is approximately 44 percent of the thickness of the final oxide.

Photomasks and Photolithography The actual circuitry on cach chip is created
through the use of photomasks and photolithography. The photomask is a physical
representation of a device or a portion of a device. Opaque regions on the mask are
made of an ultraviolet-light-absorbing material. A photosensitive layer, called pho-
toresist, is first spread over the surface of the semiconductor. The photoresist is an
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Figure 0.1 | Schematic of the oxidation
process.
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Figure 0.2 | Schematic showing the use of a photomask.

organic polymer that undergoes chemical change when exposed to ultraviolet light.
The photoresist is exposed to ultraviolet light through the photomask as indicated in
Figure (.2. The photoresist is then developed in a chemical solution. The developer
is used to remove the unwanted portions of the photoresist and generate the appro-
priate patterns on the silicon. The photomasks and photolithography process is
critical in that it determines how small the devices can be made. Instead of using
ultraviolet light, electrons and x-rays can also be used to expose the photoresist.

Etching After the photoresist pattern is formed, the remainimg photoresist can be
used as a mask, so that the material not covered by the photoresist can be etched.
Plasma etching is now the standard process used in IC fabrication. Typically, an etch
gas such as chlorofluorocarbons are injected into a low-pressure chamber. A plasma is
created by applying a radio-frequency voltage between cathode and anode terminals.
The silicon wafer is placed on the cathode. Positively charged ions in the plasma are
accelerated toward the cathode and bombard the wafer normal to the surface. The
actual chemical and physical reaction at the surface is complex, but the net result is
that silicon can be etched anisotropically in very selected regions of the wafer. If pho-
toresist is applied on the surface of silicon dioxide, then the silicon dioxide can also
be etched in a similar way.

Diffusion A thermal process that is used extensively in IC fabrication is diffusion.
Diffusion is the process by which specific types of “impurily™ atoms can be intro-
duced into the silicon material. This doping process changes the conductivity type of
the silicon so that pn junctions can be formed. (The pn junction is a basic building
block of semiconductor devices.} Silicon wafers are oxidized to form a layer of sili-
con dioxide and windows are opened in the oxide in selected areas using photolitho-
graphy and etching as just described.

The wafers are then placed in a high-temperaturce furnace (about 1100°C) and
dopant atoms such as boron or phosphorus are introduced. The dopant atoms gradu-
ally diffuse or move into the silicon due to a density gradient. Since the diffusion
process requires a gradient in the concentration of atoms, the final concentration of



Prologue

diffused atoms is nonlinear, as shown in Figure 0.3. When the wafer is removed from
the furnace and the water temperature returns to room temperature, the diffusion co-
efficient of the dopant atoms is essentially zero so that the dopant atoms are then
fixed in the silicon material.

Ton Implantation A fabrication process that is an alternative to high-temperature
diffusion is ion implantation. A beam of dopant ions is accelerated to a high energy
and is directed at the surface of a semiconductor. As the ions enter the silicon, they
collide with stlicont atoms and lose encrgy and finally come to rest at some depth
within the crystal. Since the collision process is statistical in nature, there is a distri-
bution in the depth of penetration of the dopant ions. Figure 0.4 shows such an ex-
ample of the implantation of boron into silicon at a particular energy.

Two advantages of the ion tmplantation process compared to diffusion are
(1) the ion implantation process is a low temperature process and (2) very well de-
fined doping layers can be achieved. Photoresist layers or lavers of oxide can be used
to block the penetration of dopant atoms so that ion implantation can occur in very
selected regions of the silicon.
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One disadvantage of ion implantation is that the silicon crystal is damaged
by the penetrating dopant atoms because of collisions between the incident dopant
atoms and the host silicon atoms. However, most of the damage can be removed by
thermal annealing the silicon at an elevated temperature. The thermal annealing tem-
perature, however, is normally much less that the diffusion process temperature,

Metallization, Bonding, and Packaging After the semiconductor devices have
been fabricated by the processing steps discussed, they need to be connected to each
other to form the circuit. Metal films are generally deposited by a vapor deposition
technique and the actval interconnect lines are formed using photolithography and
etching. In general, a protective layer of silicon nitride is finally depasited over the
entire chip.

The individual integrated circuit chips are separated by seribing and breaking the
wafer. The integrated circuit chip is then mounted in a package. Lead bonders are finally
used to attach gold or aluminum wires between the chip and package terminals.

Summary: Simplified Fabrication of a pn Junction Figure 0.5 shows the basic
steps in forming a pn junction. These steps involve some of the processing described
in the previous paragraphs.
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Figure 0.5 | The basic steps in farming a pn junction.



The Crystal Structure of Solids

PREYIEW

his text deals with the electrical properties and characteristics of semicon-

ductor materials and devices. The electrical properties of solids are therefore

of primary interest. The semiconductor is in general a single-crystal material.
The electrical properties of a single-crystal material are determined not only by the
chemical composition but also by the arrangement of atoms in the solid; this being
true, a brief study of the crystal structure of solids is warranted. The formation, or
growth, of the single-crystal material is an important part of semiconductor technol-
ogy. A short discussion of several growth techniques is included in this chapter to
provide the reader with some of the terminology that describes serniconductor device
structures. This introductory chapter provides the necessary background in single-
crystal materials and crystal growth for the basic understanding of the electrical
properties of semiconductor materials and devices. B

1.1 1 SEMICONDUCTOR MATERIALS

Semiconductors are a group of materials having conductivities between those of met-
als and insulators. Two general classifications of semiconductors are the elemental
semiconductor materials, found in group IV of the periodic table, and the compound
semiconductor materials, most of which are formed from special combinations of
group III and group V elements. Table 1.1 shows a portion of the periodic table in
which the more common semiconductors are found and Table 1.2 lists a few of the
semiconductor materials, {Semiconductors can also be formed from combinations of
group I and group VI elements, but in general these will not be considered in this text.)

The elemental materials, those that are composed of single species of atoms, are
silicon and germanium. Silicon is by far the most common semiconductor used in in-
tegrated circuits and will be emphasized to a great extent.
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Table 1.1 A portion Table 1.2 | A list of some semiconductor

of the periodic table materials

HI v A\ Elementat semiconductors

B C Si Silicon

Al 51 P Ge Germanium

IC;ula e ?; Compound semiconductors
AlP Aluminum phosphide
AlAs Aluminum arsenide
Gab Gallium phosphide
GaAs Gallium arsenide
InP Indium phosphide

The two-element, or binary, compounds such as gallium arsenide or gallium phos-
phide are formed by combining one group III and one group V element. Gallium
arsenide is one of the more common of the compound semiconductors. Its good optical
properties make it useful in optical devices. GaAs is also used in specialized applica-
tions in which, for example, high speed is required.

We can also form a three-element, or ternary, compound semiconductor. An ex-
ample is AlL,Ga;_ As, in which the subscript x indicates the fraction of the lower
atomic number element component. More complex semiconductors can also be
formed that provide flexibility when choosing material properties.

1.2 I TYPES OF SOLIDS

Amorphous, polycrystalline, and single crystal are the three general types of solids.
Each type is characterized by the size of an ordered region within the material. An or-
dered region is a spatial volume in which atoms or molecules have a regular geomet-
ric arrangement or periodicity. Amorphous materials have order only within a few
atomic or moiecular dimensions, while polycrystalline materials have a high degree

L

(@) b) (c)

Figure 1.1 | Schematics of three general types of crystals: (a) amorphous, (b) polycrystalline,
(c) single crystal.
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of order over many atomic or molecular dimensions. These ordered regions. or
single-crystal regions, vary in size and orientation with respect to one another. The
single-crystal regions are called grains and are separated from one another by grain
boundaries. Single-crystal materials. ideally, have a high degree of order, or regular
geometric periodicity, throughout the entire volume of the material. The advantage
of a single-crystal material is that, in general, its electrical properties are superior to
those of a nonsingle-crystal material, since grain boundaries tend to degrade the
electrical characteristics. Two-dimensional representations of amorphous, polycrys-
talline, and single-crystal materials are shown in Figure 1.1.

1.3 1 SPACE LATTICES

Our primary concern will be the single crystal with its regular geometric periodicity
in the atomic arrangement. A representative unit, or group of atoms, is repeated at
regular intervals in each ot the three dimensions to form the single crystal. The peri-
odic arrangement of atoms in the crystal is called the lartice.

1.3.1 Primitive and Unit Cell

We can represent a particular atomic array by a dot that is called a latice point.
Figure 1.2 shows an infinite two-dimensional array of lattice points. The simplest
means of repeating an atomic array is by translation. Each lattice point in Figure 1.2
can be translated a distance ay in one direction and a distance b, in a second nonco-
linear direction to generate the two-dimensional latiice. A third noncolinear transia-
tion will produce the three-dimensional lattice. The translation directions need not
be perpendicular.

Since the three-dimensional lattice is a periodic repetition of a group of atoms,
we do not need to consider the entire lattice, but only a fundamental unit that is being
repeated. A unit cell is a small volume of the crystal that can be used to reproduce the
entire crystal. A unit cell is not a unique entity. Figure 1.3 shows several possible unit
cells in a two-dimensional lattice,

Figure 1.2 | Two-dimensional Figure 1.3 | Two-dimensional representation of a single-crystal
representation of a single-crystal lattice. lattice showing various possible unit cells.
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iy

o

Figure 1.4 | A generalized
primitive unit cell.

The unit cell A can be transiated in directions a2 and -, the unit cell B can be
translated in directions a3 and b5, and the entire two-dimensional lattice can be con-
structed by the translations of either of these unit cells. The unit cells C and D in Fig-
ure 1.3 can also be used to construct the entire lattice by using the appropriate trans-
lations. Thig discussion of two-dimensional unit cells can easily be extended to three
dimensions to describe a real single-crystal material.

A primitive cell is the smallest unit cell that can be repeated to form the lattice.
In many cases, it is more convenient to use a unit cell that is not a primitive cell. Unit
cells may be chosen that have orthogonal sides, for example, whereas the sides of a
primitive cell may be nonorthogonal.

A generalized three-dimensional unit cell is shown in Figure 1.4. The relation-
ship between this cell and the lattice is characterized by three vectors a, 5, and ¢,
which need not be perpendicular and which may or may not be equal in length. Every
equivalent lattice point in the three-dimensional erystal can be found using the vector

F=pa-+qb+sé (1.1

where p, g, and s are integers. Since the location of the origin is arbitrary, we will let
p. g, and s be positive integers for simplicity.

1.3.2 Basic Crystal Structures

Before we discuss the semiconductor crystal, let us consider three crystaf structures
and determine some of the basic characteristics of these crystals. Figure 1.5 shows
the simple cubic, body-centered cubic, and face-centered cubic structures. For these
simple structures, we may choose unit cells such that the general vectors a, b, and ¢
are perpendicular to each other and the lengths are equal. The simple cubic (sc) struc-
ture has an atom located at each corner; the body-centered cubic (bee) structure has
an additional atom at the center of the cobe; and the fice-centered cubic (fec) structure
has additional atoms on each face plane.

By knowing the crystal structure of a material and its lattice dimensions, we can
determine several characteristics of the crystal. For example, we can determing the
volume density of atoms.
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(a} (]

()

Figure 1.5 | Three lattice types: (a) simple cubic, (b) body-centered cubic, (¢) face-centered cubic.

Objective

To find the volume density of atoms in & crystal.

Consider a single-crystal material that is a body-centered cubic with a lattice constant
a=35A=25x 10%cm. A corner atom is shared by eight unit cells which meet at each corner
so that each corner atom effectively contributes one-eighth of its volume to each unit cell. The
eight corner atoms then contribute an equivalent of one atom to the unit cell. If we add the body-
centered atom to the corner atoms, each unit cell contains an equivalent of two atoms,

u Solution
The volume density of atoms is then found as

2 atoms

m =1.6x 1022 atoms per ‘C]Tl3
2 X e

Density =
1 Comment
The volume density of atoms just calculated represents the order of magnitude of density for
most materials. The actual density is a function of the crystal type and crystal structure since
the packing density—number of atoms per unit cell—depends on crystal structure.

TEST YOUR UNDERSTANDING

EL1 The lattice constant of a face-centered-cubic structure is 4.75 A. Determine the vol-
ume density of atoms. {;_W2 (] X ££°¢ "sUy)

EL2 The volume density of atoms for a simple cubic lattice is 3 x 10?2 cm™*. Assume that
the atoms are hard spheres with each atom touching its nearest neighbor. Determine
the Jattice constant and the radium of the atom. (¥ 19 = 4+ Y IT'E = % suy)

1.3.3 Crystal Planes and Miller Indices

Since real crystals are not infinitely large, they eventually terminate at a surface.
Semiconductor devices are fabricated at or near a surface, so the surface properties

EXAMPLE 1.1
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may influence the device characteristics. We would like to be able to describe these
surfaces in terms of the lattice. Surfaces, or planes through the crystal, can be de-

scribed by first considering the intercepts of the plane along the &, b, and ¢ axes used
to describe the lattice.

EXAMPLE 1.2

Objective

To describe the plane shown in Figure 1.6. (The lattice points in Figure 1.6 are shown along
the @, b, and ¢ axes only.)

Figure 1.6 | A representative crystal-
lattice plane.

N Solution
From Equation {1.1), the intercepts of the plane correspond to p = 3,49 = 2, and s = |. Now
write the reciprocals of the intercepts, which gives

111
37271

Multiply by the lowest common denominator, which in this case is 6, to obtain (2, 3, 6). The
plane in Figure 1.6 is then referred to as the (236) plane. The integers are referred to as the
Miller indices. We will refer to a general plane as the (hk/) plane.

m Comment
We can show that the same three Miller indices are obtained for any plare that is parallel to the
one shown in Figure 1.6. Any parallel plane is entirely equivalent to any other.

Three planes that are commonly considered in a cubic crystal are shown in Fig-
ure 1.7. The plane in Figure 1.7a is parallel to the 5 and ¢ axes so the intercepts are
givenas p = |, ¢ = 00, and s = oo. Taking the reciprocal, we obtain the Miller in-
dices as (1, 0, 0), so the plane shown in Figure 1.7a is referred to as the (10(}) plane.
Again, any plane parallel to the one shown in Figure 1.7a and separated by an integral
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{a) (b) (c)

Figure 1.7 | Three lattice planes: (a) (100) plane, (b} (110} plane. (¢) (111) plane,

number of lattice constants is equivalent and is referred to as the (100) plane. One ad-
vantage to taking the reciprocal of the intercepts to obtain the Miller indices is that the
use of infinity is avoided when describing a plane that is parallel to an axis. If we were
to describe a plane passing through the origin of our system, we would obtain infin-
ity as one or more of the Miller indices after taking the reciprocal of the intercepts.
However, the location of the origin of our system is entirely arbitrary and so, by trans-
lating the origin to another equivalent lattice point, we can avoid the use of infinity in
the set of Miller indices.

For the simple cubic structure, the body-centered cubic, and the face-centered
cubic, there is a high degree of symmetry. The axes can be rotated by 90° in each of the
three dimensions and each Jattice point can again be described by Equation (1.1) as

F=pa+qgbh+sé (1.1)

Each face plane of the cubic structure shown in Figure 1.7a is entirely equivalent.
These ptanes are grouped together and are referred to as the { 100} set of planes.

We may also consider the planes shown in Figures 1.7b and 1.7c. The intercepts
of the plane shown in Figure [.7b are p = 1, ¢ = |, and s = co. The Miller indices
are found by taking the reciprocal of these intercepts and, as a result, this plane is
referred to as the (110} plane. In a similar way, the plane shown in Figure 1.7c is re-
ferred to as the (111) plane.

One characteristic of a crystal that can be determined is the distance between
nearest equivalent parallel planes. Another characteristic is the surface concentration
of atoms, number per square centimeter (#/cm?), that are cut by a particular plane.
Again, a single-crystal semiconductor is not infinitely large and must terminate at
some surface, The surface density of atoms may be important, for example, in deter-
mining how another material, such as an insulator, will “fit” on the surface of a semi-
conductor material.
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EXAMPLE 1.3 [ Objective

To caiculate the surface density of atoms on a particular plane in a crystal.

Consider the body-centered cubic structure and the (110) plane shown in Figure 1.8a.
Assume the atoms can be represented as hard spheres with the closest atoms touching each
other. Assume the lattice constant is ¢y = 5 A. Figure 1.8b shows how (he atoms arc cut by the
(110) plane.

The atom at each corner is shared by four similar equivalent lattice planes, so each corner
atom effectively contributes one-fourth of its area 1o this lattice plane as indicated in the fig-
ure. The four corner atoms then effectively contribute one atom to this lattice plane. The atom
in the center is completely enclosed in the lattice plane. There is no other equivalent plane that
cuts the center atom and the corner atoms, so the entire center atom 1s included in the number
of atoms in the crystal plane. The lattice plane in Figure 1.8b. then, contains two atoms.

(a) (b)

Figure 1.8 [ (a) The (110} plane in a body-centered cubic and (b} the atoms cut by the
(110) plane in a body-centered cubic.

H Solution
We find the surface density by dividing the number of lattice atoms by the surface area, or in
this case

2 atoms 2

Surface density = =
YT @V 5 x 10522)

which is
5.66 % 10" atomsfem’

B Comment
The surface density of atoms is a function of the particular crystal plane in the laitice and gen-
erally varies from one crystal plane to another.
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TEST YOUR UNDERSTANDING

EL3 Determine the distance between nearest (110) planes in a simple cubic lattice with a
lattice constant of ¢y = 4.83 A, (Y Trg suv)

E}4 The laitice constant of a face-centered-cubic structure is 4.75 A. Calculate the surface
density of atoms for («) a (100) plane and (b) a (110) plane.
[oow2 01 X £T°0(q) ;W 07 x 98°8 (¥) suy)

In addition to describing crystal planes in a lattice, we may want to describe a par-
ticular direction in the crystal. The direction can be expressed as a set of threc integers
which are the components of a vector in that direction. For example, the body diago-
nal in a simple cubic lattice is composed of vector components 1. 1, . The body diag-
onal is then described as the [111] direction. The brackets are used to designate direc-
tion as distinct from the parentheses used for the crystal planes. The three basic
directions and the associated crystal planes for the simple cubic structure are shown in
Figure 1.9. Note that in the simple cubic lattices, the [&{] direction is perpendicular to
the (hkf) plane. This perpendicularity may not be true in noncubic lattices.

1.3.4 The Diamond Structure

As already stated, siticon is the most common semiconductor matenal. Silicon is re-
ferred to as a group I'V element and has a diamond crystal structure, Germanium is
also a group IV element and has the same diamond structure. A unit cell of the dia-
mond structure, shown in Figure 1.10), is more complicated than the simple cubic
structures that we have considered up to this point.

We may begin to understand the diamond lattice by considering the tetrahedral
structure shown in Figure 1.11. This structure is basically a body-centered cubic with

(a) {b) (e}

Figure 1.9 | Three lattice directions and planes: (a) (100) plane and [100] direction, (b) (110) plane and [110] direction,
{c) (i11) plane and {111] direciion,
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Figure 1.11 | The tetrahedral
structure of closest neighbors
in the diamond lattice.

(a) (b)

Figure 1.12 | Portions of the diamond lattice: {a) bottom half and (b) top half.

four of the corner atoms missing. Every atom in the tetrahedral structure has four
nearest neighbors and it is this structure which is the basic building block of the dia-
mond lattice.

There are several ways to visualize the diamond structure. One way to gain a fur-
ther understanding of the diamond lattice is by considering Figure i.12. Figure 1.12a
shows two body-centered cubic, or tetrahedral, structures diagonally adjacent to each
other. The shaded circles represent atoms in the lattice that are generated when the
structure is translated to the right or left, one lattice constant, a. Figure 1.12b repre-
sents the top half of the diamond structure. The top half again consists of two tetra-
hedral structures joined diagonally, but which are at 90° with respect to the bottom-
half diagonal. An important characteristic of the diamond lattice is that any atom
within the diamond structure will have four nearest neighboring atoms. We will note
this characteristic again in our discussion of atomic bonding in the next section.
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Figure 1.14 | The tetrahedral
structure of closest neighbors in
Figure 1.13 | The zincblende (sphalerite) lattice of GaAs. the zincblende lattice.

The diamond structure refers to the particular lattice in which all atoms are of the
same species, such as silicon or germanium. The zincblende (sphalerite) structure
differs from the diamond structure only in that there are two different types of atoms
in the lattice. Compound semiconductors, such as gallium arsenide, have the zinc-
blende structure shown in Figure 1.13. The important feature of both the diamond
and the zincblende structures is that the atoms are joined together to form a tetrahe-
dron. Figure 1.14 shows the basic tetrahedral structure of GaAs in which each Ga
atom has four nearest As neighbors and each As atom has four nearest Ga neighbors,
This figure also begins to show the interpenetration of two sublattices that can be used
to generate the diamond or zincblende lattice.

TEST YOUR UNDERSTANDING

ELS The lattice constant of silicon is 5.43 A, Calculate the volume density of siticon
atoms. {;_W2 ;0] X § SUY)

1.4 | ATOMIC BONDING

We have been considering various single-crystal structures. The question arises as to
why one particular crystal structure is favored over another for a particular assembly
of atoms. A fundamental law of nature is that the total energy of a system in thermal
equilibrium tends to reach a minimum value. The interaction that occurs between
atoms to form a solid and to reach the minimum total energy depends on the type of
atom or atoms invoived. The type of bond, or interaction, between atoms, then, de-
pends on the particular atom or atoms in the crystal. If there is not a strong bond be-
tween atoms, they will not “stick together” to create a solid.

11
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The interaction between atoms can be described by quantum mechanics. Al-
though an introduction to quantum mechanics is presented in the next chapter, the
quantum-mechanical description of the atomic bonding interaction is still beyond the
scope of this text. We can nevertheless obtain a gualitative understanding of how var-
ious atoms interact by considering the valence, or outermost, electrons of an atom.

The atoms at the two extremes of the periodic table (excepting the inert ele-
ments) tend to lose or gain valence electrons, thus forming ions. These ions then es-
sentially have complete outer energy shells. The elements in group 1 of the periodic
table tend to lose their one electron and become positively charged, while the ele-
ments in group VII tend to gain an electron and become negatively charged. These
oppositely charged ions then experience a coulomb atiraction and form a bond ye-
ferred to as an ionic bond. 1f the 1ons were to get too close, a repulsive force would
become dominant, so an equilibrium distance results between these two tons. In a
crystal, negatively charged ions tend to be surrounded by positively charged ions and
positively charged ons tend to be surrounded by negatively charged ions, so a peri-
odic array of the atoms is formed to create the lattice. A classic example of ionic
bonding is sodium chloride.

The interaction of atoms tends to form closed valence shells such as we see in
ionic bonding. Another atomic bond that tends to achicve closed-valence energy
shells is covalent bonding, an example of which is found in the hydrogen molecule.
A hydrogen atom has one electron and needs one more eleciron to complete the low-
est energy shell. A schematic of two noninteracting hydrogen atoms, and the hydro-
gen moelecule with the covalent bonding, are shown in Figure 1.15, Covalent bond-
ing results in electrons being shared between atoms, so that in effect the valence
energy shell of each atom is tull.

Atoms in group IV of the periodic table, such as silicon and germanium, also
tend to form covalent bonds. Each of these elements has four valence electrons and
needs four more electrons to complete the valence energy shell. If a siticon atom, for
example, has four nearest neighbors, with each neighbor atom contributing one va-
lence electron to be shared, then the center atom will in effect have eight electrons in
its outer shell. Figure 1.16a schematically shows five noninteracting silicon atoms
with the four valence electrons around each atom. A two-dimensional representation

®=® |
{b) -8h-

Figure 1,15 | Representation of
(a) hydrogen valence electrons
and (b) covalent bonding in a
hydrogen molecule,

(@) (b

Figure 1.16 | Representation of (a) silicon valence
electrons and (b) covalent bending in the sificon crystal.
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of the covalent bonding in silicon is shown in Figure 1.16h. The center atom has
eight shared valence electrons.

A significant difference between the covalent bonding of hydrogen and of sili-
con is that, when the hydrogen molecule is formed, it has no additional electrons to
form additional covalent bonds, while the outer silicon atoms always have valence
electrons available for additional covalent bonding. The silicon array may then be
formed into an infinite crystal, with each silicon atom having four nearest neighbors
and eight shared electrons. The four nearest neighbors in silicon forming the covalent
bond correspond to the tetrahedral structure and the diamond lattice, which were
shown in Figures 1.11 and 1.10, respectively. Atomic bonding and crystal structure
are obviously directly related.

The third major atomic bonding scheme is referred to as merallic bonding.
Group I elements have one valence electron. If two sodium atoms (Z = 11), for ex-
ample, are brought into close proximity, the valence electrons interact in a way sim-
ilar to that in covalent bonding. When a third sodium atom is brought into close prox-
imity with the firsf two, the valence elecirons can also interact and continue to form
a bond. Solid sodium has a body-centered cubic structure, so each atom has eight
nearest neighbors with each atom sharing many valence electrons. We may think of
the positive metallic ions as being surrounded by a sea of negative electrons, the solid
being held together by the electrostatic forces. This description gives a qualitative
picture of the metallic bond.

A fourth type of atomic bond, called the Van der Waals bond, is the weakest of
the chemical bonds. A hydrogen fluoride (HF) molecule, for example, is formed by
an ionic bond. The effective center of the positive charge of the molecule is not the
same as the effective center of the negative charge. This nonsymmetry in the charge
distribution results in a small electric dipole that can interact with the dipoles of other
HF molecules. With these weak interactions, solids formed by the Van der Waals
bonds have a relatively low melting temperature—in fact, most of these matertals are
in gaseous form at room temperature.

*1.5 | IMPERFECTIONS AND IMPURITIES
IN SOLIDS

Up to this point, we have been considering an ideal single-crystal structure. In a real
crystal, the lattice is not perfect, but contains imperfections or defects; that is, the per-
fect geometric periodicity is disrupted in some manner. Imperfections tend to alter the
electrical properties of a material and, in some cases, electrical parameters can be
dominated by these defects or impurities.

15.1 TImperfections in Solids

One type of imperfection that all crystals have in common is atomic thermal vibra-
tion. A perfect single crystal contains atoms at particular lattice sites, the atoms sep-
arated from each other by a distance we have assumed to be constant. The atoms in a

*Indicates sections that can be skipped without loss of continuity.
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Figure 1.17 | Two-dimensional representation of a single-crystal lattice showing (a) a vacancy defect
and (b) an inlerstitial defect.

crystal, however, have a certain thermal energy, which is a function of temperature.
The thermal energy causes the atoms to vibrate in a random manner about an equi-
librinm lattice point. This random thermal motion causes the distance beiween atoms
to randomly fluctuate, slightly disrupting the perfect geometric arrangement of atoms.
This imperfection, called lattice vibrations, affects some electrical parameters, as we
will see later in our discussion of semiconductor material characteristics.

Another type of defect is called a poins defect. There are several of this type that
we need to consider. Again, in an ideal single-crystal lattice, the atoms are arranged
in a perfect periodic arrangement. However, in a real crystal, an atom may be missing
from a particular lattice site. This defect is referred to as a vacancy; it is schematically
shown in Figure 1.17a. In another situation, an atom may be located between lattice
sites. This defect is referred to as an inverstitial and is schematically shown in Fig-
ure 1.17b. In the case of vacancy and interstitial defects, not only is the perfect geo-
metric arrangement of atoms broken, but also the ideal chemical bonding between
atoms is disrupted, which tends to change the electrical properties of the material. A
vacancy and interstitial may be in close enough proximity to exhibit an interaction
between the two point defects. This vacancy-interstitial defect, also known as a
Frenkel defect, produces different effects than the simple vacancy or interstitial.

The point defects involve single atoms or single-atom locations. In forming
single-crystal materials, more complex defects may occur. A line defect, for example,
occurs when an entire row of atoms is missing from its normal lattice site. This de-
fect is referred to as a line dislocarion and is shown in Figure 1.18. As with a point
defect, a line dislocation disropts both the normal geometric periodicity of the lattice
and the ideal atomic bonds in the crystal. This dislocation can also alter the electrical
properties of the material, usuaily in a more unpredictable manner than the simple
point defects.

Other complex dislocations can also occur in a crystal lattice. However, this in-
troduoctory discussion is intended only 1o present a few of the basic types of defect,
and to show that a real crystal is not necessarily a perfect lattice structure. The effect
of these imperfections on the electrical properties of a semiconductor will be consid-
ered in later chapters,



1.5 Imperfections and Impurities in Solids

B A S S S
{ |
;;&f&ff#clu
[ ! [
| |
10888888
q-qlvod\vo?d;-+¢
| S T, po
& : . - @
Prey rrtd
%
| T [
- bd oo b b

Figure 1.18 | A two-
dimensional representation
of a line dislocation,

-~ - ——»
F v v i /

- - - - P ¥

i ’d /
/ /

a 5 7 H
._Suhsu.tutmnal e
impurity 4 “ ! i i
- - - / : _——— 7 /
Interstitial P o o S

. g s
impurit B oy
- - - - UL / 3 /
¥ / 4 s

/
- / — g —— — -

# s

/ | P
.. — - —— - —— =

(a) {b)

/

Figure 1.19 | Two-dimensional representation of a single-crystal lattice showing (a) a substitutional impurity

and (b) an intersitital impurity.

1.5.2 Impurities in Solids

Foreign atoms, or impurity atems, may be present in a crystal lattice. Impurity atoms
miay be located at normal lattice sites, in which case they are called substitutional im-
purities. Impurity atoms may also be located between normal sites, in which case
they are called interstitial impurities. Both these impurities are lattice defects and are
schematically shown in Figure 1.19. Some impurities, such as oxygen in silicon, tend
to be essentially inert; however, other impurities, such as gold or phosphorus in sili-
con, can drastically alter the electrical properties of the material.

In Chapter 4 we will see that, by adding controlled amounts of particular impu-
rity atoms, the electrical characteristics of a semiconductor material can be favorably
altered. The technique of adding impurity atoms to a semiconductor material in order
to change its conductivity is called doping. There are two general methods of doping:
impurity diffusion and ion implantation.

The actual diffusion process depends to some extent on the material but, in gen-
eral, impurity diffusion occurs when a semiconductor crystal is placed in a high-
temperature (/= 1000°C) gaseous atmosphere containing the desired impurity atom.
At this high temperature, many of the crystal atoms can randomly move in and out of
their single-crystal lattice sites. Vacancies may be created by this random motion so

15
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that impurity atoms can move through the lattice by hopping from one vacancy to an-
other. Impurity diffusion is the process by which impurity particles move from a re-
gion of high concentration near the surface, to a region of lower concentration within
the crystal. When the temperature decreases, the impurity atoms become permanently
frozen into the substitutionat lattice sites. Diffusion of various impurities into selected
regions of a semiconductor allows us to fabricate complex electronic circuits in a
single semiconductor crystal.

Ton implantation generally takes place at a lower temperature than diffusion. A
beam of impurity ions is accelerated to kinetic energies in the range of 50 keV or
greater and then directed to the surface of the semiconductor. The high-energy impu-
rity ions enter the crystal and come to rest al some average depth from the surface.
One advantage of ion implantation is that controlled numbers of impurity atoms can
be introduced into specific regions of the crystal. A disadvantage of this technique s
that the incident impurity atoms collide with the crystal atoms, causing lattice-
displacement damage. However, most of the lattice damage can be removed by ther-
mal annealing, in which the temperature of the ¢rystal is raised for a short time, Ther-
mal annealing s a required step after implantation.

*1.6 | GROWTH OF SEMICONDUCTOR
MATERIALS

The success in fabricating very large scale integrated (VLSI) circuits is a result, to a
large extent, of the development of and improvement in the formation or growth of
pure single-crystal semiconductor materials. Semiconductors are some of the purest
materials. Silicon, for example, has concentrations of most impurities of less than
1 part in [0 billion. The high purity requirement means thut extreme care is necessary
inthe growth and the treatment of the material at each step of the fabrication process.
The mechanics and kinetics of crystal growth are extremely complex and will be de-
scribed in only very general terms in this text. However, a general knowledge of the
growth techniques and terminology is valuable.

1.6.1 Growth from a Melt

A common technique for growing single-crystal materials is called the Czochralski
method. In this technique, a small piece of single-crystal material, known as a seed,
is brought into contact with the surface of the same material in liquid phase, and then
slowly pulled from the mell. As the seed is slowly pulled, solidification occurs atong
the plane between the solid-liguid interface. Usually the crystal is also rotated slowly
as it is being pulled, to provide a slight stirring action to the melt, resulting in a more
uniform temperature. Controlled amounts of specific impurity atoms, such as boron
or phosphorus, may be added to the melt so that the grown semiconductor crystal is
intentionally doped with the impurity atom. Figure 1.20 shows a schematic of the
Czochralski growth process and a silicon ingot or boule grown by this process.

*Indicates sections that can be skipped without loss of continuity.
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Figure 1.20 | (1) Model of a crystal puller and (b) photograph of a silicon wafer with an
array of integrated circuits. The circuits are tested on the water then sawed apart inte chips
that are mounted into packages. (Photo courtesy of Inte] Corporation.)
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Some impurities may be present in the ingot that are undesirable. Zone refining
is a common technique for purifying material. A high-temperature coil, or r-f induc-
tion coil, is slowly passed along the length of the boule. The temperature induced by
the coil is high enough so that a thin layer of liquid is formed. At the solid-liquid in-
terface, there is a distribution of impurities between the two phases. The parameter
that describes this distribution is called the segregation coefficient: the ratio of the
concentration of impurities in the solid to the concentration in the liquid. 1f the seg-
regation coefficient is 0.1, for example, the concentration of impurities in the liquid
is a factor of 10 greater than that in the solid. As the liquid zone moves through the
material, the impurities are driven along with the liquid. After several passes of the
- coil, most impurities are at the end of the bar, which can then be cut off. The mov-
ing molten zone, or the zone-refining technique, can result in considerable purification.

After the semiconductor is grown, the boule is mechanically trimmed to the
proper diameter and a flat is ground over the entire length of the boule to denote the
crystal orientation. The flat is perpendicular to the [ 110] direction or indicates the (110}
plane. (See Figure 1,20b,) This then allows the individual chips to be fabricated along
given crystal planes so that the chips can be sawed apart more easily. The boule is then
sliced into wafers. The wafer must be thick enough to mechanically support itself. A
mechanical two-sided lapping operaticn preduces a flat wafer of uniform thickness.
Since the lapping procedure can leave a surface damaged and contaminated by the me-
chanicat operation, the surface must be removed by chemical etching. The final step is
polishing. This provides a smooth surface on which devices may be fabricated or fur-
ther growth processes may be carried out. This final semiconductor wafer is called the
substrate material.

1.6.2 Epitaxial Growth

A common and versatile growth technique that is used extensively in device and in-
tegrated circuit fabrication is epitaxial growth. Epitaxial growth is a process whereby
4 thin, single-crystal layer of material is grown on the surface of a single-crystal sub-
strate. In the epitaxial process, the single-crystal substrate acts as the seed, although
the process takes place far below the melting temperature. When an epitaxial layer is
grown on a substrate of the same material, the process is termed homoepitaxy. Grow-
ing silicon on a silicon substrate is one example of a homoepitaxy process. At pre-
sent, a great deal of work is being done with heteroepitaxy. In a heteroepitaxy
process, although the substrate and epitaxial materials are not the same, the two crys-
tal structures should be very similar if single-crystal growth is to be obtained and if
a large number of defects are to be avoided at the epitaxial-substrate interface.
Growing epitaxial layers of the ternary alloy AlGaAs on a GaAs substrate is one ex-
ample of a heteroepitaxy process.

One epitaxial growth technique that has been used extensively is called chemi-
cal vapor-phase deposition (CVD). Silicon epitaxial layers, for example, are grown
on silicon substrates by the controtled deposition of silicon atoms onto the surface
from a chemical vapor containing silicon. In one method, silicon tetrachloride reacts
with hydrogen at the surface of a heated substrate. The silicon atoms are released in
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the reaction and can be deposited onto the substrate, while the other chemical reac-
tant, HCI, is in gaseous form and is swept out of the reactor. A sharp demarcation be-
tween the impurity doping in the substrate and in the epitaxial layer can be achieved
using the CVD process. This technique allows great flexibility in the fabrication of
semiconductor devices.

Liguid-phase epitaxy is another epitaxial growth technique. A compound of the
semiconductor with another element may have a melting temperature lower than that
of the semiconductor itself. The semiconductor substrate is held in the liquid com-
pound and, since the temperature of the melt is lower than the melting temperature of
the substrate, the substrate does not melt. As the solution is slowly cooled, a single-
crystal semiconductor layer grows on the seed crystal. This technique, which occurs
at a lower temperature than the Czochralski method, is useful in growing group 111-V
compound semiconductors.

A versatile technique for growing epitaxial layers is the molecular beam epitaxy
(MBE) process. A substrate is held in vacuum at a temperature normally in the range
of 400 to 80("C, a relatively low temperature compared with many semiconductor-
processing steps. Semiconductor and dopant atoms are then ¢vaporated onto the sur-
face of the substrate, In this technique, the doping can be precisely controlled result-
ing in very complex doping profiles. Complex ternary compounds, such as AlGaAs,
can be grown on substrates, such as GaAs, where abrupt changes in the crystal com-
position are desired. Many layers of various types of epitaxial compositions can be
grown on a substrate in this manner. These structures are extremely beneficial in op-
tical devices such as laser diodes.

1.7 | SUMMARY

B A few of the most common semiconductor materials were listed. Silicon is the most
common semiconductor material,

B The properties of semiconduciors and other materials are determined to a larpe extent
by the single-crystal lattice structure. The unit cell is a small volume of the crystal that
is used to reproduce the entire crystal. Three basic unit cells are the simple cubic, body-
centered cubic, and face-centered cubic.

B Silicon has the diamond crystal structure. Atoms are formed in a tetrahedral configura-
tion with four nearest neighbor atoms. The binary semiconductors have a zincblende
lattice, that is basically the same as the diamond lattice.

B Miller indices are used to describe planes in a crystal lattice. These planes may be used
to describe the surface of a semiconductor material. The Miller indices are also used to
describe directions in a crystal.

B Imperfections do exist in semiconductor materials. A few of these imperfections are
vacancies, substitutional impuritics, and interstitial impurities. Small amounts of ¢on-
trolled substitutional impurities can favorably alter semiconductor properties as we will
see in later chapters.

B Abrief description of semiconductor growth methods was given. Bulk growth produces
the starting semiconductor material or substrate. Epitaxial growth can be used to control
the surface properties of a semiconductor. Most semiconductor devices are fabricated
in the epitaxial layer.
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GLOSSARY OF IMPORTANT TERMS

binary semiconductor A iwo-element compound semiconductor, such as gallium arsenide
(GaAs}).
covalent bonding The bonding between atoms in which valence electrons are shared,

diamond lattice The atomic crystal structure of silicon, for example, in which each atom
has four nearest neighbors in a tetrahedral configuration.

doping The process of adding specific types of atoms 1o a semiconductor 1o favorably alter
the electrical characteristics.

elemental semiconductor A semiconductor composed of a single species of atom, such as
silicon or germanium.

epitaxial layer A thin, single-crystal layer of material formed on the surface of a substrate.

ion implantation One particular process of doping a semiconductor.

lattice The periodic arrangement of atoms in a crystal.

Miller indices The set of integers used to describe a crystal plane.

primitive cell The smallest unit cell that can be repeated to form a lattice.

substrate A semiconductor wafer or other material used as the starting material for further
semiconductor processing, such as epitaxial growth or diffusion.

ternary semiconductor A three-element compound semiconductor, such as aluminum gal-
lium arsenide {AlGaAs).

unit cell A small volume of a crystal that can be used to reproduce the entire crystal.

zinchlende lattice A lattice structure identical o the diamond lattice except that there are
two types of atoms instead of one.

CHECKPOINT

After studying this chapter, the reader should have the ability to:

Determine the volume density of atoms for various lattice structures.
Determine the Miller indices of a crystal-lattice plane.

Sketch a lattice plane given the Miller indices.

Determine the surface density of atoms on a given crystal-lattice plane.
Understand and describe various defects in a single-crystal lattice.

REVIEW QUESTIONS

1. List two elemental semiconductor materials and two compound semiconductor
materials.

2. Sketch three lattice structures: (a) simple cubic, () body-centered cubic, and
(¢) face-centered cubic.

3. Describe the procedure for finding the volume density of atoms in a crystal.

4. Describe the procedure for obtaining the Miller indices that describe a plane in a crystal.

5. What is meant by a substitutiona) impurigy in a crysial? What is meant by an interstitial
impurity?
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1.10

Determine the number of atoms per unit cell in a (a) face-centered cubic,
(b) body-centered cubic, and (c) diamond lattice.

(@) The lattice constant of GaAs is 5.65 A, Determine the number of Ga atoms
and As atoms per cm®, () Determine the volume density of germanium atoms in a
germanium semiconductor. The lattice constant of germanium is 5.65 A.

Assume that each atom is a hard sphere with the surface of each atom in contact with
the surface of its nearest neighbor. Determine the percentage of total unit cell volume
that is occupied in () a simplc cubic lattice, (b) a face-centered cubic lattice,

() a body-centered cubic lattice, and (¢) a diamond lattice.

A material, with a volume of 1 cm?, is compuosed of an fec lattice with a lattice
constant of 2.5 mm. The “atoms” in this material are actually coffee beans. Assume
the coffee beans are hard spheres with each bean touching its nearest neighbor.
Determine the volume of coffee after the coffee beans have been ground. (Assume
100 percent packing density of the ground coftee.)

If the lattice constant of silicon is 5.43 A, calculate (g) the distance from the center of
one silicon atom to the center of its nearest neighbor, () the number density of silicon
atoms (# per cm’), and (¢) the mass density (grams per em”} of silicon.

A crystal is composed of two clements, A and B. The basic crystal structure is a body-
centered cubic with clements A at each of the corners and element B in the center. The
effective radius of element A is 1.02 A, Assume the elements are hard spheres with the
surface of each A-type atom in contact with the surface of its nearest A-type neighbor,
Calculate (a) the maximum radius of the B-type atom that will fit into this structure,
and (b) the volume density (#/cm’} of both the A-type atoms and the B-type atoms.

The erystal structure of sodium chjoride (NaCl) is a simple cubic with the Na and Ci
atoms alternating positions. Each Na atom is then surrounded by six Cl atoms and
likewise each Cl atom is surrounded by six Na atoms. (@) Sketch the atoms in a (100}
plane. (») Assume the atoms arc hard spheres with nearest neighbors touching, The
effective radius of Na is 1.0 A and the effective radius of Cl is 1.8 A. Determine the
lattice constant, {¢) Calculate the volume density of Na and C1 atoms. () Calculate
the mass density of NaCl.

(a) A material is composed of two types of atoms. Atom A has an effective radius of
2.2 A and atom B has an effective radius of 1.8 A. The lattice is a bee with atoms A at
the corners and atom B in the center. Determine the lattice constant and the volume den-
sities of A atoms and B atoms. (5) Repeat part {«} with atoms B at the corners and atom
Ain the center. (¢) What comparison can be made of the materials in parts («) and (£)?
Consider the materials described in Problem 1.8 in parts (a) and (5). For each case,
calculate the surface density of A atoms and B atoms in the (110) plane. What com-
parison can be made of the two materials?

(@) The crystal structure of a particular material consists of a single atom in the center
of a cube. The lattice constant is a; and the diameter of the atom is @p. Determine the
volume density of atoms and the surface density of atoms in the (110) plane.

(b} Compare the results of part (@) to the results for the case of the simple cubic struc-
ture shown in Figure 1.5a with the same lattice constant.
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(a) (b}
Figure 1.21 | Figure for Problem 1.12.

1,11 Consider a three-dimensional cubic lattice with a lattice constant equal to a. (a)
Sketch the following planes: (¢) (100, (i) (110), (i) (310), and (iv) (230). (&) Sketch
the following directions: (i) [100], (i) [110]. (5iD) [310], and (iv) [230].

1.12  For a simple cubic lattice, determine the Miller indices for the planes shown in
Figure 1.21.

1.13 The lattice constant of a simple cubic cell is 5.63 A. Calculate the distance between
the nearest parallel (@) (100}, (B) (110), and (c) (111) planes.

1.14 The lattice constant of a single crystal is 4.50 A. Calculate the surface density of
atoms (# per cm?) on the following planes: (i) {100), (i) (110), (if) (111) for each of
the following lattice structures: {¢) simple cubic, (&) body-centered cubic, and
(¢) face-centered cubic.

1.15 Determine the surface density of atoms for silicon on the (@)} (100) plane, {#) (110)
plane, and {¢) (111) plane.

1.16 Consider a face-centered cubic lattice. Assume the aloms are hard spheres with the
surfaces of the nearest neighbors touching. Assume the radius of the atom is 2.25 A.
{«) Calculate the volume density of atoms in the crystai. (b) Calculate the distance
between nearest (110) planes. (¢) Calculate the surface density of atoms on the
(110} plane.

Section 1.4 Atomic Bonding

1.17 Calculate the density of valence electrons in silicon.

1.18 The structure of GaAs is the zincblende lattice. The lattice constant is 5.65 A.
Calculate the density of valence electrons in GaAs.
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Section 1.5 Imperfections and Impurities in Solids

1.19

1.20

1.21

(@) If 2 % 10°® boron atoms per em’ are added to silicon as a substitutional impurity,
determine what percentage of the silicon atoms are displaced in the single crystal
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12 x 10Y gold atoms per cm® are added to silicon as a substitutional impurity and
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CHAP E R

Introduction to Quantum
Mechanics

PREVIEW

he goal of this text is to help readers understand the operation and character-

istics of semiconductor devices. ldeally, we would like to begin discussing

these devices immediately. However, in order to understand the current-
voltage characteristics, we need some knowledge of the electron behavior in a crys-
tal when the electron is subjected to various potential functions.

The motion of large objects, such as planets and satellites, can be predicted to a
high degree of accuracy using classical theoretical physics based on Newton’s laws
of motion. But certain experimental results, involving electrons and high-frequency
electromagnetic waves, appear to be inconsistent with classical physics. However,
these experimental results can be predicted by the principles of quantum mechanics.
The guantum mechanical wave theory is the basis for the theory of semiconductor
physics.

We are ultimately interested in semiconductor materials whose electrical prop-
erties are directly related to the behavior of electrons in the crystal lattice. The be-
havior and characteristics of these electrons can be described by the formulation of
quantum mechanics called wave mechanics. The essential elements of this wave me-
chanics, using Schrodinger’s wave equation, are presented in this chapter.

The goal of this chapter is to provide a brief introduction to quantum mechanics
so that readers gain an understanding of and become comfortable with the analysis
techniques. This introductory material forms the basis of semiconductor physics. B



2.1 Principles of Quantum Mechanics

2.1 | PRINCIPLES OF QUANTUM MECHANICS

Before we delve into the mathematics of quantum mechanics, there are three principles
we need to consider: the principle of energy quanta, the wave-particle duality princi-
ple, and the uncertainty principle.

2.1.1 Energy Quanta

One experiment that demonstrates an inconsistency between experimental results
and the classical theory of light is called the photoelectric effect. If monochromatic
light is incident on a clean surface of a material, then under certain conditions, elec-
trons (photoelectrons) are emitted from the surface. According to classical physics,
if the intensity of the light is large enough, the work function of the material will be
overcome and an electron will be emitted from the surface independent of the inci-
dent frequency. This result is not observed. The observed effect is that, at a constant
incident intensity, the maximum kinetic energy of the photoelectron varies linearly
with frequency with a limiting frequency v = vy, below which no photoelectron is
produced. This result is shown in Figure 2.1. If the incident intensity varies at a con-
stant frequency, the rate of photoelectron emission changes, but the maximum kj-
netic energy remains the same.,

Planck postulated in 1900 that thermal radiation is emitted from a heated sur-
face in discrete packets of energy called guanta. The energy of these quanta is
givenby £ = hv, where v is the frequency of the radiation and 4 is a constant now
known as Planck’s constant (4 = 6.625 x 10~* I-s). Then in 1905, Einstein inter-
preted the photoelectric results by suggesting that the energy in a light wave is also
contained in discrete packets or bundles. The particle-like packet of energy is
called a photon, whose energy is also given by E = hv. A photon with sufficient
energy, then, can knock an electron from the surface of the material. The mininmum
energy required to remove an electron is called the work function of the material

Incident Photoelectron =
monochromatic kinetic :
light energy = T :.:Jﬂ
=
L
=
T
b=
=
E
. 20
Material £ ’
= P Vi Frequency, ¥
= '4

(a) ()

Figure 2.11 (a) The photoelectric effect and (b} the maximum kinetic energy of
the photoelectron as a function of incident frequency.
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and any excess photon energy goes into the kinetic energy of the photoelectron.
This result was confirmed experimentally as demonstrated in Figure 2.1. The pho-
toelectric effect shows the discrete nature of the photon and demonstrates the
particle-like behavior of the photon.

The maximum kinetic energy of the photoelectron can be written as

1
TmaXZEmUQZhv—hvo (v > 1) (2.1

where fv is the incident photon energy and Aug is the minimum energy, or work
function, required to remove an electron from the surface.

EXAMPLE 2.1

Objective

To calculate the photon energy corresponding to a particular wavelength.
Consider an x-ray with a wavelength of & = 0.708 x 107* cm.

H Solution
The energy is
he (6,625 x 107*)(3 » 10')

E= = — = = 2 -15
hv = 0708 x 10-F 281 =107 )

This value of energy may be given in the more commeon unit of electron-volt (see Appendix F).
We have

_ 281lx 10"

= W = 1.75 x ]046\/

B Comment
The reciprocal relation between photon energy and wavelength is demonstrated: A large en-
ergy corresponds 1o a short wavelength.

2.1.2 Wave-Particle Duality

We have seen in the last section that light waves, in the photoelectric effect, behave
as if they are particles. The particle-like behavior of electromagnetic waves was also
instrumental in the explanation of the Compton effect. In this experiment, an x-ray
beam was mcident on a solid. A portion of the x-ray beam was deflected and the fre-
quency of the deflected wave had shifted compared to the incident wave. The ob-
served change in frequency and the deflected angle corresponded exactly to the ex-
pected results of a “billiard ball” collision between an x-ray quanta, or photon, and
an electron in which both energy and momentum are conserved.

In 1924, de Broglie postulated the existence of matter waves. He suggested that
since waves exhibit particle-like behavior, then particles should be expected to
show wave-like properties. The hypothesis of de Broglie was the existence of a
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wave-particle duality principle. The momentum of a photon is given by

h

* Ps o (2.2)

-
where X is the wavelength of the light wave. Then, de Broglie hypothesized that the
wavelength of a particle can be expressed as

A== (2.3)
P
where p is the momentum of the particle and A is known as the de Broglie wavelength
of the matter wave.

The wave nature of electrons has been tested in several ways. In one ¢xperiment
by Davisson and Germer in 1927, electrons from a heated filament were accelerated
at normal incidence onto a single crystal of nickel. A detector measured the scattered
electrons as a function of angle. Figure 2.2 shows the experimental setup and
Figure 2.3 shows the results. The existence of a peak in the density of scattered elec-
trons can be explained as a constructive interference of waves scattered by the peri-
odic atoms in the planes of the nickel crystal. The angular distribution is very similar
to an interference pattern produced by light diffracted from a grating.

In order to gain some appreciation of the frequencies and wavelengths involved
in the wave-particle duality principle, Figure 2.4 shows the electromagnetic
frequency spectrum. We see that a wavelength of 72.7 A obtained in the next exam-
ple is in the ultraviolet range, Typically, we will be considering wavelengths in the

Sample

Azimuthal
angle

-

Electron beam

Incident electson beam

27

Sample

[
o

#=0

Scattered
electrons

Galvanorieter

6 = 45°

& = 90°

Figure 2.3 | Scattered electron flux as a

Figure 2.2 | Experimental arrangement of the Davisson—
Germer experiment.

function of scattering angle for the
Davisson—Germer experiment.
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Figure 2.4 | The electromagnetic frequency spectrum.

ultraviolet and visible range. These wavelengths are very short compared to the usual
radic spectrum range.

EXAMPLE 2.2 Objec[ive

To calculate the de Broglie wavelength of a particle.
Consider an electron traveling at a velocity of 107 em/sec = 10° m/s.

N Solution
The momentum is given by
p=mr =111 x 107"10°) =9.11 x 1075

Then, the de Broglie wavelength is

h 6625 x 10°%

s 727 % 107°m
p o 911 x10-7%

A=
or
A=7274A

m Comment
This calculation shows the order of magnitude of the de Broglie wavelength for a “typical”
electron.

In some cases electromagnetic waves behave as if they are particles (photons)
and sometimes particles behave as if they are waves. This wave-particle duality
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principle of quantum mechanics applies primarily to small particles such as electrons,
but it has also been shown to apply to protons and neutrons. For very large particles,
we can show that the relevant equations reduce to those of classical mechanics. The
wave—particle duality principle is the basis on which we will use wave theory to de-
scribe the motion and behavior of electrons in a crystal.

TEST YOUR UNDERSTANDING

E21 Determine the energy of a photon having wavelengths of () A = 10,000 A and (b)
A=10A.[A2 D1 XFTTIOL o O X 66719 AT T I0[ 01 % 66'1 (7} 'SUV]
E2.2 {(u)Find the momentum and energy of a particle with mass of 5 x 107 kg and a
de Broglie wavelength of 180 A. (b) An electron has a Kinetic energy of 20 meV.
Determine the de Broglie wavelength. [Y £'98 = Y 'S/u-3¥ ,. 01 % £9°2 = d ()
AR 0T X 9F'RIO [ (01 X SE'1 = F “S/W-BY 4 01 X 89°¢ = d () 'suv]

2.1.3 The Uncertainty Principle

The Heisenberg uncertainty principle, given in 1927, also applies primarily to very
small particles, and states that we cannot describe with absolute accuracy the behav-
ior of these subatomic particles. The uncertainty principle describes a fundamental
relationship between conjugate variables, including position and momentum and also
energy and time.

The first statement of the uncertainty principie is that it is impossible to simulta-
neously describe with absolute accuracy the position and momentum of a particle. If
the uncertainty in the momentum is Ap and the uncertainty in the postion 1s Ax, then
the uncertainty principle is stated as'

Ap Ax = T 2.4)

where £ is defined as 7i = /27 = 1.054 x 10°* J-s and is called a modified
Planck’s constant. This statement may be generalized to include angular position and
angular momentum.

The second statemment of the uncertainty principle is that it is impossible to si-
multaneously describe with absolute accuracy the energy of a particle and the instant
of time the particle has this energy. Again, if the uncertainty in the energy is given by
AE and the uncertainty in the time is given by Ay, then the uncertainty principle is
stated as

AEAt > R (2.5)

One way to visualize the uncertainty principle is to consider the simultaneous
measurement of position and momentum, and the simultaneous measurement of en-
ergy and time. The uncertainty principle implies that these simultaneous measurements

'In some texts, the uncersainty principle is stated as Ap Ax > /2. We are interested here in the order of
magnitude and will not be concerned with small differences.
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are in error to a certain extent. However, the modified Planck’s constant fi is very
small; the uncertainty principle is only significant for subatomic particles. We must
keep in mind nevertheless that the uncertainty principle is a fundamental statement and
does not deal only with measurements.

One consequence of the uncertainty prineiple is that we cannot. for example, de-
termine the exact position of an electron. We will, instead, determine the probability
of finding an electron at a particular position. In later chapters, we will develop a
probability density function that will allow us to determine the probability that an
electron has a particular energy. So in describing electron behavior, we will be deal-
ing with probability functions.

TEST YOUR UNDERSTANDING

FE2.3 The uncertainty in position of an electron is 12 A. Determine the minimum
uncertainty in momentum and also the corresponding uncertainty in kinetic energy.
(A2 CYZOO = FV S-Sy ;0 X 6L'8 = dV 'sUy)

E24 Anelectron’s energy is measured with an uncertainty of 1.2 eV. What is the minimum
uncertainty in time over which the energy is measured? {8 01 X 6+'¢ = IV Suy)

2.2 | SCHRODINGER’S WAVE EQUATION

The various experimental results involving electromagnetic waves and particles.
which could not be explained by classical laws of physics, showed that a revised for-
mulation of mechanics was required. Schrodinger, in [926, provided a formulation
called wave mechanics, which incorporated the principles of quanta introduced by
Planck, and the wave-particle duality principle introduced by de Broglie. Based on the
wave—particle duality principle. we will describe the motion of electrons in a crystal
by wave theory. This wave theory is described by Schrodinger’s wave equation.

2.2.1 The Wave Equation

The one-dimensional, nonrelativistic Schrodinger’s wave equation is given by

2 a2 .

% : d—\gg—r)— + Vix)W(x, 1) = jﬁ.w (2.6)
where W (x, £} is the wave function, V(x) is the potential function assumed to be in-
dependent of time, m is the mass of the particle, and j is the imaginary constant /—1,
There are theoretical arguments that justify the form of Schrodinger’s wave equation,
but the equation is a basic postulate of quantum mechanics. The wave function
W{x, 1) will be used to describe the behavior of the system and, mathematically,
W (x, #) can be a complex quantity.

We may determine the time-dependent portion of the wave function and the
position-dependent, or time-independent, portion of the wave function by using the
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technique of separation of variables. Assume that the wave function can be written in
the form

Wix, 1) = yx)e(r) (2.7)

where ¥ (x) is a function of the position x only and ¢ (¢} is a function of time r only.
Substituting this form of the solution into Schrodinger’s wave equation, we obtain

__f'z 82 : pa
o0 D 4 Vs = ji0 20 2.8)
m ax at
If we divide by the total wave function, Equation (2.8) becomes
—i* 1 9*(x) L 18
—e i = f S W 29
m o oz =S T G

Since the left side of Equation (2.9} is a function of position x only and the right side
of the equation is a function of time r only, each side of this equation must be equal
10 a constant. We will denote this separation of variables constant by 7.

The ime-dependent portion of Equation (2.9) is then written as

_p L e
n=ih o T

where again the parameter 1 is called a separation constant. The solution of Equa-
tion (2,10) can be written in the form

(2.10)

¢ (1) = eI EM 2.11)

The form of this solution is the classical exponential form of a sinusoidal wave where
n/h is the radian frequency w. We have that £ = hv or E = hw/21. Then
w = n/f = E/k so that the separation constant is equal to the total energy £ of the
particle.
The time-independent portion of Schrodinger’s wave equation can now be writ-
ten from Equation (2.9} as
72 f 324 (x)

2m P(x) dx?

+Vix)=E (2.12)

where the separation constant is the total energy £ of the particle. Equation (2.12)
may be written as

3* 2
(;ﬁ_(;) +—$(E— V(D) =0 (2.13)

where again m is the mass of the particle, V(x) is the potential experienced by the par-
ticle, and E is the total energy of the pariicle. This time-independent Schrodinger’s
wave equation can also be justified on the basis of the classical wave equation as

3
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shown in Appendix E. The pseudo-derivation in the appendix is a simple approach
but shows the plausibility of the time-independent Schrodinger’s equation,

2.2.2 Physical Meaning of the Wave Function

We are ultimately trying to use the wave function W (x, r) to describe the behavior of
an electron in a crystal. The function ¥W({x, ¢) is a wave function, so it is reasonable to
ask what the relation is between the function and the electron. The total wave func-
tion is the product of the position-dependent, or time-independent, function and the
time-dependent function. We have from Equation (2.7) that

Wix, 1) = (@) = glx)eEM (214

Since the total wave tunction W(x, t) is a complex function. it cannot by itself repre-
sent a real physical quantity.

Max Born postulated in 1926 that the function [W(x, 1)|° dx is the probability of
finding the particle between x and x + dx at a given time, or that | ¥ (x. )| is a prob-
ability density function. We have that

(W(x, O] = W(x, 1) ¥ (x. 1) (2.15)
where W™ {x, ¢} is the complex conjugate function. Therefore
W (x, 1) = g (x) - o E
Then the product of the total wave function and its complex conjugate is given by
W(x D9 (x, 1) = [P e ER [ e E ] = gyt (206
Therefore, we have that
WD = yoyt ) = [y o) @17

is the probability density function and is independent of time. One major difference
between classical and quantum mechanics is that in classical mechanics, the posi-
tion of a particle or body can be determined precisely, whereas in quantum mechan-
ics, the position of a particle is found in terms of a probability. We will determine the
probability density function for several examples, and, since this property is inde-
pendent of time. we will, in general, only be concerned with the time-independent
wave function.

2.2.3 Boundary Conditions 1

Since the function |W(x, ¢)]” represents the probability density function, then fora
single particle. we must have that

2

foo WP dy = 1 (2.18) J




2.3 Applicaticns of Schrodinger's Wave Equation

The probability of finding the particle somewhere is certain. Equation (2.18) allows
us to normalize the wave function and is one boundary condition that is used to de-
termine some wave function coefficients.

The remaining boundary conditions imposed on the wave function and its deriva-
tive are postulates. However, we may state the boundary conditions and present argu-
ments that justify why they must be imposed. The wave function and its first derivative
must have the following properties if the total energy £ and the potential V (x) are finite
everywhere.

Condition 1. 1/ {x) must be finite, single-valued, and continuous.
Condition 2. d¢/(x)/dx must be finite, single-valued, and continuous.

Since ¢ (x) isa probability density, then y (x) must be finite and single-valued.
If the probability density were to become infinite at some point in space, then the
probability of finding the particle at this position would be certain and the uncer-
tainty principle would be violated. If the total energy E and the potential V(x) are
finite everywhere, then trom Equation (2.13), the second derivative must be finite,
which implies that the first derivative must be continuous. The first derivative is
related to the particle momentum, which must be finite and single-valued. Finally, a
finite first derivative implies that the function itself must be continuous. In some of
the specific examples that we will consider, the potential function will become infi-
nite in particular regions of space. For these cases, the first derivative will not nec-
essarily be continuous, but the remaining boundary conditions will still hold.

2.3 1APPLICATIONS OF SCHRODINGER’S WAVE
EQUATION

We will now apply Schrodinger’s wave equation in several examples using various
potential functions, These examples will demonstrate the techniques used in the so-
lution of Schrodinger’s differential equation and the results of these examples will
provide an indication of the electron behavior under these various potentials. We will
utilize the resulting concepts later in the discussion of semiconductor properties.

2.3.1 Electron in Free Space

As a first example of applying the Schrodinger’s wave equation, consider the motion
of an electron in free space. If there is no force acting on the particle, then the poten-
tial function V(x) will be constant and we must have £ > V{(x). Assume, for sim-
plicity, that the potential function V{x) = 0 for all x. Then, the time-independent
wave equation can be written from Equation (2.13) as
329 (x) & 2mE

ax? K2

The solution to this differential equation can be written in the form

Jx2mE —jX/2mE
——— |+ Bexp — 5

Yr(x) =0 (2.19)

Yix) = Aexp [ (2.2

33
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Recall that the time-dependent portion of the solution is

W) = e B/ (2.21)
Then the total solution for the wave function is given by

W(x,t) = Aexp |:;—:(xx/2mE — EI):| + B exp |:Tj(x~/2mE + EI)} (2.22)
) ]

This wave function solution is a traveling wave, which means that a particle moving
in free space is represented by a traveling wave. The first term, with the coefficient A.
is a wave traveling in the +x direction, while the second term, with the coefficient B.
is a wave traveling in the —x direction. The value of these coefficients will be deter-
mined from boundary conditions. We will again see the traveling-wave solution for
an electron in a crystal or semiconductor material.

Assume, for a moment, that we have a particle traveling in the +x direction,
which will be described by the +x traveling wave. The coefficient B = 0. We can
write the traveling-wave solution in the form

Wix, 1} = A exp|jlkx — wt)] (2.23

where & is a wave number and is
P (2.24
= 24)

The parameter A is the wavelength and, comparing Equation (2.23) with Equa-
tion (2.22), the wavelength is given by

A=

2.25
2mE { :

From de Broglie's wave—particle duality principle, the wavelength is also given by

A=— (2.26)
p
A free particle with a well-defined energy will also have a well-defined wavelength
and momentum.

The probability density function is W{x, t)¥*(x,t) = AA*, which is a constant
independent of position. A free particle with a well-defined momentum can be found
anywhere with equal probability. This result is in agreement with the Heisenberg un-
certainty principle in that a precise momentum implies an undefined position.

A tocalized free particle is defined by a wave packet, formed by a superposition
of ‘wave functions with different momentum or & values. We will not consider the
wave packet here.

2.3.2 The Infinite Potential Well

The problem of a particle in the infinite potential well is a classic example of a bound
particle. The potential V{x) as a function of position for this problem is shown in
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Vi)
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Figure 2.3 | Potential function of the infinite
potential well.

“Figure 2.5. The particle is assumed to exist in region II so the particle is contained
within 2 finite region of space. The time-independent Schrodinger’s wave equation is
again given by Equation (2.13) as

32 {x)
ax?

2m
&+ }?(E — VN x) =0 (2.13)

where £ is the total erergy of the particle. If £ is finite, the wave function must be
zero, or ¥ (x) = 0, in both regions I and HI. A particle cannot penetrate these in-
finite potential barriers, so the probability of finding the particie in regions I and
11l is zero.

The time-independent Schrodinger’s wave equation in region I, where V = 0,
becomes

g2 2mE
T+ vm =0 @27)

A particular form of solution to this equation is given by

Wix) = AjcosKx+ AzsinKx (2.28)
where
ZmE
E=y— 2.29
B2 (2.29)

One boundary condition is that the wave function ¥ (x)} must be continuous so
that

Yix=0)=yY(r=a)=0 (2.30)



36

CHAPTER 2 Introduction to Quantum Mechanics

Applying the boundary condition at x = 0, we must have that A} = 0. Atx =g, we
have

Yix =ay=0= A;sinKa (2.3D)
This equation is valid if Ka = nm, where the parameter n is a positive integer, or
n=1,2,3..... The parameter » is referred to as a quantum number. We can write
nm
K=— (2.32)
a

Negative values of n simply introduce a negative sign in the wave function and yield
redundant solutions for the probability density function. We cannct physically dis-
tinguish any difference between +» and —n solutions. Because of this redundancy,
negative values of n are not considered.

The coefficient A, can be found from the normalization boundary cendition that
was given by Equation (2.18) as ff; Y)Y (x)dy = 1. If we assume that the wave
function solution ¥ (x) is a real function, then ¥ (x) = #*(x). Substituting the wave
function into Equation (2.18), we have

/ A3 sin® Kxdx =1 (2.33)
]

Evaluating this integral gives’

2
Ay =,/ — (2.34)
a

Finally, the time-independent wave solution is given by

2 :
¢r(x) =/ = sin (ﬂi) wherenn = 1,2,3, ... (2.35)
a a

This solution represents the electron in the infinite potential well and is a stand-
ing wave solution. The free electron was represented by a traveling wave. and now
the bound particle is represented by a standing wave.

The parameter K in the wave solution was defined by Equations (2.29) and
(2.32). Equating these two expressions for K. we obtain

2mE  wPn’

(2.36)

A more thorough analysis shows that |Az|> = 2/a, so solutions for the coefficient A3 include +/2/a,
—J/2/a, +j/Z]a, —j/2/a, or any complex number whose magnitude is +/2/a. Since the wave
function itself has no physical meaning, the choice of which coefficient to usc is immaterial: They all
produce the same probability density function,
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The total energy can then be written as

Ftnlml

E=E, = wheren =1,2.3, ... (2.37)

2ma’

For the particle in the infinite potential well, the wave function is now given by

Yi{x) = \Esin Kx (2.38)

where the constant K must have discrete values, implying that the total energy of the
particle can only have discrete values. This result means that the energy of the parti-
cle is quantized. That is, the energy of the particle can only have particular discrete
values. The quantization of the particle energy is contrary to results from classical
physics, which would allow the particle to have continuous energy values. The dis-
crete energies lead to quantum states that will be considered in more detail in this
and later chapters. The quantization of the energy of a bound particle is an extremely
important resuit.

Objective |  EXAMPLE 2.3

To calculate the first three energy levels of an electron in an infinite potential well.
Consider an electron in an infinite potential well of widih 5 A.

H Solution
From Equation (2.37) we have
(Hnx%) n?(1.054 x 107%)2 72 5 -
E, = = =n*(2.4] x 1077
Ima  AOI1 X 10-T1)(3 % 10 tyz = 1 @Al % )
or
2 1 —19
E, = M :”2(1_51) Y
1.6 x 10-1%
Then,
E, =15leV, E;=604eV. E,=1359¢V
B Comment

This calculation shows the order of magritude of the energy levels of a bound electron.

Figure 2.6a shows the first four allowed energies for the particle in the infinite
potential well, and Figures 2.6b and 2.6¢ show the corresponding wave functions and
probability functions. We may note that as the energy increases, the probability of
finding the particle at any given value of x becomes more uniform.
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Figure 2.6 1 Particle in an infinite potential well: (a) Four lowest discrete energy levels.
(b) Corresponding wave functions. (¢} Corresponding probability functions.
(From Pierret [9].)

TEST YOUR UNDERSTANDING

E2.5 The width of the infinite potential well in Example 2.3 is doubled to 10 A, Caleulate
the first three energy levels in terms of electron volts for an electron.
(A9 8E'€ AR 051 ‘A 9LEQ 'SUY)

E2.6 The lowest energy of a particle in an infinite potential well with a width of 100 A is
(.025 eV. What is the mass of the particle? (3% ,,_01 % L{'] 'SUV)

2.3.3 The Step Potential Function

Consider now a step potential function as shown in Figure 2.7. In the previous section.
we considered a particle being confined between two potential barriers, In this exam-
ple, we will assume that a flux of particles is incident on the potential barrier. We will
assume that the particles are traveling in the +x direction and that they originated at
x = —oco. A particularly interesting result is obtained for the case when the total
energy of the particle is less than the barrier height, or £ < V.

We again need to consider the time-independent wave equation in each of the two
regions. This general equation was given in Equation (2.13) as 8%y (x)/dx? +
2m/H(E — V{(x))¥(x) = 0. The wave equation in region I, in which V = 0, is

02y(x)  2mE
%‘—) § ':Tw](x) —0 (2.39)
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V(x)
Incident particles
__’_
Vﬂ e —— e
Region | Region II

x=0

Figure 2.7 | The step potential function.

The general solution to this equation can be written in the form

Vi(x) = Ae/®T 4 Ble /MY (x <) (2.40)
where the constant K is
2mE
K = ;2 (241)

The first term in Equation (2.40) is a traveling wave in the +x direction that repre-
sents the incident wave, and the second term is a traveling wave in the —x direction
that represents a reflected wave. As in the case of a free particle, the incident and
reflected particles are represented by traveling waves.

For the incident wave, A, - A} is the probability density function of the incident
particles, If we multiply this probability density function by the incident velocity,
then v; - A - A} is the flux of incident particles in units of #/cm’-s. Likewise, the
quantity v, - By - BY is the flux of the reflected particles, where v, is the velocity of
the reflected wave. (The parameters v; and v, in these terms are actually the magni-
tudes of the velocity only.)

In region 11, the potential is V = Vj,. If we assume that £ < Vj, then the differ-
ential equation describing the wave function in region IT can be written as

¢ (x) 2m
dx? 2

(Vo — ED{nn(x) =90 (2.42)

The general solution may then be written in the form

Va(x) = Ase B Bre™ (x> 0) (2.43)

2m{Vy — E
K3 = fi"_(;:z—l (2.44)

One boundary condition is that the wave function ¥>(x) must remain finite,
which means that the coefficient B = 0. The wave function is now given by

¥ (x) = Are X (x > 0) (2.45)

where



40

CHAPTER 2 Introduction to Quanturn Mechanics

The wave function at x = 0 must be continuous so that

¥ (0) = ¥ (0) (2.46)
Then from Equations (2.40), (2.45), and (2.46), we obtain

A+ Bi=4A (247

Since the potential function is everywhere finite, the first derivative of the wave
function must also be continuous so that

0 d
L . (2.48)
ax | _g 0x |29
Using Equations (2.40), (2.45), and (2.48), we obtain
JK|A — jK\ B = —K>A» (2.49)

We can solve Equations (2.47) and (2.49) to determine the coefficients B, and
A in terms of the incident wave coefficient A;. The results are

_ —(K3+2jK\Ky — K{)A

B, = 4 (2.50a)
| (K3 + K7)
and
2K (K, — jKy)A
y = 1 ; sz) i (2.50b)
(K3 + K7)
The reflected probability density function is given by
K3 — K} +2jK\K) (K3 — KT —2jK\K2) A - A
Bl-Bi“:( 1= Ki+2/K ) (K - K - KK A AT g

(k2 +K7)

We can define a reflection coefficient, R, as the ratio of the reflected flux to the
incident flux, which is written as

|r.B.B*
p= P

el B TL 252
U]-Al'AT ( ‘

where v; and v, are the incident and reflected velocities. respectively, of the particles.
Inregion I, V =0 so that £ = T, where T is the kinetic energy of the particle. The
kinetic energy is given by

1,
T = Emv (2.53)

so that the constant K, from Equation (2.41), may be written as

o 2m 1\ 2vamv (2.54)
SRV S A '
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The incident velocity can then be written as

k
th = —- K] (255)
m
Since the reflected particle also exists in region I, the reflected velocity (magnitude)
is given by
- Ky (2.56)

U =

5
m

The incident and reflected velocities (magnitudes) are equal. The reflection coeffi-
cient is then

v, B -B' BB

R: —
oA AT A Al

(2.57)

Substituting the expression from Equation (2.51) into Equation (2.57), we obtain
2
BB _ (K}~ KD’ T4KK]
Ap - A} (K2 +K3)°

The result of R = | implies that all of the particles incident on the potential bar-
rier for E < Vj are eventually reflected. Particles are not absorbed or transmitted
through the potential barrier. This result is entirely consistent with classical physics
and one might ask why we should consider this problem in terms of quantum me-
chanics. The interesting result is in terms of what happens in region II.

The wave solution in region IT was given by Equation (2.45) as 93 (x) = Aze™ 5%,
The coefficient A; from Equation (2.47) is A» = A + By, which we derived from
the boundary conditions. For the case of £ <« V, the coefficient A is not zero, If A,
is not zero, then the probability density function 2 (x) - 13 (x) of the particle being
found in region 11 is not equal to zero. This result implies that there is a finite pro-
bability that the incident particle will penetrate the potential barrier and exist in
region Il. The probability of a particle penetrating the potential barrier is another
difference between classical and quantum mechanics: The quantum mechanical pen-
etration is classically not allowed. Although there is a fintte probability that the par-
ticle may penetrate the barrier, since the reflection coefficient in region 1is unity, the
particle in region II must eventually turn around and move back into region 1.

1.0 (2.58)

a1

Objective

To calculate the penetration depth of a particle impinging on a potential barricr.
Consider an incident electron that is traveling at a velocity of 1 x 107 my/s in region L.

N Solution
With V{x) = 0, the total energy is also equal to the kinetic energy so that

l -+ 2
E=T= Smy” = 456 x 107211 =285 x 1072 eV

EXAMPLE 2.4
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Now, assume that the potential barrier at x = 0 is twice as large as the total energy of the inci-
dent particle, or that Vy = 2E. The wave function solution in region 1L is ¥2{x) = A,e™ ¥,

where the constant K, is given by Ko = /2m(V, — E) /12,
In this example, we want to determine the distance x = d at which the wave function
magnitude has decayed to ¢! of its value at x = 0. Then, for this case, we have Kyd = 1 or

2 -
=g m(ZE’ E) _d ijE
i K

The distance is then given by

B 1.054 x 107
2ZmE  /29.11 x 10-31){4.56 x 10~21)

=116%x 10" m

or

m Comment

This penetration distance corresponds to approximately two lattice constants of silicon. The
numbers used in this example are rather arbitrary. We used a distance at which the wave func-
tion decayed to e~ ! of its initial value. We could have arbitrarily used e
the results give an indication of the magnitude of penetration depth.

2, for example, but

The case when the total energy of a particle, which is incident on the potential
barrier, is greater than the barrier height, or £ > Vj, is left as an exercise at the end
of the chapter. 1

TEST YOUR UNDERSTANDING

E2.7 The probability of finding a particle al a distance « in region Il compared to that at
x =0 is given by exp (—2K;d). Consider an electron traveling in region 1 at a veloc-
ity of 10° m/s incident on a potential barrier whose height is 3 times the kinetic
energy of the electron. Find the probability of finding the electron at a distance o
compared to x = 0 where dis (¢) 10 A and {b) 100 A into the potential barrier.
[waarad o-01 X £57() quaniad 778 () 'suy]

2.3.4 The Potential Barrier

We now want to consider the potential barrier function, which is shown in Figure 2.8,
The more interesting problem, again, is in the case when the total energy of an incident
particle is E < Vj. Again assume that we have a flux of incident particles originating
on the negative x axis traveling in the +x direction. As before, we need to solve
Schrodinger’s time-independent wave equation in each of the three regions. The
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Vi(x)

Vo

Region [ Region II Region ITi

Figure 2.8 | The potential barrier function.

solutions of the wave equation in regions I, 11, and IIT are given, respectively, as

Vi) = Ajelf*  BlemiKix (2.59a)
Ua(x) = A5 4 By ¥ (2.59b)
Wi(x) = Azel®1T 4 Brem iKW (2.59¢)
where
2mE
= (2.600)
and )

2
Ks =) V= EJ (2.60b)
h?

The coefficient Bz in Equation (2.59¢) represents a negative traveling wave in
region [1I. However, once a particle gets into region 111, there are no potential changes
to cause a reflection; therefore, the coefficient Bz must be zero. We must keep both
exponential terms in Equation (2.59b} since the potential barrier width is finite; that
is, neither term will become unbounded. We have four boundary relations for the
hoondaries at x = 0 and x = a corresponding to the wave function and its first deriv-
ative heing continuous. We can solve for the four coefficients By, A;, B;, and Ay in
terms of A,. The wave solutions in the three regions are shown in Figure 2.9.

One particular parameter of interest is the transmission coefficient, in this case
defined as the ratio of the transmitted flux in region III to the incident flux in region L.
Then the transmission coefficient T is

v As- A} Asc A

T= =
U;'A]'A;-k A]AT

(2.61)
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x=10 x=a

Figure 2.9 | The wave functions through the potential barrier.

where v, and v; are the velocities of the transmitted and incident particles, respec-
tively. Since the potential V = 0 in both regions I and I, the incident and transmit-
ted velocities are equal. The transmission coefficient may be determined by solving
the boundary condition equations. For the special case when £ < Vy, we find that

E E
T 16 (Vf;) (1 - %) exp (—2K,a) (2.62)

Equation (2.62) implies that there is a finite probability that a particle imping-
ing a potential barrier will penetrate the barrier and will appear in region H1. This
phenomenon is called wanneling and it, too, contradicts classical mechanics. We will
see later how this quantum mechanical tunneling phenomenon can be applied to
semiconductor device characteristics, such as in the tunnel diode.

EXAMPLE 2.5 7

Objective

To calculate the probability of an electron tunneling through a potential barrier.
Consider an electron with an energy of 2 eV impinging on a potential barrier with ¥, =
20 eV and a width of 3 A,

B Solution
Equation (2.62) is the wunneling probability. The factor K is

_[2m(Ve— E) 20911 x 107320 — 2)(1.6 x 10~7)
Kr= 2 h (1.054 % 10-%)2

or
K, =217 % 10" m™!
Then
T = 16(0.1){(1 —0.1) exp[—2(2.17 x 10733 x 107"}
and finally

7 =317 x 10°°
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B Comment

The tunneling probability may appear to be a small value, but the value is not zero. If a
large number of particles impinge on a potential barrier, a significant number can penetrate
the barrier.

TEST YOUR UNDERSTANDING

E28 Estimate the tunneling probability of an electron tunneling through a rectangular
barrier with a barrier height of ¥, = 1 eV and a barrier width of 15 A. The electron
energy is 0.20 eV, (4-01 X 9L°¢ = [ suy)

E2.9  For a rectangular potential barrier with a height of ¥y = 2 ¢V and an electron with
an energy of 0.25 eV, plot the tunneling probability versus barrier width over the
range 2 < @ < 20 A, Use a log scale for the tunncling probability.

E2.10 A certain semicoaductor device requires a tunneling probability of 7 = 1077 for an
electron tunneling through a rectangular barrier with a barrier hetght of Vi, = 0.4 eV,
The eleciron energy is 0.04 ¢V. Determine the maximum barrier width,

(yCol = 1 suy)

Additional applications of Schrodinger’s wave equation with various one-
dimensional potential functions are found in problems at the end of the chapter. Sev-
eral of these potential functions represent quantum well structures that are found in
modern semiconductor devices,

*2.4 | EXTENSIONS OF THE WAVE THEORY
TO ATOMS

So far in this chapter, we have considered several one-dimensional potential energy
functions and solved Schrodinger’s time-independent wave equation to obtain the
probability function of finding a particle at various positions. Consider now the one-
electron, or hydrogen, atom potential function. We will only briefly consider the math-
ematical details and wave function solutions, but the results are extremely interesting
and important.

2.4.1 The One-Electron Atom

The nucleus is a heavy, positively charzed proton and the electron is a light, nega-
tively charged particle that, in the classical Bohr theory, is revolving around the nu-
clens. The potential function is due to the coulomb attraction between the proton and
electron and is given by

_g?

Viry = (2.63)

4]’!’6[)}‘

where ¢ is the magnitude of the electronic charge and e is the permittivity of free
space. This potential function, although spherically symmetric, leads 10 a three-
dimensional problem in spherical coordinates.

*Indicates sections that can be skipped without loss of continuity.
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We may generalize the time-independent Schrodinger’s wave equation to three
dimensions by writing

V(r. 6, 4) + ?gus ~ VNP 8.4) =0 (2.64)

where V? is the Laplacian operator and must be written in spherical coordinates for
this case. The parameter g is the rest mass of the electron.” In spherical coordinates,
Schrodinger’s wave equation may be written as

RV ¥ 1y 1 3. .
T o8 a8y 1 9w .2 {sing. =X
vl ar (r ar ) " e d¢? T sing ae M G

2
+ %(E V) =0

(2.65)

The solution to Equation (2.65) can be determined by the separation-of-variables
technique. We will assume that the solution to the time-independent wave equation
can be written in the form

Vir,0,¢) = R(r)-08) - (¢) (2.66)

where R, &, and P, are functions only of r, #, and ¢, respectively. Substituting this
form of solution into Equation (2.65), we will obtain

sin®6 & [ ,0R L 81¢+sin9 (g 09 "
= | — =+ —— - — | SInf - —
R ar\ or) o d¢* © 96 a0

, (Q.67)
;’f” (E~-V)=0
%

We may note that the second term in Equation (2.67) is a function of ¢ only,
while all the other terms are functions of either » or #. We may then write that
1 3¢ N
T T —m
o 9

T
+ r?sin’4 -

(2.68)

where m is a separation of variables constant.” The solution to Equation {2.68) is of
the form

& = /me (2.69)

Since the wave function must be single-valued, we impose the condition that s is an
integer, or

m=0,=+1,42 £3, ... (2700

The mass should be the rest mass of the two-particle system, but since the proton mass is much greater
than the electron mass, the equivalent mass reduces te that of the electron.

*Where m means the separation-of-variables constant developed historically. That meaning will be
retained here even though there may be some confusion with the electron mass. In general, the mass
parameter will be used in conjunction with a subscript.



2.4 [Extensions of the Wave Theory to Atoms

Incorporating the separation-of-variables constant we can further separate the
variables 6 and r and generate two additional separation-of-variables constants / and ».
The separation-of-variables constants . {, and m are known as quanfum numbers and
are related by

R —
l=n—1,n-2,n-3,...,0 2.71)
ml=01-1,...,0
Each set of quantum numbers corresponds to a quantum state which the electron may

oceupy.
The electron energy may be written in the form

—m()e4

s o 272
(dmeg)22Hn? Ll

H

where # is the principal quantumn number. The negative energy indicates that the elec-
trot is bound to the nucleus and we again see that the energy of the bound electron is
quantized. If the energy were to become positive, then the electron would no longer be
4 bound particle and the totai energy would no longer be quantized. Since the parame-
ter n in Equation (2.72) is an integer, the total energy of the electron can take on only
discrete values. The guantized energy is again a result of the particle being bound in a
finite region of space.

TEST YOUR UNDERSTANDING

E2.11 Calculate the lowest energy {in electron volts) of an electron in a hydrogen atom.
(A29°g— = 17 suy)

The solution of the wave equation may be designated by #,,,,, where 1, {, and
m are again the various quantum numbers. For the lowest energy state, n = 1.1 =0,
and m = 0, and the wave function is given by

I FEN®
e—— i /oy 2,73
¥io0 = (ao) e (2.73)
This function is spherically symmetric, and the parameter aq is given by
4megh?
ay = -—>_ = 05294 (2.74)
mpe-

and is equal to the Bohr radius.

The radial probability density function, or the probability of finding the electron
at a particular distance from the nucleus, is proportional to the product Yoo - ¥y
and also to the differential volume of the shell around the nucleus. The probability

a7
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ty Py (r)

Figure 2.10 | The radial probability density function for the one-electron atom in the
(a) lowest energy state and (b) next-higher energy state.
(From Eisherg and Resnick [4].)

density function for the lowest energy state is plotted in Figure 2.10a. The most prob-
able distance from the nucleus is at r = gy, which is the same as the Bohr theory.
Considering this spherically symmetric probability function, we may now begin to
conceive the concept of an electron cloud, or energy shell, surrounding the nucleus
rather than a discrete particle orbiting around the nucleus.

The radial probability density function for the next higher. spherically symmet-
ric wave function, corresponding to n =2,/ =1, and m =0, is shown in Fig-
ure 2.10b. This figure shows the idea of the next-higher energy shell of the electron.
The second energy shell is at a greater radius from the nucleus than the first energy
shell. As indicated in the figure, though, there is still a small probability that the
electron will exist at the smaller radius. For the case of n = 2 and [ = 1, there are
three possible states corresponding to the three allowed values of the quantum num-
ber m. These wave functions are no longer spherically symmetric.

Although we have not gone into a great deal of mathematical detail for the one-
electron atom, three results are important for the further analysis of semiconductor ma-
terials. The first is the solution of Schrodinger’s wave equation, which again yields
electron probability functions, as it did for the simpler potential functions. In develop-
ing the physics of semiconductor materials in later chapters, we will also be consider-
ing electron probability functions. The second resull is the quantization of allowed en-
erpy levels for the bound electron, The third is the concept of quantum numbers and
guantum states, which evolved from the separation-of-variables technique. We will
consider this concept again in the next section and in later chapters when we deal with
the semiconductor material physics.

2.4.2 The Periodic Table

The initial portion of the periodic table of elements may be determined by using the
results of the one-electron atom plus two additional concepts. The first concept
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needed is that of electron spin. The electron has an intrinsic angular momentom, or
spin, which is quantized and may take on one of two possible values. The spin is
designated by a quanium number s, which has a value of 5 = +% ors = — % . We now
have four basic quantum numbers: n, I, m, and .

The second concept needed is the Pauli exciusion principle. The Pauli exclusion
principle states that, in any given system (an atom, molecule, or crystal), no two elec-
trons may occupy the same quantum state. In an atom, the exclusion principle means
that no two electrons may have the same set of guantum numbers. We will see that
the exclusion principle is also an imporant factor in determining the distribution of
electrons among available energy states in a crystal.

Table 2.1 shows the first few elements of the periodic table. For the first element,
hydrogen, we have one electron in the lowest energy state corresponding to n = 1,
From Equation (2.71) both quantum numbers / and m must be zero. However, the elec-
tron can take on either spin factor +% or —%. For helium, two electrons may exist in the
lowest energy state. For this case, [ = m = 0, so now both electron spin states are oc-
cupied and the lowest energy shell is full. The chemical activity of an element is deter-
mined primarily by the valence, or outermost, electrons. Since the valence energy shell
of helium is full, helium does not react with other elements and is an inert element.

The third element, lithium, has three elecirons, The third electron must go into
the second energy shell corresponding to 7 = 2. When n = 2, the quantum number [
may be O or 1, and when [ = 1, the quantum number m may be —1, 0, or +1. In each
case, the electron spin factor may be 44 or — 1. Forn = 2, then, there are eight pos-
sible quantum states. Neon has ten electrons. Two electrons are in the n = 1 energy
shell and eight electrons are in the » = 2 energy shell. The second energy shell is
now fuil, which means that neon is also an inert element,

From the solution of Schrodinger’s wave equation for the one electron atom,
plus the concepts of electron spin and the Pauli exclusion principle, we can begin to
build up the periodic table of elements. As the atomic numbers of the elements in-
crease, electrons will begin to interact with each other, so that the buildup of the pe-
riodic table wiil deviate somewhat from the simpie method.

Table 2.1 Initial portion of the periadic table

Element Notation H m

Hydrogen Is! 1 0 0

Helium 1s? 1 0 0 +1and -1
Lithium 15725 2 0 0 +30r—3
Beryllium 152257 2 0 0 +1and —3
Boron 15225 2p! 2 1

Carbon 1522572 p? 2 1

Nitrogen 1522572 p° 2 1 m=0 -1+l
Oxygen 1522522 % 2 1 s =45, -1
Fluoring 1s22s%2p° 2 1

Neon 1522532 % 2 |

a9
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2.5 [SUMMARY

N We considered some of the basic concepts of quantum mechanics, which can be vsed to
describe the behavior of electrons under various potential functions. The understanding
of electron behavior is crucial in understanding semiconductor physics.

M The wave—particle duality principle is an important element in quantum mechanics.
Particles can have wave-like behavior and waves can have particie-like behavior.

B Schrodinger’s wave equation forms the basis for describing and predicting the behavior
of electrons.

N Max Born postulated that |3 (x3)° is a probability density function.

M Aresult of applying Schrodinger’s wave equation to a bound particle is that the energy
of the bound particle is guantized.

M Aresult of applying Schrodinger’s wave equation o an electron incident on a potential
barrier is that there is & finite probability of rmnneling.

W The basic structure of the periodic table is predicted by applying Schrodinger's wave
equation to the one-efectron atom.

GLOSSARY OF IMPORTANT TERMS

de Broglie wavelength The wavelength of a particle given as the ratio of Planck’s constant
(O momentum,

Heisenberg uncertainty principle The principle that states that we cannot describe with
absolute accuracy the relationship between sets of conjugate variables that describe the be-
havior of particles, such as momentum and position.

Pauli exclusion principle The principle that states that no two electrons can occupy the
same quantum state,

photon  The particle-like packet of electromagnetic energy.

quanta The particle-like packet of thermal radiation.

quantized energies The allowed discrete energy levels that bound particles may occupy.

quantum numbers A set of numbers that describes the quantum state of a particle, such as
an eleciron in an atom.

quantum state A particular state of an eleciron that may be described, for example, by a set
of guantum numbers,

tunneling  The quantum mechanical phenomenon by which a particle may penetrate through
a thin potential barrier.

wave-particle duality The characteristic by which electromagnetic waves sometimes ex-
hibit particle-like behavior and particles sometimes exhibit wave-like behavior.

CHECKPOINT

Afier studying this chapter, the reader should have the ability to:

B Discuss the principle of energy quanta, the wave—particle duality principle, and the
uncertainty principle.

B Apply Schrodinger’s wave equation and boundary conditions to problems with various
potential functions.

B Determine quantized energy levels of bound particles.

®  Determine the approximate tunneling probability of a particle incident on a potential
barrier.



Problems

REVIEW QUESTIONS

L

R R

State the wave—particle duality principle and state the relationship between momentum
and wavelength.

What is the physical meaning of Schrodinger’s wave function?

What is meant by a probability density function?

List the boundary conditions for solutions to Schrodinger’s wave equation.

What is meant by quantized energy Jevels?

Describe the concept of tunneling.

List the quantum numbers of the one-electron atom and discuss how they were developed.

PROBLEMS

21

22

2.3
24

The classical wave equation for a two-wire transmission line is given by
#V(x,1)/dx> = LC - 3V (x. r)/8t*. One possible solution is given by V(x, 1) =
(sin Kx) - (sinwt) where K = nn/a and w = K /v/LC. Sketch, on the same graph,
the function V{x, ) as a function of xfor 0 < x < gandn = 1 when (i) wr =0,
et = w2, (N wt = m, (ivyer = 3In/2, and () et = 2.

The function V(x.7) = cos (2stx /h — i) is also a solution 1o the classical wave
equation. Sketch on the same graph the function V (x, 1) as a function of x for

0 <x < 32 when: (I} wt =0, (i} ot = 0.257, (iii) or = 0.537, (iv) wr = 0.757, and
WMat=m.

Repeat Problem 2.2 for the function V (x, 1) = cos 2mx /A + wt).

Determine the phase velocities of the traveling waves described in Problems 2.2
and 2.3,

Section 2.1 Principles of Quantum Mechanics

25

2.6

27

The work function of a material refers ro the minimum energy required to remove an
electron from the material. Assume that the work function of gold 1s 4.90 eV and that
of cesivm is 1.90 ¢V. Calculate the maximum wavelength of light for the photoelectsic
emission of electrons for gold and cesium.

Calculate the de Broglie wavelength, & = & /p. for: (@) An electron with kinetic en-
ergy of (i) 1.0 eV, and (i) 100 V. (b)) A proton with kinetic energy of 1.0eV. (c} A
singly ionized tungsten atom with kinetic energy of 1.0 eV. (d) A 2000-kg truck trav-
eling at 20 m/s.

According to classical physics, the average energy of an electron in an electron gas at
thermal equilibrium is 347/2. Determine, for T = 300 K, the average electron energy
{in ¢V}, average electron momentum, and the de Broglie wavelength.

*18 An¢lectron and a photon have the same energy. At what value of energy (in eV) will

29

the wavelength of the photon be 10 times that of the electron?

{a) An electron is moving with a vetocity of 2 x 10° cm/s. Determine the eleciron en-
ergy (in eV), momentum, and de Broglie wavelength (in A). () The de Broglic wave-
length of an electron is 125 A. Determine the electron energy (in eV), momentum,
and velocity.

2.40 Wis desired to produce x-ray radiation with 2 wavelength of 1 A. (a) Through what

potential veltage difference must the electron be accelerated in vacuurn so that it can,

h'\Q'HP

KO \!Q".U

51



CHAPTER 2 |[ntroduction to Quantum Mechanics

2.1

2.12

2.13
2,14

2.15

upon colliding with a target. generate such a photon? (Assume that all of the
electron’s energy is transferred to the photon.) () What is the de Broglie wavelength
of the electron in part (&) just before it hits the target?

When the uncertainty principle is considered, it is not possible to locate a photon in
space more precisely than about one wavelength. Consider a photon with wavelength
A =1 pm,. What is the uncertainty in the photon’s (¢) momentum and (5} energy?
The uncertainty in position is 12 A for a particle of mass 5 x 1072 kg. Determine the
minimum uncertainty in () the momentum of the particle and (b) the kinetic energy
of the particle.

Repeat Problem 2.12 for a particle of mass 5 » 107" kg,

An automobile has a mass of 15300 kg. What is the uncertainty in the velocity (in
miles per hour) when its center of mass is located with an unceriainty no greater than
I em?

(¢) The uncertainty in the position of an electron is no greater than 1 A. Determine the
minimum uncertainty in its momentumn, (b) The electron’s energy is measured with an
uncertainty no greater than 1 eV. Determine the minimum uncertainty in the time over
which the measurement is made.

Section 2.2 Schrodinger’s Wave Equation

2.16

2.17

2.18

2.19

Assume that ¥ (x, 7} and W, (x, ¢) are solutions of the one-dimensional time-
dependent Schrodinger’s wave equation. (a) Show that ¥, + &5 is a solution. () Is
W, - W5 asolution of the Schrodinger’s equation in general? Why or why not?
Consider the wave function W (x, 1) = A(sin wx)e ™% for —1 < x < +1.
Determine A so that | [W(x, N2 dx = 1.

Consider the wave function W (x, ¢) = Afsin nrx}e "' for0 < x < 1. Determine
Asothat f [W(x 0 dx = 1.

The solution to Schrodinger’s wave equation for a particular sitnation is given by
Vi(x) = 2/ay - ¢ *'_ Determinc the probability of finding the particle between the
following limits: (a} 0 < x < ap/4, (B an/d < x <an/2,and (¢} 0 < x < ay.

Section 2.3 Applications of Schrodinger’s Wave Equation

2.20

221

2.22

2.2}

2.24

An electron in free space is described by a plane wave given by W(x. t) = Ae/®* o
where k = 1.5 x 10° m~! and w = 1.5 x 10" rad/s. {a) Determine the phasc
velocity of the plane wave. (b) Calculate the wavelength, momentum, and kinetic
energy (in V) of the electron.

An electron is traveling in the negative x direction with a kinetic energy of 0.015 eV.
Write the cquation of a plane wave that describes this particle.

An electron is bound in a one-dimensional infinite potential well with a width of

100 A. Determine the electron energy levels forn = 1.2, 3,

A one-dimensional infinite potential well with a width of 12 A contains an electron.
{a) Calculate the first two energy levels that the electron may occupy. (b) If an
electron drops from the second energy level to the first, what is the wavelength of &
photon that might be emitted?

Consider a particle with mass of 10 mg in an infinite potential well 1.0 cm wide. (g} If
the energy of the particle is 10 mJ. calculate the value of » for that state. (5) What is
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*2.27

*2.28

2.9

2.30

231

Problems

Incident particles
g

Vi) [r——

& — .4
x=~y ¥=0 ¥=d5 i=0  Arxr—m
Figure 2.11 | Potential function Figure 2.12 | Potential
for Problem 2.26. functien for Problem 2.30.

the kinetic energy of the (» + 1) state? (¢) Would quantum effects be observable for
this particle?

Calculate the lowest energy level for a neutron in a nucleus, by treating it as if it were
in an infinite potential well of width equal to 107" m. Compare this with the lowest
energy level for an clectron in the same infinite potential well.

Consider the particle in the infinite potential well as shown in Figure 2.11. Derive and
sketch the wave functions corresponding to the four lowest energy levels, (Do not
normalize the wave functions.)

Consider a three-dimensional infinite potential well. The potential function is given
by V(x) =0for0 <x <a.0 < v <a,0 <z <a, and V(x) = oo elsewhere. Start
with Schrodinger’s wave cquation, use the separation of variables technique, and
show that the energy is quantized and is given by

R )
wheren, =1,2,3,...,0, =1,2,3,... .0, =1,2,3,....
Consider a free electron bound within a two-dimensional infinite potential well
definedby V =0for0 < x <25 A, 0 <y < 50 A, and ¥ = oo clsewhere.
Determine the expression for the allowed electron energies.

Describe any similarities and any differcnces to the results of the one-dimensional

infinite potential well.

Consider a proton in a one-dimensional infinite potential well shown in Figure 2.5.

(a) Derive the expression for the allowed energy states of the proton. (#) Calculate the
energy difference (in units of eV) between the lowest possible energy and the next
higher energy state for () a = 4 A, and (i) 2 = 0.5 cm.

For the step potential function shown in Figure 2.12, assume that £ > V; and that
particles are incident from the +x direction traveling in the —x direction. {a) Write
the wave solutions for each region. {») Derive expressions tor the transmission and
reflection coefficients.

Consider the penetration of a step potential function of height 2.4 eV by an electron
whose energy is 2.1 eV, Determine the relative probability of finding the electron at
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2.32

2.33

2.34

*2.35

*2.36

%237

the distance (a) 12 A beyond the barrier, and (b) 48 A beyond the barrier, compared to
the probability of finding the incident particle at the barrier edge.

Evaluate the transmission coefficient for an electron of energy 2.2 eV impinging on a
potential barrier of height 6.0 eV and thickness 1079 m. Repeat the calculation for a
barrier thickness of 107% m. Assume that Equation (2.62) is valid.

(a) Estimate the tunneling probability of a particle with an effective mass of 0.067 my
(an electron in gallium arsenide), where mg is the mass of an electron, tunneling
through a rectangular potential barrier of height ¥y = 0.8 eV and width 15 A. The
particle kinetic energy is 0.20 eV, (b) Repeal part () if the effective mass of the
particle is 1,08 my (an electron in silicon).

A proton attempts to penetrate a rectangular potential barrier of height 10 MeV and
thickness 10 " m. The pariicle has a total energy of 3 MeV. Calculate the probability
that the particle will penetrate the potential barrier. Assume that Equation (2.62) is
valid.

An electron with energy E is incident on a rectangular potential barrier as shown in
Figure 2.8. The potential barrier is of width a and height ¥, 3> E. (a) Write the form
of the wave function in each of the three regions. (b) For this geometry, determine
what coefficient in the wave function solutions is zero. (¢) Derive the expression for
the transmission coefficient for the electron (tunneling probability). (d) Sketch the
wave function for the electron in each region.

A potential function is shown in Figure 2.13 with incident particles coming from —o¢
with a total energy E > V,. The constants k are defined as

2mE 2m 2m
b=y k2=‘f§(E—V|) k3=\/h—2(E-Vz)

Assume a special case for which kxa = 2rm, n = 1, 2, 3, .. .. Derive the expres-
sion, in terms of the conslants, k. k»>. and k3, for the transmission coctficient. The
transmission coetiicient is defined as the ratio of the flux of particles in region Il 1o
the incident flux in region .

Consider the one-dimensional potential function shown in Figure 2.14. Assume the
total energy of an electron is £ < V. (a) Write the wave solutions that apply in each

Figure 2.13| Potential function for

Vix) = =
~
Incident particles £ > V5
: — Y, r— A
L4
I oo, Im I )| 11
I
x=10 x=a =0 x=ua

Figure 2.141 Potential function for

Problem 2.36. Problem 2.37.
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region. (b} Write the set of equations that result from applying the boundary conditions.
(c) Show explicitly why, or why not, the energy levels of the electron are quantized.

Section 2.4 Extensions of the Wave Theory to Atoms

.38

239

240

4

Calculate the energy of the electron in the hydrogen atom (in units of eV) for the first
four aliowed energy levels.

Show that the most probable value of the radius r for the s electron in a hydrogen
atom is equal to the Bohr radius a,,.

Show that the wave function for 50 given by Equation (2.73) is a solution to the
differential equation given by Equation (2.64),
What property do H, Li, Na, and K have in common?
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Introduction to the Quantum
Theory of Solids

PREVIEW

n the last chapter, we applied quantum mechanics and Schrodinger’s wave equa-

tion to determine the behavior of electrons in the presence of various potential

functions. We found that one important characteristic of an electron bound to an
atom or bound within a finite space is that the electron can take on only discrete val-
ues of energy; that is, the energies are quantized. We also discussed the Pauli exclu-
sion principle, which stated that only one electron is allowed to occupy any given
quantum state. In this chapter, we will generalize these concepts to the electron in a
crystal lattice.

One of our goals is to determine the electrical properties of a semiconductor ma-
terial, which we will then use to develop the current-voltage characteristics of semi-
conductor devices. Toward this end, we have two tasks in this chapter: to determine
the properties of electrons in a crystal lattice, and to determine the statistical charac-
teristics of the very large number of electrons in a crystal.

To start, we will expand the concept of discrete allowed electron energies that
oceur in a single atom to 4 band of allowed electron energies in a single-crystal solid.
First we will qualitatively discuss the feasibility of the allowed energy bands in a
crystal and then we will develop a more rigorous mathematical derivation of this the-
ory using Schrodinger’s wave equation. This energy band theory is a basic principle
of semiconductor material physics and can also be used to explain differencey in
electrical characteristics between metals, insulators, and semiconductors.

Since current in a solid is due to the net flow of charge, it is important to deter-
mine the response of an electron in the crystal to an applied external force, such as an
electric field. The movement of an electron in a lattice is different than that of an elec-
tron in free space. We will develop a concept allowing us to relate the quantum me-
chanical behavior of electrons in a crystal to classical Newtonian mechanics. This
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analysis leads to a parameter called the electron effective mass. As part of this devel-
opment, we will find that we can define a new particie in a semiconductor called a
hole. The motion of both electrons and holes gives rise to currents in a semiconductor.

Because the number of electrons in a semiconductor is very large, it is impossi-
ble to follow the motion of each individual particle. We will develop the statistical
behavior of electrons in a crystal, noting that the Pauli exclusion principle is an im-
portant factor in determining the statistical law the electrons must follow. The result-
ing probability function will determine the distribution of electrons among the avail-
able energy states. The energy band theory and the probability function will be used
extensively in the next chapter, when we develop the theory of the semiconductor in
equilibrivm. W

J.11ALLOWED AND FORBIDDEN ENERGY BANDS

In the last chapter, we treated the one-electron, or hydrogen, atom. That analysis
showed that the energy of the bound electron is quantized: Only discrete values of
electron energy are allowed. The radial probability density for the electron was also
determined. This function gives the probability of finding the electron at a particular
distance from the nucleus and shows that the electron is not localized at a given
radius. We can extrapolate these single-atom results to a crystal and qualitatively de-
rive the concepts of allowed and forbidden energy bands. We can then apply quan-
tum mechanics and Schrodinger’s wave equation to the problem of an electron in a
single crystal. We find that the electronic energy states occur in bands of allowed
states that are separated by forbidden energy bands.

J1.1 Formation of Energy Bands

Figure 3.1a shows the radial probability density function for the lowest electron
energy state of the single, noninteracting hydrogen atom, and Figure 3.1b shows the
same probability curves for two atoms that are in close proximity to each other. The
wave functions of the two atom electrons overlap, which means that the two electrons

pr) p(r)

Electron energy —jpm
I

57

n=1

B e i o

(a) (b)

Figure 3.1 | (a) Probability density function of an isolated hydrogen atom. (b) Overlapping probability density

functions of two adjacent hydrogen atoms. (c) The splitting of the n = | state,
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will interact. This interaction or perturbation results in the discrete quantized energy
level splitting into two discrete energy levels, schematically shown in Figure 3.1c. l
The splitting of the discrete state into two states is consistent with the Pauli exclusion
principle.

A simple analogy of the splitting of energy levels by interacting particles is the
following. Two identical race cars and drivers are far apart on a race track. There is
no interaction between the cars, so they both must provide the same power to
achieve a given speed. However, if one car pulls up close behind the other car, there
is an interaction called draft. The second cur will be pulled to an extent by the lead
car. The lead car will therefore require more power to achieve the same speed, since
it is pulling the second car and the second car will require less power since it is
being pulled by the lead car. So there is a “splitting” of power (energy) of the two
interacting race cars. (Keep in mind not to take analogies too literally.)

Now, if we somehow start with a regular periodic arrangement of hydrogen-
type atoms that are initially very far apart, and begin pushing the atoms together, the
initial quantized energy level will split into a band of discrete energy levels. This ef-
feet is shown schematically in Figure 3.2, where the parameter ry represents the
equilibrium interatomic distance in the crystal. At the equilibrium interatomic dis-
tance, there is a band of allowed energies, but within the allowed band, the energies
are at discrete levels. The Pauli exclusion principle states that the joining of atoms
to form a system (crystal) does not alter the total number of quantum states regard-
less of size. However, since no two electrons can have the same gquantum number,
the discrete energy must split into a band of energies in order that each electron can
occupy a distinct quantumn state,

We have seen previously that, at any energy level, the number of allowed quan-
tum states 1s relatively small. In order fo accommodate all of the electrons in a crys-
tal, then, we must have many energy levels within the allowed band. As an example,
suppose that we have a system with 10!” one-electron atoms and also suppose that,
at the equilibrium interatomic distance, the width of the allowed energy band is 1 eV.
For simplicity, we assume that each electron in the system occupies a different en-
ergy level and, if the discrete energy states are equidistant, then the energy levels are
separated by 107! eV, This energy difference is extremely small, so that for all prac-
tical purposes, we have a quasi-continuous energy distribution through the allowed

Electron energy ——

[

\

I

fo  Interatomic distance ——»=

Figure 3.2 | The splitting of an energy
state into a band of aliowed energies.
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energy band, The fact that 1071 eV is a very small difference between two energy
states can be seen from the following example.
EXAMPLE 3.1

Objective

To calculate the change in Kinetic energy of an electron when the velacity changes by a small
value.
Consider an electron traveling at a velocity of 107 em/s. Assume the velocity increases by
avalue of 1 cmfs. The increase in kinetic energy is given by
1 l 1 3

AE = Emvg - Emvf =5m (v —v})

Letvs = v, + Aw. Then

iy

Uzz = (1 + AU)2 = u]z + 21 Av 4+ (Av)”

But Av <€ vy, so we have that
1
AE = Em(zleU) = ITTU}AL‘

@ Solution
Substituting the number into this equation, we obtain

AE =(9.11 x 107)(10M)0.01 = 9.11 x 1072 ]
which may be converted to units of electron volts as

90 x 107

AE="" " __ —57x10%eV
1.6 x 10-1 * €

m Comment

A change in velocity of 1 cm/s compared with 107 cm/s results in a change in energy of
5.7 x 107 eV, which is orders of magnitude larger than the change in energy of 107'? eV be-
tween energy states in the allowed energy band. This example serves to demonstrate that a dif-
ference in adjacent energy states of 10~'? eV is indeed very small, so that the discrete energies
within an allowed band may be treated as a quasi-continuous distribution,

Consider again a regular periodic arrangement of atoms, in which cach atom
now contains more than one electron. Suppose the atom in this imaginary crystal
contains electrons up through the » = 3 energy level. If the atoms are initially very
far apart, the electrons in adjacent atoms will not interact and will occupy the discrete
energy levels. If these atoms are brought closer together, the outermost electrons in
the n = 3 energy shell will begin to interact initially, so that this discrete energy level
will split into a band of allowed energies. If the atoms continue to move closer to-
gether, the electrons in the n = 2 shell may begin to interact and will also split into a
band of allowed energies. Finally, if the atoms become sufficiently close together, the
innermost electrons in the n = | level may interact, so that this energy level may also
split into a band of allowed energies. The splitting of these discrete energy levels is
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Figure 3.3 | Schematic showing the splitting of three energy states
into allowed bands of energies.
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Figure 3.4 | (a) Schematic of an isolated silicon atom. (b) The splitting of the 3s and 3p states of silicon into the
alowed and forbidden energy bands.

{Erom Shockley [51.)

qualitatively shown in Figure 3.3. If the equilibrium interatomic distance is ry, then
we have bands of allowed energies that the electrons may occupy separated by bands
of forbidden energies. This energy-band splitting and the formation of allowed and
forbidden bands is the energy-band theory of single-crystal materials.

The actual band splitting in a crystal is much more complicated than indicated
in Figure 3.3. A schematic representation of an isolated silicon atom is shown in Fig-
ure 3.4a. Ten of the fourteen silicon atom electrons occupy deep-lying energy levels
close to the nucleus. The four remaining valence electrons are relatively weakly bound
and are the electrons involved in chemical reactions, Figure 3.4b shows the band split-
ting of silicon. We need only consider the n = 3 level for the valence electrons, since
the first two energy shells are completely full and are tightly bound to the nucleus. The
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3s state corresponds to n = 3 and / = 0 and contains two quantum states per atom.
This state will contain two electrons at 7 = 0 K. The 3p state corresponds to n = 3
and / = 1 and contains six quantum states per atom. This state will contain the re-
maining two electrons in the individual silicon atom.

As the interatomic distance decreases, the 3s and 3p states interact and overlap.
At the equilibrinm interatomic distance, the bands have again split. but now four
quantum states per atom are in the lower band and four quantum states per atom are in
the upper band. At absolute zero degrees, electrons are in the lowest energy state, so
that all states in the lower band {(the valence band) will be full and all states in the
upper band (the conduction band} will be empty. The bandgap energy £, between the
top of the valence band and the bottom of the conduction band is the width of the for-
bidden energy band.

We have discussed qualitatively how and why bands of allowed and forbidden en-
ergies are formed in a crystal. The formation of these energy bands is directly related
to the electrical characteristics of the crystal, as we will see later in our discussion.

*#3.1.2 The Kronig-Penney Model

In the previous section, we discussed qualitatively the spitting of allowed electron
energies as atoms are brought together to form a crystal. The concept of allowed and
forbidden energy bands can be developed more rigorously by considering quantum
mechanics and Schrodinger’s wave equation. It may be easy for the reader to “get
lost” in the following derivation, but the result forms the basis for the energy-band
theory of semiconductors.

The potential function of a single, noninteracting, one-electron atom is shown in
Figure 3.5a. Also indicated on the figure are the discrete energy levels allowed for
the electron. Figure 3.5b shows the same type of potential function for the case when
several atoms are in close proximity arranged in & one-dimensional array. The po-
tential functions of adjacent atoms overlap, and the net potential function for this
case is shown in Figure 3.5c. It is this potential function we would need to use in
Schrodinger’s wave equation to model a one-dimensional single-crystal material.

The solution to Schrodinger’s wave equation, for this one-dimensional single-
crystal lattice, is made more tractable by considering a simpler potential function,
Figure 3.6 is the one-dimensional Kronig—Penncy model of the periodic poteniial
function, which is used to represent a one-dimensional single-crystal lattice. We need
to solve Schrodinger’s wave equation in each region. As with previous quantum me-
chanical problems, the more interesting solution occurs for the case when £ < Vy,
which corresponds to a particle being bound within the crystal. The electrons are
contained in the potential wells, but we have the possibility of tunneling between
wells. The Kronig—Penney model is an idealized periodic potential representing a
one-dimensional single crystal. but the results will illustrate many of the important
features of the quantum behavior of electrons in a periodic lattice.

To obtain the solution to Schrodinger’s wave equation, we make use of a math-
ematical theorem by Bloch. The theorem states that all one-electron wave functions,

*Indicates sections that can be skipped without loss of continuity.
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Figure 3.5 | (a) Potential function of a single isolated
atom. (b) Overlapping potential functions of adjacent
atoms. (¢) Net potential function of a one-dimensional
single crystal.
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Figure 3.6 | The one-dimensional periodic potential
function of the Kronig-Penney model.
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for problems involving periodically varying potential energy functions, must be of
the form

P(x) = ulx)et~ 3.1

The parameter k is called a constant of motion and will be considered in more de-
tail as we develop the theory. The function #(x) is a periodic function with period
{a-+b).

We stated in Chapter 2 that the total solution to the wave equation is the product
of the time-independent solution and the time-dependent solution, or

Wi, 1) = W (x)p () = ulxyelks . g JEMX (3.2}
which may be written as
Wix, 1) = u(xjel trEMY (3.3)

This traveling-wave solution represents the motion of an electron in a single-crystal
material. The amplitude of the traveling wave is a periodic function and the parame-
ter & is also referred to as a wave number.

We can now begin to determine a relation between the parameter k, the total en-
ergy E, and the potential V. If we consider region I in Figure 3.6 (0 < x < a) in
which V(x) = 0, take the second derivative of Equation (3.1), and substitute this re-
sult into the time-independent Schrodinger’s wave equation given by Equation (2.13),
we ohtain the relation

d*uy (x)
dx?

The function u; (x} is the amplitude of the wave function in region 1 and the parame-
ter o 1s defined as

P

k> —au(x) =0 (3.4)

Cdu ()
2ik =
2 dx

, 2mE
e (3.5)
h?
Consider now a specific region I, —b < x < 0, in which V{x) = V4, and apply
Schrodinger's wave equation. We obtain the relation
d2 : diy (. 3 2 2mV;
1> (x) N 1a{x) N (k' N mVy

2ik
dx? Gl e

)Mg(x) =0 (3.6)

where uz(x) 1s the amplitude of the wave function in region I1. We may define

Zm 2mVy 3
it — Vi) = 2_ = H- 37
= (E-W) =« s g (3.7)
so0 that Equation (3.6) may be written as
d*us (. dus(x;
0 oM g2 gy =0 (3.8)
dx? x

Note that from Equation (3.7),1f £ > Vj, the parameter § is real, whereas if E <« ¥,
then 8 is imaginary.

63



64

CHAPTER 3 Introduction to the Quantum Theory of Solids

The solution to Equation (3.4), for region 1, is of the form
1 (x) = Aed @R L Be JWHRY  for (< x < g) (3.9)

and the solution to Equation (3.8), for region 14, is of the form
ua(x) = Cel 0% o Demilfthix for (—h < x < 0) (3.10)

Since the potential function V(x) is everywhere finite, both the wave function ¥ (1)
and its first derivative 9 (x)/dx must be continuous, This continuity condition im-
plies that the wave amplitude function #(x) and its first derivative du(x)/0x must
also be continuous,

If we consider the boundary at x = 0 and apply the continuity condition to the
wave amplitude, we have

11 (0) = u2{0) {3.11)
Substituting Equations (3.9} and (3.10) into Equaiion (3.11), we obtain
A+B-C-D=90 (3.12)
Now applying the condition that
‘;—l: e % » (3.13)
we obtain
(0 —RDA-(@+B-(B-KHNCH+(B+HD=0 (3.14)

We have considered region I as 0 < x < ¢ and region Il as —& < x < (. The
periodicity and the continuity condition mean that the function u;, as x — a, is
equal to the function u,, as x - —b. This condition may be written as

wila) = u>(—b) (3.15)

Applying the solutions for w«;(x) and u2{x) to the boundary condition in Equa-
tion (3.15) yields )

Aej(tx—km + Be—j(u+k)a _ Ce—j(ﬂ—k)b _ Def(ﬂ-f—k)b =0 (316)

The last boundary condition is

d d
=T (317
dx x=u dx r=—h J
which gives
(o — k)Aef(n‘fk)u — (o + k)BefjfchrkJu — (8- k)Ce—j(,B—k)b i
+ (B + kD! P =0 318)

We now have four homogeneous equations, Equations (3.12), (3.14), (3.16). and
(3.18), with four unknowns as a result of applying the four boundary conditions. In a
set of simultaneous, linear, homogeneous equations, there is a nontrivial solution if,
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and only if, the determinant of the coefficients 15 zero. In our case, the coefficients in
question are the coefficients of the parameters A, B, C, and D.

The evaluation of this determinant is extremely laborious and will not be con-
sidered in detail. The result is

(" + %)

af (sineea)(sin Bb) + (cosaa)(cos b)Y = cosk(a +b)  (3.19)

Equation (3.19) relates the parameter & to the total energy E (through the parameter o)
and the potential function ¥y (through the parameter ).

As we mentioned, the more interesting solutions occur for £ < Vy, which ap-
plies to the electron bound within the crystal. From Equation (3.7), the parameter
is then an imaginary quantity. We may define

B#=Jjy (3.20)
where ¥ is a real quantity. Equation (3.19) can be written in terms of y as

p—a?

(sina)(sinh yb) + (cosaa)(coshyb) = coskia + b) (3.21)

Equation (3.21} does not lend itself to an analytical solution, but must be solved
using numerical or graphical techniques to obtain the relation between k, E, and V.
The solution of Schrodinger’s wave equation for a single bound particle resulted in
discrete allowed energies. The solution of Equation (3.21) will result in a band of
allowed energies.

To obtain an equation that is more susceptible to a graphical solution and thus
will illustrate the nature of the results, let the potential barrier width & — 0 and the
barrier height ¥y — oo, but such that the product bV; remains finite. Equation (3.21)
then reduces to

mVpba \ sinwag
- + coswa = coska (3.22)
e wa
We may define a parameter P’ as
, i nga
= P (3.23)
Then, finally, we have the relation
Sinaa
P'— L cosaa = coska (3.24)
aa

Equation (3.24) again gives the relation between the parameter k, total energy E
{through the parameter «), and the potential barrier bVy. We may note that Equa-
tion {3.24) is not a solution of Schrodinger’s wave equation but gives the conditions
for which Schrodinger’s wave equation will have a solution. If we assume the crystal
is infinitely large, then k in Equation (3.24) can assume a continoum of values and
must be real.
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3.1.3 The k-Space Diagram

To begin to understand the nature of the solution, initially consider the special case
for which Vy = 0. In this case P’ =0, which corresponds to a free particle since
there are no potential barriers, From Equation (3.24), we have that

cosaa = coska (3.25)
or
o=k (3.26)

Since the potential is equal to zero, the total energy E is equal to the Kinetic energy,
so that, from Equation (3.5), Equation (3.26) may be written as

[2mE /2m(%mv2) p
« ) 2 5 (3.27)

where p is the particle momentum. The constant of the motion parameter £ is related
to the particle momentum for the free electron. The parameter & is also referred to as
a wave number.
We can also relate the energy and momentum as
»P KR

T 2m 2m

(3.28)

Figure 3.7 shows the parabolic relation of Equation (3.28) between the energy £ and
momentum p for the free particle. Since the momentum and wave number are lin- 1
early related, Figure 3.7 is also the E versus k curve for the free particle.

We now want to consider the relation between E and k from Equation (3.24) for
the particle in the single-crystal lattice. As the parameter P’ increases, the particie
becomes more tightly bound to the potential well or atom. We may define the left side
of Equation (3.24) to be a function f{oa), so that

,Sinog
flaa) =P + cosoa (3.29)
E
1 ]
[} 1
: :
|‘ ;
1 Il
' ;
4 ¥
\ /
\ [
LY L4
Y ’
~ ‘1
s"'-n- "

p=0 por k ——p—

Figure 3.7 | The parabolic E versus &
curve for the free electron.
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Figure 3.8 | A plot of (a) the first term in Equation (3.29), (b) the second term in Equation
(3.29), and (c) the entire f{aa) function. The shaded areas show the allowed values of
{za) corresponding to real values of k.

Figure 3.8a is a plot of the first term of Equation (3.29) versus ca. Figure 3.8b shows
4 plot of the cos @ term and Figure 3.8c¢ is the sum of the two terms, or f(«a).
Now from Equation (3.24), we also have that

flaa) = coska (3.30)

For Equation {3.30) to be valid, the allowed values of the f{xa) function must be
bounded between +1 and —1. Figure 3.8¢ shows the allowed values of f(aa) and
the allowed values of e in the shaded areas. Also shown on the figure are the values
of ka from the right side of Equation (3.30) which correspend to the allowed values
of flaa).

The parameter ¢ is related to the total energy £ of the particle through Equa-
tion (3.5), which is @ = 2m E /H2. Aplot of the energy E of the particle as a function
of the wave number & can be generated from Figure 3.8c. Figure 3.9 shows this plot
and shows the concept of allowed energy bands for the particle propagating in the
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Figure 3.9 | The E versus & diagram generated from
Figure 3.8. The allowed energy bands and forbidden
energy bandgaps are indicated.

crystal lattice. Since the energy E has discontinuities, we also have the concept of |
forbidden energies for the particles in the crystal.

EXAMPLE 3.2

Objective

To determine the lowest allowed energy bandwidth,
Assume that the coefficient P’ = 10 and that the potential width a = 5 A.

B Solution
To find the lowest allowed energy bandwidth, we need to find the difference in ¢a values as |
ka changes from 0 to 7 (see Figure 3.8¢). For ka = (), Equation {3.29) becomes

Sin o
1=10
ad

+ cosea

By trial and error, we find wa = 2.628 rad. We see that forkg = 7, wa = 7.

szg
T T

o 731054 x 107%)?
T 2ma® 20901 x 10-3)(5 x 10-10)2

For g = =, we have

or

E; =2407 x 107" = 1.50eV

For wa = 2.628, we find that £, = 1.68 x 107! J = 1.053 eV. The allowed energy band- -
width is then

AE=E,— E =150-1.0583=0447eV
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@ Comment
We see from Figure 3.8c that, ay the energy increases, the widths of the allowed bands increase
from this Kronig—Penney model.

TEST YOUR UNDERSTANDING |

E3.1 Using the parameters given in Example 3.2, determine the width {in eV) of the
forbidden energy band that exists at ka = 7 (see Figure 3.8c). (A2 6.7 = JV Suy)

Consider again the right side of Equation (3.24), which is the function cos ka.
The cosine function is periodic so that

coska = cos (ka + 2nm) = cos (ka — 2nm) (3.31)

where # is a positive integer. We may consider Figure 3.9 and displace portions of the
curve by 27. Mathematically, Equation {3.24) is still satisfied, Figure 3.10 shows
how various segments of the curve can be displaced by the 2z factor. Figure 3.1]
shows the case in which the entire E versus k plot is contained within —x/a <
k < m/a. This plot is referred to as a reduced k-space diagram, or a reduced-zero
representation.

We noted in Equation (3.27) that for a free electron, the particle momentum and
the wave number & are related by p = fik. Given the similarity between the free

E
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Figure 3.10! The E versus k diagram showing 27

displacements of several sections of allowed energy Figure 3.11 | The F versus £ diagram
bands. in the reduced-zone representation.
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electron solution and the results of the single crystal shown in Figure 3.9, the para--
meter fik in a single crystal is referred to as the crystal momentum. This parameter is
not the actual momentum of the electron in the crystal, but is a constant of the mo-
tion that includes the crystal interaction.

We have been considering rthe Kronig—Penney model, which is a one-
dimensional periodic potential function used to model a single-crystal lattice. The
principle result of this analysis, so far, is that electrons in the crystal occupy certain
aliowed energy bands and are excluded from the forbidden energy bands. For real
three-dimensional single-crystal materials, a similar energy-band theory exists. We
will obtain additional electron properties from the Kronig-Penney model in the next
sections.

3.2 | ELECTRICAL CONDUCTION IN SOLIDS

Again, we are eventually interested in determining the current—voltage characteris-
tics of semiconductor devices. We will need to consider electrical conduction in
solids as it relates to the band theory we have just developed. Let us begin by con-
sidering the motion of electrons in the various allowed energy bands.

3.2.1 The Energy Band and the Bond Model

In Chapter 1, we discussed the covalent bonding of silicon. Figure 3.12 shows atwo-
dimensional representation of the covalent bonding in a single-crystal silicon lattice.
This figure represents silicon at 7 = 0 K in which each silicon atom is surrounded by
eight valence electrons that are in their lowest energy state and are directly involved
in the covalent bonding. Figure 3.4b represented the splitting of the discrete silicon
energy states into bands of allowed energies as the silicon crystal is formed. At
T =0 K, the 4N states in the lower band, the valence band, are filled with the va-
lence electrons. All of the valence electrons schematically shown in Figure 3.12 are
in the valence band. The upper energy band, the conduction band, is completely
emptyat 7 = 0 K.

Figure 3.12 | Two-dimensional
representation of the covalent bonding
in a semiconductor at T = 0 K.
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As the temperature increases above 0 K, a few valence band electrons may gain
enough thermal energy to break the covalent bond and jump into the conduction
band. Figure 3.13a shows a two-dimensional representation of this bond-breaking
effect and Figure 3.13b, a simple line representation of the energy-band model,
shows the same effect.

The semiconductor is neuirally charged. This means that, as the negatively
charged electron breaks away from its covalent bonding position, a positively
charged “empty state” is created in the original covalent bonding position in the va-
lence band. As the temperature further increases, more covalent bonds are broken,
more electrons jump to the conduction band, and more positive “empty states” are
created in the valence band.

We can also relate this bond breaking to the E versus k energy bands.
Figure 3.14a shows the E versus k diagram of the conduction and valence bands at

Conduction -
band

Valence +/
band

(b

Figure 3.13 | (a) Two-dimensional representation of the breaking of a covalent bond.
{b) Corresponding line representation of the energy band and the generation of a
negative and positive charge with the breaking of a covalent bond,

E E

(@) )]

Figure 3.14 | The £ versus & diagram of the conduction and valence bands of a
semiconductor at (@) T = 0 Kand () T > O K.
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T = 0 K. The energy states in the valence band are completely fuli and the states in
the conduction band are empty. Figure 3.14b shows these same bands for T > 0 K|
in which some electrons have gained enough energy to jump to the conduction band
and have left empty states in the valence band. We are assuming at this point that no
external forces are applied so the electron and “empty state” distributions are sym-
metrical with £,

3.2.2 Drift Current

Current is due to the net flow of charge. If we had a collection of positively charged
jons with a volume density N (co?) and an average drift velocity v, (em/s), then the
drift current density would be

J=gNvy  Alem? (3.32)

If, instead of considering the average drift velocity, we considered the individual ion
velocities, then we could write the drift current density as

v
I=q) v (3.33)

i=l

where v; is the velocity of the i/ih ion. The summation in Equation (3.33) is taken over
a unit volume so that the current density J is still in units of A/cm?.

Since electrons are charged particles, a net drift of electrons in the conduction
band will give rise to a current. The electron distribution in the conduction band, as
shown in Figure 3.14b, is an even function of £ when no external force is applied. Re-
call that & for a free electron is related to momentum so that, since there are as many
electrons with a +|k| value as there are with a —|&| value, the net drift current den-
sity due to these electrons is zero. This result is certainly expected since there is no |
externally applied force.

If a force is applied to a particle and the particle moves, it must gain energy. This
effect is expressed as

dE = Fdx = Fudt (3.34)

where F is the applied force, dx is the differential distance the particle moves, visthe

velocity, and d F is the increase in energy. If an external force is applied to the elec-

trons in the conduction band, there are empty energy states into which the electrons

can move; therefore, because of the external force, electrons can gain energy and a net

mementum. The electron distribution in the conduction band may look like that

shown in Figure 3.15, which implies that the electrons have gained a net momentum.
‘We may write the drift current density due to the motion of electrons as

J=—eXu (3:39)
i=t{

where ¢ is the magnitude of the electronic charge and » is the number of electrons
per unit volume in the conduction band. Again, the summation is taken over a unit
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Figure 3.15 | The asymmetric distribution
of electrons in the E versus k diagram
when an external force is applied.

volume so the corrent density is A/cm?. We may note from Equation (3.35) that the
current is directly related to the electron velocity; that is, the current is related to how
well the electron can move in the crystal.

32.3 Electron Effective Mass

The movement of an electron in a lattice will, in general, be different from that of an
electron in free space. In addition to an externally applied force, there are internal
forces in the crystal due to positively charged ions or protons and negatively charged
electrons, which will influence the motion of electrons in the lattice. We can write

Flow = Feu + Fing = ma (3.36)

where Fo, Fexe, and Fine are the total force, the externally applied force, and the in-
ternal forces, respectively, acting on a particle in a crystal. The parameter g is the
acceleration and m is the rest mass of the particle.

Since it is difficult to take into account all of the internal forces, we will write the
equation

B el (3.37)

where the acceleration « is now directly related to the external force. The parameter
m*, called the effective mass, takes into account the particle mass and also takes into
account the effect of the internal forces.

To use an analogy for the effective mass concept, consider the difference in mo-
tion between a glass marble in a container filled with water and in a container filled
with oil. In general, the marble will drop through the water at a faster rate than through
the oil. The external force in this example is the gravitational force and the internal
forces are related to the viscosity of the liquids. Because of the difference in motion
of the marble in these two cases, the mass of the marble would appear to be different
in water than in oil, (As with any analogy, we must be careful not to be teo literal.)

We can also relate the effective mass of an electron in a crystal to the E versus &
curves, such as was shown in Figure 3.11. In a semiconductor material, we will be
dealing with allowed energy bands that are almost empty of elecirons and other
energy bands that are almost full of electrons.
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To begin, consider the case of a free electron whose E versus k curve was sho
in Figure 3.7. Recalling Equation (3.28), the energy and momentum are related by
E = p*/2m = K*k*/2m, where m is the mass of the electron. The momentum an
wave number £ are related by p = Ak, If we take the derivative of Equation (3.28
with respect to k, we obtain |

dE Bk hp
dk m m el
Relating momentum to velocity, Equation (3.38) can be written as *
ldE p )
e GOt RS 3.39
ndk ~m " a4

where v is the velocity of the particle. The first denivative of E with respect to & is re-
lated to the velocity of the particle.
If we now take the second derivative of F with respect to k, we have

d’E
= 3.40
dk?  m B0
We may rewrite Equation (3.40) as
1 d°E 1
T T

The second derivative of E with respect to k is inversely proportional to the mass of
the particle. For the case of a free electron, the mass is a constant (nonrelativistic
effect}), so the second derivative function is a constant. We may also note from Fig-
ure 3.7 that d° E /dk? is a positive quantity, which implies that the mass of the elec-
tron is also a positive quantity.

If we apply an electric field to the free electron and use Newton’s classical equa-
tion of motion, we can write

F'=ma = —¢E (3.42)

where a is the acceleration, E is the applied electric field, and ¢ is the magnitude of
the electronic charge. Solving for the acceleration, we have
—eE

a=— 3.43
m

)

The motion of the free electron is in the opposite direction to the applied electric field
because of the negative charge.

We may now apply the results to the electron in the bottom of an allowed ener;
band. Consider the allowed energy band in Figure 3.16a. The encrgy near the bottom o
this energy band may be approximated by a parabola, just as that of a free particle. We
may write

E—E.=Cky (3.44)
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Figure 3.16 | (a) The conduction band in reduced & space, and the parabolic
approximation. (b) The valence band in reduced & space, and the parabolic
approximation.

The energy E, is the energy at the bottom of the band. Since £ > E,, the parameter
€ 18 a positive quantity.

Taking the second derivative of £ with respect to k from Equation (3.44), we
obtain

d’E
= o (3.45)
We may put Equation (3.45) in the form
B | 2E  2C,
[ETE Y (G5}

Comparing Equation (3.46) with Equation (3.41), we may equate #”/2C) to the mass
of the particle. However, the curvature of the curve in Figure 3.16a will not, in gen-
eral, be the same as the curvature of the free-particle curve. We may write
2
L% - T A
h? dk? h? m*
where m™ is called the effective mass. Since C; > 0, we have that m* > 0 also.

The effective mass is a parameter that relates the quantum mechanical results to
the classical force equations. In most instances, the electron in the bottom of the con-
duction band can be thought of as a classical particle whose motion can be modeled
by Newtonian mechanics, provided that the internal forces and quantum mechanical
properties are taken into account through the effective mass. 1f we apply an electric
field to the electron in the bottom of the allowed energy band, we may write the
acceleration as

—¢E

*
mli

(3.48)

a =

where m, is the effective mass of the electron. The effective mass m;, of the electron
near the bottom of the conduction band is a constant.
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3.2.4 Concept of the Hole

In considering the two-dimensional representation of the covalent bonding shown in
Figure 3.13a, a positively charged “empty state” was created when a valence electron
was elevated into the conduction band. For T > 0 K, all valence electrons may gain
thermal energy; if a valence electron gains a small amount of thermal energy, it may hop
into the empty state. The movement of a valence electron into the empty state is equiv-
alent to the movement of the positively charged empty state itself. Figure 3.17 shows the
movement of valence electrons in the crystal alternately filling one empty state and cre-
ating a new empty state, a motion equivalent to a positive charge moving in the valence
band. The crystal now has a second equally important charge carrier that can give rise to
a current. This charge carrier is called a hole and, as we will see, can also be thought of
as a classical particle whose motion can be modeled using Newtonian mechanics.

The drift current density due to electrons in the valence band, such as shown in
Figure 3.14b, can be written as

J=—e ) (3.49)
i{filled)
where the summation extends over all filled states. This summation is inconvenient
since it extends over a nearly full valence band and takes into account a very large‘
number of states. We may rewrite Equation (3.49) in the form

J=—¢ Z vi +e Z ;i (3.50)‘
itotal) i(empty) |

If we consider a band that is totally full, all available states are occupied by elec-
trons. The individual electrons can be thought of as moving with a velocity as given

by Equation (3.39):
1N dE
v(E) = (E) (dk) (3.39)

The band is symmetric in k and each state is occupied so that, for every electron with
a velocity |v|, there is a corresponding electron with a velocity —|[v|. Since the band is
full, the distribution of electrons with respect to k cannot be changed with an
externally applied force. The net drift current density generated from a completely full

(@) (b)

Figore 3.17 | Visualization of the movement of a hole in a semiconductor,

O=—0=—0--
O=—=0=—0>=

{c)
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band, then, is zero, or

~e Y =0 (3.51)
i(lotal)
We can now write the drift current density trom Equation (3.50) for an almost
full band as

& IT=+e Y v (3.52)

i{empty)
where the v; in the summation is the

o= (3) (@)

associated with the empty state. Equation (3.52) is entirely equivalent to placing a
positively charged particle in the empty states and assuming alt other states in the band
are empty, or neutrally charged. This concept is shown in Figure 3.18. Figure 3.18a
shows the valence band with the conventional electron-filled states and empty states,
while Figure 3.18b shows the new concept of positive charges occupying the original
empty states. This concept is consistent with the discussion of the positively charged
“empty state” in the valence band as shown in Figure 3.17.

The v; in the summation of Equation (3.52) is related to how well this positively
charged particle moves in the semiconductor. Now consider an electron near the top of
the allowed energy band shown in Figure 3.16b. The energy near the top of the allowed
eénergy band may again be approximated by a parabola so that we may write

(E — E,) = —Cy(ky* (3.53)

The energy E, is the energy at the top of the energy band. Since E < E, forelectrons
in this band, then the parameter C; must be a positive quantity.

Taking the second derivative of E with respect to & from Equation (3.53), we
abtain

d*E
P ke =2C; (3.54)
We may rearrange this equation so that
1 d2E -2C, (3.55)
R dkr A2 .
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Figore 3.18 { (a) Valence band with conventional electron-filled states and empty
states, (b) Concept of positive charges occupying the original cmply states.
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Comparing Equation (3.55) with Equation (3.41), we may write

2
LPE_ 21 54
k2 dic? h? m*
where m* 1s again an effective mass. We have argued that ; is a positive quantity,
which now implies that m* is a negative quantity. An electron moving near the top o
an allowed energy band behaves as if it has a negative mass.

We must keep in mind that the effective mass parameter is used to relate quan-
tum mechanics and classical mechanics. The attempt to relate these two theories
leads to this strange result of a negative effective mass. However, we must recall that
selutions to Schrodinger’s wave equation also led to results that contradicted classi-
cal mechanics. The negative effective mass is another such example.

In discussing the concept of effective mass in the last section, we used an analogy
of marbles moving through two liquids. Now consider placing an ice cube in the cen-
ter of a container filled with water: the ice cube wili move upward toward the surface
in a direction opposite to the gravitational force. The ice cube appears to have a nega-
tive effective mass since its acceleration is opposite to the external force. The effec-
tive mass parameter takes into account all internal forces acting on the particle.

If we again consider an electron near the top of an allowed energy band and use
Newton’s force equation for an applied electric field, we will have

F=m'a=—¢E (3.57)
However, m* is now a negative quantity, so we may write

—¢E _ +eE

—lm* T jm

(3.58)

An electron moving near the top of an allowed energy band moves in the same di-
rection as the appiied electric field.

The net motion of elecirons in a nearly full band can be described by consider-
ing just the empty states, provided that a positive electronic charge is associated with
each state and that the negative of m* from Equation (3.56) is associated with each
state. We now can model this band as having particles with a positive electrenic
charge and a positive effective mass. The density of these particles in the valence
band is the same as the density of empty electronic energy states. This new particle
is the hole. The hole, then, has a positive effective mass denoted by m, and 4 posi-
tive electronic charge, so it will move in the same direction as an applied field.

3.2,5 Metals, Insulators, and Semiconductors

Each crystal has its own energy-band structure. We noted that the splitting of the en-
ergy states in silicon, for example, to form the valence and conduction bands, was
complex. Complex band splitting occurs in other crystals, leading to large variations
in band structures between various solids and to a wide range of electrical character-
istics observed in these various materials. We can qualitatively begin to understand
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some basic differences in electrical charactenstics caused by variations in band
structure by considering some simplified energy bands.

There are several possible energy-band conditions to consider. Figure 3.19%a
shows an allowed energy band that is completely empty of electrons. If an electric
field is applied, there are no particles to move, so there will be no current. Figure 3.19b
shows another allowed energy band whose energy states are completely full of elec-
trons. We argued in the previous section that a completely full energy band will also
not give rise to a current. A material that has energy bands either completely empty or
completely full is an insulator. The resistivity of an insulator is very large or, con-
versely, the conductivity of an insulator is very small, There are essentially no charged
particles that can contribute to a drift current. Figure 3.19¢ shows a simplified energy-
band diagram of an insulator. The bandgap energy E, of an insulator is usually on the
order of 3.5 to 6 eV or larger, so that at room temperature, there are essentially no elec-
trons in the conduction band and the valence band remains completely full. There are
very few thermally generated electrons and holes in an insulator.

Figure 3.20a shows an energy band with relatively few electrons near the bottom
of the band. Now, if an electric field is applied, the electrons can gain energy, move to

Allowed
Allowed e energy
energy e — g — band
band e (almost
(empty) empty)
(@)
— e o— p— Allowed
==t Allowed —_— energy
=t energy oo — band
—— band - (almost
e tull) e full)
) (b)
. Conduction
Conduction band
bad (almost
{empty) 3 22 empty)
E, Electrons E, / Empty electronic
states
TR T T Valence
e i Valence FOSTELD ST by
S e FITEA ST band
e bund R o {almost
*+ (full) ¥ SR AN REE
(c) (c)
Figure 3.19 | Allowed energy bands Figure 3.20 [ Allowed energy bands
showing (a) an empty band, (b) a showing (a) an almost empty band, (b) an
completely full band, and (c) the bandgap almost full band, and (¢} the bandgap

energy between the two allowed bands. energy between the two allowed bands.
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Figure 3.21| Two possible energy bands of a metal showing (a) a partially filled band
and (b) overlapping allowed encrgy bands,

higher energy states, and move through the crystal. The net flow of charge is a current.
Figure 3.20b shows an allowed energy band that is almost full of electrons, which
means that we can constder the holes in this band. If an electric field is applied, the
holes can move and give rise to a current. Figure 3.20c shows the simplified energy-
band diagram for this case. The bandgap energy may be on the order of | eV. This
energy-band diagram represents a semiconductor for T > 0 K. The resistivily of a
semiconductor, as we will see in the next chapter, can be controlled and varied over
many orders of magnitude.

The characteristics of a metal include a very low resistivity. The energy-band di-
agram for a metal may be in one of two forms. Figure 3.2 1a shows the case of a par-
tially full band in which there are many electrons available for conduction, so that the
material can exhibit a large electrical conductivity. Figure 3.21b shows another pos-
sible energy-band diagram of a metal. The band splitting into allowed and forbidden
energy bands is a complex phenomenon and Figure 3.21b shows a case in which the
conduction and valence bands overlap at the equilibrium interatomic distance. Asin
the case shown in Figure 3.21a, there are large numbers of electrons as well as large
numbers of empty energy states into which the electrons can move, so this material
can also exhibit a very high electrical conductivity.

3.31 EXTENSION TO THREE DIMENSIONS

The basic concept of allowed and forbidden energy bands and the basic concept of
effective mass have been developed in the last sections. In this section, we will ex-
tend these concepts to three dimensions and to real crystals. We will qualitatively
consider particular characteristics of the three-dimensional crystal in terms of the E
versus k plots, bandgap energy, and effective mass. We must emphasize that we will
only briefly touch on the basic three-dimensional concepts; therefore, many details
will not be considered.

One problem encountered in extending the potential function to a three-
dimensional crystal is that the distance between atoms varies as the direction through
the crystal changes. Figure 3.22 shows a face-centered cubic structure with the [100]
and [110] directions indicated. Electrons traveling in different directions encounter
different potential patterns and therefore ditferent &-space boundaries. The E versus
k diagrams are in general a function of the k-space direction in a crystal.
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|

[110]
direction

[100]
direction

Figure 3.22 | The (100) plane of a
face-centered cubic crystal showing
the [100] and [110] directions.

331 The k-Space Diagrams of Si and GaAs

Figure 3.23 shows an £ versus & diagram of gallium arsenide and of silicon. These
simplified diagrams show the basic properties considered in this text, but do not
show many of the details mere appropriate for advanced-level courses.

Note that in place of the usual positive and negative & axes, we now show two
different crystal directions. The E versus & diagram for the one-dimensional model

GaAs Conduction Si Conduction
band band

2_
BoLk
5 &

Yalence Valence
band band
o 2
mn 0 [100] [111] 0 [100]
k k
(a} )]

Figure 3.23 | Energy band structures of (a) GaAs and (b) Si.
(From Sze {11].)
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was symmetric in & so that no new information is obtained by displaying the negative
axis. It is normal practice to plot the | 100} direction along the normal -k axls and to
plot the [111] portion of the diagram so the +k points to the left. In the case of dia-
mond or zinchlende lattices, the maxima in the valence band energy and minima in
the conduction band energy occur at & = 0 or along one of these two directions.

Figure 3.23a shows the E versus & diagram for GaAs. The valence band maxi-
mum and the conduction band minimum both occur at & = 0. The electrons in the
conduction band tend to settle at the minimum conduction band encrgy which is at
k = 0. Similarly, holes in the valence band tend to congregate at the uppermost
valence band energy. In GaAs, the minimum conduction band energy and maximum
valence band energy occur at the same k value. A semiconductor with this property is
said to be a direct bandgap semiconductor; transitions between the two allowed bands
can take place with no change in crystal momentum. This direct nature has significant
effect on the optical properties of the material. GaAs and other direct bandgap mate-
rials are ideally suited for use in semiconductor lasers and other optical devices.

The E versus & diagram for silicon is shown in Figure 3.23b. The maximum in
the valence band energy occurs at & = 0 as before. The mimimum in the conduction
band encrgy occurs not at £ = 0, but along the [100] direction. The difference be-
tween the minimum conduction band energy and the maximum valence band energy
is still defined as the bandgap energy E,. A semiconductor whese maximum valence
band energy and minimum conduction band energy do not occur at the same k vaiue
is called an irdirect bandgap semiconductor. When electrons make a transition be-
tween the conduction and valence bands, we must invoke the law of conservation of
momentum. A transition in an indirect bandgap material must necessarily include an
interaction with the crystal so that crystal momentum is conserved.

Germanium is also an indirect bandgap material, whose valence band maximum
occurs at k = 0 and whose conduction band minimum occurs along the [111] direc-
tion. GaAs is a direct bandgap semiconductor, but other compound semlconductors,i
such as GaP and AlAs, have indirect bandgaps.

3.3.2 Additional Effective Mass Concepts

The curvature of the £ versus k diagrams near the minimum of the conduction ban
energy is related to the effective mass of the electron. We may note from Figure 3.
that the curvature of the conduction band at its minimum value for GaAs is larg
than that of silicon, so the effective mass of an electron in the conduction band o
GaAs will be smaller than that in silicon.

For the one-dimensional E versus k diagram, the effective mass was defined by
Fquation (3.41) as 1/m* = 1/B* - d*E/dk*>. A complication occurs in the effectiv
mass concept in a real crystal. A three-dimensional crystal can be described by t
k vectors. The curvature of the E versus & diagram at the conduction band minimum ma
not be the same in the three k directions. We will not consider the details of the vario
effective mass parameters here. In later sections and chapters, the effective mass param:|
eters used m calculations will be a kind of statistical average that is adequate for most
device calculations.
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3.4 1 DENSITY OF STATES FUNCTION

As we have stated, we eventually wish to describe the current-voltage characteris-
tics of semiconductor devices. Since current is due to the flow of charge, an im-
portant step in the process is to determine the number of electrons and holes in the
semiconductor that will be available for conduction. The number of carriers that
can contribute to the conduction process is a function of the number of available
energy or quantum states since, by the Pauli exclusion principle, only one electron
can occupy a given quantum state. When we discussed the splitting of energy lev-
¢ls into bands of allowed and forbidden energies, we indicated that the band of al-
lowed energies was actually made up of discrete energy levels. We must determine
the density of these allowed energy states as a function of energy in order to calcu-
late the electron and hole concentrations,

J4.1 Mathematical Derivation

To determine the density of allowed quantum states as a function of energy, we need
to consider an appropriate mathematical model. Electrons are allowed to move rela-
tively freely in the conduction band of a semiconductor, but are confined to the crys-
tal. As a first step, we will consider a free electron confined to a three-dimensional
infinite potential well, where the potential well represents the crystal. The potential
of the infinite potential well is defined as

Vix,y,2)=0 for0 <x < a (3.59)
D<y=<a
O<z<a

Vir,v,z) = elsewhere

where the crystal is assumed to be a cube with length a. Schrodinger’s wave equation
in three dimensions can be solved using the separation of variables technique.
Extrapolating the results from the one-dimensional infinite potential well, we can
show (see Problem 3.21) that

2mE 5 o
’fT =k’ = kf + k_’f + .k2 = (ni + nf, + nz) (a-z) (3.60)

where n,. n,, and . are positive integers. (Negative values of n., n,, and n_ yield
the same wave function, except for the sign, as the positive integer values, resulting
in the same probability function and energy, so the negative integers do not represent
a different quantum state.)

We can schematically plot the allowed quantum states in k space. Figure 3.244
shows a two-dimensional plot as a function of 4, and &.. Each point represents an
allowed guantum state corresponding o various integral values of n, and . Positive
and negative values of &, ky, or k. have the same energy and represent the same



CHAPTER 3 Introduction to the Quantum Theory of Solids

= 4

Z

(b)

Figure 3.24 ) (a) A two-dimensional array of allowed quantum stales in
k space. (b} The positive one-eighth of the spherical & space.

energy state. Since negative values of k., &, or k- do not represent additional quan-
tum states, the density of quantum states will be determined by considering only the
positive one-eighth of the spherical & space as shown in Figure 3.24b.

The distance between two quantum states in the &, direction, for example, is

given by
kx+] - k.\' = (n,r -+ l)(z) — Ry (z) = ‘]1 (36”
a a 71

Generalizing this result to three dimensions, the volume ¥ of a single quantum state s

e 3
w_:(_) (3.62)
a

We can now determine the density of quantum states in k space, A differential vol-
ume in k space is shown in Figure 3.24b and is given by 4 k* dk, so the differential
density of quantum states in & space can be written as !

1\ 4k dk :
)-ii———- (3.6

gr (k) dk = 2(— -
il

8
The firgt factor, 2, takes into account the two spin states allowed for each quantu
state; the next factor, % takes into account that we are considering only the quantu
states Tor positive values of k., ky, and &;. The factor 4 k? dk is again the differen
tial volume and the factor (7 /a)” is the volume of one quantum state. Equation (3.63

may be simplified to

wkrdk

gr(k) dk = 3 sl (3.
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Equation (3.64) gives the density of quantum states as a function of momentum,
through the parameter k. We can now determine the density of quantum states as a
function of energy E. For a free electron, the parameters £ and k are related by

_ 2mE

2
£ = 5 (3.65a)

or

k= —~2mE (3.65h)

1 /m
dik = —, | —dE 3.66
ﬁ"'ZE (3.66)

Then, substituting the expressions for £* and dk into Equation (3.64), the number of
energy states between £ and £ + d E is given by

ma’ (ImE I /m
. EYdE="—-|— | -=—.| —dE 3,
3!‘% gr(E) o ( PR ) Y (3.67)

Since h = h/2n, Equation (3.67) becomes

The differential dk is

4 3
gr(E)dE = —%‘"— . @my"? . VEdE (3.68)

Equation (3.68) gives the total number of quantum states between the energy £ and
E + dE inthe crystal space volume of a?. Tf we divide by the volume a*, then we will
obtain the density of quantum states per unit volume of the crystal. Equation (3.68)
then becomes

471 (2m)3?

PE (3.69)

glE) =

The density of quantum states is a function of energy £. As the energy of this free
electron hecomes small, the number of available quantum states decreases. This den-
sity function is really a double density, in that the units are given in terms of states
PEr unit energy per unit volume.

Objective |  EXAMPLE 3.3

To calculate the density of states per unit volume over a particular energy range.
Consider the density of states for a free electron given by Equation (3.68}. Calculate the
density of states per unit volume with energies between 0 and 1 eV.
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B Solution
The volume density of quantum states, from Equation (3.69}, is

41(2’")3/‘2 lLeV

5 VEdE
0]

leV
0

or
s TSR T oy
I 3

The density of states is now

_4m[209.10 x 10 P2
T (6,625 x 10-31)?

‘3 16 % 10712 =45 % 107 m™?

or

N =4.5 x 10 states/cm’

B Comment

The density of quantum states is typically a large number. An effective density of states ina
semiconductor, as we will see in the following sections and in the next chapter, is also a large
number, but is usually less than the density of atoms in the semiconductor crystal. |

3.4.2 Extension to Semiconductors

in the last section, we derived a general expression for the density of allowed ele
tron quantum states using the model of a free electron with mass m bounded in a
three-dimensional infinite potential well. We can extend this same general model to
a semiconductor to determine the density of quantum states in the conduction band
and the density of quantum states in the valence band. Elecirons and holes are con-
fined within the semiconducior crystal so we will again use the basic model of the in-
finite potential well.

The parabolic relationship between energy and momentum of a free electron
was given in Equation (3.28) as E = p2/2m = Kk* [ 2m. Figure 3.16a showed the
conduction energy band in the reduced k space. The E versus k curve near & = 0 at
the bottom of the conduction band can be approximated as a parabola, so we may
write

ﬁzkl
2m*

n

E= E(+

(3.7

where E.. is the bottom edge of the conduction band and m, is the electron effecti
mass. Equation (3.70) may be rewritten to give

B ﬁ'.’kl
C2m:

E—-E. (371
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The general form of the E versus k relation for an electron in the bottom of a con-
duction band is the same as the free electron, except the mass is replaced by the effec-
tive mass. We can then think of the electron in the bottom of the conduction band as
being a “free” electron with its own particular mass. The right side of Equation (3.71)
is of the same form as the right side of Equation (3.28), which was used in the deriva-
tion of the density of states function. Because of this similarity, which yields the
“free” conduction electron model, we may generalize the free electron results of
Equation (3.69) and write the density of allowed electronic energy states in the con-
duction band as

A (2m*) 2

g.(E) = P

E—E, (3.72)

Equation (3.72) is valid for E > FE,. As the energy of the electron in the conduction
band decreases, the number of available guantum states also decreases.

The density of quantum states in the valence band can be obtained by using the
same infinite potential well model, since the hole is also confined in the semicon-
ductor crystal and can be treated as a “free” particle. The effective mass ol the hole
18 my,. Figure 3.16b showed the valence energy band in the reduced k space. We
may also approximate the E versus k curve near k = 0 by a parabola for a “free”
hole, so that

ﬁZkl
E=E,— T (3.73)
Mp
Equation (3.73) may be rewritten to give
h’lkl
E,— £ = (3.74)
2 *
Wy

Again, the right side of Equation (3.74) is of the same form used in the general
derivation of the density of states function. We may then generalize the density of
states function from Equation (3.69) to apply to the valence band, so that

A7 (22
BBy = — B, —E (3.75)

Equation (3.75) is valid for £ < £,.

We have argued that quantum states do not exist within the forbidden energy
band, so g(E) =0 for E, < £ < E,. Figure 3.25 shows the plot of the density of
guantum states as a function of energy. It the electron and hole effective masses were
equal, then the tunctions g.(E) and g, (E} would be symmetrical about the energy
midway between E. and E, or the midgap energy. Erigoap.
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gclf) ‘

8y(E)

glF) —

Figure 3.25 | The density of energy
states in the conduction band and the
density of energy states in the valence
band as a function of energy.

TEST YOUR UNDERSTANDING

E3.2 Determine the total number of energy states in silicon between £, and E,. + kT at
T =300K. (W2 01 * Z1'T suy)

E3.3 Determine the total number of energy states in silicon between E, and E, — &T at
T =300 K. (; W0 4,01 X 76'L "SUV)

3.5 | STATISTICAL MECHANICS

In deating with large numbers of particles, we are interested only in the statistical be-

havior of the group as a whole rather than in the behavior of each individual particle.
For example, gas within a container will exert an average pressure on the walls of the

vessel. The pressure is actually due to the collisions of the individual gas molecules

with the walls, but we do not follow each individual molecule as it collides with the

wall. Likewise in a crystal, the electrical characteristics will be determined by the

statistical behavior of a large number of electrons.

3.5.1 Statistical Laws

In determining the statistical behavior of particles, we must consider the laws that the’
particles obey. There are three distribution laws determining the distribution of par-
ticles among available energy states. r
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One distribution law is the Maxwell-Boltzmann probability function. In this case,
the particles are considered to be distinguishable by being numbered, for example, from
1 to N. with no limit to the number of particles allowed in each energy state, The
behavior of gas molecules in a container at fairly low pressure is an example of this
distribution.

A second distribution law is the Bose—Einstein function. The particles in this case
are indistinguishable and, again, there is no limit to the number of particles permitted
in each quantum state. The behavior of photons, or black body radiation, is an exam-
ple of this law.

The third distribution law is the Fermi-Dirac probability function. In this case,
the particles are again indistinguishable, but now only one particle is permitted in
each quantum state. Electrons in a crystal obey this law. In each case, the particles are
assumed to be noninteracting.

35.2 The Fermi-Dirac Probability Function

Figure 3.26 shows the ith energy level with g; quantum siates. A maximum of one
particle is allowed in each quantum state by the Pauli exclusion principle. There are
gi ways of choosing where to place the first particle, (g; — 1) ways of choosing
where to place the second particle, (g; — 2) ways of choosing where to place the
thitd particle, and so on. Then the total number of ways of arranging N; particles in
the ith energy level (where N; < g;) is

‘ g

i (gi)lg D (gi —(N; — 1)) (g — N (3.76)
This expression includes all permutations of the N, particles among themselves.

However, since the particles are indistinguishable, the N;! number of permuta-

tions that the particles have among themselves in any given arrangement do not
count as separate arrangenients. The interchange of any two electrons, for example,
does not produce a new arrangement. Therefore, the actual number of independent
ways of realizing a distribution of N, particles in the ith level is

gl

- Nil{gi — N)! @77

i

Quantum states

Figure 3.26 ) The ith cnergy level with g,
quantum states.

a9
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EXAMPLE 3.4 Objective
To determine the possible number of ways of realizing a particular distribution,
Letg, =N, = 10. Then (g, - N)! = 1.
B Solution
Equation (3.77) becomes
gi! _ 1ot
Nillgi = N0t ™
® Comment
If we have 10 particles to be arranged in 10 quantum states, there is only one possible arrange-
ment. Each quantum state contains one particle,
EXAMPLE 3.5

Objective

To again determine the possible number of ways of realizing a particular distribution.
Letg, = l0and N,= 9. Inthis case g, — N, = 1 so that (g, — N} = L.

B Solution
Equation (3.77) becomes

g:! 1 10eh

Nil(g:i — N 9D 9 1

m Comment
In this case, if we have 10 quantum states and 9 particles, there is one empty quantum state.
There are 10 possible arrangements, or positions, for the one empty state.

Equation (3.77) gives the number of independent ways of realizing a distribution
of N, particles in the ith level. The total number of ways of arranging (N, Nj, N, . ..,
N ) indistinguishable particles among n energy levels is the product of all distribu-
tions, or

"

fi!

V=11 -

(3.78)

The parameter W is the total number of ways in which N electrons can be arranged in-
this system, where N = || N; is the total number of electrons in the system. We
want to find the most probable distribution, which means that we want to find the
maximum W. The maximum W is found by varying N; among the E; levels, which
varies the distribution, but at the same time, we will keep the total number of parti-
cles and total energy constant.
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We may write the most probable distribution function as

N(E)
2 (E) fr(E)

(3.79)

where Ep is called the Fermi energy. The number density N (E) is the number of
particles per unit volume per unit energy and the function g(E) is the number of
quantum states per unit volume per unit energy. The function fp(E) is called the
Fermi~Dirac distribution or probability function and gives the probability that a
quantum state at the energy E will be occupied by an electron. Another interpretation
of the distribution function is that fz(FE) is the ratio of filled to total quantum states
atany energy .

3.5.3 The Distribution Function and the Fermi Energy

To begin to understand the meaning of the distribution function and the Fermi
energy, we can plot the distribation function versus energy. Initially, let T = 0 K and
consider the case when E < Ex. The exponential term in Equation (3.79) becomes
explU{E — Ep)/kT] — exp(—o0) = 0. The resuliing distribution function is
felE < Ep) = 1. Again let T =0 K and consider the case when £ > £. The
exponential term in the distribution function becomes exp[(E — Ef)/kT) —
exp (+20} — +o0o. The resulting Fermi-Dirac distribution function now becomes
fe(E > Ef) = 0.

The Fermi-Dirac distribution function for 7 = 0 K is plotted in Figure 3.27. This
result shows that, for 7 = 0 K, the electrons are in their lowest possible energy states.
The probability of a quantum state being occupied is unity for £ < £ and the proba-
bility of a state being occupied is zero for E > Ep. All electrons have energies below
the Fermi energy at T = 0 K.

Figure 3.28 shows discrete energy levels of a particular system as well as the
number of available quantum states at each energy. If we assume, for this case, that

R W W)

Es
e"'e'e @9 W
£,
@ . e e'\e £,
=10
e e E,
\»
0 —

E— E;

Figure 3.28 | Discrete energy states
Figure 3.27 | The Fermi probability and quantum states for a particular
function versus energy for T = 0 K. systemat T =0 K.

a1
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the system contains 13 electrons, then Figure 3.28 shows how these electrons are dis-
tributed among the various quantum states at 7 = 0 K. The electrons will be in the
lowest possible energy state, so the probability of a quantum state being occupied in
energy levels E, through E4 is unity, and the probability of a quantum state being oc-
cupied in energy level Es is zero. The Fermi energy, for this case, must be above Ey
but less than Es. The Fermi energy determines the statistical distribution of electrons
and does not have to correspond to an allowed energy level.

Now consider a case in which the density of quantum states g(£) is a continu-
ous function of energy as shown in Figure 3.29. If we have N, electrons in this sys-
tem, then the distribution of these electrons among the quantum states at 7 = 0 Kis
shown by the dashed line. The electrons are in the lowest possible energy state so that
all states below £ are filled and all states above £y are empty. If g(E) and N are’
known for this particular system, then the Fermi energy Er can be determined.

Consider the situation when the temperature increases above T = 0 K. Elec-
trons gain a certain amount of thermal energy so that some electrons can jump fo!
higher energy levels, which means that the distribution of electrons among the avail-
abic energy states will change. Figure 3.30 shows the same discrete energy levels and
quantum states as in Figure 3.28. The distribution of electrons among the quantum
states has changed from the T = 0 K case. Two electrons from the E; level have
gained enough energy to jump to Es, and one electron from £3 has jumped to E4. As
the temperature changes, the distribution of electrons versus energy changes.

The change in the electron distribution among energy levels for T > 0 K can be
seen by plotting the Fermi—Dirac distribution function. If welet E = Erand T > 0K,
then Equation (3.79) becomes

1 R
l4+exp®@® 1+1 2

JrlE=Er)=

The probability of a state being occupied at £ = Er is % Figure 3.31 shows thei
Fermi-Dirac distribution function plotted for several temperatures, assuming the

Fermi energy is independent of temperature.

glE) WAWAWAT AUAT AWAWAW,

b

e/ e e e

#EY o\ &w

s

£y

Er £y
N, = _[; g(E) dE

w e &

.,

L= E
) Figure 3.30| Discrete energy states and

Figure 3.29 | Density of quantum states and electrons in a quantum states for the same system

continuous energy system at T = 0 K.

shown in Figure 3.2§ for T > 0 K.
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F=T5 %%

FE)

Figure 3.31 [ The Fermi probability function versus energy
for different temperatures.

We can see that for temperatures above absolute zero, there is a nonzero proba-
bility that some energy states above Ef will be occupied by electrons and some
energy states below £ will be empty. This result again means that some electrons
have jumped to higher energy levels with increasing thermal energy.

23

Objective T
To calculate the probability that an energy state above Ep is occupicd by an electron.
Let T = 300 K. Determine the probability that an energy level 3k T above the Fermi en-
ergy is occupied by an electron.

H Solution
From Equation (3.79), we can write

1 1
fr(E) = =

o B Ee T (T
FPUTAT e

1
B e o ol el T
FrEY = T 0mm ¢

which becomes

H Comment

Atenergies above E,. . the probability of a state being occupied by an electron can become sig-
nificantly less than unity, or the ratio of electrons to available quantum states can be quite
smail,

EXAMPLE 3.6

TEST YOUR UNDERSTANDING

E34  Assume the Fermi energy level is 0.30 eV below the conduction band energy.
(a) Determine the probability of a stale being occupied by an electron af £,.
(b) Repeat part (a) for an energy state at E. + kT . Assume T = 300 K.
[o-0T x €+°E(q) °y 01 % TE6 (V) 5uy]
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E3.5 Assume the Fermi energy level is 0.35 eV above the valence band energy.
{a) Determine the probability of a state being empty of an electron at £,. (b) Repeat
part (@) for an energy state at Ev — &T. Assume 7 = 300 K.
[.-01 X 861 (9) . 0L X SE'1 () 'sUV]

We can see from Figure 3.31 that the probability of an energy above £ bein
occupied increases as the temperature increases and the probability of a state belo
Er being empty increases as the temperature increases.

EXAMPLE 3.7

Objective

To determine the temperature at which there is a 1 percent probability that an energy statei‘
empty.

Assume that the Fermi energy level for a particular material is 6.25 eV and that the elec
trons in this material follow the Fermi—Dirac distribution function. Calculate the temperatu
at which there is a | percent probability that a state 0.30 ¢V below the Fermi energy level lel
not contain an electron.

= Solution
The probability that a statc is empty is

1
E-E
Hexp( kT F)

l

595 —-6.25
1+ exp e

- frEy=1-

Then

0.01=1-—

Solving for kT, we find k7 = 0.06529 eV, so that the temperature is T = 736 K.

m Comment
The Fermi probability function is a strong function of temperature.

TEST YOUR UNDERSTANDING

E3.6 Repeat Exercise E3.4 for T'= 400 K. [;-01 x 0Z'0(9)",_0T X 69°] (D) suy]
E3.7 Repeat Exercise E3.5 for T =400 K, [c-01 X 981 () .07 x 96°¢ (7) suy]|

We may note that the probability of a state a distance dF above Ep bein
occupied is the same as the probability of a state a distance 4E below Eg bein
empty. The function fr(E) is symmetrical with the function | — fr(E) about
Fermi energy, Er. This symmetry effect is shown in Figure 3.32 and will be us
in the next chapter.
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IFEY 1~ Ir(E) \

-

b

Figure 3.32 | The probability of a state being occupied,
fr(E), and the probability of a state being empty, 1 — f(E).

=

Fermi—Dirac tunction

|

Figure 3.33 | The Fermi-Dirac probability function and the
Maxwell-Boltzmann approximation.

Consider the case when E — Er 3> kT, where the exponential term in the de-
nominator of Equation (3.79} is much greater than unity. We may neglect the 1 in the
denominator, so the Fermi—-Dirac distribution function becomes

(3.80)

Fr(E) = exp [M]

kT

Equation (3.80) is known as the Maxwell-Boltzmann approximation, or simply the
Boltzmann approximation, to the Fermi-Dirac distribution function. Figure 3.33 shows
the Fermi-Dirac probability function and the Boltzmann approximation. This figure
gives an indication of the range of energies over which the approximation is valid.

Objective |

To determine the energy at which the Boltzmann approximation may be considered valid.
Calculate the energy, in terms of AT and Eg. at which the difference between the
Boltzmann approximation and the Fermi-Dirac function is 5 percent of the Fermi function.

EXAMPLE 3.8
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B Solution
We can write

o [FE—EDT 1
P kT e ( B Er
AT = 0.05

1

E - Ef
1+EXP(T)

If we multiply both numerator and denominator by the 1 + exp ( ) function, we have

—(E — Ef) E— Ef _
exp[T—]-{l+exp[ % :“—1_0.05

|:—(E — Ef)

which becomes

] =005

or

1
E—E)=kT In{ —= ) = 3kT
¢ P ”(0.05 )
m Comment
As seen in this example and in Figure 3.33, the £ — E, 2> kT notation is somewhat mislead-
ing. The Maxwell-Boltzmann and Fermi-Dirac tunctions are within $ percent of each other
when £ — Ep = 3kT.

The actual Boltzmann approximation is valid when exp [(£ — Ex)/kT] » |,
However, it is still common practice to use the £ — Er > kT notation when apply-
ing the Boltzmann approximation. We will use this Boltzmann approximation in our
discussion of semiconductors in the next chapter.

3.6 | SUMMARY

B Discrete allowed electron energies split into a band of allowed energies as atoms are
brought together to form a crystal.

B The concept of allowed and forbidden energy bands was developed more rigorously l
by considering quantum mechanics and Schrodinger’s wave equation using the
Krenig—Penney model representing the potential function of a single crystal material.
This result forms the basis of the encrgy band theory of semiconductors.

W The concept of effective mass was developed. Effective mass relates the motion of a
particle in a crystal to an externally applied force and takes into account the effect of the
crystal lattice on the motion of the particle,

B Two charged particles exist in a semiconductor. An electron 1s a negatively charged
particie with a positive effective mass existing at the bottom of an allowed energy band.
A hole is a positively charged particle with a positive effective mass existing at the top
of an allowed energy band.



Checkpoint

m The E versus k diagram of silicon and gallium arsenide were given and the concept of
direct and indirect bandgap semiconductors was discussed.

a8 Energies within an allowed energy band are actually at discrete levels and each contains
a finite number of quantum states. The density per unit energy of quantum states was
determined by using the three-dimensional infinite potential well as a model.

m Indealing with large numbers of electrons and holes, we must consider the statistical
behavior of these particles. The Fermi-Dirac probability function was developed. which
gives the probubility of a quantumn state at an energy E of being occupied by an electron.
The Fermi energy was defined.

GLOSSARY OF IMPORTANT TERMS

allowed energy band A band or range of energy levels that an electron in a crystal is al-
lowed to occupy based on quantum mechanics.

density of states function The density of availuble quantum states as a function ol energy,
given in units of number per unit energy per unit volume.

electron effective mass The parameter that refates the acceleration of an electron in the con-
duction band of a crystal to an external force; a parameter that takes into account the effect
of internal forces in the crystal,

Fermi-Dirac probability function The function describing the statistical distribution of
electrons among available energy states and the probability that an allowed energy state is
occupied by an electron.

fermi energy [0 the simplest definitton, the energy below which all states are filled with
electrons and above which all states are empty at T = 0 K.

forbidden energy band A band or range of energy levels that an electron in a crystal is not
allowed to occupy based on quantum mechanics.

hole The positively charged “particle™ associated with an empty state in the top of the va-
lence band.

hole effective mass 1The parameter that rclates the acceleration of a hole in the valence band
of a crystal to an applied external force (2 positive quantity); a parameter that takes into ac-
count the effect of internal forces in a crystal.

k-space diagram  The plot of electron energy in a crystal versus £, where k is the momentum-
related constant of the motion that incorporates the crystal interaction.

Kronig-Penney model The mathematical medel of a periodic potential function represent-
ing a one-dimensional single-crystal lattice by a series of periodic step functions,

Maxwell-Boltzmann approximation The condition in which the energy is several 4T
above the Fermi energy or several k7 below the Fermi energy so that the Fermi-Dirac
probability function can be approximated by a simple exponential function.

Pauli exclusion principle The principle which states that no (wo electrons can occupy the
same quantum state.

CHECKPOINT

After studying this chapter, the reader should have the ability to:

m Discuss the concept of allowed and forbidden energy bands in a single crystal both
qualitatively and more rigorously from the results of using the Kronig-Penney model.
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CHAPTER 3 Introduction to the Quantum Thecry of Solids

Discuss the splitting of energy bands in silicon.

State the definition of effective mass from the E versus k diagram and discuss its
meaning in terms of the movement of a particle in a crystal.

Discuss the concept of a hole.

Qualitatively, in terms of energy bands, discuss the difference between a metal,
insulator, and semiconductor.

Discuss the effective density of states function.

Understand the meaning of the Fermi-Dirac distribution function and the Fermi energy.

REVIEW QUESTIONS

1. What is the Kronig—Penney model?

2. State two results of using the Kronig—Penney model with Schrodinger’s wave equation.

3. What is effective mass?

4. What is a direct bandgap semiconductor? What is an indirect bandgap semiconductor?

5. What is the meaning of the density of states function?

6. What was the mathematical model used in deriving the density of states function?

7. In general, what is the relation between density of states and energy?

8. What is the meaning of the Fermi—Dirac probability function?

9. What is the Fermi energy?

PROBLEMS

Section 3.1 Allowed and Forbidden Energy Bands

3.1  Consider Figure 3.4b, which shows the energy-band splitting of silicon. If the
equilibrium lattice spacing were to change by a small amount, discuss how you would
expect the electrical properties of silicon to change. Determine at what point the
material would behave like an insulator or like a metal.

3.2 Show that Equations (3.4) and (3.6) are derived from Schrodinger’s wave equation,
using the form of solution given by Equation (3.3).

3.3 Show that Equations (3.9) and (3.10) are solutions of the differential equations given
by Equations (3.4) and (3.8), respectively.

3.4  Show that Equations (3.12), (3.14), (3.16), and (3.18) result from the boundary condi-
tions in the Kronig—Penney model.

3.5  Plot the function f(ea) = 9sinaa/oa + cosaa for 0 < aa < 6z, Also, given the
function f(wa) = coska, indicate the allowed values of @a which will satisfy this
equation.

3.6 Repeat Problem 3.5 for the function

flaa) = 6sinaafoa + cosaa = coska
3.7  Using Equation (3.24), show that dE fdk = O atk = nw/a, wheren =0, 1, 2.....
3.8  Using the parameters in Problem 3.5 and lettinga = § A, determine the width (in eV)

of the forbidden energy bands that exist at (a) ka = . (bY ka = 27, (¢) ka = 3m. and
(d) ka = 4n. Refer to Figure 3.8c.
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3.10
3

Problems

Using the parameters in Problem 3,5 and letting @ = 5 A, determine the width (in eV)
of the allowed energy bands that exist for (@) 0 < ka < w, () 1 < ka < 2w,
(©) 27 < ka < 3o, and () 37 < ka < 4.

Repeat Problem 3.8 using the parameters in Problem 3.6.
Repeat Problem 3.9 using the parameters in Problem 3.6.

3.12 The bandgap energy in a semiconductor is usually a slight function of temperature.

In some cases, the bandgap energy versus temperature can be modeled by

wT?

E, = E(0) - BiD

where E, () is the value of the bandgap energy at T = 0 K. For silicon, the parameter
values are E,(0) = 1.170 eV, a = 4.73 x 107° eV/K and § = 636 K. Plot E, versus
Toverthe range 00 < T < 600 K. In particular, note the value at T = 300 K.

Section 3.2 Electrical Conduction in Solids

313

3.14

315

316

317

3.18

319

Two possible conduction bands are shown in the £ versus & diagram given in

Figure 3.34. State which band will result in the heavier electron effective mass;

state why.

Two possible valence bands are shown in the £ versus & diagram given in Figure 3.35.
State which band will result in the heavier hole effective mass; state why.

The E versus k diagram for a particular allowed energy band is shown in Figure 3.36.
Determine (a) the sign of the effective mass and (b) the dircction of velocity for a
particle at each of the four positions shown.

Figure 3.37 shows the parabolic E versus k relationship in the conduction band for

an electron in two particular semiconductor materials. Determine the effective mass
(in units of the free electron mass) of the two electrons.

Figure 3,38 shows the parabolic F versus £ relationship in the valence band for a hole
in two particular semiconductor materials. Determine the cffective mass (in units of
the free electron mass) of the two holes.

The forbidden energy band of GaAs is 1.42 eV. (@) Determine the minimum trequency
of an incident photon that can interact with a valence electron and elevate the electron
to the conduction band. (h) What is the corresponding wavelength?

The E versus & diagrams for a free electron (curve A) and for an electron in a
semiconductor (curve B) are shown in Figure 3.39. Sketch (@) d £ /dk versus k and

E E
B
LY A +
\ U
kY /
AN /!
5 4
Ay [
LY /s
Ay /
~ rd
~ ’
~! -~
k ——-

Figure 3.35 | Valence bands
for Problem 3.14.

Figure 3.34 | Conduction
bands for Problem 3.13.

29
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£ E@eV)
4.7
A D
0.07
B C
0
i 0 z —0.1 0 0.1
k— k(ATh
Figure 3.36 | Figure for Problem 3.15. Figure 3.37 | Figure for Problem 3.16.
E(eV)
—0.1
Ey;
E, —0.08
Ey,—04F 3
k
Figure 3.38 | Figure for Problem 3.17. Figure 3.39 | Figure for Problem 3.19.

() d*E /dk* versus k for each curve, (¢) What conclusion can you make concerning a
comparison in effective masses for the two cases?

Section 3.3 Extension to Three Dimensions

3.20 The energy band diagram for silicon is shown in Figure 3.23b. The minimum energy
in the conduction band is in the [100] direction. The energy in this one-dimensional
direction near the minimum value can be approximated by

E= EU — E] COSO{(!’( —ku)

where & is the valoe of k at the minimum energy. Determine the effective mass of the
particle at ¥ = kg in terms of the equation parameters.

Section 3.4 Density of States Function

3.21 Starting with the three-dimensional infinite potential well function given by Equa-
tion (3.59) and using the separation of variables technique, derive Equation (3.60).

3.22  Show that Equation (3.69) can be derived from Equation (3.64).

3.23 Determine the total number of energy states in GaAs between E,. and £, + kT at
T =300K.



Problems

3.24 Determine the total number of energy states in GaAs between E, and E, — kT at
T=300K.

3.25 (a) Plot the density of states in the conduction band for silicon over the range
E, < E < FE.+0.2 eV. (b) Repeat part (a) for the density of states in the valence
band over the range E, — 02eV < E < E,.

3.26 Find the ratio of the effective density of states in the conduction band at E. + kT to
the effective density of states in the valence band at E, — kT

Section 3.5 Statistical Mechanics

327 Plot the Fermi-Dirac probability function, given by Equation (3.79), over the range
02<(E—Ep)<02eVfor(a)T =200K, (5 T =300K, and (c) T = 400 K.

3.28 Repeat Example 3.4 for the case when g; = 10 and N, = 8.

329 (0 If Ep = E,, find the probability of a state being occupied at E = E. + k7. (b) If
Ep = E_, find the probability of a state being empty at £ = F, — kT.

330 Determine the probability that an energy level is occupied by an electron if the state is
above the Fermi level by (a) kT, (b) 5kT, and (¢) 10T,

331 Determine the probability that an energy level is empty of an electron if the state is
below the Fermi level by (a) kT, (b} 5kT. and (c) 10T,

332 The Fermi energy in silicon is 0.25 eV below the conduction band energy E.. (a) Plot
the probability of a state being occupied by an electron over the range
E. = E < FE_+2kT. Assume T = 300 K. (¥} Repeat part (a) for T = 400 K.

333 Four electrons exist in a one-dimensional infinite potential well of width & = 10 A,
Assuming the free electron mass, what is the Fermi energy at T = 0 K.

334 (a)Five electrons exist in a three-dimensional infinite potential well with all three
widths equal to a = 10 A. Assuming the free electron mass, what is the Fermi energy
at T =0 K. (#) Repeat part (a) for 13 electrons.

335 Show that the probability of an energy state being occupied A E above the Fermi
energy is the same as the probability of a state being empty AE below the Fermi level.

336 {(a) Determine for what energy above £ (in terms of £7') the Fermi-Dirac probabil-
ity function is within 1 percent of the Boltzmann approximation. (#) Give the value of
the probability function at this energy.

337 The Fermi energy level for a particular material at T = 300 K is 6.25 eV. The elec-
trons in this material follow the Fermi-Dirac distribution function. (a) Find the
probability of an energy level at 6.5 eV being occupied by an electron. (0) Repeat
part {a) if the temperature is increased to 7 = 950 K. (Assume that E¢ is a constant.)
(c) Calculate the temperature at which there is a 1 percent probability that a state
0.30 eV below the Fermi level will be empty of an electron.

338 The Fermi energy for copper at T = 300 K is 7.0 eV. The electrons in copper follow
the Fermi-Dirac distribution function. (a) Find the probability of an energy level at
7.15 eV being occupied by an electron. () Repeat part (¢) for T = 1000 K. (Assume
that E¢ is a constant.) (¢) Repeat part (q)} for £ = 6.85eVand T = 300 K. (d) De-
termine the probability of the energy state at £ = Er being occupied at T = 300 K
andat T = 1000 K.

3.39 Consider the energy levels shown in Figure 3.40. Let T =300 K. («) If E, — Er =
0.30 eV, determine the probability that an energy state at £ = E; is occupied by an
electron and the probability that an energy state at £ = E; is empty. {(b) Repeat part
(@) if Ep — E; =040 eV.

el
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3.40
3.41

3.42

343

344

L,
i

T _____ I ___________ £

Z L12eV

;|

5] £
Figure 3.40 | Energy levels for ‘
Problem 3.39.

Repeat problem 3.39 for the case when E; — E; = 1.42 eV.

Determine the derivative with respect to energy of the Fermi-Dirac distribution
function. Plot the derivative with respect to energy tor (@) T = 0 K, () T = 300 K,
and (¢} T = 500 K.

Assume the Fermi energy level is exactly in the center of the bandgap energy of a
semiconductor at T = 300 K. (a) Calculate the probability that an energy state in the
bottom of the cenduction band is occupied by an electron for Si, Ge, and GaAs.

(b) Calculate the probability that an energy state in the top of the valence band is
empty for Si, Ge, and GaAs,

Calculate the temperature at which there is a 10~ probability that an energy state
0.55 eV above the Fermi energy level is occupied by an electron.

Calculate the energy range (in eV) between fr (E) = 0.95 and f.(E) = 0.05 for
Er=7.0cVandfor (@) T =300 K and () T = 500 K.
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The Semiconductor
in Equilibrium

PREVIEW

o far, we have been considering a general crystal and applying to it the con-

cepts of quantum mechanics in order to determine a few of the characteristics

of electrons in a single-crystal lattice. In this chapter, we will apply these con-
cepts specifically to a semiconductor material. In particular, we will use the density
of quantum states in the conduction band and the density of quantum states in the va-
lence band along with the Fermi—Dirac probability function to determine the con-
centration of electrons and holes in the conduction and valence bands, respectively,
We will also apply the concept of the Fermi energy to the semiconductor materiai.

This chapter deals with the semiconductor in equilibrium. Equilibrium, or ther-
mal equilibrium, implies that no external forces such as voltages, electric fields. mag-
netic fields, or temperature gradients are acting on the semiconductor. All properties
of the semiconductor will be independent of time in this case. Equilibrium is our
starting point for developing the physics of the semiconductor. We will then be able
1o determine the characteristics that resuli when deviations from equilibrium occur,
such as when a voltage is applied to a semiconductor device.

We will initially consider the properties of an intrinsic semiconductor, that is, a
pure crystal with no impurity atoms or defects. We will see that the electrical proper-
ties of a semiconductor can be altered in desirable ways by adding controlled amounts
of specific impurity atoms, called dopant atoms, to the crystal. Depending upon the
type of dopant atom added, the dominant charge carrier in the semiconductor will be
either electrons in the conduction band or holes in the valence band. Adding dopant
atoms changes the distribution of electrons among the available energy states, so the
Fermi energy becomes a function of the type and concentration of impurity atoms.

Finally, as part of this discussion, we will attempt to add more insight into the
significance of the Fermi energy. R
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4.1 | CHARGE CARRIERS IN SEMICONDUCTORS

Current is the rate at which charge flows. In a semiconductor, two types of charge |
carrier, the electron and the hole, can contribute to a current. Since the current ina |
semiconductor is determined largely by the number of electrons in the conduction
band and the number of holes in the valence band, an important characteristic of the
semiconductor is the density of these charge carriers. The density of electrons and
holes is related to the density of states function and the Fermi distribution function,
both of which we have considered. A qualitative discussion of these relationships will
be followed by a more rigorous mathematical derivation of the thermal-equilibrium
concentration of electrons and holes.

4.1.1 Equilibrium Distribution of Electrons and Holes

The distribution (with respect to energy) of electrons in the conduction band is given
by the density of allowed quantum states times the probability that a state is occupied
by an electron. This statement is written in equation form as

n(E) = g (E) fr(E) 4.1)

where f,.(E) is the Fermi-Dirac probability function and g (E) is the density of quan-
tum states in the conduction band. The total electron concentration per unit volume |
in the conduction band is then found by integrating Equation (4.1) over the entire
conduction-band energy.

Similarly, the distribution (with respect to energy) of holes in the valence band
is the density of allowed quantum states in the valence band multiplied by the prob-
ability that a state is not occupied by an electron. We may express this as

P(E) = g (E)[1 — fr(E)] “.2)

The total hole concentration per unit volume is found by integrating this function
over the entire valence-band energy.

To find the thermal-equilibrium electron and hole concentrations, we need lo
determine the position of the Fermi energy £, with respect to the bottom of the
conduction-band energy E, and the top of the valence-band energy E,.To address
this question, we will initially consider an intrinsic semiconductor. An ideal intrinsic
semiconductor is a pure semiconductor with no impurity atoms and no lattice defects
in the crystal (e.g., pure silicon). We have argued in the previous chapter that, for an
intrinsic semiconductor at T = 0 K, all energy states in the valence band are filled
with electrons and all energy states in the conduction band are empty of electrons.
The Fermi energy must, therefore, be somewhere between E,. and E,. (The Fermi
energy does not need to correspond to an allowed energy.)

As the temperature begins to increase above 0 K, the valence electrons will gain
thermal energy. A few electrons in the valence band may gain sufficient engrgy to
jumnp to the conduction band. As an electron jumps from the valence band to the con-
duction band, an empty state, or hole, is created in the valence band. In an intrinsic
semiconductor, then, electrons and holes are created in pairs by the thermal energy so
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Figure 4.1 () Density of states functions, Fermi-Dirac probability function, and areas representing electron and hole

concentrations for the case when £ is near the midgap energy; (b) expanded view near the conduction band energy;
and {c) expanded view near the valence band encrgy.

that the number of electrons in the conduction band is equal to the number of holes

in the valence band.

Figure 4.1a shows a plot of the density of states function in the conduction band
&.(F), the density of states function in the valence band g,(E), and the Fermi-Dirac
prohability function for T > 0 K when E is approximately halfway between £, and
E,. If we assume, for the moment, that the electron and hole effective masses are
equal, then g.(E} and g.( £) are symmetrical functions about the midgap energy (the
energy midway between E,. and E,). We noted previously that the function fr(E)
for £ > Ef is symmetrical to the function 1 — fr(E} for E < Ep about the energy

E = Ep. This also means that the function fr(E) for £ = Ef + d E is equal to the
function 1 — fr(E)for E = Er —dE.
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Figure 4.1b is an expanded view of the plot in Figure 4.1a showing fr{(E) an
g.(E) above the conduction band energy E.. The product of g.(E) and fr(E} is¢
distribution of electrons n(E) in the conduction band given by Equation (4.1). Thi
product is plotted in Figure 4.1a. Figure 4.1c is an expanded view of the plot in Fig
ure 4.1a showing [1 — fr(E)}] and g,(£) below the valence band energy E,. Th
product of g,(E) and [1 — fr(E)] is the distribution of holes p(E) in the vale
band given by Equation (4.2). This product is also plotted in Figure 4.1a. The are
under these curves are then the total density of electrons in the conduction band an
the total density of holes in the valence band. From this we see that if g.(E) an
g.{E) are symmetrical, the Fermi energy must be at the midgap energy in order
obtain equal electron and hole concentrations. If the effective masses of the electro
and hole are not exactly equal, then the effective density of states functions g.(£
and g.(E) will not be exactly symmetrical about the midgap energy. The Fermi leve
for the intrinsic semiconductor will then shift slightly from the midgap energy i
order to obtain equal electron and hole concentrations.

4.1.2 The ny and py Equations

In deriving the equations for the thermal-equilibrium concentration of electrons #
and the thermal-equilibrium concentration of holes py, we will not be quite so re-
strictive. We will see later that, in particular situations, the Fermi energy can devial1

We have argued that the Fermi energy for an intrinsic semiconductor is near midgapi

from this midgap energy. We will assume initially, however, that the Fermi leve
remains within the bandgap energy.

The equation for the thermal-equilibrium concentration of electrons may be
found by integrating Equation (4.1) over the conduction band energy, or

- f ge(E) fr(E) dE @“3)

The lower limit of integration is £, and the upper limit of integration should be the
top of the allowed conduction band energy. However, since the Fermi probability
function rapidly approaches zero with increasing energy as indicated in Figure 4.13,
we can take the upper limit of integration to be infinity.

We are assuming that the Fermi energy is within the forbidden-energy bandgap,
For electrons in the conduction band, we have E > E_ If (E. — Eg) > kT, then
(E — Ep) > kT, so that the Fermi probability function reduces to the Boltzmann
approximation,! which is 1

1 [—(E — Ef)]

e EXp —————— (44)

frlE) = T

"The Maxwell-Boltzmann and Fermi-Dirac distribation functions are within 5 percent of each other
when E — Ey 2 3kT (see Figure 3.33). The > notation is then somewhat misleading to indicate when
the Boltzmann approximation is valid, although it is commonly used.
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Applying the Boltzmann approximation to Equation (4.3), the thermal-equilibrium
density of electrons in the conduction band is found from

i *313/2 _ —_
o = f am@m)" JE—E, exp [M] dE (4.5)
£,

W3 kT

The integral of Equation (4.5) may be solved more easily by making a change of
variable. If we let
E-E
kT

n= (4.6)
then Equation (4.5) becomes

4 (2mrk T ) ? —(E. — EF)
exp
3 kT

g =

[
] f n'Fexp(—mdn (A7)
0
The integral is the gamma function, with a value of
* n 1
f n'Zexp(—n)dn = Eﬁ (4.8)
0 :

Then Equation (4.7) becomes
Fmah T Y ~(E.— Er)
We may define a parameter N, as
2rmtkT \*?
N.=2 2 (4.10)
so that the thermal-equilibrium electron concentration in the conduction band can be
wrilten as

T .10

no = N, exp [M]

The parameter N, is called the effective density of states function in the conduc-
tion band. If we were to assume that m) = my, then the value of the effective density
of states function at 7 = 300 K is N. = 2.5 x 10!Y cm?, which is the order of
magnitude of N, for most semiconductors. If the effective mass of the electron is
larger or smaller than m1p, then the value of the effective density of states function
changes accordingly, but is still of the same order of magnitude.
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Objective

Calculate the probability that a state in the conduction band is occupied by an electron and cal-
culate the thermal equilibrium electron concentration in silicon at 7= 300 K.

Assume the Fermi energy is 0.25 eV below the conduction band. The value of N, for sil-
fconat T =300Kis N, =2.8 x 10" em™>,

EXAMPLE 4.1
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H Solution
The probability that an energy state at E = E, is occupied by an electron is given by
1 —(E, — Ep)
E)y=—— — = il Y
fr(E) . EE. exp[ T ]
o kT
or
—0.25 .
E) = — | =643 x 107
frlE) =exp (0.0259) *

The electron concentration is given by
~(E: —Er) 1o —0
=N, =(2.8x 10
o = e"p[ kT J (@8 107Yemp | 50250
or

e = 1.8 x 108 em™

B Comment

The probability of a state being occupied can be quite small, but the fact that there are a lar
number of states means that the electron concentration is a reasonable value.

The thermal-equilibrium concentration of holes in the valence band is found b
integrating Equation (4.2) over the valence band energy, or

Po= fgv(E)[l — fr(E)| dE (4.12

‘We may note that
1

Er — E
1 +exp T

For energy states in the valence band, E < E,. If (Er — E,) 3 kT (the Fermi func-
tion is still assumed to be within the bandgap), then we have a slightly different form
of the Boltzmann approximation. Equation (4.13a) may be written as

1 —{Ep — E)]

F—E) “e’(p[ KT

E
1+exp( T

1— fr(E) = (4.13a)

- fr(E) = {4.13h}

Applying the Boltzmann approximation of Equation (4.13b) to Equation (4.12), we
find the thermal-equilibrium concentration of holes in the valence band is

Ee 4y (2312 = =
po = f ]T—(ETJL,/EU — Eexp [M] dE (4151

oo il kT
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where the lower limit of integration is taken as minus infinity instead of the bottom
of the valence band. The exponential term decays fast enough so that this approxi-
mation is valid.
Equation (4.14) may be solved more easily by again making a change of vari-
able. If we let
E,~E
kT

0= (4.15)

then Equation (4.14) becomes

—4x (2mikT)? —AEp ~E¥] ., .
po= - exp[ L )]f (Y Pexp(~n) dy  (4.16)

h? kT e

where the negative sign comes from the differential d E = —kTd7’. Note that the
lower limit of 7’ becomes +o00 when E = —oo. If we change the order of integration,
we introduce another minus sign. From Equation (4.8), Equation (4.16) becomes

2mm kT il B
— i F v )
We may define a parameter N, as
2wtk T\
No=2 (-—h—"ﬁ) 4.18)

which is called the effecrive density of states function in the valence band. The
thermal-equilibrium concentration of holes in the valence band may now be written as

(4.19)

The magnitude of N, is also on the order of 10" cm ™ at 7 = 300 K for most semi-
conductors.

Objective |  EXAMPLE 4.2

Caiculate the thermal equilibrium hole concentration in silicon at T = 400 K.
Assume that the Fermi energy 1s 0.27 eV above the valence band energy. The value of N,
forsiliconat T =300 K is M, = 1.04 x 10% em*.

¥ Solution
The parameter values at 7 = 400 K are found as:

4003 *?
N = (104 x 10" (%6) =1.60 x 10%em™

and

KT = 00250 { 200 _ 003453 ev
R 306, ¢
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The hole concentration is then

—(Er — E)) 1y -0.27
=N, —_— | =1]l. —
7o » €XP [ T j| (1.60 x 10" yexp 0.03453

po =643 % 10% em™?

B Comment 4
The parameter values at any temperature can easily be found by using the 300 K values and”
the temperature dependence.

The effective density of states functions, N, and ¥, are constant for a given:
semiconductor material at a fixed temperature. Table 4.1 gives the values of the denji
sity of states function and of the effective masses for silicon, gallium arsenide, and
germanium. Note that the value of N, for gallium arsenide is smaller than the typical
10" cm* value. This difference is due to the small electron effective mass in galliumg

arsenide. m‘
The thermal equilibrium concentrations of electrons in the conduction band

of holes in the valence band are directly related to the effective density of states con-

stants and to the Fermi energy level. .

TEST YOUR UNDERSTANDING

E4.1 Calculate the thermal equilibrium electron and hole concentration in silicon at
T = 300 K for the case when the Fermi energy level is (.22 eV below the conduction
band energy £.. The value of E, is given in Appendix B.4. ;
W] X epg = 0d "o un 0] x ¢L°¢ = tusuy)
E4.2 Determine the thermal equilibrium electron and hole concentration in GaAs at
T = 300 K for the case when the Fermi cnergy level is (.30 eV above the valence
band energy E.. The value of E, is given in Appendix B.4. ‘

(o—w2 01 x £69 = 9d ' _wd 6,00 = Ou suy)

4.1.3 The Intrinsic Carrier Concentration

For an intrinsic semiconductor, the concentration of electrons in the conduction b
is equal to the concentration of holes in the valence band, We may denote n; and p;?

Table 4.1 | Effective density of states function and effective mass vatues

N, (em™) N, (em™) m;, [mgy nt; fmy
Silicon 2.8 x 10 1.04 x 10" 1.08 0.56
Gallium arsenide 4.7 x 107 7.0 x 10'8 0.067 0.48

Germanium 1.04 x 10 6.0 x 10'® .55 0.37
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as the electron and hole concentrations, respectively, in the intrinsic semiconductor.
These parameters are usually referred to as the intrinsic electron concentraizon and
intrinsic hole concentration. However, n; = p;, so normally we simply use the para-
meter #; as the intrinsic carrier concentration, which refers to either the intrinsic elec-
tron or hole concentration.

The Fermi energy level for the intrinsic semiconductor is called the intrinsic
Fermi energy, or Er = Ep;. If we apply Equations (4.11) and {4.19) to the intrinsic
semiconductor, then we can write

—(E; ~ EF)
g = r; = N, exp [iﬁﬂ—f——] 4.200
and
—(Ep;i — E,
Po=pi =n = Nyexp [%—)} (4.21)
If we take the product of Equations (4.20) and {4.21), we obtain
_(E{ - K r') "(E 2 El.'}
nf = N_.N,exp [——TT—L] - exXp {—-—%F*] (4.22)
or
—(E.— E,) —E ;
3 ‘ iy &
£ = N.N, —— i = NN, 423
n; exp[ 7 ] N Lexp|: o ] (4.23)

where E, is the bandgap energy. For a given semiconductor material at a constant
temperature, the vatue of r; is a constant, and independent of the Fermi energy.

The intrinsic carrier concentration for silicon at T = 300 K may be calculated
by using the effective density of states function values from Table 4.1. The value of
n; calculated from Equation (4.23) for £, = 1.12 eV is n; = 6.95 x 10" em™. The
commonly accepted value® of n; for silicon at 7 =300 K is approximately
1.5 % 100 ¢m™3. This discrepancy may arise from several sources. First, the values
of the effective masses are determined at a low temperature where the cyclotron res-
onance experiments are performed. Since the effective mass is an experimentally
determined parameter, and since the effective mass is a measure of how well a parti-
cle moves in a crystal, this parameter may be a slight function of temperature. Next,
the density of states function for a semiconductor was obtained by generalizing the
model of an electron in a three-dimensional infinite potential well. This theoretical
function may also not agree exactly with experiment, However, the difference be-
tween the theoretical value and ihe experimental value of »; is approximately a factor

MWarious references may list slightly different values of the intrinsic silicon concentration at room
temperature, In general, they are all between 1 x 10" and 1.5 x 10" cm ™. This difference is. in most
cases, not significant.
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Table 4.2 | Commonly accepted values of

atT=1300 K
Silicon np=15x 100 em™?
Gallium arsenide n; = 1.8 x 10° em~3
Germanium n; =24 x 10" em=?

of 2, which, in many cases, is not significant. Table 4.2 lists the commonly accepted
values of n; for silicon, gallium arsenide, and germanjium at T = 300 K.
The intrinsic carrier concentration is a very strong function of temperature.

EXAMPLE 4.3

Objective

To calculate the intrinsic carrier concentration in gallium arsenide at 7 = 300K and at
T =430 K,

The values of M. and N, at 300 K for gallium arsenide are 4.7 x 10" cm * and
7.0 x 10" em=?, respectively. Both N, and N, vary as 7°/2. Assume the bandgap energy of
gallium arsenide is 1.42 eV and docs not vary with temperature over this range. The value of
kT at 450 K is ‘

450
T =(0.02 — | =0.03885eV
k (0.0259) (300) e

g Solution
Using Equation (4.23), we find for T = 300 K

> 2 )
nl =47 % 107K7.0 % 10“*)cxp( ) =509 x 10"

0.0259
50 that
n=2.26x%10°cm™

At T =450 K, we find

4501° —1.42
2= (47 x 10770 x 10%) | — =1. A
nl = (4.7 x 107 17.0 x 10 )(300) exp(olo?’ggs) 148 x 10

50 that

n; =385 x 10" em™

B Comment
We may note from this example that the intrinsic carrier concentration increased by over 4 or-
ders of magnitude as the temperature increased by 150°C.

Figure 4.2 is a plot of n; from Equation (4.23) for silicon, gallium arsenide, and
germanium as a function of temperature. As seen in the figure, the value of n; for
these semiconductors may easily vary over several orders of magnitude as the tem-
perature changes over a reasonable range.
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Figure 4.2| The intrinsic cartier
concentration of Ge, Si, and GaAs as a
function of temperature.

{From Sze [13].}

TEST YOUR UNDERSTANDING

E4.3 Find the intrinsic carrier concentration in silicon at {a) T = 200 K and (&) T = 400 K.
[(—Wo 01 x €7 (9) W2 0] X 89'L (1) SUY]

E44 Repeat E4.3 for GaAs. [ W2 01 X 87T€ () "¢ W2 g™ [ (») suy]

E45 Repeat B4.3 for Ge. Lo W2 ;01 X 98 (4) ' W0 01 x 91°7 (2} suy]

4.1.4 The Intrinsic Fermi-Level Position

We have qualitatively argued that the Fermi energy level is located near the center of
the forbidden bandgap for the intrinsic semiconductor. We can specifically calculate
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the intrinsic Fermi-level position. Since the electron and hole concentrations are
equal, setting Equations (4.20) and (4.21) equal to each other, we have

N.exp [ik;@} = N, exp [;(EJ;J—E)] (4.24)

If we take the natural log of both sides of this equation and solve for E r;. we obtain

¢

E —I(E +E)+lle Ny 423
F!—z s i 2 n N A2

From the definitions for N, and N, given by Equations (4.10) and (4.18), respec-
tively, Equation (4.25) may be written as

i 3 m,
Ep = E(E(.' + £+ 1 kT In (—’;) (4.262)

The first term, %(Ef + E,), is the energy exactly midway between F,. and E,. or the
midgap energy. We can define

1
E(Ec +E) = Emidgup

so that

3 ny,
E[-'j = Emidgap = Z kT In (—P) (‘4’26]3J

If the electron and hole effective masses are equal so that m}, = m;,, then the intrin-
sic Fermi level is exactly in the center of the bandgap. If my > m}, the intrinsic
Fermi level is slightly above the center, and if m}, < my, it is slightly below the cen-
ter of the bandgap. The density of states function is directly related to the carrier ef-
fective mass; thus a larger effective mass means a larger density of states function,
The intrinsic Fermi level must shift away from the band with the larger density of
states in order to maintain equal numbers of electrons and holes.

EXAMPLE 4.4

Objective

To calculate the position of the intrinsic Fermi level with respect to the center of the bandgap
in silicon at T = 300 K.

The density of states effective carrier masses in silicon are m] = 1.08m, and
m;‘j = (0.56my.

m Solution
The intrinsic Fermi level with respect to the center of the bandgap is

*

3 my, 3 0.56
Eri = Eniggp = 7T In (m’ ) = 7(0.0259) In (ﬁ@)

*
n
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e

or

Epi ~ Egiggep = —0.0128 eV = —12.8 meV

1 Comment

The intrinsic Fermi level in silicon is 12.8 meV below the midgap energy. If we compare
12.8 meV to 560 meV, which is one-half of the bandgap energy of silicon, we can, in many ap-
plications, simply approximate the intrinsic Fermi level to be in the center of the bandgap.
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TEST YOUR UNDERSTANDING

E4.6 Determine the position of the intrinsic Fermi level with respect to the center of the
bandgap in GaAs at T = 300 K. (AW g'8¢— 'sUy)

4.2 1 DOPANT ATOMS AND ENERGY LEVELS

The intrinsic semiconductor may be an interesting material, but the real power of
semiconductors is realized by adding small, controlled amounts of specific dopant, or
impurity, atoms. This doping process, described briefly in Chapter 1, can greatly alter
the electrical characteristics of the semiconductor. The doped semiconductor, called
an extrinsic material, is the primary reason we can fabricate the various semiconduc-
tor devices that we will consider in later chapters.

4.2.1 Qualitative Description

In Chapter 3, we discussed the covalent bonding of silicon and considered the sim-
ple two-dimensional representation of the single-crystal silicon lattice as shown in
Figure 4.3. Now consider adding a group V element, such as phosphorus, as a sub-
stitutional impurity. The group V element has five valence electrons. Four of these
will contribute to the covalent bonding with the silicon atoms, leaving the fifth more
loosely bound to the phosphorus atom. This effect is schematically shown in
Figure 4.4. We refer to the fifth valence electron as a donor electron.
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Figure 4.4 | Two-dimmensional
representation of the silicon lattice doped

Figure 4.3 | Two-dimensional

representation of the intrinsic silicon lattice. with a phosphorus atom.
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The phosphorus atom without the donor electron is positively charged. At very
low temperatures, the donor electron is bound to the phosphorus atom. However. by
intuition, it should seern clear that the energy required to elevate the donor electron
into the conduction band is considerably less than that for the electrons involved in
the covalent bonding. Figure 4.5 shows the energy-band diagram that we would cx-
pect. The energy level, £y, is the energy state of the donor electron.

If a small amount of energy, such as thermal energy, is added to the donor elec-
tron, it can be elevated into the conduction band, leaving behind a positively charged
phosphorus ion. The electron in the conduction band can now move through the crys-
tal generating a current, while the positively charged ion is fixed in the crystal. This
type of impurity atom donates an electron to the conduction band and so is called a
donor impurity atom. The donor impurity atoms add electrons to the conduction band
without creating holes in the valence band. The resulting material is referred to as an
n-rype semiconductor (n for the negatively charged electron).

Now consider adding a group III element, such as boron, as a substitutional im-
purity to silicon. The group III element has three valence etectrons, which are all
taken up in the covalent bonding. As shown in Figure 4.6a, one covalent bonding po-
sition appears to be empty. If an electron were to occupy this “empty” position. its

Conduction band A X

T s
e 2 ; TR R g
3 &
o 5
o 5
2 g
g : E, g E,
& Valence band i 2 !

: 75

(a) (b)

Figure 4.5 | The energy-band diagram showing (a) the discrete donor energy staie
and (b) the effect of a donor state being ionized.
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Figure 4.6 | Two-dimensional representation of a silicon lattice (a) doped with a boron atom
and (b) showing the ionization of the boron atom resulting in a hole,
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Figure 4.7 | The energy-band diagram showing (a) the discrete acceptor energy state
and (b) the effect of an acceptor state being ionized.

energy would have to be greater than that of the valence electrons, since the net charge
state of the boron atomn would now be negative. However, the electron occupying this
“empty” position does not have sufficient energy to be in the conduction band, so its
energy is far smaller than the conduction-band energy. Figure 4.6b shows how va-
lence electrons may gain a small amount of thermal energy and move about in the
crystal. The “empty” position associated with the boron atom becomes occupied, and
other valence electron positions become vacated. These other vacated electron posi-
tions can be thought of as holes in the semicenductor material,

Figure 4.7 shows the expected energy state of the “empty” position and also the
formation of a hole in the valence band. The hole can move through the crystal gen-
erating a current, while the negatively charged boron atom is fixed in the crystal. The
group I1I atom accepts an electron from the valence band and so is refcrred to as an
acceptor impurity atom. The acceptor atom can generate holes in the valence band
without generating electrons in the conduction band. This type of semiconductor ma-
terial is referred to as a p-rype material (p for the positively charged hole).

The pure single-crystal semiconductor material is called an intrinsic material.
Adding controlled amounts of dopant atoms, either donors or acceptors, creates a
material called an extrinsic semiconductor. An exirinsic semiconductor will have ei-
ther a preponderance of electrons (n type) or a preponderance of holes (p type).

422 Tonization Energy

We can calculate the approximate distance of the donor electron from the donor im-
purity ion, and also the approximate energy required to elevate the donor electron
inte the conduction band. This energy is referred to as the ionization energy. We will
use the Bohr mode] of the atom for these calculations. The justification for using this
model is that the most probable distance of an electron from the nucleus in a hydro-
gen atom, determined from quantum mechanics, is the same as the Bohr radius. The
energy levels in the hydrogen atom determined from quantum mechanics are also the
same as obtained from the Bohr theory.

In the case of the donor impurity atom, we may visualize the donor electron or-
biting the donor 1on, which is embedded in the semiconductor material. We will need
to use the permittivity of the semiconductor material in the calculations rather than
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the permittivity of free space as is used in the case of the hydrogen atom. We will
use the effective mass of the electron in the calculations.

The analysis begins by setting the coulomb force of attraction between the ele
tron and ion equal to the centripetal force of the orbiting electron. This condition
give a steady orbit. We have

S 4,
dier: ry (

where v is the magnitude of the velocity and r, is the radius of the orbit. If we ass
the angular momentum is also quantized, then we can write

m r,v =nh (4.

where n is a positive integer. Solving for v from Equation (4.28), substituting in
Equation {4.27), and solving tor the radius, we obtain

_ nRAme

rn
m*el

“.

The assumption of the angular momentum being quantized leads to the radius
being quantized.
The Bohr radius is defined as

=053A (4.

We can normalize the radius of the donor orbital to that of the Bohr radius, which giv

& Mo
o= ple [ — 4.3
ap m*

where ¢, is the relative dielectric constant of the semiconductor material, sy is §
rest mass of an electron, and ™ is the conductivity effective mass of the electron
the semiconductor. |
If we consider the lowest energy state in which # = 1, and if we consider sili1
in which ¢, = 11.7 and the conductivity effective mass is m™/mg = (.26, then
have that ‘
N 45 @
do
or r; = 23.9 A. This radius corresponds to approximately four lattice constants
silicon. Recall that one unit cell in silicon effectively contains eight atoms, so ther
dius of the orbiting donor electron encompasses many silicon atoms. The donor ele
iron is not tightly bound 1o the donor atom.
The total energy of the orbiting eleciron is given by

E=T 4V (43
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where T is the kinetic energy and V is the potential energy of the electron. The Kinetic
energy is

1*2

7= ~2-m v (4.34)

Using the velocity v from Equation (4.28) and the radius r,, from Equation (4.29), the
kinetic energy becomes

- * 4
* T oo e (4.35)

= 2(nh) (dme)?
The potential energy is
2 * 4
—e —m*e
V = = 4.36
4er, (nh)2 (dme)? ( )
The total energy is the sum of the kinetic and potential energies, so that
—m*e!
E=T+tV=c——— 4.37
2(ni)2(4me)? (%.37)
For the hydrogen atom, m* = mg and € = €;. The ionization energy of the hydrogen
atom in the lowest energy state is then £ = —13.6 eV. If we consider silicon, the ion-
ization energy is £ = —25.8 meV, much less than the bandgap energy of silicon.

This energy is the approximate ionization energy of the donor atom, or the energy re-
quired to elevate the donor electron into the conduction band.

For ordinary denor impurities such as phosphorus or arsenic in silicon or ger-
mantum, this hydrogenic mode! works quite well and gives some indication of the
magnitudes of the ionization energies involved. Table 4.3 lists the actual expenmen-
tally measured jonization energies for a few impurities in silicon and germanium.
Germanium and silicon have different relative dielectric constants and effective
masses; thus we expect the ionization energies to differ.

4.23 Group II-V Semiconductors

In the previous sections, we have been discussing the donor and acceptor impurities
in a group 1V semiconductor, such as silicon. The sitvation in the group IV

Table 4.3 | Impurity ionization energies in silicon
and germanium

Ionization energy (eV)
Impurity Si Ge
Donors
Phosphorus 0.043 0612
Arsenic 0.05 0.0127
Acceptors
Boron 0.045 0.0104

Aluminum (.06 0.0102
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Table 4.4 | Impurity ionization energies
in galltum arsenide

Impurity Tonization energy (eV)
Donors

Selemium 0.0059
Tellurium 0.0058
Silicon 0.0058
Germanivm 0.0061
Accepiors
Beryllium 0.028
Zing 0.0307
Cadmium 0.0347
Silicon 0.0345
Germanium 0.0404

compound semiconductors, such as gallium arsenide, is more complicated. Group
elements, such as beryllium, zinc, and cadmium, can enter the lattice as subst
tional impurities, replacing the group III gallium element to become acceptor impu-
rities. Similarly, group VI elements, such as selenium and tellurium, can enter the
lattice substitutionally, replacing the group V arsenic element to become donor im-
purities. The corresponding ionization energies for these impurities are smaller than
for the impurities in silicon. The ionization energies for the donors in gallium ar-
senide are also smaller than the ionization energies for the acceptors, because of the
smaller effective mass of the electron compared to that of the hole.

Group IV elements, such as silicon and germanium, can also be impurity atoms
in gallium arsenide. If a silicon atom replaces a gallium atom, the silicon impurity
will act as a donor, but if the silicon atom replaces an arsenic atom, then the silicon
impurity will act as an acceptor. The same is true for germanium as an impurity atom,
Such impurities are called amphoteric. Experimentally in gallium arsenide, it is
found that germanium is predominantly an acceptor and silicon is predominantly a
donor. Table 4.4 lists the ionization energies for the various impurity atoms in gallium
arsenide.

TEST YOUR UNDERSTANDING

E4.7 Calculate the radius (normalized to a Bohr radius) of a donor electron in its lowest
energy state in GaAs. (5'S61 'SUY)

4.3 | THE EXTRINSIC SEMICONDUCTOR

We defined an intrinsic semiconductor as a material with no impurity atoms pres
in the crystal. An extrinsic semiconductor 1s defined as a semiconductor in whi
controlled amounts of specific dopant or impurity atoms have been added so that

thermal-equilibrium electron and hole concentrations are different from the intrin;
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carrier concentration. One type of carrier will predominate in an extrinsic semicon-
ductor.

431 Equilibrium Distribution of Electrons and Holes

Adding donor or acceptor impurity atoms to a semiconductor will change the distrib-
ution of electrons and holes in the material. Since the Fermi energy is related to the
distyibution funciion, the Fermi energy will change as dopant atoms are added. If the
Fermi energy changes from near the midgap value, the density of electrons in the con-
duction band and the density of holes in the valence band will change. These effects
are shown in Figures 4.8 and 4.9. Figure 4.8 shows the case for £y > Ef, and
Figure 4.9 shows the case for Ef < Eg;. When EfF > Ef;, the electron concentra-
tion is larger than the hole concentration, and when Er < E g, the hole concentration

ET [
E.
‘ Area = np=
electron
congcentration
Ep
Ep
E. I s, 2 |
E & ¢ / @ .
e ) Area = py =
hole concentration
frEY=0 SrEY=1

Figure 4.8 Density of states functions, Fermi-Dirac
probability tunction, and areas representing electron
and hole concentrations for the case when E ¢ is above
the intrinsic Fermi energy.
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Figure 4.9 | Density of states functions, Fermi-—Dirac
probability function, and areas representing electron and
hole concentrations for the casc when £, is below the
intrinsic Fermi energy.

- s larger than the electron concentration. When the density of electrons s greater than

the density of holes, the semiconductor is n type; donor impurity atoms have been
added. When the density of holes is greater than the density of electrons, the semi-
conductor is p type; acceptor impurity atoms have been added. The Fermi energy
level in a semiconductor changes as the electron and hole concentrations change and,
again, the Fermi energy changes as donor or acceptor impurities are added. The
change in the Fermi level as a function of impurity concentrations will be consider
in Section 4.6.

The expressions previously derived for the thermal-equilibrium concentration o
electrons and holes, given by Equations {4.11) and (4.19) are general equations fi
ng and pp in terms of the Fermi energy. These equations are again given as

_(E(‘ - EF)i|

ng = N.exp [ T
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and

7(EF — E:)
kT

pu = N,exp [

As we just discussed, the Fermi energy may vary through the bandgap energy, which
will then change the values of ng and pg.
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Objective

To calculate the thermal equilibrium concentrations of electrons and holes for a given Fermi
energy.

Consider silicon at T =300K so that N. =28 x 10 cm™ and N, = 1.04 x
10" cm—*. Assume that the Fermi energy is .25 eV below the conduction band. If we assume
that the bandgap energy of silicon is 1.12 eV, then the Fermi energy will be 0.87 ¢V above the
valence band.

H Solution

Using Equation (4.11), we have
F- —0.25
; — 19 — 15 -3
* ny = (2.8 x 10" exp ("70.0259) 1.8 x 10" cm

From Equation (4.19), we can write

87
o= (1.04 x 10"y exp ( ) =27 % 10" em™

0.0259
m Comment

The change in the Fermi level is actually a function of the donor or acceptor impurity concen-
trations that are added to the semiconductor. However, this example shows that electron and
hole concentrations change by orders of magnitude from the intrinsic carrier concentration as
the Fermi energy changes by a few tenths of an electron-volt.

EXAMPLE 4.5

In this example, since ng > py, the semiconductor is n type. In an n-type semi-
conductor, electrons are referred to as the majority carrier and holes as the niinority
carrier. By comparing the relative values of ng and py in the example, it is easy to
see how this designation came about. Similarly, in a p-type semiconductor where
po > np, holes are the majority carrier and electrons are the minority carrier.

We may derive another form of the equations for the thermal-equilibrium con-
centrations of electrons and holes. If we add and subtract an intrinsic Fermi energy in
the exponent of Equation (4.11), we can write

—AE.— Epi)+(Er — Epp)
kT

np = N, exp[ (4.38a)

or

_ —(E, = Ey/) (Er — Ef)
no = N.exp [ e ] exp [ 7 :| (4.38b)
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The intrinsic carrier concentration is given by Equation (4.20} as

—(E. = Efi)
kT

n; = N.exp [

s0 that the thermal-equilibrium electron concentration can be written as

Er— Ep
ng = Hj eXp |:—F—kT—F—] (4,39

Similarly, if we add and subtract an intrinsic Fermi energy in the exponent of Eq
tion (4.19), we will obtain

—(Ef - Ef'i):l (4.40)

Po=n; f3>(l'~‘|: T

As we will see, the Fermi level changes when donors and acceptors are added,
but Equations (4.39) and (4.40) show that, as the Fermi level changes from the intrin-
sic Fermi level, rg and po change from the #; value. If £y > Ep;, then we will have
ny > n; and po < n;. One characteristic of an n-type semiconductor is that Ex > Eg
sothat ny > po. Similarly, in a p-type semiconductor, Er < Er; sothat py > n; an
ng < R thus py > ng.

We can see the functional dependence of ny and py with Er in Figures 4.8 and
49. As Er moves above ar below E;, the overlapping probability function with the
density of states functions in the conduction band and valence band changes. As Er
moves above E;, the probability function in the conduction band increases, while'
the probability, 1 — fr(E}, of an empty state (hole) in the valence band decreases.
As Er moves below E;, the opposite occurs.

4.3.2 The ngpy Product

We may take the product of the general expressions for ny and py as given in Equa-
tions (4.11) and (4.19}, respectively. The result is

—(E. — Ey) —(Er — Ey)
nopy = NNy exp l:——k‘],;:l exXp [%} (4.41)
which may be written as
NN, - (442
= ¥, € f
1o o Ap kT

As Equation (4.42) was derived for a general value of Fermi energy, the values
of ng and po are not necessarily equal. However, Equation (4.42) is exactly the same
as Equation (4.23), which we derived for the case of an intrinsic semiconductor. We
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then have that, for the semiconductor in thermal equilibrium,

napy = n; (4.43)

Equation (4.43) states that the product of sy and py is always a constant for a
given semiconductor material at a given temperature. Although this equation seems
very simple, it is one of the fundamental principles of semiconductors in thermal
equilibrium. The significance of this relation will become more apparent in the chap-
ters that follow. 1t is important to keep in mind that Equation (4.43) was derived
sing the Boltzmann approximation, If the Boltzmann approximation is not valid,
then likewise, Equation (4.43) is not valid.

An extrinsic semiconductor in thermal equilibrium does not, strictly speaking,
contain an intrinsic carrier concentration, although some thermally generated carri-
ers are present. The intrinsic electron and hole carrier concentrations are modified by
the donor or acceptor impuritics. However, we may think of the intrinsic concentra-
tion #; in Equation (4.43) simply as a parameter of the semiconductor material.

*43.3 The Fermi—Dirac Integral

In the derivation of the Equations (4.11) and (4.19) for the thermal equilibrium elec-
tron and hole concentrations, we assumed that the Boltzmann approximation was
valid. If the Boltzmann approximation does not hold. the thermal equilibrium elec-
tron concentration is written from Equation (4.3) as

4 % (E - E)dE
6 Wl el i (4.44)
PERa E—E
ol pexp £
kT

If we again make a change of variable and let

_E-E

4,45
T {(4.450)

i

and also define
_Er-E.

4.45
kT (4.456)

Ui

therr we can rewrite Equation (4.44) as

kT 32 a0 1_/2d
ng =4 ( m‘"q ) f MR (4.46)
h? 0 1+eXP(77fTIF)

The integral is defined as

Fipl )_/m e (4.47)
el = a l4+exp(m—nr) ’

125



126

CHAPTER 4 The Semiconductor in Equilibrium

10

o
™

Fermi-Dirac integral {(F ;)
=

1074 /

-6 -4 -2 0 2 4 6
(Ep — EN/KT =,

Figure 4.10 | The Fermi—Dirac integral Fy,; as a function
of the Fermi energy. /
{From Sze {13].}

This function, called the Fermi-Dirac integral, is a tabulated function of the variab
nr. Figure 4,10 is a plot of the Fermi-Dirac integral. Note that if 5 > 0. th
Er > E.;thus the Fermi energy is actually in the conduction band.

EXAMPLE 4.6

Objective

To calculate the electron concentration using the Fermi-Dirac integral. 4

Let s = 2 so that the Fermi energy is above the conduction band by approximatel
S2meVat T =300 K.

H Solution
Equation {4.46) can be written as

2
nyg = —=N.Fialie)

e
For silicon at 300 K, N, = 2.8 x 10" cm ? and. from Figure 4.10, the Fermi-Dirac integrd
has a value of #7,;(2) = 2.3. Then

2 . B
T(Z'S x 10'")(2.3) = 7.27 % 10" em
T 1

fy =
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u Comment

Note that if we had used Equation (4.11), the thermal equilibrium value of ny would be n; =
208 x 10 cm—, which is incorrect since the Boltzmann approximation is not valid for this
case.
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We may use the same general methed to calculate the thermal equilibrium con-
centration of holes. We obtain

I kTN poo N2 g
po = 4 ( v ) f __myTdw (4.48)
]

h? t+exp(n —n})
where
E,— E
=t 4.49
7 X7 (4.49a)
and
E.—Ep
5 e o G 4.
N T (4.49b)

The integral in Equation (4.48) is the same Fermi-Dirac integral defined by Equa-
tion (4.47), although the variables have slightly different definitions. We may note
that if ' > 0, then the Fermi level is in the valence band.

TEST YOUR UNDERSTANDING |

E4.8 Calculate the thermal equilibrium electron concentration in silicon for the case when
EF = Eu and T = 300 K. (.g—m:} ﬁ[U[ X610 suY)

434 Degenerate and Nondegenerate Semiconductors

In our discussion of adding dopant atoms to a semiconductor, we have implicitly as-
sumed that the concentration of dopant atoms added is small when compared to the
density of host or semiconductor atoms. The small number of impurity atoms are
spread far enough apart so that there is no interaction between donor electrons, for
example, in an n-type material. We have assumed that the impurities introduce dis-
crete, noninteracting donor energy stales in the n-type semiconductor and discrete,
noninteracting acceptor states in the p-type semiconductor. These types of semicon-
ductors are referred to as nondegenerate semiconductors.

If the impurity concentration increases, the distance between the impurity atoms
decreases and a point will be reached when donor electrons, tor example, will begin
to interact with each other. When this occurs, the single discrete donor energy will
split into a band of energies. As the donor concentration further increases, the band
of donor states widens and may overlap the bottom of the conduction band. This
overlap occurs when the donor concentration becomes comparable with the effective
density of states. When the concentration of electrons in the conduction band exceeds
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Conduction band Conduction band
————————————— Ep E
!

P Ry " E, 2 Empty states
5 Filled 5 / (holes)
2 states £
I (electrons) 4 / £
E £ 5 W S i o . I SO S O EF
m _ Nalence band ! = Yalence band

(a) (b)

Figure 4.11 | Simplified energy-band diagrams for degenerately doped (a) n-type and
{b) p-type semiconductors.

the density of states N,., the Fermi energy lies within the conduction band. This ty
of semiconductor is called a degenerate n-type semiconductor.

In a similar way, as the acceptor doping concentration increases in a p-ty
semiconductor, the discrete acceptor encrgy states will split into a band of energi
and may overlap the top of the valence band. The Fermi energy will lie in the valen
band when the concentration of holes exceeds the density of states N,.. This type
semiconductor is called a degenerate p-type semiconductor.

Schematic models of the energy-band diagrams for a degeneraie n-type and d
generate p-type semiconductor are shown in Figure 4.11. The energy states below E
are mostly filled with electrons and the energy states above Ep are mostly empty.
the degenerate n-type semiconductor, the states between Er and E, are mostly fil
with electrons; thus, the electron concentration in the conduction band is very larg
Similarly, in the degenerate p-type semiconductor, the energy states between £,
E ;- are mostly empty; thus, the hole concentration in the valence band is very larg

4.4 | STATISTICS OF DONORS AND ACCEPTORS

In the last chapter, we discussed the Fermi-Dirac distribution function, which giv
the probability that a particular energy state will be occupied by an electron. We ne
to reconsider this function and apply the probability statistics to the donor and ac-
ceptor energy states.

4.4.1 Probability Function

One postulate used in the derivation of the Fermi-Dirac probability function was the
Pauli exclusion principle, which states that only one particle is permitted in
quantum state. The Pauli exclusion principle also applies to the donor and accept
states.

Suppose we have N; electrons and g; quantum states, where the subscript { indi-
cates the ith energy level. There are g; ways of cheosing where to put the first parti-
cle. Each donor level has two possible spin orientations for the donor electron; th
each donor level has two quantum states. The insertion of an electron into one qu
tum state, however, precludes putting an electron into the second quantum state.
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adding one electron, the vacancy requirement of the atom is satisfied, and the addi-
tion of a second electron in the donor level is not possible. The distribution function
of donor electrons in the donor energy states is then slightly different than the
Fermi-Dirac function,

The probability function of electrons occupying the donor state is

Nrf

1+ 1 Ed - EF
) o B — B
2 P\

where 7, 15 the density of electrons occupying the donor level and E; is the energy
of the donor level. The factor £ in this equation is a direct result of the spin factor just
mentioned. The 1 factor is sometimes written as 1/g, where g is called a degeneracy
factor. i

Equation (4.50) can also be written in the form

ny = (4.50)

g — Nd — N; (451)

where N is the concentration of ionized donors. In many applications, we will be
interested more in the concentration of ionized donors than in the concentration of
electrons remaining in the donor states.

If we do the same type of analysis for acceptor atoms, we obtain the expression

Ne

p(l:l_‘—l. EF_Ea
ol [l
g P kT

where N, is the concentration of acceptor atoms, £, 1s the acceptor energy level, p,
is the concentration of holes in the acceptor states, and N~ is the concentration of
ionized acceptors. A hole in an acceptor state corresponds to an acceptor atom that is
neutrally charged and still has an “empty” bonding position as we discussed in Sec-
tion 4.2.1. The parameter g is, again, a degeneracy factor. The ground state degener-
acy factor g is normally taken as four for the acceptor level in silicon and gallium
arsenide because of the detailed band structure.

= N,— N (4.52)

a

44.2 Complete Ionization and Freeze-Qut

The probabiiity function for electrons in the donor cnergy state was just given by
Equation (4.50). If we assume that (£; — Er) 3> kT, then

N B —(Eq— Er)
: ex E; — Er kT

‘ 2P\ Tar

If(E; — Ex) >» kT, then the Boltzmann approximation is also valid for the elec-

trons in the conduction band so that, from Equation (4.11),

_(E(' - EF)
kT

(4.53)

ng = N, exp [
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We can determine the relative number of electrons in the donor state compa
with the total number of electrons; therefore we can consider the ratio of electrons
the donor state to the total number of electrons in the conduction band plus do
state. Using the expressions of Equations (4.53) and (4.11), we write

—(E, —E
N exp| —tEa — EF)
i _ L kT __ (4‘
"y + 1y ZN(IEXP[‘(EL:,(T E}-)]“I‘Nrfxp[(E}(T Ef-)]

The Fermi energy cancels out of this expression, Dividing by the numerator term,
obtain

g _ 1
4 + g - N{.‘ *(E( - Ed)
LT

The factor (E. — E4) is just the ionization energy of the donor electrons.

(4.5

EXAMPLE 4.7

Objective

To determine the fraction of total electrons still in the donor states at 7 = 300 K.
Consider phosphorus doping in silicon, for T = 300 K, at a concentration of Ny
104 e,

W Solution
Using Eqguation (4.55). we find
1
. S . SO 7 (.
no + fig 1+ 2.8 x 10]9 (*0045)
2¢1010y 0.0259

B Comment

This example shows that there are very few electrons in the donor state compared with th
conduction band, Essentially all of the electrons from the donor states are in the conductio
band and. since only about 0.4 percent of the donor states contain electrons, the donor state
are said to be completely ionized.

At room temperature, then, the donor states are essentially completely ionize
and, for a typical doping of 10'® cm ™, almost all donor impurity atoms have donatec
an electron to the conduction band.

At room temperature, there is also essentially complete ionization of the accep
tor atoms. This means that each acceptor atom has accepted an electron from the va
lence band so that p, is zero. At typical acceptor doping concentrations, a hole is cre-
ated in the valence band for each acceptor atom. This ionization effect and the
creation of electrons and holes in the conduction band and valence band, respec
tively, are shown in Figure 4.12.
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Figure 4.12 | Energy-band diagrams showing complete jonization of (a) donor states
and (b} acceptor states.
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Figure 4.13 | Energy-band diagram at T = 0 K for (a) n-type and (b) p-type
semiconductors.

The opposite of complete ionization occurs at T = 0 K. At absolute zero de-
grees, all electrons are in their lowest possible energy state; that is, for an n-type
semiconductor, each donor state must coniain an electron, therefore n, = Ny or
N; = (. We must have, then, from Equation (4.50) that exp [(E; — Eg)}/kT] = 0.
Since T = 0 K, this will occur for exp (—og) = 0, which means that Er = E,;. The
Fermi energy level must be above the donor energy level at absolute zero. In the case
of a p-type semiconductor at absolute zero temperature, the impurity atoms will not
contain any electrons, so that the Fermi energy level must be below the acceptor en-
ergy state. The distribution of electrons among the various energy states, and hence
the Fermi energy, is a function of temperature.

A detailed analysis, not given in this text, shows that at 7 = 0 K, the Fermi en-
ergy is haltway between E. and E; for the n-type material and halfway between £,
and £, for the p-type material. Figure 4.13 shows these effects. No electrons from
the donor state are thermally elevated into the conduction band; this effect is called
freeze-out. Similarly, when no electrons from the valance band are elevated into the
acceptor states, the effect is also called freeze-out.
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Between T = 0 K, freeze-out, and 7 = 300 K, complete ionization, we hav
partial ionization of donor or acceptor atoms.

EXAMPLE 4.8

Objective

To determine the temperature at which 90 percent of acceptor atoms are ionized.
Consider p-type silicon doped with boron at a concentration of ¥, = 10'® em™.

H Solution

Find the ratio of holes in the acceptor state to the total number of holes in the valence band pl
acceptor state. Taking into account the Boltzmann approximation and assuming the degener
acy factor is g = 4, we write

Pe 1
B N, —(E, — E,
Po+ Pae 1+4Nﬂ‘eXP[ { - )]
For 90 percent ionization,
]fj:T =0.10= = 31/2
# oy f 2
. (1.04 x :(:10)]@()300) exp —'10413r
0.0259 (ﬁ)

Using trial and error, we find that 7 = 193 K.

H Comment

This example shows that at approximately 100°C below room temperature, we still hav
90 percent of the acceptor atoms ionized; in other words, 90 percent of the acceptor ato
have “donated” a hole to the valence band.

'el

TEST YOUR UNDERSTANDING

E4.9  Determine the fraction of total holes still in the acceptor states in silicon at T =
300 K for a boron impurity concentration of N, = 10'7 em~*. (6L1°0 "SUV)

F4.10  Consider silicon with a phosphorus impurity concentration of Ny = 5 x 101 em™3. 3
Plot the percent of ionized impurity atoms versus temperature over the range
100 < T < 400 K.

4.5 | CHARGE NEUTRALITY

In thermal equilibrium, the semiconductor crystal is electrically neutral. The el
trons are distributed among the various energy states, creating negative and positiv
charges, but the net charge density is zero. This charge-neutrality condition is used
determine the thermal-equilibrium electron and hole concentrations as a function o
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the impurity doping concentration. We will define a compensated semiconductor and
then determine the electron and hole concentrations as a function of the donor and
acceptor concentrations.

451 Compensated Semiconductors

A compensated semiconductor is one that contains both donor and acceptor impurity
atoms in the same region. A compensated semiconductor can be formed, for exam-
ple, by diffusing acceptor impurities into an n-type material, or by diffusing donor
impurities into a p-type material. An n-type compensated semiconductor occurs
when Ny > N, and a p-type compensated semiconductor occurs when N, > N,.
If ¥, = Ny, we have a completely compensated semiconductor that has, as we will
show, the characteristics of an intrinsic material. Compensated semiconductors are
created quite naturally during device fabrication as we will see later.

45.2 Equilibrium Electron and Hole Concentrations

Figure 4.14 shows the energy-band diagram of a semiconductor when both donor
and acceptor impurity atoms are added to the same region to form a compensated

Total electron
concentration

Thermal ( Donor
electrons ny electrons
[N
(s
PRERR
- — / / + ¥ + ¥
Un-ionized NT=(Ny—ny
donors lonized donors
————————————— el i ittt T
Un-ionized N, =(N,—p)
acceptors lonized acceptors
A * * A
—_——_———_—— = —_— = = = E;
E \l ¥ L EV
N + o+ o+ o+
Gl #
Thermal % Acceptor
holes holes
Total hole

concentration

Figure 4.14 | Encrgy-band diagram of & compensated
semiconductor showing ionized and un-ionized denors
and acceptors.
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semiconductor. The figure shows how the electrons and holes can be distributed:
among the various states.

The charge neutrality condition is expressed by equating the density of negativ
charges to the density of positive charges. We then have

ng+Na_=p0+Nd+ (4.5
or
no+ (Nog — pa) = po+ (Ng — 1) (4.5

where ny and pp are the thermal-equilibrivm concentrations of electrons and holes i
the conduction band and valence band, respectively. The parameter n, is the conce:
tration of electrons in the donor energy states, so th' = N; — ny is the concentrati
of positively charged donor states. Similarly, p, is the concentration of holes in th
acceptor states, so N = N, — p, is the concentration of negatively charged accep-
tor states. We have expressions for ng, pg. ng, and p, in terms of the Fermi energy
and temperature.

If we assume complete ionization, ny and p, are both zero, and Equation (4.57)
becomes

g+ Ny = po+ Ny (458)‘

If we express py as n?/nu, then Equation (4.58) can be written as
2

no+ Ne= L + N, (4.5%)
ng
which in turn can be written as
ng = (Ng — Nono — n =0 (4.59b)
The electron concentration # can be determined using the quadratic formula, or
iy = 22 ; Rl +‘/(N";N”)2+n? (4.60)

The positive sign in the quadratic formula must be used, since, in the limit of an in-
trinsic semiconductor when ¥, = Ny = (. the electron concentration must be a pos-
itive quantity, or ny = #;.

Equation (4.60) is used to calculate the electron concentration in an n-type semi-
conductor, or when &, > N,. Although Equation (4.60) was derived for a compen-
sated semiconductor, the equation is also valid for N, = 0.

EXAMPLE 4.9

Objective

To determine the thermal equilibrium electron and hole concentrations for a given doping
concentration.
Consider an n-type silicon semiconductor at T = 300 K in which Ny = 10'* cm * and

N, = 0. The intrinsic carrier concentration is assumed to be n; = 1.5 x 10 em~?.
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R Solution
From Equation (4.60), the majority carrier electron concentration is

10'¢ 1016y, 2
o = b + ‘/(L) 4+ (1.5 % 10" = 105 em~*

2 2
The minority carder hole concentration is found as

n; (1.5x101%)
D= = — e

Cqon =225 % 10 cm™
g

u Comment

In this example. Ny 3 n;. so that the thermal-equilibrium majority carrier electron concen-
tration is essentially equal to the donor impurity concentration. The thermal-equilibrium ma-
jority and minority carrier concentrations can differ by many orders of magnitude.

135

We have argued in our discussion and we may note from the results of Exam-
ple 4.9 that the concentration of electrons in the conduction band increases above the
intrinsic carrier concentration as we add donor impurity atoms. At the same time, the
minority carrier hole concentration decreases below the intrinsic carrier concentra-
tion as we add donor atoms. We must keep in mind that as we add donor impurity
atoms and the corresponding donor electrons, there is a redistribution of electrons
among available energy states. Figure 4.15 shows a schematic of this physical redis-
iribution. A few of the donor electrons will fall into the empty states in the valence

Intrinsic
electrons

> A few donor electrons
annihilate some
intrinsic holes

D@D +  pwwmerors

et

'
Net pg = o

Figure 4.15 | Energy-band diagram showing the
redistribution of electrons when donors are added.
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band and, in doing so, will annihilate some of the intrinsic holes. The minority car-
rier hole concentration will therefore decrease as we have seen in Example 4.9, At
the same time, because of this redistribution, the net electron concentration tn the
conduction band is not simply equal to the donor concentration plus the intringj
electron concentration.

EXAMPLE 4.10 T

Objective

To calculate the thermal-equilibrium electron and hole concentrations in a germanium sample
for a given doping densivy.

Consider a germanium sample at T = 300 K in which ¥, = 5 x 10" ¢m ™ and N, =
Assume that n; = 2.4 x 10" cm™>.

| Solution
Again, from Equation (4.60), the majority carrier electron concentration is

5x10% /5% 1082 .
no = %+ (Jiz—ﬁ) + (2.4 x 10 =597 x 1% em™?

The minority carrier hole concentration is

2

n; (24 x 10'%)?

= T 597 x 107

=965 x 10%cm™?

 Comment

i1 the donor impurity concentration is not too different in magnitude from the intrinsic carrier
concentration, then the thermal-equilibrium majority carrier electron concentration is influ-
enced by the intrinsic concentration.

We have seen that the intrinsic carrier concentration #1; is a very strong function
of temperature. As the temperature increases, additional electron-hole pairs are ther-
mally generated so that the n? term in Equation (4.60) may begin to dominate. The
semiconductor will eventually lose its extrinsic characteristics. Figure 4.16 shows
the electron concentration versus temperature in silicon doped with 5 x 10" donors
per cm®. As the temperature increases, we can see where the intrinsic concentration
begins to dominate. Also shown is the partial ionization, or the onset of freeze-out, at
the low temperature,

If we reconsider Equation (4.58) and express nq as n/ py, then we have

2

ne:
Y 4+ N, =po+ Ny (4.61
Po

which we can write as

p[%_(Na'*Nd)pO—n?:O (461
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Figure 4.16 | Electron concentration versus temperature
showing the three regions: partial tonization, extrinsic, and
intrinsic.

&

Using the quadratic formula, the hole conceniration is given by

N, — Ny M, = N5 2
po=———+ (”2 )+nf (4.62)

where the positive sign, again, must be used. Equation (4.62) is used to calculate the
thermal-equilibrium majority carrier hole concentration in a p-type semiconductor,
or when N, > N,. This equation also applies for N; = 0.
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Objective

To calculate the thermal-equilibrium electron and hole concentrations in a compensated p-type
semiconductor.

Consider a silicon semiconductor at 7 = 300 K in which N, = 10'® em™ and N, =

3x 109 em—?, Assume n; = 1.5 x 10" em™.

B Solution
Since N, > N, the compensated semiconductor is p-type and the thermal-equilibrium ma-
jority carrier hole concentration is given by Equation (4.62) as

10'% — 3 % 10 1016 — 3 % 1015 \?

B ‘/( i ) (15 x 101092
- 2 2

so that

po =T x 10% em™?

EXAMPLE 4.11
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The minority carrier electron concentration is
2 18,2
n; 1.5 % 10
,tO:_f:_____{ Y 321 x 10 cm™?
Do 7 x 1055
N Comment
If we assume complete ionization and if (N, — Ny} > n;, then the majority carrier hole ¢o
centration is, to a very good approximation, just the difference between the acceptor and don
concentrations.
We may note that, for a compensated p-type semiconductor, the minority cari
electron concentration is determined from
2o
ng=—=-—"——
po (Ng— Nyg) :
DESIGN

EXAMPLE 4.12

A silicon device with n-type material is to be operated at T = 550 K. At this temperat
the intrinsic catrier concentration must contribute no more than 5 percent of the total elec
concentration. Determine the minimum dener conceniration required to meet this specificati

m Solution
At T = 550 K, the intrinsic carrier concentration is found from Equation (4.23) as

Objective
To determine the required impurity doping concentration in a semiconductor material.
u

. BN . Lo (550Y [ —L12 (300
n; —Nle‘eXP( — )—(2-3X‘U WL\ 355 ) %P | 50259 L 550

or
af= 102 107
so that
n = 3.20 % 10" cm™? ‘
For the intrinsic carrier concentration to contribute no more than 3 percent of the total elecir

concentration, we set np = 1.03N;.
From Equation (4.60), we have

or

1LO5SN; = %’- + \/{%’) +(3.20 x 1011)%
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which yields
Ny = 1.39 x 10 em™

# Comment
If the temperature remains less than 7 = 350 K, then the intrinsic carrier concentration will
contribute less than 5 percent of the total clectron concentration for this donor impurity
concentration.

Equations (4.60) and (4.62) are used 1o calculate the majority carrier electron
concentration in an n-type semiconductor and majority carrier hole conceniration in
a p-type semiconductor, respeciively. The minority carrier hole concentration in an
n-type semiconductor could, theoretically, be calculated from Equation (4.62). How-
ever, we would be subtracting two numbers on the order of 10'® cm™3, for example,
to obtain a number on the order of 10* ¢cm™3, which from a practical point of view is
not possible. The minority carrier concentrations are calculated from ngpg = n,.z once
the majority carrier concentration has been determined.

;, TEST YOUR UNDERSTANDING

E4.11 Consider a compensated GaAs semiconductor at T = 300 K doped at N; =
5x 10%em ! and N, = 2 x 10" cm™?. Calgulate the thermal equilibrium electron
and hole concentrations. {,-W2 (01 x 91°7 = %u’, wd 501 x ¢'] = 0d suy)
E4.12 Silicon is doped at ¥, = 10" em™ and N, = 0. (@) Plot the concentration of
electrons versus temperature over the range 300 < T < 600 K. (b) Calculate the
temperature at which the electron concentration is equal to 1.1 x 10" em™7.
(A TGS = [ Suy)

.0

=

I

4.6 [POSITION OF FERMI ENERGY LEVEL

We discussed qualitatively in Section 4.3.1 how the electron and hole concentrations
change as the Fermi energy level moves through the bandgap energy. Then, in Sec-
tion 4.5, we calculated the electron and hole concentrations as a function of donor
and acceptor impurity concentrations. We can now determine the position of the
Fermi energy level as a function of the doping concentrations and as a function of
temperature. The relevance of the Fermi energy level will be further discussed after
the mathematical derivations.

4.6.1 Mathematical Derivation

The position of the Fermi energy level within the bandgap can be determined by
using the equations already developed for the thermal-equilibrium electron and hole
concentrations. If we assume the Boltzmann approximation to be valid, then from
l Equation (4,11} we have ng = N, exp [—(E. — Ef}/&T]. We can solve for £, — Ef
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from this equation and obtain

o

N,
E.—Ep=kTh (—) 46

where ng is given by Equation (4.60). If we consider an n-type semiconductor i
which Ny > n;, then ny = Ny, so that

N
E.—Epr=kT In (—) (4.64)
Na’

The distance between the bottom of the conduction band und the Fermi energy
is a logarithmic function of the donor concentration. As the donor concentration in-
creases, the Fermi level moves closer to the conduction band. Conversely, if the
Fermi level moves closer to the conduction band, then the electron concentration in
the conduction band is increasing. We may note that if we have a compensated semi-
conductor, then the Ny term in Equation (4.64) is simply replaced by Ny — N,, orthe
net effective donor concentration.

DESIGN
EXAMPLE 4.13

Objective

To determine the required donor impurity concentration to obtain a specified Fermi energy.

Silicon at T = 300 K contains an acceptor impurity concentration of N, = 10'¢ ¢m *,
Determine the concentration of donor impurity atorms that must be added so that the siliconis
n type and the Fermi energy is 0.20 eV below the conduction band edge.

B Solution
From Equation (4.64). we have

E.—E;=kT1 N
‘ £ ! Nd_Na

which can be rewritten as

—(E. — Ef)
No— N, =Neexp| —————
d Pl: T
Then
-0.20
- N, =2 " =1.24 x 10" em™
Ny — N 8 x 10 EXP[O.DZSQ] b3 cm
or

Na =124 % 10" + N, =224 x 10" em™

u Comment
A compensaled semiconductor can be fabricated to provide a specific Fermi energy level.




4.6 Position of Fermi Energy Level

We may develop a slightly different expression for the position of the Fermi
level. We had from Equation (4.39} that ny = n; expl(FEr — Eri)/&T]. We can
solve for Er— EFj as

Ep —=Bp=hT (”-”) (4.65)

g

Equation (4.63) can be used specifically for an n-type semiconductor, where #q 1s
given by Equation (4.60), to find the difference between the Fermi level and the in-
trinsic Fermi level as a function of the donor concentration. We may note that, if the
net effective donor concentration is zero, that is, N; — N, = 0, then ng = n; and
Er = Ef;. A completely compensated semiconductor has the characteristics of an
intrinsic material in terms of carrier concentration and Fermi level position.

We can derive the same types of equations for a p-type semiconductor. From
Equation (4.19), we have pgp = Ny exp [-(EfF ~ E.)/kT). so that

N,
Er—~E,=kTn (;_) (4.66)
Do

If we assume that N, 3> n,. then Equation (4.66) can be written as

N,
x Er—E,=kT In (ﬁ-) {4.67)

a

The distance between the Fermi level and the top of the valence-band energy for
a p-type semiconductor is a logarithmic function of the acceptor concentration: as the
acceptor conceniration increases, the Fermi level moves closer to the valence band.
Equation {4.67) still assumes that the Boltzmann approximation is valid. Again, if we
have a compensated p-type semiconductor, then the N, term in Equation (4.67) is re-
placed by N, — N, or the net effective acceptor concentration.

We can also derive an expression for the relationship between the Fermi level
and the intrinsic Fermi level in terms of the hole concentration. We have from Equa-
tion (4.40) that pg = n; exp[—(Er — Er;)/k T}, which vields

5‘3) (4.68)

Equation (4.68) can be used to find the difference between the intrinsic Fermi level
and the Fermi energy in terms of the acceptor concentration. The hole concentration
po in Equation (4.68) is given by Equation (4.62).

We may again note from Equation (4.65) that, for an n-type semicenductor,
mp > 1 and Ep > Eg;. The Fermi level for an n-type semiconductor is above Eg;.
For a p-type semiconductor, pg > n;, and from Equation (4.68) we see that

1414
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T E, T E,
P o e E, >

g s

B T R T R S Ep - Eg
o )

= B e e it

£ = Ep
5 E, 2 E,

(a) (b)

Figure 4.17 | Position of Fermi level for an (a) n-type (¥, > N,) and (b) p-type
(N, > N, semiconductor.

Eri = Er. The Fermi level for a p-type semiconductor is below E ;. These results
are shown in Figure 4.17.

4.6.2 Variation of Er with Doping Concentration
and Temperature

We may plot the position of the Fermi energy level as a function of the doping con
centration. Figure 4.18 shows the Fermi energy level as a function of donor concen
tration (n type) and as a function of acceptor concentration (p type) for silicon
T = 300 K. As the doping levels increase, the Fermi energy level moves closer to {
conduction band for the n-type material and closer to the valence band for the p-ty
material. Keep in mind that the equations for the Fermi energy level that we have d
rived assume that the Boltzmann approximation is valid.

Nytem™¥)
1012 10]3 IOM |0|5 |0|6 1a"? '8
E T T T 1

1

¢ T

1 1 1
E, 1012 1012 1014 103 1016 1047 10'8
N, (cm’3)

Figure 4.18 | Position of Fermi level as a funciion of donor
cencentration (n type} and acceptor concentration (p type).
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Objective

To determine the Fermi-level position and the maximum doping at which the Boltzmann
approximation is still valid.

Consider p-type silicon, at T = 300 K, doped with boron. We may assume that the Jimit
of the Boltzmann approximation occurs when Er — E, = 3kT. (Sce Section 4.1.2.)

B Solution

From Table 4.3, we find the ionization energy is E, — £, = 0.045 eV for boron in silicon. If
we assume that Ep; & Eqgeap. then from Equation (4.68), the position of the Fermi level at
the maximum doping is given by

Eg N’I
Epi—Ep = E‘ —(E, —E)—{Ep —E)=kT In{ —

i

ar

0.56 — 0.045 — 3(0.0259) = 0.437 = (0.0259) In (&)

f;
We can then solve for the doping as

0.437

1 =32x%10" cm™?
0.0259) *Aem

N, =n;exp (
% Comment
If the acceptor (or donor) concentration in silicon is greater than approximately 3 x 10'7 em 3,
then the Boltzmann approximation of the distribution function becomes less valid and the
equations for the Fermi-level position are no longer quite as accurate.

EXAMPLE 4.14

TEST YOUR UNDERSTANDING

F4.13 Determine the position of the Fermi level with respect to the valence band energy in
p type GaAs at T = 300 K. The doping concentrations are N, = 5 x 106 em™? and
Ng=4x 10" em™. (AR0£1°0 = "4 — 77 'Suy)

E4.14 Calculate the position of the Fermi energy level in n-type silicon at T = 300 K with
respect to the intrinsic Fermi energy level, The doping concentrations are Ny = 2 x
107 em™? and N, =3 x 10" em™?, (AR 1TH0Q = g — 47 suy)

The intrinsic carrier concentration #,, in Equations (4.65) and (4.68), is a strong
function of temperature, so that Eg is a function of temperature also. Figure 4.19
shows the variation of the Fermi energy level in silicon with temperature for several
donor and acceptor concentrations. As the temperature increases, n; increases, ad
Ef moves closer to the intrinsic Fermi level. At high temperature, the semiconduc-
tor material begins to lose its extrinsic characteristics and begins (o behave more like
an intrinsic semiconductor. At the very low temperature, freeze-out occurs; the
Boltzmann approximation is no longer valid and the equations we derived for the



144

CHAPTER 4 The Semiconductor in Equilibrium

1.0
i ‘ Si
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Figure 4.19 | Position of Fermi level as a function of
temperature for various doping concentrations.
{From Sze {13].)

Fermi-level position no longer upply. At the low temperature where freeze-out oc-
curs, the Fermi level goes above E; for the n-type material and below E, for the
p-type material. At absolute zero degrees, all energy states below Eg are full and all
energy states above E; are empty. i

E:

4.6.3 Relevance of the Fermi Energy

We have been calculating the position of the Fermi energy level as a function of dop-
ing concentrations and temperature. This analysis may seem somewhat arbitrary and
fictitious. However, these relations do become significant later in our discussion of
pn junctions and the other semiconductor devices we consider. An important point is
that, in thermal equilibrium, the Fermi energy level is a constant throughout a sys-
tem. We will not prove this statement, but we can intuitively see its validity by con-
sidering the following example.

Suppose we have a particular material, A, whose electrons are distributed in the
energy states of an allowed band as shown in Figure 4.20a. Most of the energy stateg
below E'r4 contain electrons and most of the energy states above E g4 are empty of
electrons. Consider another material, B, whose electrons are distributed in the ena
ergy states of an allowed band as shown in Figure 4.20b. The energy siates below
Erp are mostly full and the energy states above E, 4 are mostly empty. If these two,
materials are brooght into intimate contact, the electrons in the entire system wilk
tend to seek the lowest possible energy. Electrons from material A will flow into the
lower energy states of material B, as indicated in Figure 4.20c, until thermal equi-

librium is reached. Thermal equilibrium occurs when the distribution of electrons, ag
4



4.7 Summary
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Figure 4.20 { The Fermi energy of (a) material A in thermal equilibrium, (b) material B
in thermal equilibrium, (¢) materials A and B at the instant they are placed in contact,
and (dj materials A and B in contact at thermal equilibrium.

a function of energy, is the same in the two materials. This equilibrium state occurs
when the Fermi energy is the same in the two materials as shown in Figure 4.20d.
The Fermi energy, important in the physics of the semiconductor, also provides a
good pictorial representation of the characteristics of the semiconductor materials
and devices.

4.71 SUMMARY

B The concentration of electrons in the conduction band is the integral over the conduction
band energy of the product of the density of states function in the conduction band and
the Fermi—Dirac probability function.

R The concentration of holes in the valence band is the integral over the valence band
energy of the product of the density of states function in the valence band and the
probability of a state being empty, whichis [1 — fr(E)].

B Using the Maxwell-Boltzmann approximation, the thermal equilibrium concentration
of electrons in the conduction band is given by

3 1 p[i:@}

kT

where N, is the effective density of states in the conduction band.

145
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B Using the Maxwell-Boltzmann approximation, the thermal equilibrium concentration
of holes in the valence band is given by

.2 i [—(EF & Eu)]

kT

where N, is the effective density of states in the valence band.
B The intrinsic cartier concentration is found from

2 _Eg
n; = N.N, exp T

B The concept of doping the semiconductor with donor (group V elements) impuarities
and acceptor (group 1II elements) impurities to form n-type and p-type extrinsic
semiconductors was discussed.

B The fundamental relationship of ny py = n® was derived.

B Using the concepts of complete ionization and charge neutrality, equations for the
electron and hole concentrations as a function of impurity doping concentrations were3
derived.

B The position of the Fermi energy level as a function of impurity doping concentratio
was derived.

B The relevance of the Fermi energy was discussed. The Fermi energy is a constant
throughout a semiconductor that is in thermal equilibrium.

GLOSSARY OF IMPORTANT TERMS

acceptor atoms  [mpurity atoms added to a semiconductor 1o create a p-type material.
charge carrier The electron and/or hole that moves inside the semiconductor and gives rise
to electrical currents.

compensated semiconductor A semiconductor that contains both donors and acceptors
the saime scmiconductor region. :

complete ionization The condition when all donor atoms are positively charged by givi
up their donor electrons and all acceptor atoms arc negatively charged by accepting electr
degenerate semiconductor A semiconductor whose electron concentration or hole con
tration is greater than the effective density of states, so that the Fermi level is in the cond '
tion band (n type) or in the valence band (p type).

donor atoms Tmpurily atoms added to a semiconductor to create an n-type material.

effective density of states  The parameter N.. which results from integrating the densi
quantum states g.{E) times the Fermi function f; (E) over the conduction-band energy,
the parameter N,.. which results from integrating the density of quantum states g, (E)
[1 — fr(E)] over the valence-band energy.

extrinsic semiconductor A semiconductor in which controlled amounnts of donors an
acceptors have been added so that the electron and hole concentrations change from the i
trinsic carrier concentration and a preponderance of cither electrons (n type) or holes (pty
is created.

freeze-out The condition that occurs in a semiconductor when the temperature is low

and the donors and acceptors become neutrally charged. The electron and hole concentrati
become very small.



Review CQuestions

intrinsic carrier concentration #; The ¢lectron concentration in the conduction band and
the hole concentration in the valence band (equal values) in an intrinsic semiconductor.

intrinsic Fermi level Er;  The position of the Fermi level in an intrinsic semiconductor.

intrinsic semiconductor A pure semiconductor material with no impurity atoms and no lat-
tice defects in the crystal.

nondegenerate semiconductor A semiconductor in which a relatively small number of
donors and/or acceptors have been added so that discrete, noninteracting donor states and/or
discrete, noninteracting acceptor states are introduced.

CHECKPOINT
After studying this chapter. the reader should have the ability to:

B Derive the cquations for the thermal equilibrium concentrations of electrons and holes
in terms of the Fermi energy.

Derive the equation for the intrinsic carrier concentration.

State the value of the intrinsic carrier concentration for silicon at T = 300 K.

Derive the expression for the intrinsic Fermi level.

Describe the effect of adding donor and acceptor impurity atoms to a semiconductor.
Understand the concept of complete ionization.

Understand the derivation of the fundamental relationship ngpg = nf.

Describe the meaning of degeneraic and nondegenerate semiconductors.

Discuss the concept of charge neutrality.

Derive the equations for #g and py in terms of impurity doping concentrations.
Discuss the variation of the Fermi energy with doping concentration and temperature.

REVIEW QUESTIONS

1. Write the equation for n(E) as a function of the density of states and the Fermi proba-
bility function. Repeat for the function p(£).

2, Inderiving the equation for sy in terms of the Fermi function, the upper limit of the
integral should be the energy at the top of the conduction band. Justify using infinity
instead.

3. Assuming the Boltzmann approximation applies, write the equations for ng and py in
terms of the Fermi energy.

., What is the valuc of the intrinsic carrier concentration in silicon at 7 = 300 K?
Under what condition would the intrinsic Fermi level be at the midgap energy?

4

5

6. What is a donor impurity? What is an acceptor impurity?

7. What is meant by complete ionization? What is meant by freeze-out?

8. What is the product of #p and py equal to?

9. Write the equation for charge neutrality for the condition of complete ionization.
10, Sketch a graph of 1 versus temperature for an n-type material.

11.  Sketch graphs of the Fermi energy versus donor impurity concentration and versus
temperature.
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PROBLEMS

Section 4.1 Charge Carriers in Semiconductors

4.1

4.2

4.3

44

4.5

4.6

4.7

4.9

4.10

4.11

Calculate the intrinsic carrier concentration, #,, at T = 200, 400, and 600 K for

{a)} silicon, (k) germanium, and () gallium arsenide.

The intrinsic carrier concentration in silicon is to be no greater thann, = 1 x

10" e, Assume £, = 1.12 eV. Determine the maximum temperature allowed fo
the silicon.

Plot the intrinsic carrier concentration, rr;, for a temperature range of 200 < T <
600 K for (a) silicon, {(b) germanium, and (¢} gallium arsenide. (Use a log scale

for n;.)

In a particalar semiconductor material, the effective density of states functions are
given by N, = N.o(T)%7 and N, = N,o(T)*? where &, and N, are constants in
dependent of teraperature. The experimentally determined intrinsic carriet concen
tions as a function of temperature are given in Table 4.5, Determine the preduct
NN, and the bandgap energy E,. (Assume E, is independent of temperature.)
{&) The magnitude of the product g- (E} f=(E) in the conduction band is a function
energy as shown in Figore 4.1, Assume the Boltzmann approximation is valid. Deter
mine the energy with respect to £, at which the maximum occurs. (b) Repeat part (g
for the magnitude of the product gy (E) [1 — fr(E)] in the valence band.

Assume the Boltzmann approximation in a semiconductor is valid. Determine the
ratio of n(E) = ge (B} fr(EYat E = E. + 4kT wothatat £ = £, + kT /2. ‘
Assume that £, — Ep = 0.20 eV in silicon. Plot n{£) = g¢ (£) fr (£) over the rang
E.<E<E +010eVior{a) T =200K and (/) T =400 K. ‘
Two semiconductor materials have exactly the same properties except that material
has a bandgap energy of 1.0 €V and material B has a bapdgap energy of 1.2 eV. Dex
mipe the ratio of #; of material A to that of material B for 7= 300 K.

1

(@) Consider silicon at T = 300 K. Plot the thermal equilibrium electron concentra-
tion i, (0n a log scale) over the energy range 0.2 < E. — Er < 0.4 ¢V. () Repeat
part (g} for the hole concentration over the range 0.2 = Er — E, < 0.4 eV.

Given the effective masses of electrons and holes in silicon, germanium, and galliun
arsenide, calculate the position of the intrinsic Fermi energy level with respect to the
center of the bandgap for each semiconductor at 77 = 300 K.

(@) The carrier eftective masses in a semiconductor are pr;, = 0.62mg and mr) = Ldn
Determine the position of the intrinsic Fermi level with respect to the center of the
bandgap at T = 300 K. (b) Repeat part {a) tf m; = 1.}0mq and m, = 0.25m.

Table 4.5 | Intrinsic concentration as a
lunction of temperaiare

TKY n; (cm™)
200 1.82 x 10°
300 5.83 x 10
400 374 % 10"

500 1.95 x 10"




' ; Problems

412 Caleulate Er; with respect to the center of the bandgap in silicon for T = 200. 400,
and 600 K,

4.13 Plot the intrinsic Fermi energy £, with respeet to the center of the bandgap in silicon
for 200 < T < 600 K.

4.14 If the density of states function in the conduction band of a particular semiconductor
is a constant equal to K, derive the expression for the thermal-equilibrium concentra-
tion of electrons in the conduction band, assuming Fermi--Dirac statistics and assum-
ing the Boltzmann approximation is valid.

4.15 Repeat Problem 4.14 if the density of states function is given by g.(E) = C (E — E,)
for E > E, where C, is a constant.

Section 4.2 Dopant Atoms and Energy Levels

4.16 Calculate the ionization energy and radius of the donor electron in germanium using
the Bohr theory. {(Use the density of states effective mass as a first approximation.)
417 Repeat Problem 4.16 for gallium arsenide.

Section 4.3 The Extrinsic Semiconductor

418 The electron concentration in silicon at T = 300 K is ng = 5 x 10* ¢em ™. {a) Deter-
mine . Is this n- or p-type material? () Determine the position of the Fermi level
with respect to the intrinsic Fermi level.

4.19 Determine the values of i, and pg for silicon at T = 300 K if the Fermi energy is
0.22 eV above the valence band energy.

420 (@I E. — Ep = 0.25 ¢V in gallium arsenide at T = 400 K, calculate the values of
np and py. (b) Assuming the value of ng from part (@) remains constant, determine
E. - Ep and py at T =300 K.

421 The value of py in silicon at T = 300 K is 10" ¢cm~*. Determine (2) £, — £ and
(b) no.

4.22 (&) Consider silicon at T = 300 K. Determine pg if Er; — Ep = 0.35eV. (b) Assum-
ing that po from part (¢) remains constant, determine the value of £7; — E¢ when
T =400 K. (¢} Find the value of ny in both parts (@} and ().

423 Repeat problem 4.22 for GaAs.

*4,24 Assume that Ex = E, at T = 300 K in silicon. Determine pg.

*4,25 Consider silicon at T = 300 X, which has n; = 5 x 10'° em™3. Determing E. — Ep,

Section 4.4 Statistics of Donors and Acceptors

*4.26 The electron and hole concentrations as a function of energy in the conduction band
and valence band peak at a particular energy as shown in Figure 4.8. Consider silicon
and assume £, — Ep = (.20 eV. Determine the energy, relative to the band edges, at
which the concentrations peak.

*4,27 For the Boltzmann approximation to be valid for a semiconductor, the Fermi level
must be at least 3kT below the donor leve] in an n-type material and at least 34T above
the acceptor level in a p-type material. If T = 300 K, determine the maximum elec-
tron concentration in an n-type semiconductor and the maximum hele concentration

|

&
|
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4.28

in a p-type semiconductor for the Boltzmann approximation to be valid in (a) silicon
and (b} gallium arsenide.

Plot the ratio of un-ionized denor atoms to the total electron concentration versus
temperature for silicon over the range 50 < 7' < 200 K,

Section 4,5 Charge Neutrality

4.2%

*4.30

4.31

4.32
433

4.34

4.35

4.36

4.37

4.38

4.39
4.40

4.41

Consider a germanium semiconductor at T = 300 K. Calculate the thermal equilib-
rium concentrations of ny and py for (@) N, = 10 em™3, N, = 0, and (b)) N, =
5x 10% em™ N, =1,

The Fermi level in n-type silicon at 7 = 300 K is 245 meV below the conduction
band and 200 meV below the donor level. Determine the probability of finding an
electron () in the donor level and (b) in a state in the conduction band &7 above the
conduction band edge.

Determine the equilibrium electron and hole concentrations in silicon for the follow-
ing conditions: 1}
@) T=300K, N, =2%x10%m 3 N, =0

(b) T =300K. N, =0, N, = 10 cm~?

(¢) T =300K. N, = N, = 10" cm™*

(d)y T =400K. N; =0, N, = 10" em™

{e) T'=3500K Ny =10"em™?, ¥, =0

Repeat problem 4.31 for GaAs.

Assume that silicon. germanium, and gallivm arsenide each have dopant concentra-
tionsof ¥y = 1 x 10" em™ and N, = 2.5 x 10"* em~ at T = 300 K. For each of
the three materials (&) Is this material n type or p type? (&) Calculate sp and py.

A sample of silicon at T = 450 K is doped with boron at a concentration of 1.5 x
10" cm’ ? and with arsenic at a concentration of 8 x 10" em™2. (u) Is the materiatn
or p type? (b) Determine the eleetron and hole concentrations. (¢} Calculate the total
ionized impurity concentration.

The thermal equilibrium hole concentration in silicon at T =300 K is g = 2 x

10° em™*. Determine the thermal equilibrium electron concentration. Is the material
1 type or p type?

In a sample of GaAs at T = 200 K, we have experimentally determined that sy =3
and that N, = 0. Calculate ng, pg, and N,

Consider a sample of silicon doped at N, = 0 and N, = 10" em™>. Plot the majority
carrier concentration versus temperature over the range 200 < 7 < 500 K. i
The temperature of a sample of silicon is T = 300 K and the acceptor doping conce,
tration is N, = (), Plot the minority carrier concentration (on a log-log plot) versus Nj
over the range 10" < Ny < 10" cm™3.

Repeat problem 4.38 for GaAs.

A particular semiconductor material is doped at Ny = 2 x 10 em™, N, = ¢, and
the intrinsic carrier concentration is 7, = 2 % 10" em™. Assume complete ionizati
Determine the thermal equilibrium majority and minority carrier concentrations.

(&) Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentration of
2 x 10" em~? and boron atoms at a concentration of 1 x 10" em . Determine the
thermal equilibrium concentrations of majority and minority carriers. (b) Repeat



4.42

Problems

part {a) if the impurity concentrations are 2 x 10" ¢cm™ phosphorus atoms and 3 x

-3
10 ¢m ™ boron atoms,

In silicon at T = 300 K, we have experimentally found that ny = 4.5 x 10* cm= and

Ny =35 x 10" em=>. (a) Is the material n type or p type? () Determine the majority
and minority carrier concentrations. (c) What types and concentrations of impurity
atoms exist in the material?

Section 4.6  Position of Fermi Energy Level

443

44

445

446

447

448

449

4.50

Consider germanium with an acceptor concentration of N, = 10" em~? and a donor
concentration of N, = 0. Consider temperatures of T == 200, 400, and 600 K. Calcu-
late the position of the Fermi energy with respect to the intrinsic Fermi level at these
temperatures.

Consider germanium at T = 300 K with donor concentrations of N, = 10'*, 10'°,
and 10" em~?, Let N, = 0. Calculate the position of the Fermj energy level with re-
spect to the intrinsic Ferm level for these doping concentratiors.

A GaAs device is doped with a donor concentration of 3 x 10" cm™3, For the device
to operate properly, the intrinsic carrier concentration must remain less than 5 percent
of the total electron concentration. What is the maximum temperature that the device
may operate?

Consider germanium with an acceptor concentration of N, = 10" cm~* and a donor
concentration of N; = 0. Plot the position of the Fermi energy with respect 1o the
intrinsic Fermi level as a function of temperature over the range 200 < T < 600 K.
Consider silicon at T = 300 K with N, = 0. Plot the position of the Fermi energy
leve] with respect to the intrinsic Fermi level as a function of the donor doping con-

centration over the range 10" < N,; < 10'% em™3,

For a particular semiconductor, £, = 1.50 eV, m; =10m>, T = 300 K, and

n; =1 x 10° cm™, (a) Determine the position of the intrinsic Fermi energy level
with respect to the center of the bandgap. (5) Impurity atoms are added so that the
Fermi energy level is 0.45 eV below the center of the bandgap. (/) Are acceptor or
donor atoms added? (i/) What is the concentration of impurity atoms added?

Silicon at T = 300 K contains acceptor atoms at a concentration of &, = 5 x

10*% cm™*. Donor atoms are added forming an n-type compensated semiconductor
such that the Fermi level is 0.215 eV below the conduction band edge. What concen-
tration of donor atoms are added?

Silicon at T = 300 K is doped with acceptor atoms at a concentration of N, =7 x
10" ¢cm . (a2) Determine £ — E,. (b} Calculate the concentration of additional
acceptor atoms that must be added to move the Fermi level a distance kT closer to the
valence-band edge.

(a) Determine the position of the Fermi level with respect to the intrinsic Fermi level
in silicon at T = 300 K that is doped with phosphorus atoms at a concentration of
10" em™2. (b) Repeat part (a) if the silicon is doped with boron atoms at a concentra-
tion of 10" cm™. (¢) Calculate the electron concentration in the silicon for parts

(a) and (b).

Gallium arsenide at T = 300 K contains acceptor impurity atoms at a density of

13" cm™*, Additional impurity atoms are to be added so that the Fermi level is

0.45 eV below the intrinsic level, Determine the concentration and type (donor or
acceptor) of impurity atoms to be added.

(e llle]
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4.53 Determine the Fermi energy level with respect to the intrinsic Fermi level for each
condition given in Problem 4.31.

4.54 Find the Fermi energy level with respect to the valence band energy for the conditi
given in Problem 4.32.

4.55 Calculate the position of the Fermi energy level with respect to the intrinsic Fermi i
the conditions given in Problem 4.42.

Summary and Review

@Al

n-type and doped with 1 x 10'* cm™? donor atoms. Assume complee ionization a
assume N, = 0. The effective density of states functions are given by N. = N, =

1.5 x 10" em™? and are independent of temperature. A particular semiconductor
device fabricated with this material requires the electron concentration to be no *
greater than 1.01 x 10 cm™? at 7 = 400 K. What is the minimum value of the 3
bandgap energy? '

1
!
i

A

4.56 A special semiconductor material is to be “designed.” The semiconductor is to be mi

4.57 Silicon atoms, at 4 concentration of 10'" ¢cm *, are added to gallium arsenide. Ass

that the silicon atoms act as fully ionized dopant atoms and that 5 percent of the con-
centration added replace gallium atoms and 95 percent replace arsenic atoms. Let

T = 300 K. {(a) Determine the donor and acceptor concentrations. (b) Calculate the
electron and hole concentrations and the position of the Fermi level with respect

to Ep;.

4.58 Defects in a semiconductor material introduce allowed energy states within the for-
bidden bandgap. Assume that a particular defect in silicon introduces two discrete lz!
els: a donor level {1.25 eV above the top of the valence band, and an acceptor level #
0.65 eV above the 1op of the valence band. The charge state of each defect is a func-
tion of the position of the Fermi level. (a) Sketch the charge density of each defect
the Fermi level moves from E, to E.. Which defect level dominates in heavily do
n-type material? In heavily doped p-type material? (&) Determine the electron and 3
hole concentrations and the location of the Fermi level in (i) an n-type sample doped *
at Ny = 10" e~ and (ié) in a p-type sample doped at N, = 10'7 em™. (¢) Deter-
mine the Fermi level position if no dopant atoms are added. Is the material n-type,
p-type. or intrinsic?
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Carrier Transport Phenomena

PREVIEW

n the previous chapter, we considered the semiconductor in equilibrium and de-

termined electron and hole concentrations in the conduction and valence bands,

respectively. A knowledge of the densities of these charged particles is important
towird an understanding of the electrical properties of a semiconductor material. The
net flow of the electrens and holes in a semiconductor will generate currents. The pro-
cess by which these charged particles move is called rransport. In this chapter we
will consider the two basic transport mechanisms in a semiconductor crystal: drift—
the movement of charge due to electric fields, and diffusion—the flow of charge due
to density gradients. We should mention, in passing, that temperature gradients in a
semiconductor can also lead to carrier movement. However, as the semiconductor
device size becomes smaller, this effect can usually be ignored. The carrier transport
phenomena are the foundation for finally determining the current-voltage character-
istics of semiconductor devices. We will implicitly assume in this chapter that,
though there will be a net flow of electrons and holes due to the transport processes,
thermal equilibrium will not be substantially disturbed. Nonequilibrium processes
will be considered in the next chapter. W

5.1 | CARRIER DRIFT

An electric field applied to a semiconductor will produce a force on electrons and
holes so that they will experience a net acceleration and net movement, provided
there are available energy states in the conduction and valence bands. This net move-
ment of charge due to an electric field 1s called drift. The net drift of charge gives rise
to a drift current.
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51.1 Drift Current Density

If we have a positive volume charge density p moving at an average drift velocity vy,
the drift current density is given by

Jiry = PUy (5.1)

where J is in units of C/cm®-s or amps/cm?. If the volume charge density is due to
positively charged holes, then

Jplrjrf = (l’-’P)Ua‘p (52)

where J, s is the drift current density due to holes and vy, is the average drift ve-
locity of the holes.

The equation of motion of a positively charged hole in the presence of an elec-
tric field is

F=mua=¢E (5.3

where ¢ is the magnitude of the electronic charge, a is the acceleration, E is the elec-
tric field, and m;’; is the effective mass of the hole. If the electric field is constant, then
we expect the velocity to increase linearly with time. However, charged particles in a
semiconductor are involved in collisions with tonized impurity atoms and with ther-
mally vibrating lattice atoms. These collisions, or scattering events, alter the velocity
characteristics of the particle.

As the hole accelerates in a crystal due to the electric field, the velocity in-
creases. When the charged particle collides with an atom in the crystal, for example,
the particle loses most, or all, of its energy. The particle will again begin to acceler-
ate and gain energy until it is again involved in a scattering process. This continues
over and over again. Throughout this process, the particle will gain an average drift
velocity which, for low electric fields, is directly proportional to the electric field.
We may then write

Udp = tpE (5.4)

where i, is the proportionality factor and is called the hole mobility. The mobility is
an important parameter of the semiconductor since it describes how well a particle
will move due to an electric field. The unit of mobility is usually expressed in terms
of cm?/ V-s.

By combining Equations (5.2) and (5.4), we may write the drift current density
due to holes as

Jpary = (ep)uyy = et pE {5.3)

The drift current due to holes is in the same direction as the applied electric field.
The same discussion of drift applies to electrons. We may write

Jnla’rf = PUap = (—en)Uyp (5.6)

where Jy, is the drift current density due to electrons and vy, is the average drift
velocity of electrons. The net charge density of electrons is negative.
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Table 5.1 | Typical mobility values at T = 300 K and low doping
concentsations

=

Ity (cm?/V-5) I (em?/V-5)
Silicon 1350 4380
Gallium arsenide 8500 400

Germanium 3900 1900 ‘

for small fields. However, since the eleciron is negatively charged, the net motion

The average drift velocity of an electron is also proportional to the electric ﬁe}l
the electron is opposite to the electric field direction. We can then write

Ugy = —UpE (

where 4, is the electron mobility and is a positive quantity. Equation (5.6) may no
be written as

Jn\drf = (—en){(—u,E) = eu,nE (3.

The conventional drift current due to electrons is also in the same direction as
applied electric field even though the electron movement is in the opposite directio

Electron and hole mobilities are functions of temperature and doping concen
tions, as we will see in the next section. Table 5.1 shows some typical mobility vak
ues at T = 300 K for low doping concentrations. ’

Since both electrons and holes contribute to the drift current, the total drift cu
density is the sum of the individual electron and hole drift current densities, so we
write

J(irf =i e(#nn ot ,LL‘,)P)E ( i

EXAMPLE 5.1

Objective

To calculate the drift current density in a semiconductor for a given electric field.
Consider a gallivm arsenide sample at T = 300 K with doping concentrations of ¥, =

and N; = 10'% ¢m~?. Assume complete ionization and assume electron and hole mobilit

given in Table 5.1. Calculate the drift current density if the applied electric field is E = 10Vie

N Solution ‘
Since Ny > N,, the semiconductor is n type and the majorily carrier electron concentrati
from Chapter 4 is given by

=

Ndir: Nd_Na
Z +( 2

2
) +n? 10" em™?

The minority carrier hole concentration is

n? (1.8 x 10%? 4 3
p:; = T =324 x 107" cm
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For this extrinsic n-type semiconductor, the drift current density s
Jary = e(pan + 1, P)E = ejt, NGB
Then
Jarr = (1.6 x 1077385000 (10'°)(10) = 136 Alem’
% Comment
Significant drift current densities can be obtained in a semiconductor applying relatively small

eleciric fields. We may note from this example that the drift current will usually be due pri-
marily to the majority carrier in an extrinsic semiconductor.
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TEST YOUR UNDERSTANDING

E5.1 Consider a sample of silicon at T = 300 K doped at an impurity concentration of
Ny = 10" cm? and N, = 10 cm ™. Assume electron and hole mobilities given in
Table 5.1. Calculate the drift current density if the applied electric field is E = 35 V/cm,
(Uo/V 08°0 "suy)

E5.2  Adrift current density of J,,, = 120 Alem’ is required in a particular semiconductor
device using p-type silicon with an applied electric field of E = 20 Viem. Deterntine
the required impurity doping concentration to achieve this specification. Assume elec-
tron and hole mobilities given in Table 5.1. (; W3 01 X 18°L = "N = ¥d 'suy)

512 Mobility Effects

In the last section, we defined mobility, which relates the average drift velocity of a
carrier to the electric field. Electron and hole mobilities are important semiconductor
parameters in the characterization of carrier drift, as seen in Equation (5.9),

Equation (5.3) related the acceleration of a hole to a force such as an electric
field. We may write this equation as

Femt 32 (5.10)
3 = FH —_ = i
4 var ¢

where v is the velocity of the particle due to the electric field and does not include
the random thermal velocity. If we assume that the effective mass and electric field
are constants, then we may integrate Equation (5.10) and obtain

eEr

*
mp

=

(5.11)

where we have assumed the initial drift velocity te be zero.

Figure 5.1la shows a schematic model of the random thermal velocity and mo-
tion of a hole in a semiconductor with zero eleciric field. There is a mean time be-
tween collisions which may be denoted by 7,,,. If 4 small electric field (E-field) is
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E field ,il

(a) )] #

Figure 5.1 | Typical random behavior of a hole in a semiconductor (a) without an :
electric field and (b) with an electric field.

applied as indicated in Figure 5.1b, there will be a net drift of the hole in the direction
of the E-field, and the net drift velocity will be a small perturbation on the random
thermal velocity, so the time between collisions will not be altered appreciably. If we;
use the mean time between collisions 1., in place of the time ¢ in Equation (3.11),
then the mean peak velocity just prior to a collision or scattering event is

a5 '

V| peak = = |E (5.123)
Hi;
P

The average drift velocity is one half the peak value so that we can write
1 fet, _

{va) = 5{ —~ JE (5.120)

2\

However, the collision process is not as simple as this model, but is statistical i
nature. In a more accurate model including the effect of a statistical distribution, the
factor % in Equation (5.12b) does not appear. The hole mobility is then given by

Udp €Tep

= = 513
o == (513

The same analysis applies to electrons; thus we can write the electron mobility as
Hy = — (514)
m ]

where t,, is the mean time between collisions for an electron.

There are two collision or scattering mechanisms that dominate in a semicon-
ductor and affect the carrter mobility: phonen or lattice scattering, and ionized im-
purity scattering.

The atoms in a semiconductor crystal have a certain amount of thermal energy
at temperatures above absolute zero that causes the atoms to randomly vibrate about
their lattice position within the crystal. The lattice vibrations cause a disruption in mi
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perfect periodic potential function. A perfect periodic potential in a solid allows elec-
trons fo move unimpeded. or with no scattering, through the crystal. But the thermai
vibrations cause a disruption of the potential function, resulting in an interaciion be-
tweeit the electrons or holes and the vibrating lattice atoms, This lattice scattering is
also referred to as phonon scattering.

Since lattice scattering is related to the thermal motion of atoms, the rate at
which the scattering occurs is a function of temperature. If we denote ;. as the mo-
bility that would be observed if only lattice scattering existed, then the scattering the-
ory states that to first order

pp o T7342 (5.15)

Mobility that is due to lattice scattering increases as the temperature decreases. Intu-
itively, we expect the lattice vibrations to decrease as the temperature decreases,
which implies that the probability of a scattering event also decreases, thus increas-
ing mobility.

Figure 5.2 shows the temperature dependence of electron and hole mobilities in
silicon. In lightly doped semiconductors, lattice scatiering dominates and the carrier
mobility decreases with temperature as we have discussed. The temperature depen-
dence of mobility is proportional to T~". The inserts in the figure show that the pa-
rameter # 1s not equal to % as the first-order scattering theory predicted. However,
mobility does increase as the temperature decreases,

The second interaction mechanism affecting carrier mobility is called ionized
impurity scattering. We have seen that impurity atoms are added to the semiconduc-
tor 1o control or alter its characteristics. These impurities are ionized at room tem-
perature so that a coulomb interaction exists between the electrons or holes and the
jomized impurities. This coulomb interaction produces scattering or collisions and
also alters the velocity characteristics of the charge carrier. If we denote g, as the
mobility that would be observed if only ionized impurity scatiering existed, then to
first order we have

T—f-}f?
Ny

Hi o (5.16)

where Ny = N + N is the total ionized impurity concentration in the semicon-
ductor. If temperature increases, the random thermal velocity of a carrier increases,
reducing the time the carrier spends in the vicinity of the ionized impurity center. The
less time spent in the vicinity of a coulomb force, the smaller the scattering effect and
the larger the expected valve of p;. If the number of ionized impurity centers
increases, then the probability of a carrier encountering an ionized impurity center
increases, implying a smaller value of ;.

Figure 5.3 is a plot of electron and hole mobilities in germanium, silicon, and
gallium arsenide ai T = 300 K as a function of impurity concentration. More accu-
rately, these curves are of mobility versus ionized impurity concentration N,. As
the impurity concentration increases, the number of impurity scattering centers in-
creases, thus reducing mobility.

150



I” n‘ — o i BREEI R

[T C .11

Aot r_v _u—Z.

MOUs s1IasU] “suonenuasuo Jurdop snouma 10J 2rmeradiu) SnSIaa uod |- Ul 531)

qr aameanduual

W) | 2TS aandy]

{q) (®)
(D) 4 (Da) L
00¢ 0%l 001 [HY 0 05— 00¢ 081 § ] 0% 0 :molm
01
(ML
0001 nng 00z (L
{HH
[T 1
IRUEIN = Yo 001
/ i L]
\ _a
N — I
b P,
UL Y
i fﬂ llllllllllllll gl = N
ot ="w
61
¥ o
o T [
001 3, L L ! ws 3,
iy < 2% R0 =N =
2 S S &,
et H M ™
| T
] ..”....._... < T 0001
I!JI””...J... l..lll...r ¥ 0001 Doy 0oz 00l
l.....M””...... ...r....l...... :C_ N Y i
ENe W ~uy 1 00g
™ I
TR T o 000z
N o Y
S ™
001 = YN ......f... i - /// bt ™
I LY 2
! 0l 1?— N / 000g
h
N 000¥
000 000¢

160



5.1 Carrier Drift

1o ; He—=—=inie——==
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Figure 5.3 | Electron and hole mobilitics versus impurity
concentrations for germanium, silicon, and gallium
arsenide at T = 300K.

(From Sze [12])

TEST YOUR UNDERSTANDING

E5.3 (a) Using Figure 5.2, find the electron mobility for () N, = 107 em™. T = 150°C

and (i} Ny = 10" em™?, T = 0°C, () Find the hole mobilities for (i) N, =

10 em™, T = 50°C; and (i) No = 10" em™, T = 150°C.

[5-AS W2 00T~ (1) *S-Af WD 088~ (@) S-A/ U Q0G T~ (1) S-A/ W2 00 (2) (1) "suy]
E54 Using Figure 5.3, determine the electron and hole mobilities in (a) silicon for

Ny =10%em™, N, = 0: (b) silicon for Ny = 107 em™, N, =5 x 10 em™;

(¢) silicon for Ny = 10'% em™*, N, = 10'7 cm" *; and (d) GaAs for

Ny =N, = 107 em™3, [S-A/M0 0ZT = ‘7 °006% = "1 {P)

1€ = 7008 & “11 () 100€ & “ Q0L & T (q) 08y = "1 0SEL = T () suy]

If 7; is the mean time between collisions due to lattice scattering. then dt /7, is
the probability of a lattice scattering event occurring in a differential time di.
Likewise, if 7; is the mean time between collisions due to ionized impurity scattering,

161



162

CHAPTER & Carrier Transport Phenomena

then d¢ /7, is the probability of an ionized impurity scattering event occurring in th.

differential time d!. If these two scattering processes are independent, then the tou

probability of a scattering event occurring in the differential time dr is the sum of th

individual events, or

dt dr dt
= — 4+ —

(5.7
T 17,
where 7 is the mean time between any scaltering event.
Comparing Equation (5.17) with the definitions of mobility given by Equ:
tion (5.13) or (5.14), we can write

—=—+— (5.14

where 11/ is the mobility due to the ionized impurity scattering process and gy is th
mobility due to the lattice scattering process. The parameter g is the net mobilin
With two or more independent scattering mechanisms, the inverse mobilities ady
which means that the net mobility decreases.

5.1.3 Conductivity
The drift current density, given by Equation (5.9), may be written as
Jary = e(pan + jt, p)E = oE (5.1

where o is the conductivity of the semiconductor material. The conductivity is give:
in units of (£2-cm)~! and is a function of the electron and hole concentrations and mo
bilities. We have just seen that the mobilities are functions of impurity concentration:
conductivity, then is a somewhat complicated function of impurity concentration.

The reciprocal of conductivity is resistivity, which is denoted by p and is give
in units of chm-cm. We can write the formula for resistivity as

1 1
p=—

= (3.2
o e{pant + [pp)

Figure 5.4 is a plot of resistivity as a function of impurity concentration in silicor
germanium, gallium arsenide, and gallium pheosphide at T = 300 K. Obviously, th
curves are not linear functions of N, or N, because of mobility effects.

If we have a bar of semiconductor material as shown in Figure 5.5 with a vol
age applied that produces a current /, then we can write

d = e (5.21a
A

and

v
B e (5.21b,
L
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Area A

Figure 5.5 | Bar of semiconductor material as a resistor.

We can now rewrite Equation (5.19) as

I V) )
A’G(L e

) =(5)
v=[—}i=({=)r=1IR (5.2
agA A

Equation (5.22b) is Ohm’s law for a semiconductor. The resistance is a function of
resistivity, or conductivity, as well as the geometry of the semiconductor.

If we consider, for example, a p-type semiconductor with an acceptor doping
N, (N, = D) in which N, 3> n;, and if we assume that the electron and hole mobii-
ties are of the same order of magnitude, then the conductivity becomes

or

o =¢elp,n+u,p) = euyp {3.23)
If we also assume complete ionization, then Equation (5.23) becomes

1
o R ep,N, &~ ; (5.24)

The conductivity and resistivity of an extrinsic semiconductor are a function pi-
marily of the majority carrier parameters. |

We may plot the carrier concentration and conductivity of 4 semiconductor as al
function of temperature for a particular doping concentration. Figure 5.6 shows the
electron congentration and conductivity of silicon as a function of inverse temperature
for the case when N; = 10" em™. In the midtemperature range, or extrinsic range,
as shown, we have complete ionization—the electron concentration remains essen-
tially constant. However, the mobility is a function of temperature so the conductivity



5.1 Carrier Drift

500 T8
-~ 102!_3(30 2(30 ](I)O 7|S

T 10 1o _
g L
g E
g [¥)
: d
g 109 Loz
8 =
g -
o 3
: E
g oM 0.1 S

3 o 3

) |13}

1013

Figure 5.6 | Electron concentration and conductivity versus
inverse temperature for silicon.
{After Sze [12].)

varies with temperature in this range. At higher temperatures, the intrinsic carrier con-
centration increases and begins to dominate the electron concentration as well as the
conductivity. In the lower temperature range, freeze-out begins to occur; the electron
concentration and conductivity decrease with decreasing temperature.
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Objective

To determine the doping concentration and majority carrier mobility given the type and con-
ductivity of a compensated semiconductor.

Consider compensated n-type silicon at T =300 K, with a conductivity of o =
16 ($2-cm)~! and an acceptor doping concentration of 10'7 ¢m™*

centration and the electron mobility.

. Determine the donor con-

H Solution
For n-type silicon at T = 300 K, we can assume complete ionization; therefore the conductiv-
ity, assuming Ny — N, 3 n;, is given by

‘: g = el,n = E,U."(Nd - Na)
We have that
i 16 = (1.6 x 107 "), (N, — 107

Since mobility is a function of the ionized impurity concentration. we can use Figure 5.3 along
with trial and error to determine p,, and A,. For example, if we choose Ny = 2 x 10%, then

EXAMPLE 5.2



166 CHAPTER § Carrier Transport Phenomena

Ny =N+ N, =3x 107 so that 4, = 510 em?/V-s which gives o = 8.16 (Q-cm)”
If we choose Ny =5 x 107, then Ny =6 x 10V so that g, = 325 em®/V-s, which gi
o = 20.8 (Q-cm)~'. The doping is bounded between these two values. Further trial and e

yields
Ng 3.5 x 10" cm™
and
i 2 400 em? /V=s
which gives

a7 16 (C-cm)™!

m Comment
We can see from this example that. in high-conductivity semiconductor material, mobility is
strong function of carrier concentration.

DESIGN I Objective
EXAMPLE 5.3

To design a semiconductor resistor with a specified resistance to handle a given current densi
A silicon semiconductor at 7 = 300 K is initially doped with donors at a concentration

If]

Ng =5 % 10" em™. Acceptors are to be added to form a compensated p-type material.
resistor is to have a resistance of 10 kS2 and handle a current density of 50 A/em® when 5 V

f

applied.

N Solution
For 5 V applied to a 10-k2 resistor, the total current is

Vv 5
I=—-=—=05mA
R~ 10 "
If the current density is limited to 50 A/cm?, then the cross-sectional area is

I 05x107

Ko B = Fem?
7 50 om

If we, somewhat arbitrarily at this point, limit the electric field to E = 100 V/cm, then t
length of the resistor is

14

— =" =5x%x10"%¢em
E 100

L=

From Equation (5.22b), the conductivity of the semiconductor is

5% 1077

b 0T sstsemy
RA  (10%(10-%)
The conductivity of a compensated p-type semiconductor is

O ReU,p = e.u-p(Na — Ny}

where the mobility is a function of the total ionized impurity concentration N, + N.
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Using trial and error, if &, = 1.25 x 10" e¢m™3, then N, + N, = 1.75 x 10'® em™?,
and the hole mobility, from Figure 5.3, is approximately s, = 410 em*/V-s. The conductivity
is then

o = e, (N, — Np) = (1.6 x 107¥3(410)(1.25 x 10" =5 x 10"%) = 0.492
which is very close to the value we need.

m Comment
Since the mobility is related to the total ionized impurity concentration, the determination of
the impurity concentration to achieve a particular conductivity is not straightforward.
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TEST YOUR UNDERSTANDING

E35 Siliconat T = 300 K is doped with impurity concentrations of N; = 5 x 101% cm 3
and N, = 2 x 10"® cm™?. {@) What are the electron and hole mobilities? (b) Deter-
mine the conductivity and resistivity of the material. [W2-35 80z 0 = ¢
(W) §'F = 0 {g) 'SA/ D OSE = U7 s A/ WO 0001 = 7T (D) “suy]

E3.6 For a particular silicon semiconductor device at T = 300 K, the required material is
n type with a resistivity of 0.10 £-cm. {a) Determine the required impurity doping
concentration and (k) the resulting electron mobility.

[S-A/ W0 €69 = "1 () . _wd (01 X 6 = "N ‘¥ 2B woL] (1) suy]

E5.7  Abar of p-type silicon, such as shown in Figure 5.5, has a cross-sectional area of
A= 10"% cm® and a length of L = 1.2 x 102 cm. For an applied voltage of 5V, a
current of 2 mA is required. What is the required (a) resistance, (b) resistivity of the
silicon, and (¢) impurity doping concentration?

[cwo 0] X £ & "N 9) wa-g5 RO'T () 55N ST (#) suy]

For an intrinsic material, the conductivity can be written as
or = ety + Up)n; (5.25)

The concentrations of electrons and holes are equal in an intrinsic semiconductor, so
the intrinsic conductivity includes both the electron and hole mobility. Since, in gen-
eral, the electron and hole mobilities are not equal, the intrinsic conductivity is not
the minimum value possible at a given temperature.

5.1.4 Velocity Satoration

So far in our discussion of drift velocity, we have assumed that mobility is not a func-
tion of electric field, meaning that the drift velocity will increase linearly with ap-
plied electric field. The total velocity of a particle is the sum of the random thermal
velocity and drift velocity, At T = 300 K, the average random thermal energy is
given by

Imuj, = 3kT = 3(0.0259) = 0.03885 eV (5.26)
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Figure 5.7 | Carrier drift velocity versus electric field for
high-purity siticon, gerrmaninm, and gallium arsenide.
(From Sze [I2].)

This energy translates into a mean thermal velocity of approximately 107 cm/s foran
electron in silicon. If we assume an electron mobility of 11, = 1350 cm?/V-s in low-
doped silicon, a drift velocity of 10° em/s, or | percent of the thermal velocity, i
achieved if the applied electric field is approximately 75 V/cm. This applied electric
tield does not appreciably alter the energy of the electron.

Figure 5.7 is a plot of average drift velocity as a function of applied electric field
for electrons and hoeles in silicon, gallium arsenide, and germanium, At low electric
fields, where there is a linear variation of velocity with electric field, the slope of the
drift velocity versus electric field curve is the mobility. The behavior of the drift ve-
Jocity of carriers at high electric fields deviates substantiaily from the linear relation-
ship observed at low fields. The drift velocity of electrons in silicon, for example.
saturates at approximately 107 em/s at an electric field of approximately 30 kViem,
If the drift velocity of a charge carrier saturates, then the drift current density also
saturates and becornes independent of the applied electric field. \

The drift velocity versus electric field characteristic of gallium arsenide is mere
complicated than for silicon or germaninm. At low fields. the slope of the drift ve-
locity versus E-field is constant and is the low-fteld electron mobility, which is ap-
proximately 8500 cm?/V-s for gallium arsenide. The low-field electron mobility in
gallium arsenide is much larger than in silicon. As the field increases, the electron
drift velocity in gallium arsenide reaches a peak and then decreases. A differential
mobility is the slope of the v, versus E curve at a particular point on the curve and
the negative slope of the drift velocity versus electric field represents a negative dif
terential mobility. The negative differential mobility produces a negative differential
resistance; this characteristic is used in the design of oscillators.
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GaAs Conduction
band

Valence
band

[111] 0 [100]

Figure 5.8 | Energy-band structure
for gallium arsenide showing the
upper valley and lower valley in
the conduction band.

(FromSze [13).)

The negative differential mobility can be understood by considering the £ versus
k diagram for gallium arsenide, which is shown again in Figure 5.8. The density of
states effective mass of the electron in the lower valley is m), = 0.067mq. The small
effective mass leads to a large mobility. As the E-field increases, the energy of the
electron increases and the electron can be scattered into the upper valley, where the
density of states effective mass is 0.55my. The larger effective mass in the upper
valley yields a smaller mobility. This intervalley transfer mechanism results in a de-
creasing average drift velocity of electrons with electric field, or the negative differ-
ential mobility characteristic.

5.21 CARRIER DIFFUSION

There is a second mechanism, in addition to drift, that can induce a current in a semi-
conductor. We may consider a classic physics example in which a container, as shown
inFigure 5.9, is divided into two parts by a membrane. The left side contains gas mol-
ecules at a particular temperature and the right side is initially empty. The gas mole-
cules are in continual random thermal motion so that, when the membrane is broken,
the gas molecules flow into the right side of the container. Diffusion is the process
whereby particles flow from a region of high concentration toward a region of low
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L ] * L
L ] L ] |

e ¢ .:
.
r=0

Figure 5.9 | Container
divided by a membrane with
gas molecules on one side,

n(0)

n(—1)

Figure 5.10 | Electron concentration versus disiance.

concentration. If the gas molecules were electrically charged, the net flow of ¢h
would result in a diffusion current.

5.2.1 Diffusion Current Density

To begin to understand the diffusion process in a semiconductor, we will consider,
simplified analysis. Assume that an electron concentration varies in one dimension
shown in Figure 5.10. The temperature is assumed to be uniform so that the ave
thermal velocity of electrons is independent of x. To calculate the current, we will
termine the net flow of electrons per unit time per unit area crossing the plane 3
x = (. If the distance / shown in Figure 5.10 is the mean-free path of an electron,

is, the average distance an electron travels between collisions (! = vy 1...), theng
the average, electrons moving to the right at x = —/ and electrons moving to the k
atx = -+ will cross the x = 0 plane. One half of the electrons at x = —/ will be
eling 1o the right at any instant of time and one half of the electrons at x = +I will
traveling to the left at any given time. The net rate of electron flow, F,, in the +
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direction at v = 0 is given by
Fy = 3a(=Dvw — Sn(+Dvy = Supln(=) — n(+0)] (5.27)

If we expand the electron concentration in a Taylor series about x = (} keeping
only the first two terms, then we can write Equation (5.27) as

F, = 0y =1 " 0y 114 5.28
n—ivrh I’l()— ;1‘; n()’l’ﬁ} (-- )

which becomes

dn
Fy, = —upl — (529}
dx

Each electron has a charge (—e), so the current is

The current described by Equation (5.30) is the electron diffusion current and is pro-
portional to the spatial derivative, or density gradient, of the electron concentration.

The diffusion of electrons from a region of high concentration to a region of low
concentration produces a flux of electrons flowing in the negative x direction for this
example. Since electrons have a negative charge, the conventional current direction
is in the positive x direction. Figure 5.11a shows these one-dimensional flux and cur-
rent directions. We may write the electron diffusion current density for this one-
dimensional case. in the form

dn
J=—eF, = tevul — (5.30)
dx

dn
Jn,r\dif :eDn E (57)‘)

where D, is called the electron diffusion coefficient, has units of cm?/s, and is a pos-
itive quantity. If the electron density gradient becomes negative, the electron diffu-
sion current density will be in the negative x direction.

Figure 5.11b shows an example of a hole concentration as a function of distance
in a semiconductor. The ditfusion of holes, from a region of high concentration to a
region of low concentration, produces a flux of holes in the negative x direction,
Since holes are positively charged particles, the conventional diffusion current den-
sity is also in the negative x direction. The hole diffusion current density is propor-
ticnal to the hole density gradient and to the electronic charge, so we may write

d
Jp,t|dif = *er ﬁ (532)
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Figure 5.11 | {a) Diffusion of electrons due to a density
gradient. (b) Diffusion of holes due to a density gradient.

for the one-dimensional case. The parameter D, is called the hole diffusion coe
cient, has units of cm?/s, and is a positive quantity. If the hole density gradient
comes negative, the hole diffusion current density will be in the positive x directi

EXAMPLE 5.4

Objective
To calculate the diffusion current density given a density gradient.

Assume that, in an n-type gallium arsenide semiconductor at T = 300 K, the elec
concentration varies linearly from 1 x 10'* 107 x 10V ¢m™? over a distance of 0.10 cm. (4l
culate the diffusion current density if the electron diffusion coefficient is D, = 225 em®/.

H Solution
The diffuston current density is given by
dn An
Jnldr’f =ebD, E = ‘?Dn E
1 x 10°% —7 x 107

0.10

= (1.6 % 10—19)(225)( ) = 10% A/cm’

B Comment
A significant diffusion current density can be generated in a semiconductor material witho‘

a modest density gradient.
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TEST YOUR UNDERSTANDING

E58  The electron concentration in silicon is given by n{x) = 101 o=/t em™ (x > 0)
where L, = 10* em. The electron diffusion coefficient is D, = 25 cm®/s. Determine
the electron diffusion current density at (¢) x = 0, (b)) x = 107 em, and (¢) x — oc.

L (00w Lp— (@ oy op— () suy]

E5.9  The hole concentration in silicon varies linearly from x =0 to x = 0.0l cm. The
hole diffusion coefficient is D, = 10 cm*/s, the hole diffusion current density is
20 A/em?, and the hole concentration at x = Qs p = 4 x 107 cm™*, What is the
value of the hole concentration at x = 0.01 em? (U0 ;01 X §L°C Suy)

ES.10 The hole concentration in silicon is given by pix) = 2 x 107 e */Lpi em™3
(x = 0). The hole diffusion coefficient is D, = 10 cm’/s. The value of the diffusion

¥ current density at x = 0 is Jyr = +6.4 Afem® . What is the value of L,?

C (wa, Q] x ¢ = ‘7 suy)

52.2 Total Current Density

We now have four possible independent current mechanisms in a semiconductor.
These components are electron drift and diffusion currents and hole drift and diffu-
sion currents, The total current density is the sum of these four components, or, for
the one-dimensional case,

dn dp
J=enp,E, +epp,E. +eD, ;1’7 —el, Tx (5.3%
This equation may be generalized to three dimensions as
d=enp,E+epp,E+eD,Vr —eDVp (5.34)

The electron mobility gives an indication of how well an electron moves in a
semiconductor as a result of the force of an electric field. The electron diffusion co-
efficient gives an indication of how well an electron moves in a semiconductor as a
result of a density gradient. The electron mability and diffusion coefficient are not in-
dependent parameters. Similarly, the hole mobility and diffusion coefficient are not
independent parameters. The relationship between mobility and the diffusion coeffi-
cient will be developed in the next section.

The expression for the total current in a semiconductor contains four terms. For-
tunately in most situations, we will only need to consider one term at any one time at
a particular point in a semiconductor.

531 GRADED IMPURITY DISTRIBUTION

In most cases so far, we have assumed that the semiconductor is uniformly doped. In
many sermiconductor devices, however, there may be regions that are nonuniformiy
doped. We will investigate how a nonuniformly doped semiconductor reaches thermal
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equilibrium and, from this analysis, we will derive the Einstein relation, which rel
mobility and the diffusion coefficient.

5.3.1 Induced Electric Field

Consider a semiconductor that is nonuniformly doped with donor impurity atoms.
the semiconductor is in thermal equilibrium, the Fermi energy level is co
through the crystal so the energy-band diagram may qualitatively look like :u
shown in Figure 5.12. The doping concentration decreases as x increases in this vise
There will be a diffusion of majority carrier electrons from the region of high von
centration to the region of low concentration, which is in the +x direction. The lloy
of negative electrons leaves behind positively charged donor ions. The separation o
positive and negative charge induces an electric field that is in a direction to oppuos
the diffusion process. When equilibrium is reached, the mobile carrier concentrutior
is not exactly equal to the fixed impurity concentration and the induced electric licl
prevents any furiher separation of charge. In most cases of interest, the space churg
induced by this diffusion process is a small fraction of the impurity concentratio
thus the mobile carrier concentration is not too different from the impurity dop:
density.

The electric potential ¢ is related to electron potential energy by the ch
(—e), so we can write

1
¢=+E(EF_EF.") (

The electric field for the one-dimensional situation is defined as

dp 1 dEg

B O
& dx e dx

-
-

Figure 5.12 | Encrgy-band diagram for
a semiconductor in thermal equilibrium
with a nonuniform donor impurity
concentration.
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If the intrinsic Fermi level changes as a function of distance through a semiconduc-
tor in thermal equilibrium, an electric field exists in the semiconductor.

If we assume a quasi-neutrality condition in which the electron concentration is
almost equal to the donor impurity concentration, then we can still write

Er — Er;
Hy = n; exp [%} 2 Ny(x) (5.37)
Solving for Er — Ef;, we obtain
Ny
Er — Ep; = kT In ( d(”)) (5.38)
R

The Fermi level is constant for thermal equilibrium so when we take the derivative
with respect to x we obtain
dEF,- kT de (x)

dx  Nj(0)  dx EEt

The electric field can then be written, combining Equations (5.39) and (5.36), as

* E, — (kT) 1 dNg(x) (5.40)

e ) Ng(x)  dx
Since we have an electric field, there will be a potential difference through the semi-
conductor due to the nonuniform doping.

175

Objective

To determine the induced electric field in a semiconductor in thermal equilibrium, given a lin-
ear variation in doping concentration.
Assume that the donor concentration in an n-type semiconductor at 7 = 300 K is given by

Ny(x) = 10" — 10" (em™)

where x is given in cm and ranges between 0 < x < 1 um

B Solution
Taking the derivative of the donor concentration, we have
dn,
* aNal) _ g (em™)
dx

The electric field is given by Equation {5.40}), so we have

_ —(0.0259)(—10")

; E, =
t ) (101 — 10'%)

Atx =0, for example, we find

E, =239 V/cm

EXAMPLE 5.5
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H Comment
We may recall from our previous discussion of drift current that fairly small electric fields
produce significant drift current densities, so that an induced eleciric field front nonunif
doping can significantly influence semiconductor device characteristics,

5.3.2 The Einstein Relation

If we consider the nonuniformly doped semiconductor represented by the ene
band diagram shown in Figure 5.12 and assume there are no electrical connections
that the semiconductor is in thermal equilibrium, then the individual electron
hole currents must be zero. We can write

dn

Sy =0=enu,E, +e, {3
dx

If we assume quasi-neutrality so that » =~ N,(x), then we can rewrite Eq
tion (5.41) as

dN,
Jn =0= e#nNd(I)EJ\‘ =+ €D” —dj(ﬂ (5-
X

Substituting the expression for the electric field from Equation (5.40) into Eq
tion (5.42), we obtain

0= —eu, Ny (X)(kT) 1 dN4(x) ANy (x)

e J Ny(x) dx Todx

Equation (5.43) is valid for the condition

D, kT

By B

The hole current must also be zero in the semiconductor. From this conditi
we can show that

Combtining Equations (5.44a) and (5.44b) gives

Dn _ Dp kT

Mo - Hp €

The diffusion coefficient and mobility are not independent parameters. This rel
between the mobility and diffusion coefficient, given by Equation (5.45), is kno
the Einstein relation.
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5.4 The Hall Effect

Table 5.2 | Typical mobility and diffusion coefficient values at
T =300 K (¢ = cm*V-s and D = cm/s)

177

e D, Hy DP
Silicon 1350 35 480 124
Gallium arsenide 3500 220 400 1.4
Germanitm 3900 101 1900 492
Objective EXAMPLE 5.6

To determine the diffusion coefficient given the carrier mobility. Assume that the mobil-
ity of a particular carrier is 1000 em?/V-s at T = 300 K.

B Solution
Using the Einstein relation, we have that

kT 2
D= (‘) #o=(0.0259)(1000) =259 cm/s
¢

E Comment

Although this example is fairly simple and straightforward, it is important to keep in mind the
relative orders of magnitude of the mebility and diffusion coefficient. The diffusion coetficient
is approximately 40 times smaller than the mobility at room temperature.

Table 5.2 shows the diffusion coefficient values at T = 300 K corresponding to
the mobilities listed in Table 5.1 for silicon, gallium arsenide, and germanium.

The relation between the mobility and diffusion ceefficient given by Equa-
tion (5.45) contains temperature. It is important to keep in mind that the major tem-
perature effects are a result of lattice scattering and ionized impurity scattering
processes, as discussed in Section 5.1.2. As the mobilities are strong functions of
temperature because of the scattering processes, the diffusion coefficients are also
strong functions of temperature. The specific temperature dependence given in Equa-
tion (5.45) is a small fraction of the real temperature characteristic.

#5.4 | THE HALL EFFECT

The Hall effect is a consequence of the forces that are exerted on moving charges by
electric and magnetic fields. The Hall effect is used to distinguish whether a semi-
conductor is n type or p type' and to measure the majority carrier concentration and
majority carrier mobility. The Hall effect device, as discussed in this section, is used
to experimentally measure semiconductor parameters. However, it is also used
extensively in engineering applications as a magnetic probe and in other circuit
applications.

'We will assume an extrinsic sermicenductor material in which the majority carrier concentration is much
larger than the minority carrier concentration,
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Figure 5.13 | Geometry for measuring the Hall effect.

The force on a particle having a charge ¢ and moving in a magnetic field is
given by
F=guxB (5.46)

where the cross product is taken between velocity and magnetic field so that the force
vector is perpendicular to both the velocity and magnetic field.

Figure 5.13 illustrates the Hall effect. A semiconductor with a current f,
placed in a magnetic field perpendicular to the current. In this case, the magnetic field
is in the z direction, Electrons and holes flowing in the semiconductor will exper-
ence a force as indicated in the figure. The force on both electrons and holes isinthe
(~y) direction. In a p-type semiconductor (po > ngp), there will be a buildup of pos-
itive charge on the y = 0 surface of the semiconductor and, in an n-type semicon-
ductor {ng > pg), there will be a buildup of negative charge on the ¥ = ( surface,
This net charge induces an electric field in the y-direction as shown in the figure, In
steady state, the magnetic field torce will be exactly balanced by the induced electric
field force. This balance may be written as

F=g[E+vxB]l=0 (54T)

which becomes
qE, = qu.B: (5.47)
The induced electric field in the y-direction is called the Hall field, The Hall field

produces a voltage across the semiconductor which is called the Hall voltage. Wecan
write

Vy = +EyW (5.48)
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The hole mobility is then given by
I.L

L, = —————
Hi epV, Wd

Similarly for an n-type semiconductor, the low-field electron mobility is determir
from

I.L

enV, Wd .

My =

EXAMPLE 5.7

Objective

To determine the majority carrier concentration and mobility. given Hall effect parameter:

Consider the geometry shown in Figure 5.13. Let L = 107" em, W = 107% ¢m,
d = 107" cm. Also assume that I, = 1.0mA, V, =125V, B. = 500 gauss =5 x 107 g
and Vg = —6.25 mV. 1

u Solution
A negative Hall voltage for this geometry implics that we have an n-type semicondig
Using Equation (5.54), we can calculate the clectron concentration as

=5 x 107 mF =5 10" gm™ 1

3 —(L07' 15 % 107
L6 X 107 (1075 —6.25 % 10-H)

H

The electron mobility is then determined from Equation (5.58} as

(10~ Hilo

= 0.10 m*/v-
(16 % 10 )5 x 107 (12.5)(107)(105) s

Hn =

or
i = 1000 em?/Vog

B Comment
It is important to note that the MKS units must be used consistently in the Hall effect equati
to yield correct results.

—

5.5 1 SUMMARY

W The two basic transport mechanisms are drift, due to an applied electric field, and
diffusion, due to a density gradient.

B Carriers reach an average drift velocity in the presence of an applied electric field, d
to scattering events. Two scattering processes within a semiconductor are lattice
scattering and impurity scattering,

B The average drift velocity is a linear function of the applied electric field for small |
values of electric field, but the drift velocity reaches a saturation limit that is on the
order of 1(Y cim/s at high electric fields. ‘



Checkpoint

& Carrier mobility is the ratio of the average dvift velocity and applied electric field. The
electron and hole mobilities are functions of temperature and of the ionized impurity
concentration.

B The drift current density is the product of conductivity and electric field {a form of
Ohm's law). Conductivity is a function of the carner concentrations and mobilities.
Resistivity is the inverse of conductivity.

B The diffusion current density is proportional to the carrier diffusion coefficient and the
carrier density gradient.

N The diffusion coefficient and mobility are related through the Einstein relation.

M The Hall effect is a consequence of a charged carrier moving in the presence of
perpendicular electric and magnetic fields. The charged carrier is deflected. inducing
a Hall voltage, The polarity of the Hall voltage is a function of the semiconductor
conductivity type. The majority carrier concentration and mobility can be determined
from the Hall voltage.

GLOSSARY OF IMPORTANT TERMS

conductivity A materia) parameter related 1o carrier drift; quantitatively, the ratio of drift
current density to electric field.

diffusion The process whereby particles flow from a region of high concentration o a region
of Jow conceniration.

diffusion coefficient The parameter relating particle flux to the particle density gradient.
diffusion current The current that results from the diffusion of charged particles.

drift The process whereby charged particies move while under the influence of an efectric
field.

drift current  The current thar results frorn the drift of charged particles.

drift velocity The average velocity of charged particles in the presence of an electric field.
Einstein relation  The relation between the mobility and the diffusion coefficient.

Hall voltage The voltage induced across a semiconductor in a Hall effect measurement.

ionized impurity scattering The interaction between a charged carrier and an ionized
impurity center.

lattice scattering  The interaction between a charged carrier and a thermally vibrating lattice
atom.

mobility The parameter relating carricr drift velocity and electric field.

resistivity The reciprocal of conductivity; a material parameter that is a measute of the
resistance to current.

velocity saturation The saturation of carrier drift velocity with increasing electric field.

CHECKPOINT

After studying this chapter, the reader should have the ability to:

B Discuss carrier drift current density.

B Explain why carriers reach an average drift velocity in the presence of an applied
electric field.

8 Discuss the mechanisms of lastice scattering and impurity scattering,
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B Define mobility and discuss the temperature and ionized impurity concentration
dependence on mobility.

W Define conductivity and resistivity. 4

B Discuss velocity saturation.

B Discuss carrier diffusion current density.

W State the Einstein relation.

B Describe the Hall effect.

REVIEW QUESTIONS

1.  Write the equation for the total drift current density.

2, Definc carrier mobility. What is the unit of mobility?

3. Exptain the temperature dependence of mobility. Why is the carrier mobility a functi
of the ionized impurity concentrations?

4, Define conductivity. Define resistivity. What are the units of conductivity and resist

5. Sketch the drift velocity of electrons in silicon versus electric field. Repeat for G

6. Write the equations for the diffusion current densities of electrons and holes.

7. What ts the Einstein relation?

8. Describe the Hall effect.

9. Explain why the polarity of the Hall voltage changes depending on the conductivity
(n type or p type) of the semiconductor.

PROBLEMS

(Note: Use the semiconductor parameters given in Appendix B if the parameters
specifically given in a problem.)

Section 5.1 Carrier Drift

5.1

52

5.3

54

Consider a homogeneous gallium arsenide semiconductor at T = 300 K with Ny
10'* em™* and N, = 0. (@) Calculate the thermal-equilibrium values of electron
hole concentrations. {#) For an applied E-field of 10 V/cm. calculate the drift ¢
density. (¢) Repeat parts (@) and (b) if Ny =0 and N, = 10'% cm™".

A silicon crystal having a cross-sectional area of 0.001 cm? and a length of 107 en
connected at its ends to a 10-V battery. At T = 300 K, we want a current of 100
in the silicon. Calculate: (@) the required resistance R, (b) the required conductivi
() the density of donor atoms to be added to achieve this conductivity, and (d)
concentration of acceptor atoms to be added to form a compensated p-type materi
with the conductivity given from part (b) if the initial concentration of donor ato
N,,l = 10|5 Cm_3.

{@) A silicon semiconductor is in the shape of a rectangular bar with a cross-secti
area of 100 pm’, a length of 0.1 cm, and is doped with 5 x 10'® ¢cm ™ arsenic ato
The temperatare is 7 = 300 K. Determine the current if 5V is applied across the
length. (&) Repeat part (a) if the length is reduced to 0.01 cm. (¢} Calculate the
average drift velocity of electrons in parts (¢) and (5).

{a) A GaAs semiconductor resistor is doped with acceptor impurities at a concen
tion of N, = 10'7 em™". The cross-sectional area is 85 gm”. The current in the
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Problems

resistor is 1o be 7 = 20 mA with 10V applied. Determine the required length of the
device. (b) Repeat part (@) for silicon.

(@} Three volts is applied across a l-ecm-long semiconductor bar. The average electron
drift velocity is 10* em/s. Find the electron mobility. (&) If the electron mobility in
part (@) were 800 em*/V-s, what is the average electron drift velocity?

Use the velocity—field relations for silicon and gallium arsenide shown in Figure 5.7
to determine the transit time of electrons through a [-gm distance in these materials
for an electric field of (¢) 1 kV/cm and (k) 50 kV/cm.

A pertectly compensated semiconductor is one in which the donor and acceptor impu-
rity concentrations are exactly equal. Assuming complete ionization, determine the
conductivity of silicon at T = 300 K in which the impurity concentrations are

(@N, =N, =10 em? and (B) N, = N; = 10 cm .

{a) In a p-type gallium arsenide semiconductor, the conductivity is ¢ = 5 (€2-cm)™

at T = 300 K. Calculate the thermal-equilibrium values of the electron and hole
concentrations. (#) Repeat part (a) for n-type silicon if the resistivity is g = 8 £2-cm.
In a particular semiconductor material, 1, = 1000 cm*/V-s, y » =600 cm*fV-s, and
Ne = Ny = 10" em™. These parameters arc independent of temperature. The
measured conductivity of the intrinsic material is o = 107¢ (Q-cm)™' at 7' = 300 K.
Find the conductivity at T = 500 K.

(a) Calculate the resistivity at T = 300 K of intrinsic (i} silicon, (/i) germanium, and
(i) gallivm arsenide. (&) If rectangular semiconductor bars are fabricated using the
materials in part (@), determine the resistance of each bar if its cross-sectional area 1s
85 pm? and length is 200 um,

An n-type silicon sample has a resistivity of 5 Q-cm at T = 300 K. () What is the
donor impurity concentration? () What is the expected resistivity at (/) T = 200K
and (i) T = 400 K.

Consider silicon doped at impurity concentrations of Ny = 2 x 10'"* em™* and N, = 00,
An empirical expression relating electron drift velocity to electric field is given by

Vsai

where (o = 1350 em™/V-s, v, = 1.8 x 107 cm/s, and E is given in V/em. Plot
electron drift current density {(magnitude) versus electric field (log-log scale) over the
range 0 <E < 10° Viem.

Consider silicon at T = 300 K. Assume the electron mobility is u,, = 1350 cm/V-s.
The kinetic energy of an electron in the conduction band is (1/2)m vj, where m} is
the effective mass and v, is the drift velocity. Determine the kinetic energy of an
electron in the conduction band if the applied electric field is {a) 10 V/cm and

by 1 kV/em.

Consider a semiconductor that is unitormly doped with Ny = 10" cm™ and N, = 0,
with an applied electric field of E = 100 V/cm. Assume that 4, = 1000 cm®/V-s and
#y = 0. Also assume the following parameters:

N =2 % 10" (T/300Y cm™*
No =1 x 10773000 ecm™?
E,=110eV

183
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{a) Calculate the electric-current density at 7 = 300 K. (&) At what temperature wil
this current increase by 5 percent? (Assume the mobilities are independent of x
temperature.)

A semiconductor material has electron and hole mobilities g, and . respectivel
When the conductivity is considered as a function of the hole concentration py,

{ar) show that the minimum value of conductivity, om, . can be written as i

20{ (#n u'p ) e ‘
(Jta + pp) 1

Tmin =

where o; is the intrinsic conductivity, and (b) show that the corresponding hole
concentration is py = #: (jtufe)'

A particular intrinsic semiconductor has a resistivity of 50 Q-cmat T = 300 K
5 Q-cmat T = 330 K. Neglecting the change in mobility with temperature, dete
the bandgap energy of the semiconductor.

Three scattering mechanisms are present in a particular semiconductor material.
If only the first scattering mechanism were present, the mobility would be ¢, =
2000 coifV-s, if only the second mechanism were present, the mobility would be
Jto = 1500 cm?/V-s, and if only the third mechanism were present, the mobility
be 3 = 500 cm*V-s. What is the net mobility?

Assume that the mobility of electrons in silicon at T = 300 K is x,, = 1300 cm?
Alsc assume that the mobility is limited by lattice scattering and varies as T=32,
Determine the electron mobility at (@) 7 =200 K and (b) T = 400 K.

Two scattering mechanisms exist in & semiconductor. I only the first mechanism
present. the mobility would be 230 cm®V-s. If only the second mechanism were
sent, the mobility would be 500 ¢cm*V-s. Determine the mobility when both scal
mechanisms exist at the same time.

The effective density of states functions in silicon can be written in the form

a2 3/2
N, —2.8x 10" —T—) N, = 1.04x 107 { —— !
300 300

Assume the mobilities are given by

T\ T\
=1 by =4 TR
s = 1330 (300) g =40 (300)

Assume the bandgap energy is E, = 1.12 eV and independent of temperature. Pl
the intrinsic conductivity as a function of T over the range 200 < T < 600 K.

(«) Assume that the electron mobility in an n-type semiconductor is given by

1350
Mo=—""—"""3 em? Vg

Ny
[ 4 20
( T 10'h)

where N, is the donor concentration in cm *. Assuming complete ionization, plot
conductivity as a function of N, over the range 10'* < N; < 10" cm™*, () Co
the results of part (@) to that it thc mobility were assumed to be a constant equal
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1350 cm?/V-s. () If an electric field of £ = 10 Viem is applied to the semiconductor,
plot the electron drift current density of parts (a} and (b).

Section 5.2 Carrier Diffusion

52

5.4

525

5.26

.27

5.28

Consider a sample of silicon at T = 300 K. Assume that the electron conceniration
varies linearly with distance, as shown in Figure 5.14. The diffusion current density is
found to be J, = 0.19 Afem?®. If the electron diffusion coefficient is £2, = 25 em™fs,

determine the electron concentration at x = 0,

The electron concentration in silicon decreases Jinearly from 10" ¢cm™* 10 10 ¢m~?

over a distance of 0.10 cm. The cross-sectional area of the sample is 0.05 cm®. The
electron diffusion coefficient is 25 cm?/s. Calculate the electron diffusion cueren:.
The electron concentration in a sample of n-type silicon varies linearly from 10" ¢m ?
atx =0t06 x 10" cm™ at x = 4 pm. There is no applied electric field. The
electron current density is experimentally measured to be —400 Afem®, What is the
electron diffusion coefficient?

The hole concentration in p type GaAs is given by p = 10'%(1 — x/L)em™ for

0 < x < L where L = 10 um. The hole diffusion coefficient is 10 cm%s. Calculate
the hole diffusion current density at (@) x = 0, (b) x = 5 um, and {¢) x = 10 gm.
The hole concentration is given by p = 10'* exp (—x/L,) em ™ for x > 0 and the
electron concentration is given by 5 x 10" exp (+-x/L,) em™* for x < 0. The values
of L,and L, are 5 x 10~# ¢m and 107" em, respectively. The hole and electron diffu-
sion coefficients are 10 cm?s and 25 cm?/s, respectively. The total current density

is defined as the sum of the hole diffusion current density at x = 0 and the electron
diffusion current density ar x = 0. Calculate the total current density.

The hole concentration in germanium at 7 = 300 K varies as

RN . ¥ _3
plx)y = 10" exp (22.5)cm

where x is measured in yum. If the hole diffusion cocfficient is D, = 48 em?fs,
determine the hole diffusion current density as a function of x.

The electron concentration in silicon at T = 300 K is given by

A= 10'6 i -3
nix) exp(18 cm

2 5% IOM

'
n{em™ %)

nih

Figure 5.14 | Figure for
Problem 5.22,
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#5.32

where x is measured in fm and is Hmited to 0 < x < 25 um. The electron diffusi
coefficient is D, = 25 cm?/s and the electron mobility is t, = 960 cm’/V-s, The
electron current density through the semiconductor is constant and equal to [, =

—40 A/cm?, The electron current has both diffusion and drift current components.
Determine the electric field as a function of x which must exist in the semiconduct

The total current in a semiconductor is constant and is composed of electron drift
current and hole diffusion current. The electron concentration is constant and is eq
to 10'® ¢m~*. The hole concentration is given by

plx) = 10" exp (—Tx) em™? (x>0

where L = 12 um. The hole diffusion coefficient is D, = 12 cm?s and the elec
mobility is 1, = 1000 cm?/V-5. The total current density is J = 4.8 Ajcm?®. Caleul
(@) the hole diffusion current density versus x, () the electron current density vers
x, and {c) the electric field versus x.

A constant electric field, E = 12 V/cm, exists in the +x direction of an n-type galli
arsenide semiconductor for 0 < x < 30 um. The total current density is a constant
and is J = 100 Afem?® At x = (. the drift and diffusion currents are equal. Let

T = 300 K and g1, = 8000 cm?/V-s. (¢} Determine the expression for the electron
concentration n(x). (&) Calculate the electron concentration at x = 0 and at

x = 50 pm. {¢) Calculate the drift and ditfusion current densities at x = 50 pm.
In n-type silicon, the Fermi energy level varies linearly with distance over a short
range. Atx =0, Er — E;; =04eVand, atx = 10" cm, £ — Ep; =0.15eV.
{a) Wrile the expression for the electron concentration over the distance. (b) If the
electron diffusion coefficient is D, = 25 em?/s, calculate the electron diffusion
current density at (i} x = 0 and (7i)x =5 x 1077 em.

() The electron concentration in a semiconductor is given by n = 10'%¢1 — x/Lj¢c
for < x < L, where L = 10 pm. The electron mobility and diffusion coefficient
= 1000 em¥V-=s and D, = 25.9 ecm?/s. An electric field is applied such that the
total electron current density is a constant over the given range of x and is J, =
—80 A/em®. Determine the required electric field versus distance function. (b) Repeat
part (a) if J, = =20 Afem?.

Section 5.3 Graded Impurity Distribution

533

534

535

Consider a semiconductor in thermal equilibrium (no current). Assume that the donor
concentration varies exponentially as

Ny(x) = Nygexp (—ax)

over the range 0 < x < 1/ where Ny is a constant. (a) Calculate the electric field
as a function of x for 0 < x < 1/w. (b) Calculate the potential difference between
x=0and x = | /e,

Using the data in Example 5.5, calculate the potential difference between x = (0 and
x=1pum.

Determine a doping profile in a semiconductor at T = 300 K that will induce an
electric field of 1 kV/cm over a length of 0.2 pm.
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*5,36 1n GaAs, the donor impurity concentration varies as Ny exp{(—x/Lifor0 <= x < L,
where L = 0.1 gm and Ny = 3 x 10'% cm™. Assume p,, = 6000 ¢cm*/V-s and
T = 300 K. (¢) Derive the expression for the electron ditffusion current density versus
distance over the given range of x. (&) Determine the induced electric field that gener-
ates a drift current density that compensates the diffusion current density.

537 (o) Consider the electron mobility in silicon for Ny = 107 ¢em™* from Figure 5.2a.
Calcuiate and plot the electron diffusion coefficient versus temperature over the range
=50 < T =< 200°C. (b) Repeat part (@) if the electron diffusion coefficient is given
by Dy, = (0.0259),, for all temperatures. What conclusion can be made about the
temperature dependence of the diffusion coefficient?

538 (a} Assume that the mobility of a carrfer at T = 300 K is ¢ = 923 e /V-s. Caleulate
the carrier diffusion coefficient. () Assume that the diffusion coefficient of a carrier at
T =300 K is D = 28.3 cm*/s. Calculate the carrier mobility.

Section 5.4 The Hall Effect

(Note: Refer to Figure 5.13 for the geometry of the Hall effcct.)

539 Asample of silicon is doped with 10" horon atoms per cm®. The Hall sample has the
same geometrical dimensions given in Example 5.7. The current is 7, = 1 mA with
B. = 350 gauss = 3.5 x 1077 tesla. Determine (a) the Hall voltage and (#) the Hall
field.

540 Germanium is doped with § x 107 donor atoms per cm’ at T = 300 K. The dimen-
sions of the Hall device ared = 5 x 10 em, W =2 x 107> em, and L = 107! ¢m.
The current is [, = 250 p A, the applied voltage is V. = {00 mV, and the magnetic
flux density is B. = 500 gauss = 5 x 1077 tesla. Calculate: («) the Hall voltage,

{b) the Hall field, and (¢) the carrier mobility.

541 Asilicon Hall device at T = 300 K has the following geometry: d = 107 ¢m,
W = 1072 cm, and L = 107! cm. The following parameters are measured:

I, =073mA, V, = 15V, V; = +5.8 mV, and B. = 1000 gauss = 10~ tesia,
Determine {a) the conductivity type, (b) the majority carrier concentration, and
(¢) the majority carrier mobility.

542 Consider silicon at 77 = 300 K. A Hal) effect device is fabricated with the following
geometry: d =5 x 1073 ¢cm, W = 5 % 1077 em, and L = 0.50 cm. The electrical
parameters measured are: I, = 0.50 mA, vV, = 125V, and B. = 650 gauss =
6.5 x 1077 tesla. The Hall field is £4 = —16.5 mV/cm. Determine () the Hall
voltage, (b) the conductivity type, (¢) the majority carrier concentration, and (o) the
majority carrier mobility.

543 Consider a gallium arsenide sample at T = 300 K. A Hall effect device has been
fabricated with the following geometry: d = 0.0l em, W = .05 ecm, and L = 0.5 em.
The electrical parameters are: [, = 2.5 mA, V, =22V, and B. = 2.5 x 107 tesla.
The Hall voltage is Viy = —4.5 mV. Find: (@) the conductivity type, (#) the majority
carrier concentration, (¢) the mobility, and (d) the resistivity.

Summary and Review

544  An n-type silicon semiconductor resistor is to be designed so that it carries a current
of 5 mA with an applied voltage of S V. (@) If Ny = 3 x 10% em™ and N, = 0,
design a resistor to meet the required specifications, (b) If Ny = 3 x 10" em™

Y and ==
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N, = 2.5 x 10" ecm~?, redesign the resistor. (c) Discuss the relative lengths of the
two designs compared to the doping concentration. Is there a linear relationship?

In fabricating a Hall effect device, the two points at which the Hall voltage is mea-
sured may not be lined up exactly perpendicular to the current [, (see Figure 5.13).
Discuss the effect this misalignment will have on the Hall voltage. Show that a valid
Hall voltage can be obtained from two measurements: first with the magnetic field in
the 4z direction, and then in the —z direction.

Another technique for determining the conductivity type of a semiconductor is called
the hot probe method. It consists of two probes and an ammeter that indicates the
direction of current. One probe is heated and the other is at room temperature. No
voltage is applied, but a current will exist when the probes touch the semiconductor.
Explain the operation of this hot probe technique and sketch a diagram indicating the
direction of current for p- and n-type semiconductor samples.
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