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Preface

Since the early 1960s it has gradually become accepted that a modern
academic training in optics should include a heavy exposure to the concepts
of Fourier analysis and linear systems theory. This book is based on the
thesis that a similar stage has been reached with respect to the tools of
probability and statistics and that some training in the area of statistical
optics should be included as a standard part of any advanced optics
curriculum. In writing this book I have attempted to fill the need for a
suitable textbook in this area.

The subjects covered in this book are very physical but tend to be
obscured by mathematics. An author of a book on this subject is thus faced
with the dilemma of how best to utilize the powerful mathematical tools
available without losing sight of the underlying physics. Some compromises
in mathematical rigor must be made, and to the largest extent possible, a
repetitive emphasis of the physical meaning of mathematical quantities is
needed. Since fringe formation is the most fundamental underlying physical
phenomenon involved in most of these subjects, I have tried to stay as close
as possible to fringes in dealing with the meaning of the mathematics. I
would hope that the treatment used here would be particularly appealing to
both optical and electrical engineers, and also useful for physicists. The
treatment is suitable for both self-study and for formal presentation in the
classroom. Many homework problems are included.

The material contained in this book covers a great deal of ground. An
outline is included in Chapter 1 and is not repeated here. The course on
which this text is based was taught over the 10 weeks of a single academic
quarter, but there is sufficient material for a full 15-week semester, or
perhaps even two academic quarters. The problem is then to decide what
material to omit in a single-quarter version. If the material is to be covered
in one quarter, it is essential that the students have previous exposure to
probability theory and stochastic processes as well as a good grasp of
Fourier methods. Under these conditions, my suggestion to the instructor is

vii



vill PREFACE

to allow the students to study Chapters 1-3 on their own and to begin the
lectures directly with optics in Chapter 4. Later sections that can be omitted
or left to optional reading if time is short include Sections 5.6.4, 5.7, 6.1.3,
6.2, 6.3, 7.2.3, 7.5, 8.2.2, 8.6.1, 8.7.2, 8.8.3, 9.4, 9.5, and 9.6. It is perhaps
worth mentioning that I have also occasionally used Chapters 2 and 3 as the
basis for a full one-quarter course on the fundamentals of probability and
stochastic processes.

The book began in the form of rough notes for a course at Stanford
University in 1968 and thus has been a long time in the making. In many
respects it has been roo long in the making (as my patient publisher will
surely agree), for over a period of more than 15 years any field undergoes
important changes. The challenge has thus been to treat the subject matter
in a manner that does not become obsolete as time progresses. In an
attempt to keep the information as up to date as possible, supplementary
lists of recent references have been provided at the ends of various chapters.

The transition from a rough set of notes to a more polished manuscript
first began in the academic year 1973-1974, when I was fortunate enough to
spend a sabbatical year at the Institute d’Optique, in Orsay, France. The
hospitality of my immediate host, Professor Serge Lowenthal, as well as the
Institute’s Director, Professor André Marechal, was impeccable. Not only
did they provide me with all the surroundings needed for productivity, but
they were kind enough to relieve me of duties normally accompanying a
formal appointment. [ am most grateful for their support and advice,
without which this book would never have had a solid start.

One benefit from the slowness with which the book progressed was the
opportunity over many years to expose the material to a host of graduate
students, who have an uncanny ability to spot the weak arguments and the
outright errors in such a manuscript. To the students of my statistical optics
courses at Stanford, therefore, I owe an enormous debt. The evolving notes
were also used at a number of other universities, and 1 am grateful to both
William Rhodes (Georgia Institute of Technology) and Timothy Strand
(University of Southern California) for providing me with feedback that
improved the presentation.

The relationship between author and publisher is often a distant one and
sometimes not even pleasant. Nothing could be further from the truth in
this case. Beatrice Shube, the editor at John Wiley & Sons who encouraged
me to begin this book 15 years ago, has not only been exceedingly patient
and understanding, but has also supplied much encouragement and has
become a good personal friend. It has been the greatest of pleasures to work
with her.

I owe special debts to K.-C. Chin, of Beijing University, for his enormous
investment of time in reading the manuscript and suggesting improvements,
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and to Judith Clark, who typed the manuscript, including all the difficult
mathematics, in an extremely professional way.

Finally, I am unable to express adequate thanks to my wife, Hon Mai,
and my daughter Michele, not only for their encouragement, but also for the
many hours they accepted being without me while I labored at writing.

JOSEPH W. GOODMAN

Stanford, California
October 1984
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1

Introduction

Optics, as a field of science, is well into its second millennium of life; yet in
spite of its age, it remains remarkably vigorous and youthful. During the
middle of the twentieth century, various events and discoveries have given
new life, energy, and richness to the field. Especially important in this
regard were (1) the introduction of the concepts and tools of Fourier
analysis and communication theory into optics, primarily in the late 1940s
and throughout the 1950s, (2) the discovery and successful realization of the
laser in the late 1950s, and (3) the origin of the field of nonlinear optics in
the 1960s. It is the thesis of this book that a less dramatic but equally
important change has taken place gradually, but with an accelerating pace,
throughout the entire century, namely, the infusion of statistical concepts
and methods of analysis into the field of optics. It is to the role of such
concepts in optics that this book is devoted.

The field of statistical optics has a considerable history of its own. Many
fundamental statistical problems were solved in the late nineteenth century
and applied to acoustics and optics by Lord Rayleigh. The need for
statistical methods in optics increased dramatically with the discovery of the
quantized nature of light, and particularly with the statistical interpretation
of quantum mechanics introduced by Max Born. The introduction by
E. Wolf in 1954 of an elegant and broad framework for considering the
coherence properties of waves laid a foundation within which many of the
important statistical problems in optics could be treated in a unified way.
Also worth special mention is the semiclassical theory of light detection,
pioneered by L. Mandel, which tied together (in a comparatively simple
way) knowledge of the statistical fluctuations of classical wave quantities
(fields, intensities) and fluctuations associated with the interaction of light
and matter. This history is far from complete but is dealt with in more detail
in the individual chapters that follow.



2 INTRODUCTION

1.1 DETERMINISTIC VERSUS STATISTICAL PHENOMENA
AND MODELS

In the normal course of events, a student of physics or engineering first
encounters optics in an entirely deterministic framework. Physical quantities
are represented by mathematical functions that are either completely
specified in advance or are assumed to be precisely measurable. These
physical quantities are subjected to well-defined transformations that mod-
ify their form in perfectly predictable ways. For example, if a monochro-
matic light wave with a known complex field distribution is incident on a
transparent aperture in a perfectly opaque screen, the resulting complex
field distribution some distance away from the screen can be calculated
precisely by using the well-established diffraction formulas of wave optics.

The students emerging from such an introductory course may feel
confident that they have grasped the basic physical concepts and laws and
are ready to find a precise answer to almost any problem that comes their
way. To be sure, they have probably been warned that there are certain
problems, arising particularly in the detection of weak light waves, for
which a statistical approach is required. But a statistical approach to
problem solving often appears at first glance to be a “second-class” ap-
proach, for statistics is generally used when we lack sufficient information to
carry out the aesthetically more pleasing “exact” solution. The problem may
be inherently too complex to be solved analytically or numerically, or the
boundary conditions may be poorly defined. Surely the preferred way to
solve a problem must be the deterministic way, with statistics entering only
as a sign of our own weakness or limitations. Partially as a consequence of
this viewpoint, the subject of statistical optics is usually left for the more
advanced students, particularly those with a mathematical flair.

Although the origins of the above viewpoint are quite clear and under-
standable, the conclusions reached regarding the relative merits of determin-
istic and statistical analysis are very greatly in error, for several important
reasons. First, it is difficult, if not impossible, to conceive of a real
engineering problem in optics that does not contain some element of
uncertainty requiring statistical analysis. Even the lens designer, who traces
rays through application of precise physical laws accepted for centuries,
must ultimately worry about quality control! Thus statistics is certainly not
a subject to be left primarily to those more interested in mathematics than
in physics and engineering.

Furthermore, the view that the use of statistics is an admission of one’s
limitations and thus should be avoided is based on too narrow a view of the
nature of statistical phenomena. Experimental evidence indicates, and in-
deed the great majority of physicists believe, that the interaction of light and
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matter is fundamentally a statistical phenomenon, which cannot in principle
be predicted with perfect precision in advance. Thus statistical phenomena
play a role of the greatest importance in the world around us, independent
of our particular mental capabilities or limitations.

Finally, in defense of statistical analysis, we must say that, whereas both
deterministic and statistical approaches to problem solving require the
construction of mathematical models of physical phenomena, the models
constructed for statistical analysis are inherently more general and flexible.
Indeed, they invariably contain the deterministic model as a special case!
For a statistical model to be accurate and useful, it should fully incorporate
the current state of our knowledge regarding the physical parameters of
concern. Our solutions to statistical problems will be no more accurate than
the models we use to describe both the physical laws involved and the state
of knowledge or ignorance.

The statistical approach is indeed somewhat more complex than the
deterministic approach, for it requires knowledge of the elements of proba-
bility theory. In the long run, however, statistical models are far more
powerful and useful than deterministic models in solving physical problems
of genuine practical interest. Hopefully the reader will agree with this
viewpoint by the time this book is completed.

1.2 STATISTICAL PHENOMENA IN OPTICS

Statistical phenomena are so plentiful in optics that there 1s no difficulty in
compiling a long list of examples. Because of the wide variety of these
problems, it is difficult to find a general scheme for classifying them. Here
we attempt to identify several broad aspects of optics that require statistical
treatment. These aspects are conveniently discussed in the context of an
optical imaging problem.

Most optical imaging problems are of the following type. Nature assumes
some particular state (e.g., a certain collection of atoms and /or molecules in
a distant region of space, a certain distribution of reflectance over terrain of
unknown characteristics, or- a certain distribution of transmittance in a
sample of interest). By operating on optical waves that arise as a conse-
quence of this state of Nature, we wish to deduce exactly what that state is.

Statistics is involved in this task in a wide variety of ways, as can be
discovered by reference to Fig. 1-1. First, and most fundamentally, the state
of Nature is known to us a priori only in a statistical sense. If it were known
exactly, there would be no need for any measurement in the first place. Thus
the state of Nature is random, and in order to properly assess the perfor-
mance of the system, we must have a statistical model, ideally representing
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Propagation
medium

Source Detector

Focusing
Object optics
(state of nature)

Figure 1-1. An optical imaging system.

the set of possible states, together with their associated probabilities. Usu-
ally, a less complete description of the statistical properties of the object will
suffice.

Our measurement system operates not on the state of Nature per se, but
rather on an optical representation of that state (e.g., radiated light,
transmitted light, or reflected light). The representation of the state of
Nature by an optical wave has statistical attributes itself, primarily as a
result of the statistical or random properties of all real light waves. Because
of the fundamentally statistical nature of the interaction of light and matter,
all optical sources produce radiation that is statistical in its properties. At
one extreme we have the chaotic and unordered emission of light by a
thermal source, such as an incandescent lamp; at the other extreme we have
the comparatively ordered emission of light by a continuous-wave (CW) gas
laser. Such light comes close to containing a single frequency and traveling
in a single direction. Nonetheless, any real laser emits light with statistical
properties, in particular random fluctuations of both the amplitude and
phase of the radiation. Statistical fluctuations of light are of great impor-
tance in many optical experiments and indeed play a central role in
determining the character of the image produced by the system depicted in
Fig. 1-1.

After interacting with the state of Nature, the radiation travels through
an intervening medium until it reaches our measurement instrument. The
parameters of that medium may or may not be well known. If the medium is
a perfect vacuum, it introduces no additional statistical aspects to the
problem. On the other hand, if the medium is the Earth’s atmosphere and
the optical path is a few meters or more in length, the random fluctuations
of the atmospheric index or refraction can have dramatic effects on the wave
and can seriously degrade the image obtained by the system. Statistical
methods are required to quantify this degradation.
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The light eventually reaches our measurement apparatus, which performs
some desired operations on it before it is detected. For example, the light
beam may pass through an interferometer, as in Fourier spectroscopy, or
through a system of lenses, as in aerial photography. How well are the exact
parameters of our measurement instrument known? Any lack of knowledge
of these parameters must be taken into account in our statistical model for
the measurement process. For example, there may be unknown errors in the
wavefront deformation introduced by passage through the lens system. Such
errors can often be modeled statistically and should be taken into account in
assessment of the performance of the system.

The radiation finally reaches an optical detector, where again there is an
interaction of light and matter. Random fluctuations of the detected energy
are readily observed, particularly at low light levels, and can be attributed to
a variety of causes, including the discrete nature of the interaction between
light and matter and the presence of internal electronic detector noise
(thermal noise). The result of the measurement is related in only a statistical
way to the image falling on the detector.

At all stages of the optical problem, including illumination, transmission,
image formation, and detection, therefore, statistical treatment is needed in
order to fully assess the performance of the system. Our goal in this book is
to lay the necessary foundation and to illustrate the application of statistics
to the many diverse areas of optics where it is needed.

1.3 AN OUTLINE OF THE BOOK

Eight chapters follow this Introduction. Since many scientists and engineers
working in the field of optics may feel a need to sharpen their abilities with
statistical tools, Chapter 2 presents a review of probability theory, and
Chapter 3 contains a review of the theory of random processes, which are
used as models for many of the statistical phenomena described in later
chapters. The reader already familiar with these subjects may wish to
proceed directly to Chapter 4, using the earlier material primarily as a
reference resource.

Discussion of optical problems begins in Chapter 4, which deals with the
“first-order” statistics (i.e., the statistics at a single point in space and time)
of several kinds of light waves, including light generated by thermal sources
and light generated by lasers. Also included is an introduction to a for-
malism that allows characterization of the polarization properties of an
optical wave.

Chapter S introduces the concepts of time and space coherence (which
are “second-order” statistical properties of light waves) and deals at length
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with the propagation of coherence under various conditions. Chapter 6
extends this theory to coherence of order higher than 2 and illustrates the
need for fourth-order coherence functions in a variety of optical problems,
including classical analysis of the intensity interferometer.

Chapter 7 is devoted to the theory of image formation with partially
coherent light. Several analytical approaches to the problem are introduced.
The concept of interferometric imaging, as widely practiced in radio astron-
omy, 1s also introduced in this chapter and is used to lend insight into the
character of optical imaging systems. The phase retrieval problem is intro-
duced and discussed.

Chapter 8 is concerned with the effects of random media, such as the
Earth’s atmosphere, on the quality of images formed by optical instruments.
The origin of random refractive-index fluctuations in the atmosphere is
reviewed, and statistical models for such fluctuations are introduced. The
effects of these fluctuations on optical waves are also modeled, and image
degradations introduced by the atmosphere are treated from a statistical
viewpoint. Stellar speckle interferometry, a method for partially overcoming
the effects of atmospheric turbulence, i1s discussed in some detail.

Finally, Chapter 9 treats the semiclassical theory of light detection and
illustrates the theory with analyses of the sensitivity limitations of amplitude
interferometry, intensity interferometry, and stellar speckle interferometry.

Appendixes A through C present supplemental background material and
analysis.
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Random Variables

Since this book deals primarily with statistical problems in optics, it is
essential that we start with a clear understanding of the mathematical
methods used to analyze random or statistical phenomena. We shall assume
at the start that the reader has been exposed previously to at least some of
the basic elements of probability theory. The purpose of this chapter is to
provide a review of the most important material, to establish notation, and
to present a few specific results that will be useful in later applications of the
theory. The emphasis is not on mathematical rigor, but rather on physical
plausibility. For more rigorous treatment of the theory of probability, the
reader may consult texts on statistics (e.g., Refs. 2-1 and 2-2). In addition,
there are many excellent engineering-oriented books that discuss the theory
of random variables and random processes (e.g., Refs. 2-3 through 2-8).

2.1 DEFINITIONS OF PROBABILITY AND RANDOM VARIABLES

By a random experiment we mean an experiment with an outcome that
cannot be predicted in advance. Let the collection of possible outcomes be
represented by the set of events {A}. For example, if the experiment
consists of the tossing of two coins side by side, the possible “elementary
events” are HH, HT,TH, TT, where H indicates ‘“heads” and T denotes
“tails.” However, the set { 4} contains more than four elements, since
events such as “at least one head occurs in the two tosses” (HH or HT or
TH) are included. If A, and A, are any two events, the set { 4} must also
contain A, and A,, A, or A,, not A; and not A,. In this way, the complete
set { A} is derived from the underlying elementary events.

If we repeat the experiment N times and observe the specific event A4 to
occur n times, we define the relative frequency of the event A4 to be the ratio
n/N. It is then appealing to attempt to define the probability of the event A4
as the limit of the relative frequency as the number of trials N increases

7
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without bound,

P(4) = lim 7’:7 (2.1-1)

Unfortunately, although this definition of probability has physical ap-
peal, it is not entirely satisfactory. Note that we have assumed that the
relative frequency of each event will indeed approach a limit as N increases,
an assumption we are by no means prepared to prove. Furthermore, we can
never really measure the exact value of P(A), for to do so would require an
infinite number of experimental trials. As a consequence of these difficulties
and others, it is preferable to adopt an axiomatic approach to probability
theory, assuming at the start that probabilities obey certain axioms, all of
which are derived from corresponding properties of relative frequencies. The
necessary axioms are as follows:

(1) Any probability P(A) obeys P(A) > 0.
(2) If S is an event certain to occur, then P(S) = 1.

(3) If A, and A, are mutually exclusive events, that is, the occurrence of
one guarantees that the second does not occur, the probability of the
event A, or A, satisfies

P(A,or A,) = P(A4)) + P(A4,).

The theory of probability is based on these axioms.

The problem of assigning specific numerical values to the probabilities of
various events is not addressed by the axiomatic approach, but rather is left
to our physical intuition. Whatever number we assign for the probability of
a given event must agree with our intuitive feeling for the limiting relative
frequency of that event. In the end, we are simply building a statistical
model that we hope will represent the experiment. The necessity to hypo-
thesize a model should not be disturbing, for every deterministic analysis
likewise requires hypotheses about the physical entities concerned and the
transformations they undergo. Our statistical model must be judged on the
basis of its accuracy in describing the behavior of experimental results over
many trials.

We are now prepared to introduce the concept of a random variable. To
every possible elementary event A of our underlying random experiment we
assign a real number u(A4). The random variable’ U consists of all possible

tHere and in Chapter 3 we consistently represent random variables by capital letters and
specific values of random variables by lowercase letters.
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u(A), together with an associated measure of their probabilities. Note
especially that the random variable consists of both the set of values and
their associated probabilities and hence encompasses the entire statistical
model that we hypothesize for the random phenomenon.

2.2 DISTRIBUTION FUNCTIONS AND DENSITY FUNCTIONS

A random variable U is called discrete if the experimental outcomes consist
of a discrete set of possible numbers. A random variable is called continuous
if the experimental results can lie anywhere on a continuum of possible
values. Occasionally, a mixed random variable is encountered, with out-
comes that lie on either a discrete set (with certain probabilities) or on a

continuum.
In all cases it is convenient to describe the random variable U by a
probability distribution function F,,(u), which is defined by’

F,(u) = Prob{U < u}, (2.2-1)

or in other words, the probability that the random variable U assumes a
value less than or equal to the specific value u. From the basic axioms of
probability theory we can show that F,(u) must have the following
properties:

(1) F,(u) is nondecreasing to the right.
(2) F,(—)=0.
(3) Fy(+0o0)=1.

Figure 2-1 shows typical forms for F,,(u) in the discrete, continuous, and
mixed cases. Note that the probability that U lies between the limits
a < U < b can be expressed as

Prob{a < U < b} = F,(b) — F,(a). (2.2-2)

Of more importance to us in practical applications will be the probability
density function, represented by p,(u) and defined by

polu) & S Fy (u). (223)

" The symbol Prob{ } means the probability that the event described within the brackets
occurs.
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Figure 2-1. Typical probability distribution functions for (a) discrete, () continuous, and (¢)
mixed random variables.
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For a continuous random variable U, there is no difficulty in applying this
definition, for F,(u) is everywhere differentiable. Noting from the definition
of a derivative that

T Fy(u) — Fy(u = Au)
py(u) = Jim A

we see that for sufficiently small Aw,
py(u)Au = F,(u) — F,(u — Au) = Prob{u ~ Au < U < u},

or in words, p,(u)Au is the probability that U lies in the range u — Au <
U < u. From the fundamental properties of F;,(u), it follows that p (u)
must have the basic properties

pu(u) = 0; f°° poulu)du=1. (2.2-4)

— 00

The probability that U assumes a value between the limits a and b can be
expressed in terms of the probability density function by

Prob{a < U< b} = [py(u)du. (2.2-5)

When U is a discrete random variable, F,(u) is discontinuous, and
hence p,(u) does not exist in the usual sense. By introducing Dirac
functions (Ref. 2-9, Chapter 5), however, we can include this case within our
framework. The probability density function becomes

po(u) = kflp(una(u ), (2.26)

where {u,, u,,...,u,,...} represents the discrete set of possible numerical
values, and the § function is defined to have the properties’

8(u—u,)=0; u#u,

fw g(u)8(u—uy)du=g(uy). (2.2-7)

— o0

The density function for a mixed random variable contains both a continu-

' The symbol g(u;) signifies the limit of g(u) as u approaches u, from the left. For a
continuous g(u), g(u; ) = g(u,).
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Pu(u)
Areas P(u3)
P(ul)
P(u4)
P(uz) T
L} L.
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P(U2)
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u) uz u3

(b) (c)

Figure 2-2. Typical probability density functions for (a) discrete, (b) continuous, and (c)
mixed random variables.

ous component and 6-function components. Figure 2-2 illustrates the
character of probability density functions in these three cases.

Two specific probability density functions will illustrate the continuous
and discrete cases; both are important to us for later work:

: . 1 (u— )
Gaussian density  p,,(u) = exp{ — ———~
V27 o 20°

o0 k k _
Poisson density  p,(u) = ), —(-I;—?—e"‘ 8(u—k),
k=0 '

where #, o, and k are parameters.

2.3 EXTENSION TO TWO OR MORE JOINT RANDOM VARIABLES

Consider two random experiments with sets of possible events { A} and
{ B}. If the events are taken in pairs, one from each set, we define a new set
of possible joint outcomes, which we denote { 4 X B}. The relative frequency
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with which the specific event 4 occurs jointly with the specific event B is
denoted n/N, where N is the number of joint experimental trials, whereas n
is the number of times A and B occur as joint results of the two experi-
ments. We assign a joint probability P(A, B) to this pair of outcomes, and
the specific value of this probability is determined by our intuitive notions
concerning the limiting value of the relative frequency n/N. Since it is a
probability, P(A, B) must satisfy the axioms given in Section 2.1.

To each outcome A of the first experiment we assign a numerical value
u(A) and to each outcome B of the second experiment a value v(B). The
joint random variable UV is defined to be the collection of all possible joint
numbers (u, v), together with an associated measure of probability.

The probability distribution function F,,(u,v) for the joint random
variable UV is defined as

Fy(u,v) £ Prob{U <uandV < v) (2.3-1)
and the probability density function p,,(u,v) by

82
PUV(“»U) é%%FUV(’%U)- (2~3'2)

Here the partial derivatives must be interpreted as existing either in the
usual sense or in a §-function sense, depending on whether F,, is or is not
continuous. The density function p,,, (u, v) must have unit volume, that is,

—ffpu,,(u,v)dudv = 1. (2.3-3)

If we know the joint probabilities of all specific events 4 and B, we may
wish to determine the probability that a specific event A occurs, regardless
of the particular event B that accompanies it. Reasoning directly from
relative frequency concepts, we can show that

P(A) =) P(A4,B)

all
B

and similarly

P(B) =) P(A,B).
a}il
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Values P(A) and P(B) so defined are referred to as the marginal probabili-
ties of A and B, respectively.

In a similar fashion, the marginal probability density functions of the
random variables U and V derived from the two random experiments are
defined by

pu(u) & [ pyy(u,v)do

P(©) 2 [7 puy(u) du (23-4)

These functions are the density functions of one random variable when the
particular value assumed by the second random variable is of no concern.

The probability of observing the event B in one experiment, given that
the event 4 has already been observed in the other experiment, is called the
conditional probability of B given A and is written P(B|A4). Note that the
relative frequency of the joint event (A, B) can be written

n n m

N m N

where n is the number of times the joint event (A4, B) occurs in N trials,
whereas m is the number of times A4 occurs in N trials, regardless of the
particular value of B. But m/N represents the (marginal) relative frequency
of A, whereas n/m represents the (conditional) relative frequency of B,
given that A has occurred. It follows that the probabilities of concern must
satisfy

P(A,B) = P(A)P(B|A)

or
P(B|A) = E%f(‘-j-)’?l (2.3-5)
Similarly,
P(A|B) = f-l(-%’,;l;—)— (2.3-6)
Taken together, (2.3-5) and (2.3-6) imply that
P(B|A) = P(AL?LI;(B), (2.3-7)

which is known as Bayes’ rule.
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Following the above reasoning, the conditional probability density func-
tions of U and V are defined by

_ Pyy(u,v)
pV|U(UIu) po(a)
Py (ulv) = Ey;‘:‘/(‘(i:‘;‘)‘{)‘)‘ (2.3-8)

Finally, we introduce the concept of statistical independence. Two ran-
dom variables U and V are called statistically independent if knowledge
about the value assumed by one does not influence the probabilities
associated with possible outcomes of the second. It follows that for statisti-
cally independent random variables, we have

PV|U(U|u) =p,(v). (2.3-9)
This fact, in turn, implies that
puv(u,v) = PU(“)PVW(Ulu) = py(u)p,(v), (2.3-10)

or, in words, the joint probability density function of two independent
random variables factors into the product of their two marginal density
functions.t

2.4 STATISTICAL AVERAGES

Let g(u) be a function that for every real number u assigns a new real
number g(u). If u represents the value of a random variable, g(u) is also
the value of a random variable.

We define the statistical average (mean value, expected value) of g(u) by

2(u) = E[g(w)] 2 [~ g(u)py(u)du. (2.4-1)

- o0

For a discrete random variable, p,(u) is of the form

PU(“)=ZP(“k)8(u" Uy ) (2.4-2)

t More generally, two events 4 and B are statistically independent if P(A, B) = P(A)P(B).
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with the result that
gu) =2 P(u,)g(u). (2.4-3)
k

For a continuous random variable, however, the average must be found by
integration.

2.4.1 Moments of a Random Variable

The sumplest average properties of a random variable are its moments, which
(if they exist) are obtained by setting

glu) = u"

in Eq. (2.4-1). Of particular importance is the first moment (mean value,
expected value, average value),

0= fjo upy(u)du, (2.4-4)

and the second moment (mean-square value),
_ 00
u2=f up,(u)du. (2.4-5)
- 00

Often, the fluctuations of a random variable about its mean are of
greatest interest, in which case we deal with the central moments, obtained

with
g(u)=(u—1u)" (2.4-6)

Of most importance is the second central moment, or variance, defined by
0? =f (u—u)p,(u)du. (2.4-7)
— o0

As a simple exercise (see Problem 2-1), the reader can prove the following
relationship between the moments of any random variable:

ul= () + o2

The square root of the variance, o, is called the standard deviation and is a
measure of the dispersion or spread of values assumed by the random
variable U.
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2.4.2 Joint Moments of Random Variables

Let U and V be random variables jointly distributed with probability
density function p,, (u,v). The joint moments of U and V are defined by

TR ffu"v'"puv(u,v)dudu. (2.4-8)

— 00

Of particular importance are the correlation of U and V,

I, =uw= f/uvpu,/(u,v)dudv, (2.4-9)
— 00

the covariance of U and V,

Cyp=(u—u)(v—-0)=Ty,, — b (2.4-10)

and the correlation coefficient
Cyy

G 0y

p= (2.4-11)

The correlation coefficient is a direct measure of the similarity of the
fluctuations of U and V. As we show in the argument to follow, the modulus
of p always lies between zero and one. The argument begins with Schwarz’s
inequality, which states that for any two (real or complex-valued) functions’
f(u,v) and g(u, v),

L[ff(u,v)g(u,v)dua'v < [flf(u,v)|2dudv '_[f |g(u,v)|2dudv

(2.4-12)

with equality if and only if
g(u,v) =af *(u,v). (2.4-13)

where a is a complex constant and * indicates a complex conjugate. Making

the specific choices
f(u,v) = (u- l_‘)VPUV(u,U)
g(u,v) = (v- E)VPUV(u’U) ) (2.4-14)

tWe shall consistently use boldface characters to indicate quantities that are or could be
complex valued.
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we obtain

2

ff (u~a)(v—0)pyy(u,v)dudv

— o0

< f/(u — @) py,(u,v) dudy /f(v —5)pyy(u,v) dudy,
(2.4-15)
or equivalently |C,,,| < 6,0, thus proving that
0<lpl<1. (2.4-16)

If p = 1, we say that U and V are perfectly correlated, meaning that their
fluctuations are essentially identical, up to possible scaling factors. If
p= —1, we say that U and V are anticorrelated, meaning that their
fluctuations are identical but in an opposite sense (again up to scaling
factors), with a large positive excursion of U accompanied by a large
negative excursion of ¥, for example.

When p is identically zero, U and V' are said to be uncorrelated. The
reader can easily show (see Problem 2-2) that two statistically independent
random variables are always uncorrelated. However, the converse is not true;
that is, lack of correlation does not necessarily imply statistical indepen-
dence. A classic illustration is provided by the random variables

U= cos®

V = sin@® (2.4-17)

with ©® a random variable uniformly distributed on (-7 /2, 7 /2), that 1s,

1 ~Tcg<Z
pe(0)=( = 2 =2
0 otherwise.

Knowledge of the value of ¥V uniquely identifies the value of U, and hence
the two random variables are statistically dependent. Nonetheless, the reader
can verify (see Problem 2-3) that U and V are uncorrelated random
variables.
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2.4.3 Characteristic Functions

The characteristic function of a random variable U is defined as the expected
value of exp( jwu),
o0
M, (w) -—“-f exp( jowu) py(u) du. (2.4-18)
- o0
Thus the characteristic function is the Fourier transform’ of the probability
density function of U. If this integral exists, at least in the sense of &

functions, the relationship is an invertible one, and the probability density
function is expressible as

pu(u) =5 f:OMU(w)exp( _jou) do. (2.4-19)

The characteristic function thus contains all information about the first-order
statistical properties of the random variable U.

Under certain circumstances it is possible to obtain the characteristic
function (and hence the probability density function by 2.4-19) from
knowledge of the nth-order moments for all n. To demonstrate this fact, we
expand the exponential in Eq. (2.4-18) in a power series,

Z (J‘*’“)

n=0

exp( jou) =

If we assume that the orders of summation and integration can be inter-
changed, we obtain

My(o)= ¥ (’“) sl u"py(u) du = 5 ( ' V'35 (2.420)

n=0 n=0

[As a result of conditions required for validity of the interchange of orders
of integration and summation given above, this result is valid only if all the
moments are finite and the resulting series converges absolutely (Ref. 2-3).]

In addition, if the nth absolute moment [*_|u|"p,(u) du exists, then the
nth moment of U can be found from

— 1 4"
e = —— 421
u jn dwnMU(w) w=0’ (2 2 )

as is made plausible by Eq. (2.4-20).

' For a brief review of Fourier transforms, see Appendix A.
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The characteristic functions of the Gaussian and Poisson random vari-
ables are readily shown to be

0 2w?

Gaussian: MU(w)=exp(— 5 )exp(jwﬁ)

Poisson: M (w)= ).

= exp{k(e’® - 1)}.

On occasion we shall have use for the joint characteristic function of two
random variables U and V, defined by

Myy(wy,wy) = ff CXP[j(“’Uu +wyv)] pyy(u,v) dudv.

(2.4-22)

The joint density function is recoverable from M (w,,w,) by a two-
dimensional Fourier inversion. In addition, joint moments of U and V are
expressible in the form (see Problem 2-5)

—— 1 an+m
uv = (j.)n+m awr(zjawr;MUV(wU’wV)

(2.4-23)

""U=“’V=0

provided |u"v™| < o0.
Finally, the nth-order joint characteristic function of the random vari-
ables U;, U,, ..., U, is defined by

ng’l)(wla wz,---,wn) 2 E{exp[j(w1ul + Wy, + o +wnun)]}'

(2.4-24)
Equivalently, in matrix notation we can write
M, (w) 2 E{exp|ju'u]}, (2.4-25)
where w and u are column matrices,
[ w; ] [ u, ]
w= |2 W=, (2.4-26)
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and the superscript ¢ indicates a matrix transpose operation. The nth-order
joint probability density function p,(u) can be obtained from M, (w) by
an nth-order Fourier inversion.

2.5 TRANSFORMATIONS OF RANDOM VARIABLES

It is important in practical applications to be able to determine the
probability density function of a random variable after it has been subjected
to a linear or nonlinear transformation. Generally we know the probability
density function p,(u) of the random variable U, and U 1is subjected to a
transformation

z = f(u). (2.5-1)

The problem is then to find the probability density function p_(z). Differ-
ent approaches to this problem are possible, depending on the nature of the
function f(u).

2.5.1 General Transformation

We first treat the most general case, in which we assume only that f(u) is
single valued; thus each value of u maps into only one value of z. (For each
z, however, there may be many values of u.) Figure 2-3 illustrates one
possible function f(u).

To find p_(z), the most general approach is to first find the distribution
function F,(z) and then differentiate it with respect to z. Again referring to
Fig. 2-3, we choose a specific value of z and let the symbol L, represent the
set of all points on the « axis that map into values less than or equal to that
z (L, is the crosshatched region of the u axis.) The region L, is, of course, a
function of the particular value of z chosen. Now the probability that Z < 2
can be expressed as

F,(z) = Prob{U liesin L,}. (2.5-2)
The density function p,(z) is then given by
d ..
p,(z) = EProb{U liesin L, }. (2.5-3)

The application of this formalism is best understood with the aid of an
example. Let U be a random variable with known density function p,(u)
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A z2=f(u) Particular
value 2

— e —— —
— —— ——
— — e —

Figure 2-3. The crosshatched line segments represent the values of u for which the random
variable Z will be less than or equal to the particular value of z shown.

and let z = au®. The problem is to find p,(z). We first plot the function
z = au? in Fig. 2-4. Then we choose a particular value of z and identify the
region L,, as shown in the figure. Clearly,

F,(z)=Prob{Z <z} = Prob{— \/——2‘ <Ux +\/—§}. (2.5-4)
This expression can be restated in the form

F,(z)= fjwz/apu(u) du — f:oo‘/%pu(u) du. (2.5-5)

To find the density function p,(z), it remains to differentiate (2.5-5) with
respect to z. As an aid in this task, we make use of the general relation
(which will be useful several times in the future)

[ Oputuy = pu L)) E. (2.5-6)

In this particular example we have

z dg 1
zZ)= -, —_— =
g( ) a dz 2@

for one integral and

2 dg 1
z)= — -, £ = —
8(2) \/: dz Vaz
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+ﬁ
a

Figure 2-4. The transformation z = au’. The crosshatched region, bounded by u = + y/z/a,
is the region L,.

Qjn

for the second. It follows that

VT -]

Pz(z)= Vaz

(2.5-7)

The reader may wish to try other examples suggested in Problem 2-7.
2.5.2 Monotonic Functions

If the transformation z = f(u) is a one-to-one mapping and thus invertible
(each value of u maps into one value of z and each value of z arises from a
unique value of u), a simpler procedure can be used to find p,(z). Such a
transformation is shown in Fig. 2-5. Consider a small increment Az about
the point z. If we map this incremental region back through the transforma-
tion, we obtain an increment Au about the point u = f~1(z), where f™! is
the inverse of f. Now we use the fact that

Prob{ Z in Az} = Prob{U in Au}. (2.5-8)
For small Au and Az, this equality can be stated approximately as

p-(z)Az = p,(u)Au, (2.5-9)
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z2=f(u)

Figure 2-5. Example of a one-to-one probability transformation.

where u# = f~!(z). Furthermore, again for small Au and Az,

du

Au = 7

Az. (2.5-10)

Substituting (2.5-10) in (2.5-9) and canceling Az, we obtain a relationship
that becomes exact as Au and Az approach zero,

- du
p2(2) = py[ (]| Z|. (2.5-11)
Since du/dz = (dz/du)”!, we can equivalently write
pulf ()]
pz(z) = ul T (2.5-12)
du

where |dz/du| must be expressed in terms of the variable z. With either
(2.5-11) or (2.5-12), p,(z) can easily be calculated in any specific case.
Interpreting Eq. (2.5-12) in a physical way, we note that the slope dz/du
of the transformation controls the manner in which probability density in
the ¥ domain is spread over the z domain. If |dz/duj| s large, a small region
of u is mapped into a large region of z; hence the probability density is
spread thinly in the z domain. On the other hand, if |dz /du| is small, a large
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region of the u axis is mapped into a small region of the z axis, and
probability density is accordingly mounded high in that region.
As an example of the application of this method, consider the transfor-

mation

z = cosu (2.5-13)
and a probability density function

1
pu(u) = { p 0<u<w (2.5-14)
0 otherwise.

This transformation is invertible over the region of u for which p,(u) is
nonzero; the inverse function is

= cos 'z. (2.5-15)
The required derivative is
du| 1
dz | 1 — 22 ’
and thus
Haur L _1<.<1
pr(z)=(mldzl 1 - ;2 = (2.5-16)
0 otherwise.

Figure 2-6 shows a plot of p,(u), the transformation z = cosu, and the

resulting p,(z).
When the function z = f(u) is not invertible but does consist of invert-

ible segments, a procedure similar to that used above can be employed. If
on the nth segment the function can be represented by the invertible
function f,(u), the probability density function of z can be written

df, '(z)
| (2.5-17)

pz(z) = ZPU[” =fn_l(z)]

As a specific example we again take the square law characteristic z = au?,



Pu(u)

1/

(a)
z=cosu
{\
1.0
| I
r T
0 2
-1.0f—
(b)
pz(2)
1
V4
-1 +1
(c)

Figure 2-6. Plots of (a) the probability density before transformation, () the transformation
law, and (c) the probability density after transformation.

26



TRANSFORMATIONS OF RANDOM VARIABLES 27

which can be inverted in segments as follows:

Z
u= +,/— O<u< oo
V a
Z
U= —/— -0 <u<0.
V a

On both segments we have

1
Waz

du
dz

——
=

and thus

pol 2 ) +po 2]

pz(2) = az

(2.5-18)

in agreement with Eq. (2.5-7).
25.3 Multivariate Probability Transformations

Consider two jointly distributed random variables W and Z that are
functionally related to two underlying jointly distributed random variables
U and V by

w=f(u,v)
z=g(u,v). (2.5-19)

We assume that the joint density function p,, («,v) is given, and we wish
to find the joint density function p,,,(w, z).

In the most general case of interest, the mapping [Eq. (2.5-19)] is single
valued [i.e., a given pair (u,v) maps into only one pair (w, z)], but not
necessarily one to one and invertible. By analogy with Egs. (2.5-2) and
(2.5-3), we must find the joint distribution function F,,,(w, z) and then
differentiate it with respect to w and z. Let A, represent the region of the
(u, v) plane for which the inequalities W < w and Z < z are both satisfied.
Then

Fyz(w,z) = Prob{(u,v) liesin 4,, } (2.5-20)
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and

2
Pwz(w,z)= 3:382 Prob{(u,v) liesin 4, }. (2.5-21)

Since this most general approach will not be required in our later considera-
tions, we defer an example to the problems (see Problem 2-8).

If the mappings f(u,v) and g(u,v) are one to one and have inverses, a
simpler approach is possible. We write u and v in terms of w and z as
follows:

u=F(w,z)

v=G(w,z). (2.5-22)
The probability that the values of u and v lie in an incremental area Au Av
is equal to the probability that w and z lie in the elementary area AwAz,
representing the projection of AuAv through the inverse transformation.

Thus
Pwz(w,z)AwlAz = p,,(u,v) Aulv. (2.5-23)
But for small (Au, Av) we have
Aulv = |J|AwAz, (2.5-24)

where |J| is the Jacobian of the inverse transformation

oF  OF
_|faw @z
|J| = 4G 3G (2.5-25)
dw 0z
and the || - || signs indicate the modulus of the determinant. If Au and Av

are allowed to become arbitrarily small, the approximation (2.5-24) becomes
arbitrarily good. Substituting (2.5-24) in (2.5-23) and canceling AwAz, we
obtain

Pwz(w,z) =|J|pyylu=F(w,z),v=G(w,z)], (2.5-26)

which represents our final result.
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In conclusion we note that the Jacobian |J| plays the same role as the
derivative |du/dz| in Eq. (2.5-11), indicating the redistribution of probabil-
ity density due to the transformation. An example of the use of this result is
deferred to the next section.

2.6 SUMS OF REAL RANDOM VARIABLES

Attention is now turned to the important problem of finding the probability
density function of a random variable that is itself the sum of two other
random variables. Let the random variable Z be defined as

Z=U+V, (2.6-1)

where U and V are random variables with joint probability density function
Puyv(u,v). Knowing p,,(u,v), we wish to find p,(z). For illustration
purposes we shall find the solution by two different methods.

2.6.1 Two Methods for Finding p,(z)
As our first method for finding p,(z), we calculate F,(z) and differentiate
with respect to z. Figure 2-7 illustrates the calculation; choosing a particular

value of z we draw the line z = u + v and identify the region within which
the random variable Z is less than or equal to z. The distribution function

///,,. u

Figure 2-7. The shaded region represents the area within which Z < 2.

~
~

\\
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F,(z) represents the probability that (u, v) falls within this region. Calculat-
ing this probability, we write

F,(z) = fiodv f_"’:dupu,,(u,v). (2.6-2)

With the help of Eq. (2.5-6), F,(z) is differentiated with respect to z,
yielding

pa(z) = f_”wpu,,(z ~ ,0) do. (2.6-3)

Thus from a given joint density function p,,, we can now calculate p..

Next an alternative method for calculating the same result is illustrated.
Here the result (2.5-26) for multivariate transformations is used. Since we
have only one equation relating z, u, and v, a second transformation must
be invented to suit our purposes. Exactly what the second transformation
should be is not obvious, but it can be found with some trial-and-error
experience. We choose the simple transformation w = v, yielding the pair of
transformations

z=u++v

w=u. (2.6-4)
This transformation pair is invertible as follows:

u=z-w

v=w. (2.6-5)

The Jacobian of the inverse transformation is

o

_dz aw| |l -1 _ )

|J| = _(22 ﬁ‘i —“0 1“—1. (2.6-6)
dz aw

With the use of Eq. (2.5-26), therefore, the joint density function of w and
z 1is
Pwz(w,z) =pyy(z —w,w). (2.6-7)

But we are interested only in the marginal density function p_,(z), which we
obtain by integrating p, ., with respect to w,

p2(2)= [ puylz=w.w)dw, (26:8)

which is identical with the previous result (2.6-3).
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2.6.2 Independent Random Variables

If the random variable Z represents the sum of two independent random
variables U and V, the function p,(z) acquires a particularly simple
relation to the probability density functions of U and V. For independent U
and V, the integrand of Eq. (2.6-8) factors,

puy(z —w,w)=py(z—-w)p,(w) (2.6-9)
yielding
p2(2) = [ pulz=w)py(w)dw. (2610)

Such an integral is recognized to be a convolution and arises so frequently
that we use a special notation for it. In shorthand notation, we write the

convolution (2.6-10) as
Pz=Pu*Pv. (2.6-11)
The fact that p, is the convolution of p,, and p, can also be derived in

another way by using characteristic functions. Because of the brevity of this
proof we present it here. The characteristic function of Z is by definition

M, (w) = exp(jwz) = exp| jw(u + v)]. (2.6-12)

But since U and V are independent, the last average can be split into the
product of two averages,

M_(w) = exp(jowu) - exp(jwv) = M (0)M, (). (2.6-13)

Thus the characteristic function of Z is the product of the characteristic
functions of u and v. To find p,(z) we must inverse Fourier transform
M ,(w). But the inverse Fourier transform of a product of two functions is
equal to the convolution of their individual inverse Fourier transforms.
Hence we again obtain the result that p,(z) is equal to the convolution of
Py and p,. This proof is a good indication of the simplifications that can
often be obtained by reasoning with characteristic functions rather than
directly with probability density functions.

2.6.3 The Central Limit Theorem
A basic theorem of enormous importance to us in later applications of

statistics is the central limit theorem. In our discussion we first state the
theorem in a form useful to us, then mention a set of sufficient conditions
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that assure that it holds, and finally present an intuitive and nonrigorous

“proof.”

Let U, U,,...,U, be independent random variables with arbitrary proba-
bility dlStI’lbutIOI’lS (not necessarily the same), means u,,u,,...,4,, and
variances o7, 022, - o,,. Furthermore, let the random variable Z be defined
by

1 ¢ —
= — Z (2.6-14)
yn =1 O

(Note that for every n, Z has zero mean and unit standard deviation.) Then
under certain conditions that are often met in practice and are discussed
below, as the number n of random variables tends to infinity, the probabil-
ity density function p,(z) approaches a Gaussian density,

nlin;pz(z) = ——‘/il—;—e_zz/z. (2.6-15)

There exists a large body of statistical literature on the conditions
required for this theorem to hold. Here we are satisfied to state a set of
sufficient conditions as follows (Ref. 2-6, p. 201):7 there must exist two
positive numbers p and g such that

oi2>p>0

for all i. 2.6-16
] <ol (2616

Finally, a brief and nonrigorous “proof” of the central limit theorem is
presented. Let M (w) represent the characteristic function of the random
variable U, — u,; we assume that all such characteristic functions exist. It
follows from (2.6-13) that the characteristic function of Z is

M,(w)= HM( ) (2.6-17)

Vno,

According to the first condition of (2.6-16), the o, are bounded from below.
Hence for any given w it is always possible to find an » large enough that

"Less stringent sufficient conditions can be stated (see Ref. 2-1, pp. 431-433). If the U, have
identical distributions, it suffices that the mean and variance of that distribution be finite. If the
U, have different distributions, it suffices that they have finite means and finite (2 + §)th
absolute central moment for some & > 0 and that they satisfy the so-called Lyapunov
condition.
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the argument of M, is extremely small. The second condition of (2.6-16)
guarantees that for small argument, M, (w/ Vn 0,) 1s convex and parabolic
[cf. Eq. (2.4-20)],

M,( ‘/’7“’0) PR (2.6-18)

Thus for sufficiently large n, the characteristic function of Z behaves as
M 1= )= (1- 2} 2
Z(w)=i=1—[1( —-27)—( —7;). (2.6-19)

Letting n grow without bound, we find
w?\" w?
lim M,(w) = lim (1 - —27) = exp(— 7), (2.6-20)

a Fourier transform of this result yields

2

lim p,(z) = \/21; exp{— %} (2.6-21)

n— 00

Thus the density function of Z is asymptotically Gaussian.

A word of caution should be injected here. Whereas p,(z) is asymptoti-
cally Gaussian, the Gaussian density function may or may not be a good
approximation to p,(z) for a finite n. The quality of the approximation
depends on just how large » may be and how far out in the “tails” of p,(z)
we wish to work. Results of questionable accuracy may be obtained if the
Gaussian approximation is used to calculate probabilities of extremely large
and improbable excursions of Z. Nonetheless, the central limit theorem is of
great utility when applied to problems that contain enormous numbers of
independent contributions.

2.7 GAUSSIAN RANDOM VARIABLES

In many problems in physics and engineering we encounter random phe-
nomena that are the result of many additive and independent random
events. By virtue of the central limit theorem, Gaussian statistics accord-
ingly play a role of unsurpassed importance in the statistical analysis of
physical phenomena. In this section we summarize the most important
properties of Gaussian random variables.
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2.7.1 Definitions

A random variable U is called Gaussian (or normal) if its characteristic
function is of the form

2 2
M (w)= exp[jwﬁ -~ wzo } (2.7-1)

By appropriate differentiations of M, (w), we can show that # and o are
indeed the mean and standard deviation of the random variable U. More
generally, the nth central moment is found to be

m___{l-3-5-----(n—l)o n even (2.7-2)
0 n odd

A Fourier inversion of M (w) shows that the probability density function
of U is

py(u) = *—2‘/——1;—0%1){— Q—i—f—'—i} (2.7-3)

A plot of this density function is shown in Fig. 2-8.

u—u
)
ag

apy(

L1 L I u-z
~2.0 -10 0 10 20 g

Figure 2-8. The Gaussian probability density function.
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Furthermore, n random variables U,,U,,...,U, are said to be jointly
Gaussian if their joint characteristic function is of the form

M, (@) = exp{ ji'w — 0'Cw} (2.7-4)
where
[ 4, ] [ w, ]
i=| 2] e=| (2.7:5)
@, | @,

and C is an n X n covariance matrix, with element 62 in the ith row and

k th column defined by
of = E[(u, — u,)(u; — a,)]- (2.7-6)

The corresponding nth-order probability density function can be shown to
be

1
€
(27)"*C)

pulw) = w(-3u-0'C -1} @77

where |C| and C~! are the determinant and matrix inverse of C, respec-
tively, and u is a column matrix of the u values.

Of most importance for our future work is the form of (2.7-7) when we
have two jointly distributed Gaussian random variables U and V, each
having zero mean, and with o} = 62 = o2 In this case (2.7-7) becomes

exol u? + v? - 2pw
P 2(1 — p?)o?

pUV(u’ v) =
27702\/1 - p?

(2.7-8)

where

li>

(2.7-9)

uv
02

Figure 2-9 shows contours of constant probability density in the (u, v) plane
for the cases p =0, 0 < p <1, and p = 1. As the correlation coefficient
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(c)

Figure 2-9. Contours of constant probability

density for a joint Gaussian density with

#u=0=0,0=02=0%and(a)p=0,(b)

O0<p<l(c)p=1l
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increases in a positive sense, the density function passes from circular
symmetry to elliptical shape, with major axis along the line ¥ = v. For
negative correlation coefficient, the major axis is the line u = —v.

2.7.2 Special Properties of Gaussian Random Variables

In addition to arising with great frequency in practical problems, the
Gaussian random variable is notable for its many special properties that
make it particularly easy to deal with. Here we summarize these properties,
in most cases with at least an intuitive kind of proof.

(a) Two Uncorrelated Jointly Gaussian Random Variables Are Also Statis-
tically Independent. As pointed out in Section 2.4.2, lack of correlation
rarely implies statistical independence. In the case of jointly distributed
Gaussian random variables, however, the two properties are synonymous.
To demonstrate this fact, we let the correlation coefficient p in Eq. (2.7-8)
be identically zero, in which case the joint density function becomes

ex <_u2+uz}
P 20?

PUV(usU)= g2

_ 1 ex(¥ uz). 1 ex(__vf_)
270 P 207 V2mo P 207
=PU(u)PV(U)-

Since the joint density function factors into the product of the two marginal
density functions, U and V are independent.

(b) The Sum of Two Statistically Independent Jointly Gaussian Random
Variables Is Itself Gaussian. Suppose that U and V are Gaussian and
independent, with characteristic functions

2 2
M, (w) = exp| jowui — won
w’ol |
M, (w) = exp| jwi — 2”
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Let Z be the sum of U and V. Then by Eq. (2.6-13) we have
M,(w) = MU(‘*’)MV("’)

2
= exp| jw(u + D) — %(oj+a§) .

Thus Z 1s a Gaussian random variable with mean # + & and variance
05 + 0,2,.

(c) The Sum of Two Dependent (Correlated) Gaussian Random Variables
Is Itself Gaussian. Let U and V' be jointly Gaussian random variables with
correlation coefficient p # 0. In addition, for simplicity let # = o = 0 and

2 02— g2
o, =o0,=o0° Then

(.0) 2(1 - p?)o?
puv(u,v) =
i 2721 — p?

Let the random variable Z again be the sum of U and V. From Eq. (2.6-3),
we obtain

p2(2) = [~ puy(z=v,0)db

[ u?+ v? - 2puu}
exp| —

exp[-— (z—v)* +v*=2p(z - v)v}
_ /oo 2(1 - p?)o?
- 2'nozm

We next complete the square in the exponent of the integrand, giving

exp[' 4(1 + p)oz} foo ~ (v - %)2

pz(2) = exXp
2701 — p? — (1-p)o?

The integral can be performed to yield

dv.

exp[— 4(1 + p)oz]
V2m 201 + p)o®

pz(z) = (2.7-10)
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Thus Z is Gaussian, with zero mean and variance
02=2(1+p)o? (2.7-11)
When p — 0, 02 — 202, whereas when p = 1, 02 > 402

(d) Any Linear Combination of Jointly Gaussian Random Variables, De-
pendent or Independent, Is a Gaussian Random Variable. Let Z be defined
by

Z= Y aU,
1=1

where the a, are known constants and the U, are jointly Gaussian. By
repeated application of the result (2.7-10), Z is readily seen to be Gaussian.

(e) For Jointly Gaussian Random Variables U,, U),,...,U,, Joint Moments

of Order Higher than 2 Can Always Be Expressed in Terms of the First- and

Second-Order Moments. A moment of the form ufuj --- u* can be

n

obtained by partial differentiation of the characteristic function as follows
[cf., Eq. (2.4-23)]:

1 ap+q+ cee 4+ k
ufug -+ u, = Fok [MU(Q)]Q‘Q'

(j)p+q+ R Jwl dwg - -

Since the only parameters appearing in the characteristic function are means
and covariances, the (p + g + -+ +k)th-order moment must be express-
ible in terms of these first- and second-order moments.

By differentiating the characteristic function an appropriate number of
times, it is possible to prove the following basic property of zero-mean
Gaussian random variables:

Uty ot Uy =0,
Uy " Uy = Z(ujumu,up e uqus)#m, (2.7-12)
P I#p

q*s

where L, indicates the summation over all possible distinct groupings of the
2k variables in pairs. It can be shown that there are (2k)!/2*k! such
distinct groupings. For the most important case of k = 2, we have

U Uy Usty = Uyl Uy Uty Uty + Uyl U U5, (2.7-13)
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This relationship is known as the moment theorem for real Gaussian random
variables.

2.8 COMPLEX-VALUED RANDOM VARIABLES

In the previous sections we have studied the properties of random variables
that take on real values. Frequently in the study of waves it is necessary to
consider random variables that take on complex values. Accordingly, it will
be helpful to explore briefly the methods that are used to describe complex-
valued random variables.

2.8.1 General Descriptions

Underlying the definition of every random variable there is a space of events
{ A} and a set of associated probabilities P(A4). If to each event 4 we assign
a complex number u( 4), the set of possible complex numbers, together with
their associated probability measures, define a complex-valued random
variable U.

To describe mathematically the statistical properties of the random
variable U, it is usually most convenient to describe the joint statistical
properties of its real and imaginary parts. Thus if U = R + ;I represents a
complex random variable that can take on specific complex valuesu = r + ji,
a complete description of U entails specification of either the joint distribu-
tion function of R and I,

Fy(u) 2 Fy,(r,i) & Prob{R<rand I <i}, (2.8-1)

or the joint density function of R and 1,

. 3* .
PU(“)éPRI(",l)= mFm(",’), (2-8'2)
or, alternatively, the joint characteristic function of R and I,
My(w, ') 2 E[exp[j(w’r + w’i)”. (2.8-3)

For n joint complex random variables U,,U,,...,U,, which take on
specific values u, = r, + ji;, u, = r, + ji,, and so on, the joint distribution
function may be written

Fy(u) £ Prob{R, <r,R,<r,,....,R, <r, I, <i;,I,<i,,.... I, <i,)}

(2.8-4)
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where the probability in question is the joint probability that all the events
indicated occur, and the argument of Fy, is regarded as a matrix with n
complex elements,

u;

u (2.8-5)

=
Il

u

n |

Corresponding to the distribution function Fy(u) is a Jomt probablllty

density function of the 2n real variables {r, ry, ..., 7, i, 05, ...,1,
A aZn ( (
Pulu) = u 2.8-6
o) & 5 Fy(u). )

Finally, it is possible to describe the joint statistics by means of a character-
istic function defined by

My () 2 E[exp(ju'u)] (2.8-7)

where w and u are column matrices with 2»n real-valued entries,

B ] B n
,
ry W
.
r W
n n

u= W= ) (2.8-8)

Iy W
!

_l”_J w”..l

2.8.2 Complex Gaussian Random Variables

The n complex random variables U,,U,,..., U, are said to be jointly
Gaussian if their characteristic function is of the form

My (@) = exp{ ji'w — }0'Cw ) (2.8-9)

where w is again given by (2.8-8), u 1s a column matrix with 2n real-valued
elements that are the mean values of the elements of u, and C 1sa 2n X 2n
covariance matrix, with real-valued elements, defined by

C=E[(u-a)(u-a)]. (2.8-10)



42 RANDOM VARIABLES

By means of a 2n-dimensional Fourier transformation of M(w), the
corresponding probability density function is found to be

pulu) = -%(u—@)’g“(y—g)} (2.8-11)

o]
€X
Q2m)"1cf2 P

where |C| and C! are, respectively, the determinant and inverse of the
2n X 2n covariance matrix C.

For future reference, it is useful to define a special class of complex
Gaussian random variables. But to do so we must first define some new
symbols. Let r and i be n-element column matrices of the real parts and
imaginary parts, respectively, of the n complex random variables U, (k =
1,2,...,n); thus

{-rl— ("lq
r i

IS B Y R (2.8-12)
_r"_1 _i"_l

Further, let the following covariance matrices be defined:

CLE[(r-F)r-F)], Cc™LE[i-i)i-i)]

ceEl(r-p)i-D']. c"2E[(i-i)(r-1)]

We call the complex U, (k =1,2,...,n) jointly circular complex random
variables if the following special relations hold:

0 0
0 0

(1) F=(-1| i= (2.8-14)
0 0

(2) \_C_'(rr) = Q(u‘)’ Q(n) - g(ir). (28-15)

The origin of the term “circular” is perhaps best understood by consider-
ing the simple case of a single circular complex Gaussian random variable.
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We have
F=r, i=1i
Cn =2, Ci) = g2
C =g 0,p, CU = g0, (2.8-16)

where 6 and ¢ are the variances of the real and imaginary parts of U,
whereas p is the correlation coefficient of the real and imaginary parts.
Imposition of the circularity conditions (2.8-14) and (2.8-15) yields the

requirements

p=0. (2.8-17)

Thus the 2 X 2 covariance matrix C is given by

Q=[? SJ (2.8-18)

and for the case of Gaussian statistics, the probability density function of U
becomes

oo -

mo

(2.8-19)

r? 4+ iz}
20?2 '

Contours of constant probability are circles in the (r, i) plane, and hence U
is called a circular complex Gaussian random variable.

Note that the real and imaginary parts of a circular complex Gaussian
random variable are uncorrelated and hence independent. If U, and U, are
two such joint random variables, however, the real part of U, may have an
arbitrary degree of correlation with the real and imaginary parts of U,,
provided only that the conditions

rr, =4,

are satisfied, in accord with (2.8-15).
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Circular complex Gaussian random variables are frequently encountered
in practice. An important property of such random variables is the complex
Gaussian moment theorem, which can be derived from the real Gaussian
moment theorem (2.7-13), together with the conditions (2.8-14) and (2.8-15)
for circularity. Let U,,U,,...,U,, be zero-mean jointly circular complex
Gaussian random variables. Then

" = Y u*u u*u_ - u* ]
u} Wiu, Uy, = Yufu,uiu, - ulu, (2.8-21)
m

where ¥, denotes a summation over the k! possible permutations
(p,q,...,r)of (1,2,..., k). For the simplest case of k = 2, we have

ufuiu,u, = ufusuiu, + utu, uiu,. (2.8-22)

2.9 RANDOM PHASOR SUMS

In many areas of physics, and particularly in optics, we must deal with
complex-valued random variables that arise as a sum of many small
“elementary” complex-valued contributions. The complex numbers of con-
cern are often phasors, representing the amplitude and phase of a mono-
chromatic or nearly monochromatic wave disturbance. A complex addition
of many small independent phasors results, for example, when we calculate
the total complex amplitude of the wave that arises as a result of scattering
by a collection of small, independent scatterers. More generally, such
complex sums occur whenever we add a number of complex-valued analytic
signals, which are defined and discussed in detail in Section 3.8. Sums of
complex-valued random variables are referred to here as random phasor
sums, and their properties are discussed in this section.

2.9.1 Initial Assumptions
Consider a sum of a very large number N of complex phasors, the kth

phasor having random length «, / VN and random phase ¢,. The resultant
phasor, with length a and phase 8, is defined by

N
a=agel= Z a, el (2.9-1)

1
7

and is illustrated in Fig. 2-10.
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Figure 2-10. Random phasor sum.

For simplicity of analysis, we make a number of assumptions about the
statistical properties of the elementary phasors composing the sum, proper-
ties that are generally satisfied in practical problems of interest:

(1) The amplitude a,/ VN and phase ¢, of the k th elementary phasor are
statistically independent of each other and of the amplitudes and
phases of all other elementary phasors.

(2) The random variables a, are identically distributed for all k, with
mean & and second moment a’.

(3) The phases ¢, are all uniformly distributed on (—=, 7).

Of the various assumptions, 1 is the most important, whereas 2 and 3 can
both be relaxed, with some changes in the results [see, e.g., Ref. 2-10, pp.
119-137, and Appendix B].

Let the real and imaginary parts r and i of the resultant phasor be
defined by

1 N
r& Re{ae’?) = — Y a,cos¢
{ } \/N kgl k k
1 N
i 2 Im{ae’®} = — Y a,sinog,. 2.9-2
{ } \/]v kgl k ¢k ( )

Noting that both r and i are sums of many independent random contribu-
tions, we conclude that by virtue of the central limit theorem, both  and i
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will be approximately Gaussian random variables for large N. To specify in
detail the joint density function for r and i, we must first calculate 7, i, o2,

o?, and their correlation coefficient p.
2.9.2 Calculations of Means, Variances, and the Correlation Coefficient

The mean values of the real and imaginary parts r and i are calculated as
follows:

1 & — 1 Y —
r=— «,COS = cos VN @cos
W B e § $u= VN cosg
- 1 —
= —— Z a,sing, = Z aksmqbk »/_asmqb
N k=1 N k=1

Here we have explicitly used the facts that «, and ¢, are independent and
identically distributed for all k. But in addition, by assumption 3, the
random variable ® is uniformly distributed on (—n, @), with the result
cos ¢ =sin ¢ =0 and hence

r=i=0. (2.9-3)

Thus both the real and the imaginary parts have zero means.
To evaluate the varlances o’ and o , we can equivalently evaluate the

second moments r2 and 2 (since 7 = i = 0). Using the independence of the
amplitudes and phases, we write

[ 5]

a,a, CoS¢,Ccosd,

u[\’]2

ZI'-‘

|
z| -

N N
Y. Y a,a,sing,sing,.
k=1n=1

But in addition:

: : {0 k # n
Cos ¢,COs ¢, = sin¢,sin¢g, = { ;| k

2

—_:n,

YA subtlety has been avoided in this argument. Although the marginal statistics of r and :
clearly are asymptotically Gaussian, we have not proved that the two random variables are
Jjointly Gaussian. Such a proof is provided in Appendix B.
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again due to the uniform distribution of the phases. Thus we have

o>
r?=i?= > £ o2 (2.9-4)

Finally we evaluate the correlation between r and i,

ri

| NN
N E Y aa,cos¢,sing,.
=1 n-1

Noting that cos ¢ sing = 1 sin2¢, we have

S cospsing =0 k#n
Cosd,Sing, = {  ——
ssin2¢ =0 k=n.
Thus the real and imaginary parts of the resultant are uncorrelated. Note
that the zero means, equality of variances, and lack of correlation are true
for any N, finite or infinite.

To summarize our results, we now know that in the limit of very large N,
the joint density function of the real and imaginary parts of the random
phasor sum is asymptotically (N — o0)

1 r2+i2}
r,i)= exp({ — , 2.9-5
O e (2.9-)
where
2
o2 = 32— (2.9-6)

In the terminology given in Section 2.8, the random variable a representing
the resultant is a circular complex Gaussian random variable. Figure 2-11
shows contours of constant probability density in the (r, i) plane.

The reader will find in Appendix B that when a distribution pg(¢) other
than uniform is chosen for the phase of an elementary phasor, the resulting
two-dimensional joint density function will in general not have zero means,
equal variances, and zero correlation coefficient. Rather, the contours of
constant probability density will be ellipses in the complex plane (see, e.g.,
Problem 2-10).
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2.9.3 Statistics of the Length and Phase

In the previous section we found the joint statistics of the real and
imaginary parts of a random phasor sum. In many applications it is desired
to know instead the statistics of the length a and phase 8 of the resultant,

where
a=Vr?+i?

§ = tan™! (2.9-7)

Xf~.

The change from rectangular to polar coordinates is a one-to-one mapping,
and hence we can use the methods given in Section 2.5.3. to find the joint
statistics of a and 6. The inverse functions are

r=acosf
i = asinb, (2.9-8)
and the corresponding Jacobian is
o o
_llda 90} _|lcos@ —asinf| _
I i di|l llsin6 acosfl| ~ ¢ (2.9-9)
da 00

Figure 2-11. Contours of constant probability density in the (r,i) plane.
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Thus we have a joint density function
Pio(a,0)=pr,(r=acosb,i =asinb)-a (2.9-10)
which becomes, with the help of (2.9-5),

2
a } -r <l <

a
Pio(a,8) = 27r02exp{_ 262 a>0 (2.9-11)

0 otherwise.

The marginal densities of the length and phase can now be found.
Integrating first with respect to angle 6, we have

paa) = [ pie(a,8)do={ ;2P| 7 357
0 otherwise.

(2.9-12)

This density function is known as a Rayleigh density function and is plotted
in Fig. 2-12. Its mean and variance are

—

I
NE
Q

o2 = [2 - g]az. (2.9-13)

To find the probability density function of the phase 8, we integrate Eq.
(2.9-11) with respect to a,

1 (©a a’
pe(0) = ﬁfo TCXP{_T?}"“’ mr<Os=T 5 9.14)

o o
0 otherwise.

But the integral is precisely the integral of a Rayleigh density function and
hence must be unity. We conclude that the phase # of the resultant is
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Figure 2-12. Rayleigh probability density function.

Y
ala

uniformly distributed on (—, 7),

]
pe(0)= {27 T =0=7 (2.9-15)
0 otherwise.

Note that the joint density function p,g(a, @) can be expressed as a
simple product of the marginal densities p,(a) and pg(d). Thus 4 and ©
are independent random variables, as were the real and imaginary parts R
and [ described in Section 2.9.2.

2.9.4 A Constant Phasor Plus a Random Phasor Sum

We consider next the statistical properties of the sum of a constant known
phasor plus a random phasor sum. Without loss of generality, the known
phasor can be taken to be entirely real and positive with length s (this
simply amounts to choosing a phase reference that coincides with the phase
of s). Figure 2-13 illustrates the complex sum of interest.
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Figure 2-13. Sum of a constant phasor and a random phasor sum.

The real part of the resultant phasor is readily expressible as

1 N
r=s+ —— Y a,c05¢,, (2.9-16)
N =1

whereas the imaginary part remains as before,

1 N
i= —‘/:Zg‘, (Sine, . (2.9-17)

Thus the only effect of adding the known phasor has been to add a bias to
the real part of the resultant phasor. In the limit of large N, the joint
statistics of R and I remain approximately Gaussian, but with a modified
mean,

, 1 r—s 2 4 i
pri(r,i) = 2eXP{" ( ) } (2.9-18)
2mo

207

Again our chief interest is often in the statistics of the length a and phase
@ of the resultant phasor. Since the transformation to polar coordinates is
identical to that considered earlier, the Jacobian remains a, and

a_ | _ (acosb — s)* + (asind)’ a>0
pAG(a’0)= 27;'02 P 202 —r <@ <a
0 otherwise.

(2.9-19)
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To find the marginal density function for 4, we must evaluate
paa) = [ pyo(a,0)df

a a2+s2

= exp| - ——
2mo? p( 202

fﬂ exp(a—";cosO) df.

- o

The integral can be expressed as 27l,(as/0?), where I, is a modified Bessel
function of the first kind, zero order. Thus

a. . [_ats’ 1(_@{) 4> 0
pala)={ 2P\ 7 T2 |l 2 (2.9-20)

0 otherwise,

which is known as a Rician density function.

Figure 2-14 plots op,(a) against a/o for various values of the parameter
k = s/0. As the strength of the known phasor increases, the shape of the
probability density function changes from that of a Rayleigh density to
what will be seen in the next section to be approximately a Gaussian density
with mean equal to s.

GPA(a)

A
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Figure 2-14. Probability density function of the amplitude A4 of the sum of a constant phasor
(length s) and a random phasor sum (variance 0?). Parameter k = s/0. (After J. B. Thomas,
Ref. 2-6, p. 163. Reprinted with the permission of the author and John Wiley and Sons, Inc.)
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Two moments of the density function (2.9-20) will be of use to us in later
chapters. These are the mean value,

w© g2 ( a’t + s? as
a= —exp|l ——m |1 (——) da 2.9-21
fo 02 P 202 N\ 62 ( )
and the second moment,
3 2 2
— *©q a+s ( as )
ac = —expt — ——— | I,| — | da. 2.9-22
fo o? p( 202 o\ o2 ( )

These integrals can be evaluated and yield (see Ref. 2-6, Section 4.8)

2 2 2 2
= _ _71'_ ~k2/4 k k k k )
Y 5 o€ (1 + = )IO(—-4 ) + 54l (2.9-23)

a’=o2[2 + k2], (2.9-24)

where 7, and I, are modified Bessel functions of the first kind, orders zero
and one, respectively.

po(6)

20—

10—

0 4

- - O m

2 2

Figure 2-15. The probability density function pg(#) for a constant phasor plus a random
phasor sum. Again the parameter k is s/a. (After J. B. Thomas, Ref. 2-6, p. 167. Reprinted
with the permission of the author and John Wiley and Sons, Inc.)
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To find the marginal density function pg(6) for the phase, we must
evaluate

pe(0) = j(;oop,,e(aﬁ) da.

The integration is a difficult one, so we present only the result here (see Ref.
2-6, Section 4.8 again):

—k/2 kcosl [ k 2sin’f
+ exp| —

pe(0) = ezﬂ o > ](D(kcoso) (2.9-25)

where
2(b) = = [ ey, (2.9-26)
V27 Y-

A plot of pg(8) is shown in Fig. 2-15 for various values of k& = 5/0. When
k = 0, the distribution i1s uniform, whereas with increasing k the density
function becomes more narrow, converging toward a 8 function at 6 = 0,
the phase of the constant phasor.

2.9.5 Strong Constant Phasor Plus a Weak Random Phasor Sum

When the known phasor is much stronger than the random phasor sum, the
results obtained in the previous section simplify considerably. Thus we wish
to consider the approximate form of the expressions for p,(a) and pg(#)
when s > o, or equivalently k > 1. One approach is to apply the condition
s > o to equations (2.9-20) and (2.9-25) and to discover the approximate
forms through mathematical approximation. However, we choose here a
more physical approach that yields exactly the same results in a more
appealing way.

Our approximation is based on the observation that when s > o, we are
dealing with a tiny probability “cloud” centered on the tip of an extremely
long, known phasor, as shown in Fig. 2-16. In such a case, with extremely
high probability, the resultant of the random phasor sum is much smaller
than the length of the known phasor. As a consequence, variations in the
length a of the total resultant are caused primarily by the real part of the
random phasor sum, whereas variations of the phase 6 of the resultant are
caused primarily by the imaginary part of the random phasor, which is
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Figure 2-16. Large constant phasor s plus a small “noise cloud.”

orthogonal to the known phasor. Since the real part of the random phasor
sum is Gaussian with zero mean, we have that

1 _ 2
pa) = o exp{- ng.%)—}, s> 0. (2.9-27)

As for the phase 8, with s > ¢ its fluctuations will be small about zero,
and

6 = tanf = % (2.9-28)
Therefore
pe(8) = sp,(i = s8) (2.9-29)
or
k k262
6) = —ex {— } 2.9-30

We conclude that both 4 and ® are approximately Gaussian for s > o.
For the amplitude we have mean @ = s and variance o = o2, whereas for
the phase we have § = 0 and o} = 1/k? = 6?/s2. These results provide
useful approximations when the condition s > o is met.
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PROBLEMS
2-1 Show that for any random variable U,
2 2 ()2
u*=o*+(u)".
2-2 Show that any two statistically independent random variables have a
correlation coefficient that is zero.
2-3  Given the random variables

U= cos®
V =sin®
with
1 T << T
pe(l)=( = 2 -2
0 otherwise,

show that p = 0.
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2-4 Prove the following properties of characteristic functions:

2-5

2-6

2-7

2-8

2-9

(a) Every characteristic function has value unity at zero argument.

(b) The second-order characteristic function M, (w,,w,) with
wy, =0 is equal to the characteristic function M, (w) of the
random variable U alone.

(c) For two independent random variables U and V,

MUV(wU’wV) = MU(‘*’U)MV(‘*’V)

Show that the moment u"v™, if it exists, can be found from the joint
characteristic function M, (w,, w,) by the formula

u"” = 1 o M, (0,,w,)
jn+m awrz/ awrlr/t uv Us™y

wy=w,=0

(a) Show that a sum of two statistically independent Poisson-
distributed random variables is Poisson distributed.

(b) Show that if K is Poisson distributed, then

K(K-1)---(K-—k+1)=(K)~

Find the probability density function of the random variable Z in
terms of the known density function p,(u) when

(a) z=au+b

w)z=ﬂ” —1<uxl
1 otherwise.

Using the method given in Eq. (2.5-20), find the joint probability
density function p,,,(w, z) when

w = u?

z2=u+v

and 1s

Do |—

and p,,(u,v) = recturectv, where rectx =1 for |x| <
zero otherwise.

Consider two independent, identically distributed random variables
®, and 0O,, each of which obeys a probability density function

1

Pe( 6 ) ={ 2x’
0 otherwise.

-m<f<
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2-10

2-11

2-12

2-13

RANDOM VARIABLES

(a) Find the probability density function of the random variable Z
defined by

Z=®l+®2

(b) If Z represents a phase angle that can only be measured modulo
2, show that, despite the result of (a), Z is uniformly distrib-
uted on (—7, 7).

Consider the random phasor sum in Section 2.9.1 with the single
chaunge that the phases ¢, are uniformly distributed on (-7 /2, 7/2).
Find the following quantities: 7, i, 2, 0 and p,,. Make a rough plot
of the contours of constant probability in the complex plane.

Let the random variables U, and U, be jointly Gaussian, with zero
means, equal variances, and correlation coefficient p # 0. Consider
new random variables V; and V, defined by a rotational transforma-
tion about the origin of the (u,, u,) plane,

vy cos¢ sing || u,
v,| | —sing coso || u,
where ¢ is the rotation angle. Show that if ¢ is chosen to be 45°, V]

and V, are independent random variables. What are the means and
variances of V| and V, in this case?

Consider n independent random variables U, U,,...,U,, each of
which obeys a Cauchy density function,

(4]

(a) Show that this density function violates one of the conditions
(2.6-16) associated with the validity of the central limit theorem.

(b) Show that the random variable

1 n
r=s2u

pylu)=
7B

obeys a Cauchy distribution for all n.

A certain computer contains a random number generator that gener-
ates numbers with uniform relative frequencies (or probability den-
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sity) on the interval (0,1). Suppose, however, that it is desired to

simulate trials of a random variable Z with density function p,(z)

that is not uniform.

(a) If the values generated by the computer are represented by u,
with

p (u) — {1 O<ux<l
v 0 otherwise,

show that by means of a monotonic transformation z = g(u) it
is possible to obtain the desired p,(z), and that if u = G(z)
represents the inverse of g(-), then G should be chosen to satisfy

G(2) = + [p,(2) dz

where [ is an indefinite integral.
(b) Show that to generate a random variable with probability den-
sity

_Je? 0<z< o
Pz(2) {0 otherwise,

either of the following transformations could be used:

z= —lnu

z= —In(1 — u)
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Random Processes

A natural generalization of the concept of a random variable is a random
process, for which the basic unpredictable or random events are functions
(usually of time and/or space) rather than numbers. The theory of random
processes thus deals with the mathematical description of functions having a
structure that cannot be predicted in detail in advance. Such functions play
a role of great importance in optics; for example, the wave amplitude
emitted by any real source has properties that change with time in an
unpredictable way to some degree. In this chapter we review the basic
concepts underlying the theory of such random phenomena. Emphasis is
placed here on functions of time. However, generalizations to functions of
space are straightforward.

3.1 DEFINITION AND DESCRIPTION OF A RANDOM PROCESS

Underlying the concept of a random process is again a random experiment,
with a set of possible events { 4} and an associated probability measure. To
define a random variable, we assigned a real-valued number u(A) to each
elementary event 4. To define a random process, we assign a real-valued
function u(A4; t), with independent variable ¢, to each elementary event A.
The collection of possible “sample functions” u(A4;t), together with their
associated probability measure, constitute a random process.

In general, the explicit dependence of the random process on the underly-
ing set of events { A} is not indicated in notation, with the random process
represented by the symbol U(¢) and the specific sample functions indicated
by lowercase letters u(t¢). It should be remembered, however, that U(t)
consists of an entire ensemble of possible u(z), together with a measure of
their probabilities.

There are various possible ways to describe a random process mathemati-
cally. Most general is a complete denumeration of all sample functions
composing the random process, together with a specification of their proba-
bilities. We illustrate this complete description with the following example.

60
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Let the underlying random experiment consist of two tosses of a “fair”
coin, that is, a coin that is equally likely to land heads or tails. The
“elementary events” in theset { 4} are A, = HH, A, = HT, A, = TH, and
A, = TT. To each elementary event we assign a sample function as shown
below:

u(A,; 1) = exp(t)
(A, 1) = exp(21)
u(Ay; 1) = exp(3t)
u( A1) = exp(4t). (3.1-1)

In each case the probability associated with the corresponding event must
be calculated. Note that if several different events generate the same sample
function, all possible ways of generating each sample function must be
discovered, and the probability that any of these events occurs becomes the
probability associated with that sample function. Thus, with much labor we
arrive at a denumeration of all sample functions in the ensemble, together
with their probabilities; a complete description of the random process is
then in hand.

Such a complete description is seldom possible or even desirable. In most
practical applications only a partial description of the random process is
needed for calculation of the quantities of physical interest. Various differ-
ent kinds of partial descriptions are possible. In some applications it may
suffice to view the parameter ¢ as fixed and to specify the first-order
probability density function of the random variable U(¢), which we denote
by p,(u;t). From such a description we can specify #,u® and other
moments of U for any value of .

More commonly, the second-order probability density function of U with
parameter values ¢, and ¢, is required. Figure 3-1 illustrates the ensemble of
waveforms and a pair of parameter values ¢, and ¢,. The second-order
density function is the joint density function of the random variables U(t,)
and U(t,). In general this density function depends on both ¢, and , and
hence is denoted p,(u,,u,;t,t,), where u, = u(t,), u, = u(t,). From
such a description we can calculate joint moments, such as

o0
U= _[f uyty py g, uys by, t;) duy dus,. (3.1-2)
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In some cases, even higher order density functions may be required. To
completely describe the random process U(¢), it must be possible to specify
the kth-order density function p,(uy, u,,...,u.;t,ts,...,¢8) for all k.
Such a description is equivalent to the complete description discussed
previously and generally is just as difficult to state. In practice, a complete
description is never needed.

In closing, we note that a random process is a mathematical model that is
useful to us only before the exact sample function #(7) is determined by
measurement. Before the measurement, the random process represents our
a prioni state of knowledge. After u(¢) has been determined by measure-
ment, only one sample function remains of interest, namely, the one that
was observed.
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Figure 3-1. An ensemble of sample functions, where ¢, and ¢, are the parameter values for
which the joint density function p, (u;, u,; t;, t;) is specified.
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3.2 STATIONARITY AND ERGODICITY

Of the infinite variety of random process models that could in principle be
constructed, only certain restricted types are of great importance in physical
applications. Various restricted classes are defined and discussed in this
section. This classification is by no means complete or exhaustive but merely
identifies certain types of models we deal with in the future.

A random process is called setrictly stationary if the kth-order joint
probability density function p,(u, uy, ..., U5t t,, ..., t,) is independent
of the choice of time origin for all k. Stating this definition mathematically,
we require that

puluy,uy, o ugs byt 1)
=p,(uy,uyy...sup;ty =Tty = T,....t, — T)
(3.2-1)

for all k and all 7. For such a process, the first-order density function is
independent of time and hence can be written p,(u). Similarly, the
second-order density function depends only on the time difference 7 =
t, — t, and can be written p,(u,, u,; 7).

A random process is called wide-sense stationary if the following two
conditions are met:

(1) E[u(?)] is independent of r.
(i) E[u(t,)u(t,)] depends only on 7 =t, — ¢,.

Every strictly stationary random process is also wide-sense stationary;
however, a wide-sense stationary process need not be strictly stationary.

If the difference U(t,) — U(t,) is strictly stationary for all ¢, and ¢,, U(t)
is said to have stationary increments.” 1f ®(¢) is a strictly stationary random
process, the new random process

U(t) = Ulte) + [@(&)dg (1> 1)) (3.2-2)

lo

[constructed from integrals of the sample functions of ®(¢)] is nonsta-
tionary but does have stationary increments. Such random processes play an
important role in certain practical problems.

*We should differentiate here between strictly stationary increments and wide-sense stationary
increments. For simplicity, however, we try to avoid using too many qualifiers and assume the
kind of stationarity actually needed in each case.
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Since a full description of a random process is seldom needed or even
possible, we are generally satisfied with descriptions of finite-order (espe-
cially first- and second-order) statistics. In such cases it is necessary only to
know the stationarity properties of the random process to finite order. (For
example, are the second-order statistics strictly stationary, wide-sense sta-
tionary, or stationary in increments?) When in the future we refer to a
random process simply as stationary, without specifying the type or order of
stationarity, we mean that the particular statistical quantities necessary for
use in our calculation are assumed to be independent of the choice of time
origin. Depending on just what calculations are to be performed, the term
may mean different types of stationarity in different cases. When there is
danger of confusion, the exact type of stationarity assumed is stated
precisely.

The most restrictive class of random processes and the class used most
frequently in practice is the class of ergodic random processes. In this case
we are interested in a comparison of the properties of an individual sample
function as it evolves along the time axis, with the properties of the entire
ensemble at one or more specific instants of time. We may state this in the
form of a question by asking whether each sample function is in some sense
typical of the entire ensemble.

For a more precise definition, a random process is called ergodic if every
sample function (except possibly a subset with zero probability) takes on
values along the time axis (i.e., “horizontally’) with the same joint relative
frequencies observed across the ensemble at any instant or collection of
instants (i.e., ““ vertically”).

For a random process to be ergodic, it is necessary that it be strictly
stationary. This requirement is perhaps best understood by considering an
example of a random process that is nonergodic by virtue of nonstationar-
ity. Sample functions of such a process are shown in Fig. 3-2. Suppose that
all sample functions have exactly the same relative frequency distributions
along the time axis. Now clearly the relative frequencies observed across the
process at time instants ¢, and ¢, will not be the same since the fluctuations
of all sample functions are greater at ¢, than at ¢,. Thus there is no unique
distribution of relative frequencies across the process. Hence the relative
frequencies observed across the process and along the process cannot be
equal for all time. The process is thus nonergodic.

Although a process must be strictly stationary to be ergodic, not all
strictly stationary processes are necessarily ergodic. We illustrate this fact
with a specific example. Let U(¢) be the random process

U(t) = Acos(wt + @) (3.2-3)

where w is a known constant, whereas A and ® are independent random
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variables with probability density functions
pila) =138(a - 1)+ 38(a - 2)

1
pol9)={ 27  TTSO=T (3.2-4)
0 otherwise.

Because of the uniform distribution of ® on (—#, ), this random process is
strictly stationary. However, as illustrated in Fig. 3-3, a single sample
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Figure 3-2. Sample functions of a nonstationary random process.
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function is not typical of the entire process. Rather, there are two classes of
sample functions; one class has amplitude 1 and the other, amplitude 2.
Each class occurs with probability 4. Clearly the relative frequencies ob-
served along a sample function with amplitude 1 are different from the
relative frequencies when the amplitude is 2. Thus not all sample functions
have the same relative frequencies in time as those observed across the

process.
If a random process is ergodic, any average calculated along a sample

function (i.e., a time average) must equal the same average calculated across
the ensemble (i.e., an ensemble average). Thus if g(u) is the quantity to be
averaged, we have that the time average,

.1 (72
(gy = Jim 7 [ glu(e)] d (3.2:5)
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Figure 3-3. A stationary process that is nonergodic.
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must equal the ensemble average
g=[ g(u)py(u)du. (3.2-6)

For an ergodic random process, time and ensemble averages are equal and

interchangeable.
An important question remains. How can we methodically determine

whether a certain random process model, which we believe accurately
represents the random phenomenon under study, is ergodic? To establish
ergodicity, it is necessary to consider the entire ensemble of sample func-
tions. This ensemble can be said to be ergodic provided (Ref. 2-5, p. 56):

(a) The ensemble is strictly stationary.
(b) The ensemble contains no strictly stationary subensembles that occur
with probability other than zero or one.

It should be noted that some random phenomena require a nonergodic
ensemble for accurate modeling.

Random pfOCe

Figure 3-4. The hierarchy of classes of random processes.
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The hierarchy of types of random processes is illustrated in Fig. 3-4,
which shows the progression from the broad collection of all random
processes to the far narrower class of ergodic random processes. The circles
within circles represent subsets of the broader collections in each case.

3.3 SPECTRAL ANALYSIS OF RANDOM PROCESSES

Let u(z) be a known function of time. Two different classes of time
functions can be distinguished. If u(¢) has the property that

fm u(t)|dt < o0, (3.3-1)
we say that u(?) is Fourier transformable. On the other hand, it may be that
u(t) does not satisfy (3.3-1) but does satisfy

lim lfm W (1) dt < o0, (3.3-2)
T-ow 1T/ 1,

in which case we say that u(¢) has finite average power. In each case it is
important in practice to be able to specify the distribution of energy [when
Eq. (3.3-1) is satisfied] or average power [when Eq. (3.3-2) is satisfied] over
frequency. Such descriptions are called, respectively, the energy spectral
density (energy spectrum) and the power spectral density (power spectrum)
of the function u(¢).

Similarly, if U(t) is a random process with sample functions satisfying
(3.3-1) or (3.3-2), it is important to be able to characterize the manner in
which energy or average power is distributed over frequency, not just for
one sample function but for the entire random process. Since the particular
sample function that will occur experimentally is unknown in advance, the
logical quantity to be concerned with is the expected distribution of energy
or average power over frequency. These expected or mean distributions are
called, respectively, the energy spectral density and the power spectral density
of the random process U(¢). The distinction between spectral densities of
known functions and of random processes is an important one and is
developed in further detail in the following section.

3.3.1 Spectral Densities of Known Functions

If u(t)is a Fourier transformable function, then

(v =f°° u(1)e>™ di (3.3-3)

— 00
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always exists. Further, according to Parseval’s theorem (Ref. 2-6, p. 380),
the area under |#(»)|? is equal to the total energy contained in u(t); that
is,

|7 wr(1) a =fww|%(v)lzdv. (3.3-4)

Thus the quantity
e(v) =%(»)|’ (3.3-5)

has the dimensions of energy per unit frequency, and we accordingly refer
to it as the energy spectral density of u(?).

On the other hand, suppose that u(¢) is not Fourier transformable but
does have finite average power. Then, in general, the integral (3.3-3) does
not exist. However, the truncated function

(3.3-6)
0 otherwise

does have a transform, which we denote by #,(v). Furthermore, the
quantity |% .(v)|? represents the distribution of energy over frequency for
the truncated waveform u (7). Thus the normalized energy spectrum

gr(v) _ I%T;V)Iz

has the dimension of power per unit frequency, and we are logically led to
define the power spectral density of u(t) by

2
T— o0 T

Such a definition works adequately for some functions. For example, the
reader may wish to prove, by means of the limiting process above, that the
function

u(¢) =1 (all¢)
has a power spectral density

G(v)=68(v).
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Therefore, whereas strictly speaking, the limit above does not exist in this
case, it does exist in the sense of § functions.

Unfortunately, however, there are also many functions for which the limit
does not even exist in the sense of 8 functions. Rather, the value of ¥,(v)
fluctuates erratically at each » as T is increased without bound. Such is
often the case when u(r) represents a sample function of a stationary
random process.

In addition, note that the above definitions of &(») and %(») apply only
for a single function u(¢), but a random process contains an entire ensemble
of different functions. Clearly a different definition of power spectral density
is needed for a random process.

3.3.2 Spectral Density of a Random Process

There exists a simple and logical modification of the definitions of energy
and power spectral densities that proves quite satisfactory in practice. Since
we wish to find a spectral distribution that characterizes an entire random
process, it is logical to define such quantities in terms of averages over the
entire random process. Accordingly, we define the energy and power spec-
tral densities, respectively, by

&y(v) & E[|1% (»)1?] (3.3-7a)

E||¥% 2

g,(v) 2 lim i) (3.3-7b)
T— o0 r

The latter limit does indeed exist in most cases of practical interest.

Several basic properties of spectral density functions follow directly from
the definitions (3.3-7):

(1) &,(v) =0, 9,(v) = 0; energy and power spectral densities are non-
negative (and real-valued).

(ii)) &y(—vr)=Ey(»), 9,(—v)= 9 ,(»); energy and power spectral den-
sities are even functions of v, provided U(r) is a real-valued random
process.

(ii1)

u? for U(t) stationary

- oo (u?(1)) for U(¢) nonstationary.
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Proofs of these properties are straightforward. Property (1) follows directly
from the positivity of the right-hand sides of Eq. (3.3-7). Property (ii)
follows from the hermitian character of #(») and % (v) [i.e., #(—v) =
&*(v), ¥ (—v)= ¥%(v)] for any real-valued u(r). Property (iii) for the
energy spectral density follows from Parseval’s theorem and an interchange
of orders of averaging and integration. Property (iii) for power spectral
densities can be proved by noting

° ©  E[1#(n)]
'/—oogU(V)dV = _/‘_oorll_’moo T dv
= lim lE /w |% ,(v)|*dv| = lim lE foo ur(t)dt
T—- oo T — 00 ! T x T — 00 T
where Parseval’s theorem was used in the last step. Continuing,
I = tim L (7?7 By
lim TE[f_qu(t)dt] - lim Tf_mE[uT(z)] dt
3 { u? if U(t) is stationary
W (1)) if U(t) is nonstationary.

Thus the basic properties have been proved.

3.3.3 Energy and Power Spectral Densities for Linearly Filtered
Random Processes

Let the random process V(¢) consist of sample functions that result from
passing all sample functions of the random process U(¢) through a known
linear filter.t Then V(¢) is called a linearly filtered random process. In the
case of a random process with Fourier transformable sample functions, we
wish to find the relationship between the energy spectral densities &, (v) of
the filter output and &, (») of the filter input. If the sample functions of
U(t) are not Fourier transformable but do have finite average power, the
desired relationship is between the power spectral densities ¢, ,(v) and
G,(v).

The case of Fourier transformable waveforms is considered first. The
linear filter is assumed to be time invariant, in which case a single output
sample function is related to the corresponding input sample function u(¢)

tFor a review of the properties of linear filters, see, for example, Ref. 2-9, Chapter 9.
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by a convolution

o(t) = [ h(r - £)u(t) at, (3.3-8)

— o0

where h(t) represents the known response of the filter at time ¢ to a unit
impulse applied at time ¢t = 0 (i.e., A(¢) 1s the “impulse response” of the
filter). In the frequency domain, this relationship becomes a simple multi-
plicative one,

Vv)=HK(v)¥(v) (3.3-9)

where ¥ (v) and # (v) are the Fourier transforms of v(¢) and u(¢) and
M (v) is the Fourier transform of A(¢) (called the transfer function). The
definition given in Eq. (3.3-7a) is now used for &, (»),

&,(v) = E[|1# ()% (v)*] = |9 (»)1%6,(v).  (3.3-10)

Thus the average spectral distribution of energy in the random process is
modified by the simple multiplicative factor |3 (v)|>.

For the case of finite-average-power processes, the relationship between
the power spectral densities ¢, (») and 9,(v) must be found by a more
subtle argument. In this case the Fourier transforms ¥°(v) and #(v)
generally do not exist. However, the truncated waveforms v,(¢) and u,(¢)
do have transforms ¥",(v) and % ,(v). Furthermore, although the relation-
ship is not exact due to “end effects,” we can nonetheless write

or(1) = [ h(1 = &)ur(§) d (3.3-11)

- OQ

with an approximation that becomes arbitrarily good as T increases.|
Subject to the same approximation, we have the frequency domain relation-
ship

V()= H()U(v).

tThe approximation arises because the response of the filter to a truncated excitation is in
general not itself truncated. As T grows, however, these end effects eventually have negligible
consequence.
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The power spectral density of v(¢) can now be written

-l (i O o EAQTR QT

T—- o0 T T—o oo T

l

gv(”)

, . E[1#:(»)?]
=|#(»v)|* lim T ;

or equivalently

Gy(v) =1 (»)*Fy(v). (3.3-12)

Thus the power spectral density of the output random process is simply
the squared modulus of the transfer function of the filter times the power
spectral density of the input random process.

3.4 AUTOCORRELATION FUNCTIONS AND THE
WIENER-KHINCHIN THEOREM

In the theory of coherence (Chapter 5) a role of great importance is played
by correlation functions. In preparation for these discussions, we accord-
ingly introduce the concept of an autocorrelation function.

Given a single known time function u(¢), which may be one sample
function of a random process, the time autocorrelation function of u(t) is
defined by

>

Ty(r) 2 (u(e + 7)u(1))

= lim —l—fm u(t + 1)u(e) dr. (3.4-1)
T—o I -T/2

Closely related, but a property of an entire random process U(?), is the
statistical autocorrelation function, defined by

Ty(ty, ) 2uley)u(t))

= ff“zulpu(ul’“z;tz’t1)d“1du2- (3.4-2)

From a physical point of view, the time autocorrelation function measures
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the structural similarity of u(¢) and u(¢ + 7), averaged over all time,
whereas the statistical autocorrelation function measures the statistical
similarity of u(t,) and u(t,) over the ensemble.

For a random process with at least wide-sense stationarity, I';, 1s a
function only of the time difference T = ¢, — ¢,. For the more restrictive
class of ergodic random processes, the time autocorrelation functions of all
sample functions are equal to each other and are also equal to the statistical
autocorrelation function. For ergodic processes, therefore,

(3.4-3)

all sample )
functions |

y(n) = Ty(n) |

It is thus pointless to distinguish between the two types of autocorrelation
function for such processes.

Two important properties of autocorrelation functions of processes that
are at least wide-sense stationary follow directly from the definition:

(i) T,(0) = u>
(11) I‘U(—-T) = FU(T). (3.4-4)

A third property,
(ii) |Ty(r)] < Ty(0),

can be proved using Schwarz’s inequality [cf. argument leading to Egq.
(2.4-16)].

However, a major practical importance of autocorrelation functions lies
in the very special relationship they enjoy with respect to power spectral
density. In the derivation to follow we shall show that, for a process that is
at least wide-sense stationary, the autocorrelation function and power
spectral density form a Fourier transform pair,

g,(v) = j_°° T,(r)e>™ dr

(3.4-5)

00 .
Ty(r)= [ Gy(»)e > dv. (3.4-6)
This very special relationship is known as the Wiener—Khinchin theorem.
To prove the above relationship, we begin with the definition of power
spectral density,

,(v) = lim E{#,()#3()] (3.4-7)

T— oo T
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Since u(t) is real valued, we have #*%.(v) = % (—v), and we further note
that’

U, (v) = / rect— u(§¢)exp(j2mve) d¢

4 (-v)= [~ rect % u(n) exp( ~j27vn) d. (3.4-8)

— 00

Substituting (3.4-8) in (3.4-7), we find

£l ()r] 1 J rectereer: Elu(g)uco)

rexp| j2mv(§ — )] dédn.

The expectation is recognized as the statistical autocorrelation function of
U(t). For the sake of generality, we allow I';,(§, 1) to depend on both £ and
7, deferring our assumption of stationarity until a later point. Thus we
obtain

HWAN]

ff rect — rect% T, (& m)explj2mv(& — )] dEdn.

Now with a simple change of variables, with £ replaced by ¢ + 7 and 7 by ¢,
the integral becomes

“W““]Tﬂmt

rect-}- I'(t+ 7,1)exp(j2mvr) dedr.

The power spectral density ¢, (») is the limit of this quantity as T — co.
Interchanging orders of integration with respect to = and the limit, and
noting that for any fixed =

t
Tlimw?f rect rect7 T(e+7,t)de = (T(t + 1,1)),

we obtain

G, (v) = f_°°w<ru(t +1,0))e > dr, (3.4-9)

where the angle brackets, as usual, signify a time averaging operation.

" Here and throughout, the function rect x is defined to be unity for |x| < ; and zero otherwise.



76 RANDOM PROCESSES

The result [Eq. (3.4-9)] shows that the power spectral density of any
random process, stationary or nonstationary, can be found from a Fourier
transform of a suitably averaged autocorrelation function. When the ran-
dom process is at least wide-sense stationary, we have I';,(¢ + 7,1) = ', (7)
and

G,(v) = f_ooooI‘U(T)exp(jZWW) dr, (3.4-10)

which is the relationship that was to be proved. Provided this transform
exists, at least in the sense of & functions, the inverse relationship

L, (7) =/OO 9, (v)exp(—j2mvr) dv (3.4-11)
— 00
follows from the basic properties of Fourier transforms.

The importance of autocorrelation functions stems from two sources.
First (and of particular relevance in Fourier spectroscopy), the autocorrela-
tion of a signal can often be directly measured, thereby providing an
experimental means for ultimately determining the power spectral density of
the signal. The experimentally measured autocorrelation function is Fourier
transformed by either digital or analog means to provide a distribution of
power over frequency.

Second, the autocorrelation function often provides an analytic means
for calculating the power spectral density of a random process model
described only in statistical terms. Often it is much easier to calculate the
autocorrelation function of Eq. (3.4-2) than to directly calculate the power
spectral density using (3.3-7). However, once the autocorrelation function is
found, the power spectral density is easily obtained by means of a Fourier
transformation.

To illustrate with a simple example, consider a random process U(¢) with
a typical sample function as shown in Fig. 3-5. The value of u(¢) jumps
between +1 and —1. Assume that our statistical model, based on physical
intuition about the phenomenon underlying the process, is that the number
n of jumps occurring in a |7| second interval obeys Poisson statistics,

P(n;|1)) = gk—f;'—)—ne"“”, (3.4-12)

where k is the mean rate (jumps per second). The autocorrelation function
T, (24, ¢,) 1s given by
Ty(ty, 1)) =u(ty)u(t;) =1+ Prob{u(z,) = u(t,)}
—1 - Prob{u(s;) # u(t,)}.
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But
even number of
Prob{u(t;) = u(t,)} = Prob{jumps in || }
odd number of
Prob{u(t,) # u(1,)} = Prob{jumps b }
Thus

T, (1,,4,)= Y (kl'r|) ek~ % (k|1'| o kil

m even m odd

. E (kir)”

The series is simply equal to e *I"!, so

Ty(t,,t,) =T (7) = exp(—2k|7]). (3.4-13)

We see that the process is wide-sense stationary, and on Fourier transforma-
tion of I';,(7) we find the power spectral density

g, (v) = —Lk (3.4-14)

7y \?

[1 (%) ]
Both the autocorrelation function and the power spectral density are
illustrated in Fig. 3-6. To find the power spectral density directly from the

definition would require appreciably more work than that involved in the
preceding calculation.

u(t)

__1>—-—-

Figure 3-5. Sample function of a random process.
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For our later use, it will be convenient to define some additional
quantities closely related to the autocorrelation function. First, we define the

autocovariance function,

Cy(ty, 1) 2{u(ty) —a(e)][u(n) —a(n)].  (34-15)
Thus
Cylty, 1) = Ty(ty,0,) —u(ey)u(e,) (3.4-16)
I'y(n)

—3 kr
(a)
kG ()
A
05—
| 1 | z
~10 05 0 05 10k

(b)
Figure 3-6. Autocorrelation function and corresponding power spectral density.
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specifies the close relationship between autocovariance functions and auto-
correlation functions.

A second quantity of considerable utility is the structure function
D (t,,t,) of the random process U(t), as defined by

Dy(t,y, 1) é[“(’z)—u(h)]z- (3.4-17)

The structure function and the autocorrelation function are related by

Dy(ty, 1) =u(;) +u(1;) = 2T (15, 1,). (3.4-18)

The structure function has the advantage that it depends only on the delay
T =1, — t; even for some random processes that are not wide-sense sta-
tionary. For example, it is easy to show that a random process that is
nonstationary but is stationary in increments has a structure function that
depends only on 7. Of course, D(t,,t,) depends only on 7 for stronger
types of stationarity, too. If U(r) is wide-sense stationary, D,(7) and
I, (7) are related by

D,(r) = 2T,(0) — 2T, (7). (3.4-19)

In addition, D (7) can be expressed in terms of the power spectral density
gU( V)’

D,(r) = 2f_°° @, (»)[1 - cos2avr]dv. (3.4-20)

3.5 CROSS-CORRELATION FUNCTIONS AND CROSS-SPECTRAL
DENSITIES

A natural generalization of the concept of an autocorrelation function is the
cross-correlation function of two random processes U(z) and V(t), as
defined by

Typ(15,1) & Eu(1;)v(1)]. (3.5-1)

In addition to the ensemble-average definition above, we can define the
time-average cross-correlation function,

To(r) 2 Gu(e + m)o(r)). (3.5-2)
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The random processes U(t) and V(t) are said to be jointly wide-sense
stationary if I',,, (7, t;) depends only on the time difference 1 = 1, — ¢, in
which case

Lyy(ty, 1)) =Ty (7). (3.5-3)

For such processes, the cross-correlation function exhibits the following
properties

(i) FUV(O) =@
(ii) FUV('_'T) = rvu("')
(i) Ty ()] < [T, (0)T, (0)] (3.5-4)

The first two properties follow directly from the definition. Proof of the
third property requires the help of Schwarz’s inequality.

Closely related to cross-correlation functions are cross-spectral density
functions, defined by

. E|¥ (v)¥V [ (v)
gUV(V)érh_,n:o [ . T L ]

(3.5-5)

G, (v) 2 Tlimw E[VT(VT),%?(V)] .

The functions ¥,,,(») and 9,,(v) may be regarded as measures of the
statistical similarity of the random processes U(¢) and V(¢) at each frequency
v. The cross-spectral density is in general a complex-valued function. In
addition, it has the following basic properties

(1) b, (v)=9,(v) for any real-valued
random processes
(i) G, (—v)=9;,(v) U(t) and V(¢). (3.5-6)

By an argument strictly similar to that leading to Eq. (3.4-10), we can prove
the important fact that for jointly wide-sense stationary random processes
U(t) and V(¢), 9,(v) and TI',(7) are a Fourier transform pair; that is,

G, (v) =f_ T, (1)e?™ dr

Typ(7) = f_oo G, ,(v)e "™ dy. (3.5-7)
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In addition, using a derivation analogous to that used in Section 3.3.3, we
can discover the eflect of linear filtering on the cross-spectral density.
Referring to Fig. 3-7, let the random process U(t) be passed through a
linear, time-invariant filter with transfer function ¥ ,(») to produce a
random process W(t), and let V(¢) be passed through a linear, time-in-
variant filter with transfer function ,(») to produce a random process
Z(1). By straightforward extension of the arguments in Section 3.3.3, we can
show that

ng(”) = xl(")xz*(")guv(”)- (3-5'8)

The reader may well be wondering what the utility of the concepts
introduced in this section might be. Cross-correlation functions and cross-
spectral density functions are found to play extremely important roles in the
theory of optical coherence, for they are directly related to the fringe-form-
ing capabilities of light beams. For the present it suffices to point out that
these concepts arise quite naturally when we consider a random process
Z(t) having sample functions z(z) that are sums of the sample functions
u(t) and v(t) of two jointly wide-sense stationary random processes U(t)
and V(t); thus

z(t) = u(t) + v(1).

For such a process, the power spectral density is easily seen to be

_ E[Z:(»)Z:(v)]
G2(v) = lim T
= lim E[(%T(V) + 7 () (21 (v) + VT*(V))]
T—- o0 T '

(3.5-9)

L) W(e)

V() Z(t)
[ x2(u) e 0

Figure 3-7. Transformation of cross-spectral density under
linear filtering.
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Expanding the argument of the expectation and averaging the four resulting
terms individually, we obtain

4,(v)=9,(»)+ 9, (v)+9,,(v)+%,,(»). (3.5-10)
The corresponding relationship for the autocorrelation function of Z(t) is
[,(r)=Ty(r)+ Ty (r)+T,,(7)+ T, (7). (3.5-11)

Clearly the autocorrelation function and power spectral density of Z(¢)
depend not only on the corresponding properties of U(¢) and V() individu-
ally, but also on the statistical relationship berween these two latter processes,
through the cross-correlation functions and the corresponding cross-spectral
densities.

3.6 THE GAUSSIAN RANDOM PROCESS

Just as Gaussian random variables represent the most important kind of
random variable in physical applications, so too the Gaussian random
process plays a role of major importance. The underlying reason for this
importance is again the fact that many physical phenomena are composed
of a multitude of independent additive contributions, which, as a result of
the central limit theorem leads to Gaussian statistics. Here we briefly review
the most important properties of the Gaussian random process.

3.6.1 Definition

A random process U(t) is said to be a Gaussian random process if the
random variables U(t,), U(t,),...,U(t,),... are jointly Gaussian random
variables for all finite sets of time instants. For n time instants ¢, ¢,,...,1,,
the joint probability density function is thus of the form

pulu) = (27),,}2|C|1/2 exp{ - 5 (u - B)'C (- D)), (61
where
[ u(1,) | [ (1)) |

u(t,) u(t,)

(3.6-2)

I
f

=
il

u(1,) | a(1,)



THE GAUSSIAN RANDOM PROCESS 83

and C is a covariance matrix with element in the ith row and jth column
defined by

of = E[[u(r) —a(e)][u(r) - a(x)]]. (3.6-3)

Corresponding to the density function of Eq. (3.6-1) is the joint char-
acteristic function of the n jointly Gaussian random variables

M, (@) = exp{ ju'd — $w'Cu}, (3.6-4)
where
o,
W,
S
- (‘;n -4

3.6.2 Linearly Filtered Gaussian Random Processes

The Gaussian random process possesses many unique properties that make
it particularly simple to deal with. One such property is the following: a
linearly filtered Gaussian random process is also a Gaussian random process.

A rigorous proof of this fact is beyond the scope of our treatment (see,
e.g., Ref. 2-7, pp. 155-157). However, the following loose argument makes
the result plausible. If V(z) is a linearly filtered random process, each
sample function v(¢) can be related to an input sample function u(t) by
means of a superposition integral,

o (1) =f°oooh(t,£)u(£)d£, (3.6-5)

where h(t, £) is response of the filter at time ¢ to a unit impulse applied at
time £. The integral can be written as a limit of approximating sums,

U(t)=Al€im Z h(tagk)u(gk)Ag’

“Vk=-o

where £, is a point in the & th subinterval of width A§. Over the ensemble of
input sample functions, the value u(§,) is Gaussianly distributed, by
assumption. Since A(t, £, ) is simply a known real number, each term of the
sum obeys Gaussian statistics over the ensemble. Finally, the sum of any
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number of Gaussian random variables, dependent or independent, is itself
Gaussian. Hence the first-order statistics of v(¢) are Gaussian.

Thus the Gaussian random process has a certain unique kind of perma-
nence. Although passage through a linear filter may change the parameters
of the distribution (i.e., means, variances, covariances), the Gaussian char-
acter of the random process is retained.

3.6.3 Wide-Sense Stationarity and Strict Stationarity

A final unusual and important property of the Gaussian process is the
following: a Gaussian random process that is stationary in the wide sense is
also strictly stationary. The proof of this fact 1s straightforward. The nth-order
probability density function of Eq. (3.6-1) depends only on the means and
covariances of the n sampled values. If the random process U(¢) is wide-sense
stationary, the mean is independent of time and the covariances depend
only on the time differences between the instants involved. It follows
directly that the nth-order density function is independent of the time origin
for all n, and hence U(t) is strictly stationary. When dealing with Gaussian
random processes, therefore, we rarely specify the type of stationarity
possessed by the process, since the two most important kinds of stationarity
are equivalent.

3.6.4 Fourth-Order Moments

In some applications it is desirable to know the fourth-order moment of the

form u?(t)u?(t + r) of a stationary, zero-mean, real-valued Gaussian
random process. Such a moment is needed, for example, in calculating the
autocorrelation function at the output of a square-law device, for which the
output v(¢) and input u(t) are related by

v(t) =u?(1). (3.6-6)

This moment can readily be found with the help of Eq. (2.7-13), valid for
zero-mean, real-valued, Gaussian random variables. Applying this equation,
we find that

T (r)=v(t)v(t+7)=u?(t)u’(t + 1)

= TZ2(0) + 2T2(7). (3.6-7)
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More generally, for a moment of the form u(z,)u(t,)u(¢;)u(t,), we have

u(t ) u(ey)u(ts)u(ey)=Ty(t,, 1) Ty (14, 15)
+ Ty (13, 1) Ty (ty, 1) + Ty, 1) Ty (15, 15).

(3.6-8)

In optical applications, such moments are often of interest, but generally
for complex-valued random processes. The relationships are somewhat
different in this case, as we shall demonstrate in Section 3.9.

3.7 THE POISSON IMPULSE PROCESS

Of great importance in many optical problems is the Poisson impulse
process. In this section we develop some of the basic properties of such
processes in preparation for later consideration of various problems associ-
ated with the detection of light.

3.7.1 Definitions

Consider a random process U(¢) with sample functions u(¢) that consist of
a multitude of Dirac delta (or impulse) functions, as illustrated in Fig. 3-8a.
This random process will be called a Poisson impulse process or, for brevity,
simply a Poisson process, if the following two conditions are satisfied:

(1) The probability P(K;t,,t,) that K impulses fall within the time
interval {¢;, <t <t,} is given by

(f’ A(t)d’) exp(—f”’\(f)d’)’ (3.7-1)

P(K;t,t,) = e
! '

where A(¢) > 0 is called the rate of the process.

(2) The numbers of impulses falling in any two nonoverlapping time
intervals are statistically independent.

A typical rate function A(t) is illustrated in Fig. 3-8b for the sample
function shown. From (3.7-1) it can readily be shown that, for a given A(?),
the mean and second moment of the number of impulses (or “events”) in
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the time interval (¢, <t < t,) are given by

RANDOM PROCESSES

(3.7-2)

In addition, the following moment theorem can be shown to hold (see

Problem 2-6):

K(K-1)---(K-k+1)=(K)“ (3.7-3)

Two important cases can be distinguished. First, the rate function A(¢)
may be a known (i.e., deterministic) function, in which case all randomness

u(t)

|

(a)

A(D)

— |

(b)

Figure 3-8. (a) A sample function of a Poisson impulse process, together with (b) the

corresponding rate function.
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associated with the process U(t) arises from transformation of a given A(?)
into a sample function u(t) of the Poisson process. Alternatively, the rate
A(t) may itself be a sample function of a random process A(?), in which
case U(t) 1s often called a doubly stochastic Poisson process. In this latter
case, some of the randomness of U(t¢) can be attributed to the transforma-
tion of a specific A(¢) into a sample function u(¢) and some to the statistical
uncertainties about A(?) itself.

Finally, we note that in most practical applications of the theory, the
random process U(¢) consists not of perfect unit-area impulses, but rather
of a multitude of finite-width pulses. Thus each impulse 8(z —¢,) is
replaced by a finite pulse A(¢t — ¢,). In some cases the pulses may all have
identical shape and area. Such a process may be regarded as being gener-
ated by passage of a Poisson impulse process through a linear, time-invariant
filter with impulse response A (), as illustrated in Fig. 3-9a.

Alternatively, some phenomena (e.g., the output of a photomultiplier
tube) require modeling by a process characterized by random changes of
pulse shape and area from pulse to pulse. Such a process may be regarded
as arising from passage of a Poisson impulse process through a randomly
time-varying linear filter with an impulse response A(¢; 7) that is a sample
function of a random process, as illustrated in Fig. 3-95. Both Poisson
processes described in the preceding paragraphs are referred to as /linearly
Sfiltered Poisson processes.

In order to develop some physical intuition regarding the reasons why the
Poisson process is so important in practice, we devote the next two sections
to discussion of equivalent conditions that lead to Poisson statistics.

3.7.2 Derivation of Poisson Statistics from Fundamental Hypotheses

It is possible to arrive at the statistical model described in the previous
section from a number of different sets of hypotheses (see Ref. 2-3, Chapter
16). The set to be discussed in this section is perhaps the most fundamental
and most meaningful physically. Our derivation is a slight generalization of
that found in Ref. 2-7 (Section 7.2). Throughout this and the following
section, the rate function A(¢) is assumed to be known. The case of a
stochastic A(?) is deferred to Section 3.7.5.
We begin with the following three basic hypotheses:

(1) For sufficiently small A¢, the probability of a single impulse occurring
in the time interval ¢ to ¢ + At is equal to the product of Ar and a real
nonnegative function A(¢); thus

P(1;t,t+ At) = A(1) At. (3.7-4)
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(2) For sufficiently small Az, the probability that more than one impulse
occurs in Az is negligibly small (i.e., there are no “multiple” events);
hence

P(O;1,1+ At) =1 — X(1) Ar. (3.7-5)

(3) The numbers of impulses in nonoverlapping time intervals are statisti-
cally independent.

With these assumptions we can now ask, what is the probability P(K; 1,
t + 7 + Ar) that K impulses occur in the time interval ¢ to ¢t + 7 + Ar? If
A7 is small, there are only two ways that we could obtain K impulses in
(t,t + 7+ Ar). Specifically, we could have K impulses in (¢,¢ + 7) and no
impulses in (¢ + 7,1+ 7+ A7), or we could have K — 1 impulses in
(t,t + 7) and one impulse in (¢t + 7,t + 7 + Ar). Employing all three
hypotheses above, we write

P(K;t,t + 7+ A1) =P(K;t,t +1)[1 = X(t + 7)A1]
+P(K—1;t,t + 7)[A(¢t + 7)Ar]. (3.7-6)
Rearranging terms and dividing by Ar, we obtain

P(K;t,t+17+Ar)—P(K;t,t + 1)
AT

=At+7)[P(K-1;t,t+7)—P(K;t,t +71)].

Now letting A7 go to zero, we find that P(K;¢ ¢+ 7) must satisfy the
differential equation

dP(K;t,t +71)
dr B

At +7)P(K—-1;1,t+7)—P(K;t,t + 7)].
(3.7-7)

By using standard methods for the solution of linear differential equations,
coupled with the boundary condition P(0;t,1) = 1, we are led uniquely to
the solution

[N ae]

4
K!

P(K:it,1+1)= eXp{—jI’“x(g)dg} (3.7-8)

in agreement with Eq. (3.7-1).
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When dealing with Poisson processes in the future, we shall feel free to
use the three fundamental hypotheses above whenever it proves convenient.

3.7.3 Derivation of Poisson Statistics from Random Event Times

An alternative model that leads to the same type of Poisson process is based
on certain assumptions about the statistical distribution of event times ¢,.

Suppose that we have a collection of a large number N of “events,”
which we drop onto the infinite time interval. A random process can then be
constructed by inserting a unit impulse function at the location of each
event. We assume that the N events are dropped onto the time axis in
accord with the following hypotheses: the N event times ¢, (k = 1,2,..., N)
are (1) statistically independent and (2) identically distributed with prob-
ability density function p(¢,).

Using the two properties above, we readily conclude that the number K
of events lying in any subinterval (¢,, ¢,) obeys a binomial distribution,

P(Kints) = ey | O] 1 [0 ]

Now suppose that we let N = oo and p(t) — 0, subject to the restriction
that

N-K

Np(1) = A(¢) (3.7-9)

remains fixed for each r. The probability of obtaining K events or impulses
in (¢, t,) becomes, for any fixed N,

N(N-1)---(N-K+1)
KINX

P(K;t),t,) =

Letting N become large, we have

[1 - %;fl’zx(g)ds]

N(N-1) - (N-K+1) _
NK

N-K

=l-%/ A(g)a&]’v—» exp( ~ [“A(6)a ).
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Thus

[f’zx(z)dsr

. . _ L A
Nll_{nooP(K,tl,tz)— d exp{ f}\(é)dﬁ},

h

which is again the Poisson distribution. In addition, since the event times ¢,
are statistically independent and there is an inexhaustible supply of events
(N — o0), the number of events occurring in one interval conveys no
information about the number occurring in a second disjoint interval. Hence
the numbers of events in nonoverlapping intervals are statistically indepen-
dent.

Thus we have arrived at the same random process model from two
different sets of hypotheses. In the future we shall use the set of hypotheses
that best suits our purpose.

3.7.4 Energy and Power Spectral Densities of Poisson Processes

In this section we investigate the energy spectral density and power spectral
density of Poisson impulse processes. Note that because such processes are
composed of ideal § functions and because an ideal § function contains
infinite energy, it might seem that only power spectral densities are of
interest in this case. However, we shall see that the energy spectral density is
of utility when the rate function A(¢) is Fourier transformable, that is, when
JZLIA(1)|dt < oo. On the other hand, when the rate function is not Fourier
transformable but does have finite average power, that is, when [*_|A(¢)|dt
= o0 but lim,_, (1/T)fT7,N(1)dt < oo, the power spectral density is
the quantity of most interest. Again we assume that A(z) is an entirely
deterministic function and defer generalization to Section 3.7.5.

Let A(?) be a Fourier-transformable function. A sample function of the
corresponding Poisson impulse process can be expressed as

u(t) = f 8(t—1,), (3.7-10)

which depends on the K + 1 random variables #,,¢,,...,¢, and K. This
sample function has a Fourier transform

K

#(v) =) exp(j2mrt,). (3.7-11)
k=1
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The corresponding energy spectrum for this one sample function is

%(»))P= L ¥ exp|j2mv(t, —1,)].

k=1 g=1

The energy spectral density for the random process U(¢) is thus

y(v)=E[|%(v)*] = E<,§1 ;exp[ﬂwv(rk ~1,)] -

(3.7-12)

Now the expectation with respect to ¢,,¢,,...,¢;, and K can be per-
formed in two steps. First we average with respect to times ¢, under the
assumption that K 1is given and then average with respect to K. This
procedure 1s justified by noting that

plty,ty, st K)Y=p(t;,t5,...,tx|K)P(K).

Thus we rewrite (3.7-12) as

Sy(v) = Ex{ ¥ ¥ Eyx{exp|j2mv(t, - tq)]}}, (3.7-13)
k=1 g=1

where Ej signifies expected value with respect to K, whereas E, ; means
the expected value with respect to the times ¢,, given the value of K.

Recall that the times ¢, are identically distributed, independent random
variables. Furthermore, from the proportionality (3.7-9) between p(¢) and
A(1r), we must have

p(t) = oo}\(tk) , (3.7-14)
f A(t)dr

— o0

with the normalization chosen to assure unit area. To perform the averaging
operation, it is helpful to consider two different sets of terms. There exist K
separate terms for which k = ¢, and each such term contributes unity. In
addition there are K2 — K terms having k # g. Using (3.7-14) and the
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independence of ¢, and ¢, we find

foo A(tk)ejzmnk dtk f°° }\(tq)e—ijvtq dtq

— 00

foo A(t)de | foo A(t)dt

— 0 — o0

E,|K{exp[j2wv(tk — fq)]} _

_ ,‘?(”)fz — g’)\(,,)
(K)  (K)

(k #q), (3.7-15)

where Z(v) is the Fourier transform of A(z), &,(v) is the energy spectral
density of A(t), and we have used the fact (see Eq. 3.7-2) that

[°° A1) di = K. (3.7-16)

— 00

Performing the final expectation over K, we obtain

K?-K

O (3.7-17)
(K)
But for a Poisson distributed K, K2 = (K)? + K, and hence

&, (v) =K +&(v). (3.7-18)

&, (v) = K+

Thus the energy spectral density of a Poisson impulse process consists of a
constant K plus the energy spectral density of the rate function. Note that,
because of the constant K, the total energy associated with U(¢) is infinite
even though A(¢) has finite energy.

When the rate function is not Fourier transformable but does have finite
average power, some change in the argument must be made. First, we
truncate the random process U(t) so that it is identically zero outside the
interval (—7/2,T/2). Then a single sample function u,(¢) can again be
written in terms of K + 1 random variables,

up(t) = f 8(t—1,) (3.7-19)

and the corresponding Fourier transform is given by

>

@ (v)= ) exp(j2mvt,). (3.7-20)
k=1
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The probability density function of the times ¢, must now be taken to be

A(t,) T <1 < T
T/2 2 k= 2
pr(t) = f_ mk(t)dt (3.7-21)
0 otherwise.

The power spectral density is found from the definition

Gy(v) = lim =E[|@,(»)]]

T—- o0 T

1

= lim —E }1_(: f:exp[ﬂwv(t,(—tq)]}.

T T 201 0

The average is performed as before. Denoting by K, the average number of
events in the T-second interval, we find

s I_(T l’yT(”)l2
g,(v) = TIEI:O{ T + T :
Now
. I—(_T T 1 7,2 a
lim =T = lim Tf_mx(z)dz—m (3.7-22)
and
. |-7T(V)|2 _
lim =T = 9,(v), (3.7-23)

where (A) is the time-averaged rate of the process and %,(») is the power
spectral density of the rate function A(¢). Thus

Gu(v) = (A) + 9\(v) (3.7-24)

provides the desired relationship between the power spectral densities of
U(t) and A(t). Figure 3-10 shows the relationship between ¥,(») and
4,(v) in pictorial form. Note that U(¢) contains infinite total average
power, even though the average power content of A(¢) is finite. Note also
that the limits appearing in Egs. (3.7-22), (3.7-23) have tacitly been assumed
to exist, at least in the sense of § functions.
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gU(V)

WM+ %0

O

Figure 3-10. Power spectral density of a Poisson impulse process.

3.7.5 Doubly Stochastic Poisson Processes

Suppose that A(z) is not a known function, but rather is a single sample
function of a random process A(¢). The various moments of the random
process U(t) calculated earlier may now be regarded as conditional mo-
ments, conditioned by a particular realization A(¢). Moments for the doubly
stochastic Poisson process can be calculated simply by averaging the earlier
results over the statistics of the random process A(¢).

We illustrate with some simple examples. It was previously stated [Eq.
(3.7-2)] that, for a known A(¢), the mean number of events in the interval

(¢, 1,) 1s

Exa(K) = ftz)\(t)dt.

4

If A(?) is a sample function of a stationary random process A(#), we must
additionally average over A to obtain

K= f’zx(z)dz = Ar, (3.7-25)

4

where stationarity of A(z) is used in the last step, and 7 =1, — ¢,.
As for the second moment of K, for a given sample function A(¢) we
have

ExplK?] = [*A(0)di + JI XN dgdn.  (3.7-26)

L
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Averaging over the ensemble A(¢), we obtain

K=+ [[T,(¢-n)dtan, (3.7-27)

where I’y 1s the autocorrelation function of A(¢), which has been assumed
wide-sense stationary. Using arguments similar to those preceding Eq.
(3.4-9), we can reduce the double integral to a single integral,

P
JI e -mdean—2e[ (1= Snora. (3729)
hn
Noting that T',({) = (A)? + C,(¢), where C,(¢) is the autocovariance func-
tion of A(r), we obtain

K2=I_(—+(I_(—)2+2’T/OT(1 _ 4

T

)CA( ¢) dt. (3.7-29)

Equivalently, the variance o2 of K is given by

§

ol = 1?+sz0’(1 - ;)CA(§) at, (3.7-30)

which exceeds the variance o7 = K associated with a Poisson impulse
process having a known rate function A(¢). The higher variance is due to
the statistical fluctuations associated with the random process A(z). We
defer a further discussion of this fact, as well as a more detailed evaluation
of a2, to Chapter 9.

Finally, we consider modifications of Egs. (3.7-18) and (3.7-24) for
energy spectral density and power spectral density when A(z) is a sample
function of a random process. By definition, the energy spectral density and
power spectral density are given by

&y(v) = lim E[|#7(v)]’]

E[|%(v)?]
T , (3.7-31)

9 = 1

v(?) T_*moo
where % ,(v) is given explicitly by Eq. (3.7-20). Evaluation of the expecta-
tions of the sums involved in a manner identical to that already used for the
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case of deterministic rate functions, leads us to

Eu(v) = lim {Kr+ E[12:()1°])

g,(») = lim {ET . Eli#r()P] }

T T

T— o0
Finally, allowing T to become arbitrarily large, we obtain

Ey(v) = E+5)A(V)

G, (v) =X+ 9, (v) (3.7-32)

where A £ (E[A(t)]). Thus we see that in the case of a stochastic rate
function, both spectral densities consist of a constant plus the correspond-
ing spectral density of the stochastic rate process.

3.7.6 Linearly Filtered Poisson Processes

Finally, we consider the case of a linearly filtered Poisson process, and in
particular the energy or power spectral density of such a process. First it is
assumed that the process consists of pulses of identical shape and area; thus
any truncated sample function is of the form

K
uy(t) = rectiT « Y h(t—1,). (3.7-33)
k=1

As illustrated in Fig. 3-9a, such a process may be regarded as arising from
passage of a Poisson impulse process through a linear time-invariant filter.
If 5 (v) represents the transfer function of the required filter, i.e.

#0)= [ h(t)ermar, (3.7-34)

— 00

then Eqgs. (3.3-10) and (3.3-12) allow us to express the spectral density of the
linearly filtered Poisson process as the product of | (»)|? and the spectral
density of the underlying Poisson impulse process. The results are

‘Oﬁu(”)=El”(")ﬁ*"*(”)ﬁ&\“) (3-7‘35)
and
Gy (v) =N H(v)]> + | H (v)]* G\ (v) (3.7-36)

for the energy spectral density and the power spectral density, respectively.
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If the pulses composing U(¢) have random shape and area, a modifica-
tion is necessary. Illustrating for the case of an energy spectral density, we
have

U(t) = ‘E‘h(t;tk) (3.7-37)
k=1

and

()P = Y X #(v;t,)#*(v;1,)exp| 2mv(1, - 1,)],

k=1 qg=1

(3.7-38)

where H# (»; t,) is the Fourier transform of the pulse shape associated with
the kth pulse,

H(v;t,)= /w h(t;e,)e?™ = d(t —t). (3.7-39)

— 00

The expectation applied to Eq. (3.7-38) must now be taken over the
statistics of ¢,,7,,...,tx, K and the statistics of the # (v; 1,).

Again it is helpful to consider separately the K terms for which k£ = ¢
and the K2 — K terms for which k # g. For the former terms, our previous
contribution K to the energy spectrum must be multiplied by [# (v;t,)|%
which we assume to be the same for all ¢, and hence representable as
|9 (v)|°>. For the K?— K terms with k # g, we must multiply by
o (v;1,)H#*(v;1,). If the statistics of different pulses are independent,

this multiplier reduces to [.?? (v)]z. Thus we obtain for the energy and
power spectral densities

E,(v) = K|# ()2 +[# ()] € (v) (3.7-40)
and

G, (v) = N# ()2 +[# )] % (). (3.7-41)

In closing we note that implicit in these results is the assumption that the
statistics of ¥ (»;¢,) are independent of the statistics of A(¢).
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3.8 RANDOM PROCESSES DERIVED FROM ANALYTIC SIGNALS

It is common practice in physics and engineering to represent real-valued
signals by related complex-valued signals. The complex representation is
chosen such that its real part is the original real-valued signal; thus provided
that only linear operations are performed on the complex signal, the original
signal can be specified at any stage simply by taking the real part of the
complex waveform.

The reason for preferring a complex representation, rather than the
real-valued signal itself, can be traced to a fundamental property of linear,
time-invariant systems. Specifically, the eigenfunctions of such a system are
complex exponentials of the form exp(—j2#»t). Thus if we represent the
linear, time-invariant system by an operation #{ }, we can show that

ZL{exp(—j2mvt)} = H#(v)exp(—j2mrt),

where 5 (v) is the transfer function of the system, evaluated at frequency »
(for a proof of this fact, see Ref. 2-9, p. 186). Passage of a real-valued signal
through the system requires operations on both positive- and negative-
frequency complex exponentials and thus entails a greater amount of
algebra.

With these comments as motivation, we turn to an examination of
complex signal representation in greater mathematical detail.
3.8.1 Representation of a Monochromatic Signal by a Complex Signal

Consider a monochromatic (i.e., single-frequency) real-valued signal u("(¢)
described by

u”(t) = Acos(2myyt — ¢), (3.8-1)

where 4, »,, and ¢ represent constant amplitude, frequency and phase,
respectively. The complex representation of this signal is

u(z) = Adexp{ —j(2mv,t — ¢)}, (3.8-2)

which has a real part equal to the original u‘”(r). Related to this complex
representation is the phasor amplitude of u(t), defined by

A £ Aexp(+jo) (3.8-3)

and representing the amplitude and phase of the monochromatic signal.
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Note that the imaginary part of the complex representation has not been
chosen arbitrarily, but rather is closely related to the original real-valued

signal.
Exactly what operations are involved in arriving at the specific complex

representation of (3.8-2)? The question is most readily answered by
frequency-domain reasoning. Let the real-valued signal be expanded in
complex exponential components,

u(r)(t) — i;_e_l¢eJZ"V0’ + %ej¢e——12wvot'

Representing the Fourier transform operation by an operator #{ }, we
further note that

F{e?™'} = 8(v + v,)
Fle 20} = §(v — p,).

Therefore, the Fourier spectrum of u‘”(¢) is

U(v) = ie‘””'d(v%— vy) + ie”’S v — vg).
2 0 2 0

For the complex representation u(¢), however, we have
F{u(t)} = Ae’?6(v — v,). (3.8-4)

Thus the relationship between u(”(¢) and u(¢) can be stated as follows: in

F @) F{u(®)}
Area

14,0

24e Area Ar‘j:
1 Ae
EA(?M

L A -V A —- U
'_VO VO VO
(a) (b)

Figure 3-11. Fourier spectra of (a) a monochromatic real-valued signal and (b) its complex
representation.
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passing from u'"(t) to u(t), we double the strength of the positive frequency
component and entirely remove the negative frequency component. This opera-
tion is illustrated for the monochromatic case in Fig. 3-11. It is this very
specific operation that imposes a fixed relationship between the real and
imaginary parts of u(¢).

3.8.2 Representation of a Nonmonochromatic Signal by a Complex Signal

Suppose we are given a real-valued nonmonochromatic signal «("(¢) with
Fourier transform % (v). How can we represent u‘”)(¢) by a complex signal
u(¢)? We can follow exactly the same procedure used in the monochromatic
case, doubling the positive frequency components and removing the nega-
tive frequency components. Thus our definition is

u(r) 2 2f0°°41(u)e*12"”dp. (3.8-5)

The function u(z) is called the analytic signal representation of u’(¢). For a
comprehensive discussion of the properties of analytic signals, see Refs. 3-1
and 3-2.

Before turning attention to the properties of the analytic signal, one
mathematical fine point should be clarified. This fine point concerns exactly
what is done to the spectrum at » = 0 in passing from u{”(¢) to u(r). The
question is immaterial if ¥(")(¢) contains no 8-function component at » = 0,
for changing the spectrum by a finite amount at a single point will not affect
u(z). If u‘”(¢) does contain a 8-function component at » = 0, the conven-
tion will be adopted that the §-function component remains unchanged.
This convention allows us to represent in the frequency domain the opera-
tion of passing from u(”(r) to u(z) by

Y(v) > [1+ sgnv]|¥(v), (3.8-6)
where
+1 v >0
sgny £ 0 v =0. (3.8-7)
-1 vy <0
Thus

u(r) = /oooo[l + sgnv]|¥(v)e ™' dv. (3.8-8)



102 RANDOM PROCESSES

The Fourier integral representation of u(¢) above allows us to discover
some important properties of the analytic signal. Representing the inverse
Fourier transform operation by an operator # !{ }, we see that u(¢) can be
expressed as the sum of two terms,

u(s) =F {¥(v)} +F sgnrv¥(v)}.

The first term is simply u(”(¢), the original signal. With use of the
convolution theorem, the second term can be expressed by

F Ysgnv#(v)} =F Ysgnv}*« F YU (v)).

Noting that % {sgnv} = (—j/mt) (see Appendix A), we find
; (r)
_ () + L w8 _
u(1) = uO(t) + wf_w o db, (3.8-9)

where the symbol f*_ indicates that the Cauchy principal value of the
integral must be taken. That is

1 foo u(’)(é) it 2 —hm [/, eu(’)(g) dt+ /w u(r)—(gt) dg}.

TYy_ o g_t T ¢—-0 — 00 g_ +e§

(3.8-10)

The integral transformation of (3.8-10) is known as the Hilbert transform of
u'”(t) (for a more detailed discussion of Hilbert transforms, see also Ref.
2-9, pp. 267-272).

The important properties of the analytic signal can now be stated on the
basis of Egs. (3.8-8) and (3.8-9):

(i) u”(t) £ Re{u(r)) (3.8-11)
(ii) u(t) £ Im{u()} = %f_w ug’)(g) d¢ (3.8-12)

(iii) F{uD(t)} = —jsgnv - F{u"(1))
= —jsgnv-U(v). (3.8-13)

Thus the real part of the analytic signal is indeed the original real-valued
signal we started with. The imaginary part of the analytic signal is simply
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———

u"(t) u(t)
LR ()

u(‘)(t)

K QW)
= —jsgnv

Figure 3-12. Construction of an analytic signal from a real signal.

the Hilbert transform of the original signal. Finally, the spectrum of the
imaginary part of the analytic signal can be obtained by multiplying the
spectrum of the real part by —jsgnw.

The last property, represented by Eq. (3.8-13), lends itself to a useful
interpretation. The imaginary part of the analytic signal can be obtained by
passing the real part through a linear, time-invariant filter with transfer

function

H(v)= —jsgnv. (3.8-14)

We refer to such a filter as a “Hilbert transforming” filter. The construction
of the analytic signal u(¢) from the real signal «‘")(¢) can thus be repre-
sented diagrammatically as shown in Fig. 3-12.

3.8.3 Complex Envelopes or Time-Varying Phasors

Consider a real-valued waveform u(”(¢) that is nonmonochromatic but
nonetheless possesses a “narrowband” power spectrum. As illustrated in
Fig. 3-13, if Av represents the nominal width of the spectrum about its
center frequency »,, we require that Ay < p,,.

Such a signal may be written in terms of a slowly varying envelope A(¢)
and a slowly varying phase ¢(¢) as follows:

u(t) = A(t)cos[2muyt — ¢(1)]. (3.8-15)

To a good approximation, doubling the positive frequency components and
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Gy

Ay Ay

‘ i P U

— 1/0 VO

Figure 3-13. Power spectrum of a narrowband signal.

removing the negative frequency components yields an analytic signal with
only one exponential component of (3.8-15),

u(z) = A(t)e/* e 720!, (3.8-16)

By analogy with the monochromatic case, we define the time-varying phasor
amplitude, or the complex envelope, of u(t) by

A(t) & A(t)e?". (3.8-17)

For any signal (wideband or narrowband), we can write the analytic
signal representation in the form

u(r) = A(t)e 2™, (3.8-18)

If the signal is narrowband, the complex envelope A(¢) varies much more
slowly than the complex carrier exp(—j2my,t), and |A(¢)| is approximately
the same as A(¢) in Eq. (3.8-15).

3.8.4 The Analytic Signal as a Complex-Valued Random Process

If the real signal u‘”(¢) is a sample function of a random process U(t), the
analytic signal may be regarded as a sample function of a complex-valued
random process U(7). We consider some of the basic properties of such a

random process in this section.

The reader may be concerned that we have defined the analytic signal in
terms of the Fourier transform of the real-valued signal and that such a
spectrum does not exist for a random process. However, we could define the
analytic signal alternatively as

u(t) £ [8(:) ~ ;f;]* u" (1), (3.8-19)



RANDOM PROCESSES DERIVED FROM ANALYTIC SIGNALS 105

in complete accord with the definition (3.8-8), but without introducing
Fourier transforms at all. Thus the analytic signal representing a sample
function of a random process is indeed well defined.

For a complete description of the random process U(t), it is necessary to
specify the joint statistics of the real and imaginary parts of the process for
all possible collections of time instants. However, specification of the
statistics of U(#) at even a single point in time is in general difficult, for the
joint statistics of the real and imaginary parts must be found, based on
knowledge of the statistics of only the real part and the Hilbert transform
relationship

o 1,(7)
uO(1) = %f_wi‘g—_(-%l dt. (3.8-20)

The problem 1s a difficult one except in the case of a Gaussian U(¢) treated
in the section to follow.

Nonetheless, of general interest, regardless of the probability density
functions involved, are the autocorrelation functions and cross-correlation
functions of the real and imaginary parts of U(¢). To find these functions,
we use the linear filtering interpretation of the Hilbert transform operation,
as implied by Eq. (3.8-14). Let the function I'}""(7) represent the autocor-
relation function of the real process U(¢), which is assumed to be at least
wide-sense stationary but otherwise arbitrary. The corresponding power
spectral density of the real process is

(o0}
%‘f”’(V)=f L{n(r)e’* ™ dr. (3.8-21)

- o0

The power spectral density of the imaginary part of the process is
represented by 9{9(»). Using Egs. (3.3-12) and (3.8-14), we find that

4 (v) = | ~ jsgn 2950 (v).

Furthermore, provided the random process U (")(¢) has zero mean (its power
spectral density has no §-function component at » = (), we can conclude
that

| — jsgny|® = 1. (3.8-22)
As a consequence,

gy(v) = 94 (») (3.8-23)
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and thus
F((j”‘)(fr) = F((j”’)('r). (3.8-24)

As for the cross-correlation functions

Lreo(r) =u(t + 7)uP(r)

T&O(r) = u®(t + 7)u (1), (3.8-25)

we use Eqgs. (3.5-8) and (3.8-14), with one filter having transfer function
unity and the second having transfer function —jsgn». The result is

gy (v) & F{T{ (1)}

=1-(+jsgnv)%(v) =jsgnv@ 7(v) (3.8-26)

and similarly
9:7(») = F(T(1))
=(—jsgny) 1% (v)= —jsgnv @ "(v). (3.8-27)
From these results we conclude first that
Ty (r)= =T () (3.8-28)

and in addition, from (3.8-27), that

0 (r,r)
L(r) = %f_ —I;‘:E—_if—)dg. (3.8-29)

It is convenient for future applications to define the autocorrelation
function of a complex-valued random process by

Ty (5, 11) = u(z;)u*(1,). (3.8-30)

When the real and imaginary parts of U(¢) are at least wide-sense sta-
tionary, I';,(7) so defined has the following basic properties:

(i) Ty =[] + [u®()]
(i) T, (=7)=Tx() (3.8-31)

(i) Iy (7)] < [Ty (0)l
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By expanding the analytic signals in terms of their real and imaginary
parts, we can readily show that (3.8-30) becomes

() = [T77(r) + T O(n)] + (T80 () = T(n)]. (3.8:32)
Using Egs. (3.8-24) and (3.8-28), we see directly that
Ly(7)=2T"(7) + 2T (7). (3.8-33)

Thus the real part of the complex autocorrelation function is just twice the
autocorrelation function of the original real-valued random process. Fur-
thermore, using (3.8-29), we see that the imaginary part of I';(7) is just
twice the Hilbert transform of the autocorrelation function of the real

random process.

We consider next the Fourier transform of T';(7), which we call the
power spectral density of the complex-valued random process U(?). Proceed-
ing directly, we have

Gy(v) & F(T (1)} = 2T ()} + 2jF{1{"(7))

=29 (v) + 2sgnv @ "(v)

- {4?{,”’)(11) v>0 (3.8-34)
0 v <0.

Thus the autocorrelation function I';,(7) of an analytic signal has a one-sided
Fourier spectrum and is itself an analytic signal.

Finally, we consider the cross-correlation function of two jointly wide-
sense stationary analytic signals, defined by
T, ()2 Efu(r + 7)v*(1)]. (3.8-35)

This particular function plays a role of central importance in the theory of
partial coherence. With the notation

u(t) = u”(e) +ju'(r)
v(r) = v(1) +jot (1),
direct substitution in Eq. (3.8-35) yields an expanded form of T, (1),
Tyy(7) = [I‘L(/’f/r)(T) + F((/li/')("')]

+[T8i" () ~ T (7)) (3.8-36)
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In a manner identical to that used in arriving at (3.8-33), we can readily
reduce this equation to the simpler form

T, (1) =2T0 (1) + 52057 (7). (3.8-37)

As with the case of the autocorrelation function, the cross-correlation
function of two analytic signals has a one-sided Fourier spectrum and thus
is itself an analytic signal, as can be demonstrated with the help of Eq.
(3.5-8).

3.9 THE COMPLEX GAUSSIAN RANDOM PROCESS

In most general terms, a complex random process U(¢) is called a complex
Gaussian random process if its real and imaginary parts are joint Gaussian
processes. Consider a real-valued Gaussian random process U ("”)(¢) and the
corresponding complex random process U(¢) consisting of the analytic
signal representations of the real sample functions of U{"(¢). Since Gauss-
1an statistics are preserved under linear operations of the form of Eq.
(3.6-5), for a Gaussian u(”(¢) the imaginary part u’(¢) defined by Eq.
(3.8-20) also obeys Gaussian statistics. Thus the real and imaginary parts of
U(t) are both Gaussian random processes. We conclude that the analytic
signal representation of a Gaussian random process is a complex Gaussian
random process. However, not every complex Gaussian random process has
sample functions that are analytic signals.

In later chapters, we shall occasionally be interested in calculating

fourth-order moments u*(¢;)u*(¢,)u(;)u(z,) of a complex Gaussian ran-
dom process. Such calculations can be performed with the help of the
complex Gaussian moment theorem, provided u(¢;), u(z,), u(¢;) and u(z,)
obey circular joint Gaussian statistics, that is, provided

(1) u”(t,) =u(t,) =0 m=1,2,3,4
(i) w2, ) )u"(t,) = u®(r,)u(t,); m,n=1,23,4
and
(i) w7, )u(,) = —u2(, ) u¥(s,); m,n=1,2,3,4 (3.9-1)

A random process satisfying (3.9-1) is said to be a circular complex random
process. Fortunately, an analytic signal representation of a zero-mean
random process does indeed satisfy the circularity conditions, as evidenced
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by Egs. (3.8-24) and (3.8-28). With these conditions satisfied, the fourth-order
moment is given by

E[“*(tl)“*(tz)u(ta)“(t4)] =Ty (ts,t) Ty (14, 83) + Ty(t3,1,) Ty (14, 11).

(3.9-2)

Of special interest in the later work will be the case 73 = ¢}, ¢, = ¢,, for
which

E[l“(’l)lzlu(tz)lzl =T, (1, 1)T, (15, 1,) + T, (2, 1)1%, (3.9-3)

where we have used the fact that T’ (z,, 7)) equals T'*(¢,, ¢,). The reader is
reminded again that these relationships hold only for circular complex
Gaussian random processes.

3.10 THE KARHUNEN-LOEVE EXPANSION

In certain applications to be encountered in later chapters, it will be helpful
to be able to expand the sample functions u(¢) of a complex random process
U(¢) in terms of a set of functions orthonormal on the interval (- T7/2, T /2).
Even greater benefits will accrue if, over the ensemble, the expansion
coefficients are uncorrelated random variables, and we now attempt to find
such an expansion.

Let the set of functions {¢,(2), d,(¢),...,$,(¢),...} be orthonormal and
complete on the interval (—7/2,T/2). Then any reasonably well behaved
sample function u(z) can be expanded in the form

ur)= L b(1) <5, (3.10-1)
n=0
where
T2 * _J1 n=m )
[ anowa={g 120 (3.10-2)

and the expansion coefficients b, are given by

b, = fm w(r)er()dt  n=0,1,2,.... (3.10-3)
)
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Now we ask whether, for a random process with a given autocorrelation
function I',(¢,, t,), it is possible to choose a particular set of orthonormal
functions such that the expansion coefficients {b,} are uncorrelated.

For simplicity we assume that the random process U(¢) has zero mean
for all time; the process may be nonstationary in other respects, however.
The mean value of every expansion coefficient can now be seen to be zero,
since

E[b]= /nT;sz [u(¢)]6x(¢) dt = 0. (3.10-4)

Thus for the expansion coefficients to be uncorrelated, we require that

N, m=n

3.10-5
0 m+#n. ( )

Elbbz] - {

For satisfaction of the uncorrelated condition (3.10-5), the orthonormal
set {¢,,(¢)} must be properly chosen. To discover the conditions imposed
on {¢,(2)}, we substitute Eq. (3.10-3) directly into (3.10-5), yielding

T/2

E[bby] = [

fT/z E[u*(tl)“(tz)]¢:‘(t2)¢m(t1) dr, dt,
—-7/2 -T2

T/2 T/2
= / f PU(t27t1)¢m(tl) dtl ¢:(t2)dt2’
-T/2

-T2

(3.10-6)
Suppose now that the set { ¢,,(¢)} is chosen to satisfy the integral equation

fT/zer(tz’t1)¢m(tl) dtl = }\m¢m(t2)- (310-7)

The correlation of the expansion coefficients then becomes

N, m=n

3.10-8
0 m # n ( )

E[bi] = 77 Nt (1)03015) dra = |

as required.

The requirement placed on the set of functions {¢,,(z)} by the integral
equation (3.10-7) can be stated in mathematical language familiar to some:
the required set of functions {¢, ()} is the set of eigenfunctions of an
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integral equation having I',(7,,7,) as its kernel, and the set of coefficients
{N\,,} is the corresponding set of eigenvalues.

Many mathematical subtleties have been ignored in the preceding discus-
sion. Orders of expectation and integration have been freely interchanged
without stating requirements on the functions involved to ensure validity.
For our purposes, it suffices simply to state that the autocorrelation function
T, (t,,t) should be a continuous function of its arguments. For a more
detailed mathematical discussion, the reader should consult Ref. 3-3.
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PROBLEMS

3-1 Let the random process U(¢) be defined by
U(t) = Acos(2mvt ~ @),

where v is a known constant, ® is uniformly distributed on (-, 7),
and the probability density function of A is given by

pila) = 38(a—1) + 38(a - 2),

and A and @ are statistically independent.

(a) Calculate (u?(¢)) for a sample function with amplitude 1 and a
sampie function with amplitude 2.

(b) Calculate u°.

(c) Show that

ut = Lty + K,
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where (u?), and (u?), represent the results of part a for
amplitudes of 1 and 2, respectively.

3-2 Consider the random process U(t) = A, where A4 is a random vari-
able uniformly distributed on (—1,1).

(a) Sketch some sample functions of this process.

(b) Find the time autocorrelation function of U(¢).

(c) Find the statistical autocorrelation function of U(¢).
(d) Is U(z) wide-sense stationary? Is it strictly stationary?
(e) Is U(t) an ergodic random process? Explain.

3-3 An ergodic random process with autocorrelation function I'j(7) =
(N,/2)8(7) is applied to the input of a linear, time-invariant filter
with impulse response h(z). The output V(¢) is multiplied by a
delayed version of U(t), forming a new random process Z(t), as
indicated below in Figure 3-3p. Show that the impulse response of
the filter can be determined from measurements of (z(¢)) as a
function of delay A.

U(t) V() Z()
h(t)

Variable
delay A

Figure 3-3p

3-4 Consider the random process
Z(t) = Ucosmt,
where U is a random variable with probability density function

put) - Ao ).

(a) What is the probability density function of the random variable
Z(0)?
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3-5

3-8

(b) What is the joint density function of Z(0) and Z(1)?
(¢c) Is this random process strictly stationary, wide-sense stationary,
or ergodic?

Find the statistical autocorrelation function of the random process
U(t) = a,cos(Rmvt — @) + a,cos(mv,t — @,),

where a,, a,,v,,v, are known constants whereas ®, and &, are
independent random variables uniformly distributed on (—=, 7).
What is the power spectral density of U(¢)?

A certain random process U(¢) takes on equally probable values +1
or 0 with changes occurring randomly in time. The probability that n
changes occur in time 7 is known to be

1 aT n
Py(n) = 1+a7(1+a¢) n=20,1,2,...,

where the mean number of changes is # = ar. Find and sketch the
autocorrelation function of this random process.

1
Hint: Y rk= 1= When |rj<Ll.

A certain random process U(¢) consists of a sum of rectangular
pulses of the form p(¢ — t,) = rect((+ — ¢,)/b), occurring with mean
rate n. The times of occurrence are random, with the number of
pulses emitted in a 7-second interval being Poisson distributed with
mean AT. This random input is applied to a nonlinear device with
input—output characteristic

Find
(a) z.
(b) Iz(r).

Assuming that U(¢) is wide-sense stationary, with mean u# and
variance o2, which of the following functions represent possible
structure functions for U(¢)?

(a) Dy(r) =201 —e "]
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3-10

3-11

3-12

3-13

3-14

RANDOM PROCESSES

(b) Dy(7)=20%[1 — a|r|cos ar]
(¢) D,(7)= 20?1 - sinar]

(d) Dy(t)=20%[1 — cosar]
() Dy(7)=20%1 — rectar]

Prove that the Hilbert transform of the Hilbert transform of u(t) is
—u(t), up to a possible additive constant.

Parseval’s theorem, in generalized form, states that for any two
Fourier transformable functions f(z) and g(¢) with transforms &#(»)
and 9(»),

[ #(0)g*()di = [7 F()g(v) dv.
(o] — 00
Show that if u(z) and v(¢) are analytic signals,

j°° u(1)v(t) dt = 0.

— 00

Given that the autocorrelation function of an analytic signal u(z) is
I')(7), show that the autocorrelation function of (d/dt)u(z) is
—(32/31)Ty(7).

Hint: Use frequency domain reasoning.

Find the analytic signal representation for the function

u(t) = recte.

(a) Show that for an analytic signal representation of a real-valued
narrowband random process, the autocorrelation function of the
complex process U(t) (assumed wide-sense stationary) can be
written in the form

I, (1) = g(r)e 2

where g(7) is a slowly varying function of T by comparison with
the complex carrier.

(b) Show further that when U(¢) has a power spectral density that is
even about the center frequency »,, g(7) is entirely real valued.

Let V(¢) be a linearly filtered complex-valued random process with
sample functions given by

V(1) = j°° h(t — )u(7) dr,

— 00
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3-15

where U(7) is a complex-valued input process and h(¢) is the impulse
response of a time-invariant linear filter.

(a) Show that, for a wide-sense-stationary input process,
Iy(r)=H(7)*T,(7),
where

H(r) 2 7 h(g + r)h*(¢) d,

— o0

(b) Show that the mean-square value !;ZB!Z of the output is given by

W = foo H(-7)T,(7)dr.

— 00

Find the power spectral density of a doubly stochastic Poisson
impulse process having a rate process described by

A(t) = Ay[1 + cos(2myyt + @)],

where @ is a random variable uniformly distributed on (=, 7) and
Ao and », are constants.



4

Some First-Order Properties of
Light Waves

Discussions of the statistical characteristics of optical radiation properly
include consideration of first-order properties (i.e., at a single time instant),
second-order properties (two time instants), and higher-order properties
(three or more time instants). In this chapter we restrict attention to
first-order properties of light waves. The discussion begins with a nonstatis-
tical topic, the propagation of light waves under various restrictions on
optical bandwidth. Attention is then turned to the first-order statistics of the
amplitude and intensity of polarized, unpolarized, and partially polarized
thermal light. Finally, various statistical models for the light emitted by a
laser are considered.

The discussions presented in this chapter are entirely in classical terms.
The reader should be aware that, paralleling the classical theory of fluctua-
tions of light, there exists a rigorous quantum mechanical theory (see, e.g.,
Ref. 4-1). The quantum mechanical treatment is not covered here, partly
because of the considerable background in quantum mechanics required
and partly because the classical theory (together with the semiclassical
treatment of detection found in Chapter 9) appears to be adequate, from a
practical point of view, in nearly all experiments of interest to the optical
systems engineer.

Throughout this chapter, and indeed throughout the entire book, we deal
with a scalar theory of light waves. The scalar quantities dealt with may be
regarded as representing one polarization component of the electric or
magnetic field, with the approximation that all such components can be
treated independently. This approximation neglects the coupling between
various components of the electric and magnetic fields imposed by Maxwell’s
equations. Fortunately, the experiments presented in Ref. 4-2 indicate that
the scalar theory yields accurate results provided only moderate or small
diffraction angles are involved.

116
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4.1 PROPAGATION OF LIGHT WAVES

As necessary background for material to follow in later chapters, we turn
attention to a nonstatistical topic, namely, the propagation of light waves.
This discussion is simply a brief review and tabulation of the important
results. For more detailed treatments of the problem, see, for example, Ref.
4-3, Chapter 8, or Ref. 4-4, Chapter 3.

4.1.1 Monochromatic Light

Let u(P,t) represent’ the scalar amplitude of one polarization component
of the electric or magnetic field associated with a monochromatic optical
disturbance. (In accord with the philosophy of the scalar theory, we treat
each component independently.) Here P represents a position in space and
1 a point in time. The analytic signal associated with u(P, t) is

u(P,t) =U(P,v)exp(—j2mwt), (4.1-1)

where v is the frequency of the wave and U(P, ») is its phasor amplitude.

Let this wave be incident from the left on the infinite surface £ shown in
Fig. 4-1. We wish to specify the phasor amplitude of the field at the point P,
to the right of the surface in terms of the field on Z. The solution to this
problem can be found in most standard texts on optics (again, consult Ref.
4-3 or 4-4, e.g.). We express the solution here in a form known as the
Huygens-Fresnel principle, which states that, provided the distance r (see
Fig. 4-1) is much greater than a wavelength A,

1 127/ D)
U(Py.») =25 [U(P,,»)——x(6) ds (4.1-2)
b

r

where A = ¢/v is the wavelength of the light (¢ is the velocity of light), r is
the distance from P; to P,, 8 is the angle between the line joining P, to P,
and the normal to 2 (see Fig. 4-1), and x (@) is an “obliquity factor” with
the properties x(0) =1and 0 < x(6) < 1.

" Beginning in this chapter and continuing hereafter, we drop the notational distinction between
a random process and its sample functions. Although it is useful in purely statistical discussions
to represent the process by a capital letter and a sample function by a lowercase letter, this
distinction is seldom necessary in the discussion of physical applications of the theory. An
exception is the notation for probability density functions. Such functions are generally
subscripted by a capital letter representing the random variable of concern.
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Figure 4-1. Propagation geometry.

The Huygens—Fresnel principle can be interpreted in a quasiphysical way
as follows. Each point on Z acts as a new “secondary source” of spherical
waves. The strength of the secondary source at P; is proportional to
(jA)"'U(P,,»), and that source radiates with a directional amplitude
pattern x(4).

The Huygens-Fresnel principle, as expressed by Eq. (4.1-2), will serve as
our fundamental physical law governing the propagation of monochromatic
light. In addition, as we see in the sections to follow, it can be used to find
similar relations for nonmonochromatic light.

4.1.2 Nonmonochromatic Light

Let #( P, t) be a nonmonochromatic wave, with an associated analytic signal
u( P, t). Although u(P,t) is in general not Fourier transformable, we can
truncate it to the interval (—7/2,T/2), yielding a Fourier-transformable
function u,(P,t). Now u,(P,t) can be represented by an analytic signal
u (P, t) that is Fourier transformable, even though its imaginary part is not
truncated.

From the basic properties of analytic signals, in particular Eq. (3.8-8), we
have

up(P,1) = wa2Q/T(P, v)e 2™ dy, (4.1-3)

where % (P, ») is the Fourier transform of the real signal u, (P, t). Using
this relationship, we now derive an expression for u(P,,t) in terms of
u( P, t), where P, and P, are as shown previously in Fig. 4-1.
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To begin, we note
w(Py, 1) = lim u, (P, ¢) = lim f 24 (P, v)e 2™ dy.
T— oo T— o /0
(4.1-4)
But from the Huygens—Fresnel principle, as expressed by Eq. (4.1-2),

1 e/27r(r/)\)
Ui (Pov) = oy [[Ur(PLy)——x(0)ds.  (415)
=z

Noting that A = ¢/», we use Eq. (4.1-3) and change orders of integration to
write

up(Py,t) = fo 24 (P, v)e ™ dv

_ 2X 0) ~2mv{t—(r/c)]
= ‘/2‘/ o [f (—j2mv) U (P, v)e dv|dS.
(4.1-6)
Differentiation of Eq. (4.1-3) with respect to ¢ yields

d 00
a—uT(Pl,z)=2/ (=j2m0) U (P, v)e 2™ dy,  (4.1-7)
4 0

and as a consequence the bracketed quantity in (4.1-6) can be expressed in
terms of a time derivative. The result is

2acr

ur(Pyt) = [ (d/dryu [Pyt = (r/c)] x(8)ds.  (4.1-8)
z

Finally, letting T — oo, we obtain the fundamental relationship describing
the propagation of nonmonochromatic waves,

2mer

u(Py. 1) = [f (d/dt)u Py, 1 r/c)]x(o)ds. (4.1-9)
p}

In closing, the reader is reminded that our derivation utilized the form of
the Huygens—-Fresnel principle valid only when the distance r in Fig. 4-1 is
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always much greater than the wavelength A, and hence a similar restriction
applies to Eq. (4.1-9). This condition is well satisfied in all problems of
interest to us in the future.

4.1.3 Narrowband Light

As a final relation of future interest, we derive a specialized form of Eq.
(4.1-9) valid for nonmonochromatic light that is narrowband, that is, light
with bandwidth Ay much smaller than the center frequency .

According to Eq. (4.1-6), we can write

2x(6 ‘
u (P, t) = //—érc(j;—)—'[)wvaﬂr(l’l,V)e‘fz""["(’/‘)]dvdS.
pX

(4.1-10)

Now noting that Av < », the following approximation can be made with
good accuracy:

l—’ *© - wyvit—(r/c
uy(Py,t) = f/j—c?{j(; 2 (P, v)e /2™l (/)]dv}x(ﬂ)dS.
>

(4.1-11)

The quantity within braces is simply uz[P,,¢ — (r/c)]. Thus, with the
definition A £ ¢/7, and letting T grow infinitely large, we find

u(P,, 1) = ffj%u(Pl,z—f)x(o)ds. (4.1-12)
>

This relationship will serve as our fundamental law of propagation for
narrowband disturbances. Again, it is strictly valid only for r > A.

This concludes our discussion of the nonstatistical propagation laws
obeyed by light waves. These first-order relationships will be particularly
useful to us in Chapter 5. Our attention is now turned to first-order
statistical properties of various kinds of light waves.

4.2 POLARIZED AND UNPOLARIZED THERMAL LIGHT

A great majority of optical sources, both natural and man-made, emit light
by means of spontaneous emission from a collection of excited atoms or
molecules. Such is the case for the sun, incandescent bulbs, and gas
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discharge lamps, for example. A large collection of atoms or molecules,
excited to high energy states by thermal, electrical, or other means, ran-
domly and independently drop to lower energy states, emitting light in the
process. Such radiation, consisting of a large number of independent
contributions, is referred to as thermal light.

To be contrasted with the chaotic wave emitted by a thermal source is the
relatively well-ordered stimulated radiation emitted by a laser. Excited
atoms or molecules, confined within a resonant cavity, radiate synchro-
nously, or in unison, in a well-ordered and highly dependent fashion. Such
light, which we refer to simply as laser light, 1s discussed in Section 4.4.

Both thermal light and laser light consist of waves that fluctuate ran-
domly with time. Thus either kind of light must ultimately be treated as a
random process. In this section we concentrate on the first-order statistics of
the amplitude and intensity of thermal light.

4.2.1 Polarized Thermal Light

Consider the light emitted by a thermal source and passed by a polarization
analyzer, with polarization direction lying, for example, along the x axis.
The real-valued function u (P, t) represents the x-component of the elec-
tric field vector, observed at point P and time ¢. Because of the presence of
the polarization analyzer, the y-component of the field u, (P, t) is zero. For
the present, we refer to such a light wave as polarized thermal light, although
a more general definition of polarized light emerges in later discussions (see
Section 4.3).

Since the source in question is thermal, the time waveform u , (P, t) can
be regarded as a sum of a great many independent contributions,

uy(P,t)= Y u(P,t), (4.2-1)

all
atoms

where u, (P, t) is the x-component of the field contributed by the ith atom.
Since the number of radiating atoms is usually enormous, we conclude, with
the help of the central limit theorem, that u ,(P,t) is a Gaussian random
process for a polarized thermal source.

Often it is most convenient to work with the analytic signal representa-
tion of the polarized wave u,(P,t) or alternatively with the complex
envelope

Ay(P,t) =uy(P,t)e*™,

where v is the center frequency of the wave. For such representations we
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Im

Re

Figure 4-2. Complex envelope of polarized thermal light at a fixed time and a fixed point in
space.

have
u,(P,t)= ) u(P,t) (4.2-2)
atdins
AX(P’t) = E AI(P’t)’ (42-3)
all
atoms

where u,(P,t) and A (P, t) are the analytic signal and complex envelope
representations, respectively, of the wave component contributed by the ith
elementary radiator. When the central limit theorem is applied to both the
real and imaginary parts of (4.2-2) and (4.2-3), we see that, under the
assumption that the various contributions are randomly phased and inde-
pendent, u (P, t) and A (P, t) are both circular complex Gaussian random
processes.

Figure 4-2 shows the complex envelope A (P, t) at a particular point P
and time instant ¢, consisting of a great many independent complex
phasors. Since there is no relationship between the phases of the individual
atomic contributions, we can reasonably model the phases of the A (P, t) as
statistically independent and uniformly distributed on (—m, 7). Thus

YIf the arrival time of the radiation from a particular atom is totally unpredictable, the phase of
that radiation is uniformly distributed on the primary interval.
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A ,(P,t) has all the properties of the random phasor sum discussed in
Section 2.9. In particular, its real and imaginary parts are independent,
identically distributed zero-mean Gaussian random variables.

Detectors of optical radiation respond not to field strength, but rather to
optical power or intensity. Accordingly, the statistical properties of the
intensity of an optical wave are of considerable practical importance. We
define the instantaneous intensity I,(P,t) of the polarized wave to be the
squared modulus of the analytic signal representation of the field,

Iy(Pt) =y (P, 1)1? = 1A 4 (P, 1))%. (4.2-4)

We reserve the unmodified term “intensity” for the time average, or under
the assumption of ergodicity, the ensemble average of the instantaneous
intensity I, (P, 1),

Iy(P) £ (Ix(P,1)) = Ix(P). (4.2-5)

The instantaneous intensity is, of course, a random process. Since I, (P, t)
is the squared length of a random phasor sum, we can readily use the
knowledge developed in Section 2.9 to find its first-order probability density
function. For brevity, we use the notation

A2A(P 1), T=21(P,1)

in the discussion to follow. We know that 4 obeys a Rayleigh probability
density function,

p(4) = {fz—exp(—Az/zoz) A=0 (4.2:6)

0 otherwise,

where o2 represents the variance of the real and imaginary parts of
A (P, t). The transformation

I = A?, A=I

is monotonic on (0, o0), and thus we can use Eq. (2.5-11) to write

dA
PI(I) =PA(A = ‘/I_) dal
- _‘/{__ -1/26? .L
0?2 2\/7
1 1
—exp| — — I>0
={ 20? p( 202) (4-2'7)

0 otherwise.
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Ip;(I)

| | | | | T
05 1.0 15 20 25

Figure 4-3. Probability density function of the instantaneous intensity of polarized thermal
light.

Thus the instantaneous intensity obeys a negative exponential probability
density function. This distribution has the important property that its
standard deviation o, is equal to its mean I, both of which equal 20?,

o,=1=20" (4.2-8)

Hence in a slightly more compact notation we have

L1 120
p(D)={T"P\7 T = (4.2-9)
0 otherwise.

This density function is plotted in Fig. 4-3.
Knowing the properties of polarized thermal light, we turn now to
consideration of unpolarized thermal light.

4.2.2 Unpolarized Thermal Light
Light from a thermal source is regarded as unpolarized if two conditions are

met. First, we require that the intensity of the light passed by a polarization
analyzer, situated in a plane perpendicular to the direction of propagation
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of the wave, be independent of the rotational orientation of the analyzer.
Second, we require that any two orthogonal field components u , (P, t) and
u, (P, 1) have the property that {u,(z + 7)u¥(¢)) is identically zero for all
rotational orientations of the X—Y coordinate axes and for all delays .
(For a further discussion of unpolarized light, see Section 4.3.) This type of
light is also often referred to as “natural” light.

Since the light arises from a thermal source, the arguments of the
previous section can be applied to each individual polarization component,
yielding the conclusion that u,(P,?) and u,(P,t) are circular complex
Gaussian random processes. Furthermore, since they are uncorrelated for all
relative time delays, the two processes are statistically independent.

The instantaneous intensity of the wave 1s defined by

I(P,t) £ juy(P,1))* + juy (P, 1))

= A (PP + A (P,
=1,(P,t)+ 1,(P,1). (4.2-10)
From the previous section, I,(P,t) and I,(P,t) each obey negative-
exponential statistics. Moreover, from the definition of unpolarized light,

I,(P,t)and I,(P,t) have equal means,

I«(P) = 1I,(P) =I(P), (4.2-11)
and are statistically independent random processes. To find the first-order
probability density function of the total instantaneous intensity, we must

find the density function of the sum of two independent random variables
having identical density functions

2 Iy
pIX(IX) = -}:exp(-—27)
I

pr,(Iy) = %CXP(*Z-I—Z). (4.2-12)

With the help of Eq. (2.6-10) and Fig. 4-4, we write the required convolution
as

p,(I)= fo!(%)ze"p(“zé)ew[— %(1 - s)] ¢ 1>0

0 otherwise
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2 2
Zexp[-=(I—§)]
I I %exp(—Z §=)

0 I

Figure 4-4. Factors in the integrand of the convolution equation.

or

2\? I
p, (1) = (7) ’exp(‘zf) I=0 (4.2-13)
0 otherwise.

This density function is plotted in Fig. 4-5.

Ip;(I)

10

I | l l 7
05 1.0 15 2.0 25 /1

Figure 4-5. Probability density function of the instantaneous intensity of unpolarized thermal
light.
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Note that unpolarized thermal light has considerably less probability of
having an extremely small value of instantaneous intensity than does
polarized thermal light. In addition, we can readily show that the ratio of
standard deviation o, to mean I, which was unity for polarized thermal
light, is reduced to a value of m for unpolarized thermal light.

4.3 PARTIALLY POLARIZED THERMAL LIGHT

Having discussed the properties of polarized and unpolarized thermal light,
we are led naturally to inquire whether a more general theory exists, a
theory capable of dealing with intermediate cases of partial polarization.
Such a theory does indeed exist, and we accordingly devote effort to
presenting it here. To do so requires some initial explanation of a matrix
theory capable of conveniently describing partially polarized light and the
transformations to which it may be subjected. For more detailed discussions
of the general subject of partial polarization, the reader may wish to consult
Ref. 4-3, Section 10.8, or Ref. 4-5.

4.3.1 Passage of Narrowband Light Through
Polarization-Sensitive Instruments

We consider now a mathematical formalism for describing the effects of
various optical instruments on the polarization of transmitted light. A
convenient formalism was first developed by R. C. Jones (Ref. 4-6) for
monochromatic waves. The same formalism can be used for narrowband
light, provided the bandwidth of the light is so narrow that the instrument
in question affects all spectral components identically (Ref. 4-7).

Let u,(¢) and u,(¢) represent the X- and Y-components of the electric
or magnetic field at a particular point P in space. The state of this field is
represented by a two-element column matrix U,

_ uy(t)
- [uy(t)}, (4.3-1)

Suppose that the light is now passed through an optical instrument that may
contain polarization sensitive elements (polarizers, retardation plates, etc.)
and consider the field leaving the instrument at a point P’ that is the
geometric projection of P through the instrument. The state of this field is
represented by a matrix U’ similar to (4.3-1), but with elements u’y(¢) and
uy(¢). Now if the instrument in question contains only linear elements, as is
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most often the case, the matrix U’ can be expressed in terms of U by the
simple matrix formula

U’ wy (1) =[|11 lu““x(f)

B uy(t)

U= = LU (4.3-2)

l21 l22

where L is the 2 X 2 polarization matrix representing the effects of the
instrument.

The matrix representations of some very simple types of physical opera-
tions will be useful to us in future discussions. First, and perhaps simplest,
we consider the effect of a rotation of the X-Y coordinate system. This
simple operation can be regarded as an “instrument” that transforms the
original field components u (¢) and u,(¢) into new components u’y(¢) and
u’y () according to the matrix operator

_ | cosd  sinf _
L [—sin& cosﬂ} (4.3-3)

where 0 is the rotation angle illustrated in Fig. 4-6.

A second important type of simple instrument is a retardation plate
which, by means of a birefringent material, introduces a relative delay
between the two polarization components. If the velocities of propagation of
the X- and Y-polarization components are v, and v,, a plate of thickness d
introduces a time delay

1 1
u=d“~-—) (4.3-4)
Vx Uy
Y’ Y
\
\
\
\
\
\ _—X
—
N
//
//// \
\
\
\
\

\ Figure 4-6. Old (X,Y) and new (X', V)
coordinate systems after rotation by angle 6.
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of the X-component relative to the Y-component. In accord with the
narrowband condition, we require that 7, be much less than 1/Av. In this
case the retardation plate can be represented by a matrix (written in
symmetrical form for simplicity)

_ e’/ 0
L—[ 0 6-1(8/2)] (4.3-5)
where
2adc [ 1 1
S ST (436)

is the phase delay of the X-component relative to the Y-component. We
note in passing that both the rotation matrix (4.3-3) and the retardation
matrix (4.3-5) are unitary matrices; that is, they have the property that
LL" = #, where L' is the hermitian conjugate of L and £ is the identity
matrix

b I*
TR b BT _ 11 0] i
L o= [0Y (43-7)

* *
12 22

As a final example, we mention without proof (see Problem 4-12) that the
matrix representation of a polarization analyzer, oriented at angle a to the
X axis, is

2 .
L(g) = | cos’e smacosa]. 438
L(a) [sinacosa sina ( )

Thus each type of polarization instrument has its own matrix representa-
tion. Furthermore, if light is passed through a series of such instruments,
their combined effect can be represented by a single matrix which is a
product of the individual matrices involved. Thus if light passes through
instruments with matrices L,,L,,..., Ly, we have

Ql = LN T Lzl_-q(_J, (4-3'9)
and the total effect is equivalent to a single instrument with matrix
L=Ly - L,L,, (4-3‘10)

where the usual rules of matrix multiplication are to be observed.
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4.3.2 The Coherency Matrix

We now consider the problem of describing the state of polarization of a
wave. In general, the direction of the electric vector may fluctuate with time
in a complicated deterministic or random manner. A useful description is
supplied by the so-called coherency matrix introduced by Wiener (Ref. 4-8)
and Wolf (Ref. 4-7).

Consider the 2 X 2 matrix defined by

J £ (uut) (4.3-11)

where the infinite time average ( - ) is to be applied to each of the elements
of the product matrix. Equivalently, J may be expressed as

J [J"" J"y} (4.3-12)
B J)’x J)’y ’ .

where

Jxx £ <uX(t)u=':\’(t)> Jyx £ <lly(t)ll";((t)>
Jo & Cux(Dui(e)y 3, & Cuy(Dui(0)). (4.3-13)

The matrix J so defined is called the coherency matrix of the wave. The
elements on the main diagonal of J are clearly the average intensities of the
X- and Y-polarization components. The off-diagonal elements are the
cross-correlations of the two polarization components.

From a purely mathematical point of view, we can identify some funda-
mental properties of the coherency matrix. First, from (4.3-13) it is clear
that J,, and J, are always nonnegative and real. Second, the element J , is
equal to the complex conjugate of the element J, .. Thus J is an hermitian
matrix and can be written in the form

Jxx ny
J = T (4.3-14)
xy

yy

Furthermore, by a direct application of Schwarz’s inequality to the defini-

tion of J,,, we can show that

0,0 < [3.39,,]7 (4.3-15)
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and hence the determinant of J is nonnegative
det[J] = J..J,, — W,,1> = 0. (4.3-16)

Equivalently, we say that J is nonnegative definite. Finally, the matrix J has
the important property that its trace is equal to the average intensity of the
wave,

uld] =J,,+J, =1 (4.3-17)

When an optical wave passes through a polarization instrument, its
coherency matrix is in general modified. Let J’ represent the coherency
matrix at the output of the instrument and J the coherency matrix at the
input. How are J’ and J related? The answer is easily found for narrowband
light by substituting (4.3-2), which describes the transformation of the wave
components, into the definition (4.3-11) of the coherency matrix. The result
is

J’ = LJL'. (4.3-18)

where we have used the fact that (LU)" = UTL'.

Specific forms of the coherency matrix under various conditions of
polarization can readily be deduced simply from the definitions of its
elements. Some obvious examples are:

Linear polarization y- il O} (4.3-19)
in the X direction - 0 0

Linear polarization 0 0

in the Y direction I=1, 1] (4.3-20)
Linear polarization i {1 1]

at +45° to the X axis d = 211 1 (4.3-21)

Less obvious is the case of circularly polarized light. A wave is circularly
polarized if the average intensity passed by a polarization analyzer is
independent of the angular orientation of the analyzer and if the direction
of the electric vector rotates with uniform angular velocity and period 1 /7.
The circular polarization is said to be in the right-hand sense if the direction
of the vector rotates with time in a clockwise sense when the wave is viewed
head-on (i.e., looking toward the source). The polarization is circular in the
left-hand sense if the rotation is counterclockwise.
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For right-hand circular polarization, the analytic signals u ,(¢) and u,(?)
take the form

uy(1) = A(r)e /2
uy (1) = A(1)e /Rm+ (/2] (4.3-22)

where A(¢) is a slowly varying complex envelope. Note that in a time
interval Ar < 1/Av, A(t) is approximately constant and the electric vector
simply undergoes a rapid rotation of direction. The coherency matrix for
this kind of light is readily found by substituting (4.3-22) in the definitions
(4.3-13), with the result

. ,
Right-hand circular polarization  J = é[ , / ] (4.3-23)

For left-hand circular polarization, the corresponding relationships are
u,(t)=A(r)e /2"
u, (1) = A(t)e /B~ (/D) (4.3-24)

and

. o Ifr —j
Left-hand circular polarization  J = 3 [j IJ } . (4.3-25)
Note in particular that for both types of circular polarization, the average
intensities of the two polarization components are equal, but in addition the

two components are perfectly correlated, as they have a correlation coeffi-
cient with unity magnitude,

,ny|

= (4.3-26)
1/2
1.3,

Iy, = |

Next, the important case of “natural” light is considered. By this term we
mean that the light has two important properties. First, like circularly
polarized light, natural light has equal average intensity in all directions;
that is, if the wave is passed through a polarization analyzer, the average
transmitted intensity is independent of the angular orientation of the
analyzer. Unlike the case of circular polarization, however, natural light is
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characterized by a direction of polarization that fluctuates randomly with
time, all directions being equally likely. The analytic signals representing the
two polarization components of natural light can be written in the form

uX(t) = A(t)COSO(t)e‘ﬂﬁ't
u, (1) = A(2)sinf(t)e 2™, (4.3.27)

where A(¢) is a slowly varying complex envelope describing the phasor
amplitude of the electric vector at time ¢, and 6(¢) is the slowly varying
angle of polarization with respect to the X axis. If the angle ¢ is uniformly
distributed on (—, 7), the coherency matrix is readily found to be

210 1 2=

where again f is the identity matrix.

It is a simple matter to show (see Problem 4-3) that if light with a
coherency matrix given by (4.3-28) is passed through any instrument
described by a wunitary polarization matrix (e.g., a coordinate rotation or a
retardation plate), the coherency matrix remains in the form (4.3-28). If the
coherency matrix has this form, therefore, it is impossible to reintroduce
correlation between the X and Y field components by means of an
instrument with a unitary polarization matrix.

In closing this basic discussion of the coherency matrix, we point out that
the elements of this matrix have the virtue that they are measurable
quantities. Clearly, J, . and J ,, which represent the average intensities of
the X- and Y-polarization components, can be directly measured with the
aid of a polarization analyzer, oriented sequentially in the X and Y
directions. To measure the complex-valued element J, ,» tWo measurements
are required. If a polarization analyzer is set at +45° to the X axis, the

transmitted intensity is (see Problem 4-4)

g=£[1 O} _1, (4.3-28)

L=43,+3,+J, +32]
=4[d +J,] +Re{J,,}. (4.3-29)

Since J,, and J, are known, the real part of J,  is thus determined. Now if
a quarter-wave plate is introduced to retard the Y-component with respect
to the X-component by = /2 radians, followed by a polarization analyzer
oriented again at 45° to the X axis, the transmitted intensity is (see Problem
4-5)

L=43,+3, -/, -32)]
=4[3.+3,] + Im{J, }, (4.3-30)
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thus allowing the imaginary part of J, , to be determined. Since J,, = J %,
the entire coherency matrix has thus been established.

4.3.3 The Degree of Polarization

It would be highly desirable, both aesthetically and from a practical point of
view, to find a single parameter that will characterize the degree to which a
wave can be said to be polarized. For the case of a linearly polarized wave,
this parameter should have its maximum value (unity for convenience), for
such a wave is fully polarized by any reasonable definition. For circularly
polarized light, the parameter should again have its maximum value, for
such light can be made linearly polarized, without loss of energy, by means
of a quarter-wave retardation plate. For the case of natural light, the
parameter should have value zero, for the polarization direction is totally
random and unpredictable in this case.

A parameter that measures the degree of statistical dependence between
the two polarization components would be ideally suited for our purpose. In
general, however, such a parameter would require full knowledge of the
joint statistics of u ,(#) and u,(¢). For simplicity, a more limited measure of
polarization is adopted, one that depends only on the correlation parame-
ters J,,, J,,, and J,, of the coherency matrix. Such a definition is quite
adequate in most applications, particularly if the light is thermal in origin.
However, it is not difficult to find an example of a light wave that has a
coherency matrix identical with that of natural light and yet has a fully
deterministic and predictable behavior of its polarization direction (see
Problem 4-6). Recognizing these possible pitfalls, we consider the definition
of a degree of polarization P based on the properties of the coherency
matrix.

What are the key differences between the coherency matrices of light that
we would logically call fully polarized (e.g., linearly or circularly polarized)
and light that we would logically call unpolarized (e.g., natural light)? The
differences are not merely the presence or absence of off-diagonal elements,
for such elements are zero in both Egs. (4.3-19) and (4.3-28), yet the former
corresponds to fully polarized light and the latter to unpolarized light.

Some help is afforded by the following physical observations. For light
polarized at 45° to the X axis, it is possible to diagonalize the coherency
matrix by means of a simple coordinate rotation, changing (4.3-21) to
(4.3-19), for example. Similarly, for the case of circularly polarized light, a
quarter-wave plate followed by a coordinate rotation of 45° results in light
linearly polarized along the X axis and thus diagonalizes the coherency
matrix. In both cases a lossless polarization transformation has eliminated
the off-diagonal elements. Perhaps, then, the key difference between polarized
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and unpolarized light lies in the form of the coherency matrix after
diagonalization.

Further support for this idea is afforded by some very general results
from matrix theory. It is possible to show that for every hermitian matrix J,
there exists a unitary matrix transformation P such that

A, O
PJPT = [01 7\2]’ (4.3-31)

where A, and A, are the (real-valued) eigenvalues of J (Ref. 4-9). Further-
more, any coherency matrix J can be shown to be nonnegative definite;
therefore, A, and A, are nonnegative. If these results are interpreted
physically, for every wave there exists a lossless polarization instrument that
will eliminate all correlation between the X- and Y-polarization compo-
nents. The required instrument (i.e., the required P) depends on the initial
coherency matrix J, but can always be realized with a combination of a
coordinate rotation and a retardation plate (Ref. 4-10).

If A, and A, are identical (as for natural light), clearly the degree of
polarization (however we define it) must be zero. If either A, or A, is zero
(as for light polarized linearly along the X or Y axes), the degree of
polarization must clearly be unity. To arrive at a logical definition of the
degree of polarization, we note that the diagonalized coherency matrix can
always be rewritten in the following way:

Y R ISy SR

where we have assumed, without loss of generality, that A, > A,. The first
matrix on the right is recognized as representing unpolarized light of
average intensity 2A,, whereas the second matrix represents linearly
polarized light of intensity A, — A,. Thus light with arbitrary polarization
properties can be represented as a sum of polarized and unpolarized
components. We define the degree of polarization of the wave as the ratio of
the intensity of the polarized component to the total intensity,

A=A
At 2
gb‘xlw\z'

(4.3-33)
Thus a general definition has been arrived at.

The degree of polarization can be expressed more explicitly in terms of
the elements of the original coherency matrix, if desired. To do so, we note
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that the eigenvalues A, and A, are, by definition, solutions to the equation
det[J — AS] = 0. (4.3-34)

Straightforward solution of the resulting quadratic equation in A yields

det[J]
t[d))1 £ /1 - 4—= | (4.3-35
\/ (tr[J]) )

>‘1,2 =

Thus the degree of polarization can be written as

P= \/1 ~ 4—‘-13t[—J15 . (4.3-36)
(tr[d])

It is not difficult to show that any unitary transformation of the coherency
matrix does not affect the trace of that matrix. As a consequence, we can
always regard the intensity of a partially polarized wave as being the sum of
the intensities A, and A, of two uncorrelated field components. The average
intensities of these components are expressible in terms of the degree of
polarization # as follows

A =311 + P)
A, =311 -2), (4.3-37)

where we have simply noted that tr[J] = I and substituted (4.3-36) in
(4.3-35). If the light is thermal in origin, lack of correlation implies statisti-
cal independence of both the field components and the corresponding
intensities.

The preceding discussion of partially polarized light is not an exhaustive
one, for many interesting subjects have been omitted. We mention in
particular the Stokes parameters and Mueller matrices, neither of which
have been treated here. However, we limit our discussion to those aspects
that will be useful to us in later material, and hence the reader is referred to
Refs. 4-3 (Chapter 10), 4-5, and 4-11 for more complete discussions.

4.3.4 First-Order Statistics of the Instantaneous Intensity
We close this discussion of partially polarized light with a derivation of the

probability density function of the instantaneous intensity of thermal light
with an arbitrary degree of polarization #. As we have seen in the previous
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section, it is always possible to express the instantaneous intensity of a
partially polarized wave as the sum of two uncorrelated intensity compo-
nents

I(P,t)=I,(P,t) + L(P,1). (4.3-38)

Furthermore, if the light is thermal in origin, the intensity components are
also statistically independent, as a result of the independence of the underly-
ing complex Gaussian field components. The average intensities of these two
components are, from Eq. (4.3-37),

=11+P)I
=1(1-2)I, (4.3-39)

where 1 is the total average intensity.
Since I; and I, are squared moduli of circular complex Gaussian fields,

each obeys negative-exponential statistics; that is,

2 21,
)= 1| - T 47T

2 21,
Pzz(lz) = m‘ﬁexp{ - m;‘)—i} (4.3-40)

for I, > 0 and I, > 0. The probability density function for the total
intensity 7 is most easily found by first calculating the characteristic
function M ,;(w). Using the independence of I, and I,, we can express the
characteristic function as a product of two characteristic functions (cf.
Problem 4-2):

1 1
1 —j%(l +2)I||1 —j—;)—(l —P)]

M,;(w)=

__(+2)pn2 (1—9@)/2@’ (4.3:41)

1 -j—‘z‘i(l +2) 1 ~,~-‘2*i(1 —P)I

where a partial fraction expansion has been used in the last step. A Fourier
inversion now yields a density function of the form

21 21
p,(I)= @I{exp[ m]—exp[ e ?)I]}' (4.3-42)
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Figure 4-7. Probability density function of the instantaneous intensity of a thermal source
with degree of polarization £.

This density function is plotted in Fig. 4-7 for several values of £. The
results are seen to agree with Figs. 4-3 and 4-5 for the cases # =1 and
P = 0, respectively.

Finally, for a partially polarized thermal source it can readily be shown
(see Problem 4-7), that the standard deviation o, of the instantaneous

intensity is given by
1+ 2% -
o=\ "5 I (4.3-43)

4.4 LASER LIGHT

Having examined the first-order properties of thermal light, which is the
type of light most often encountered in practice, we now turn attention to
the more difficult problem of modeling the first-order properties of light
generated by a laser oscillator. The problem is made difficult not only by the
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complicated physics that describes the operation of even the simplest kind
of laser, but also by the vast multitude of types of laser that exist. No one
model could be hoped to accurately describe the statistical properties of
laser light in all possible cases. The best that can be done is to present
several models that describe certain idealized properties of laser light.

By way of background, we briefly describe in an intuitive way the
principle of laser action. A laser consists of a collection of atoms or
molecules (the “active medium”) excited by an energy source (the “pump”)
and contained within a resonant cavity that provides feedback. Spontaneous
emission from the active medium is reflected from the end mirrors of the
cavity and passes again through the active medium, where it is reinforced by
additional stimulated emission. Stimulated emission contributions from
different passes through the active medium will add constructively only for
certain discrete frequencies or modes.

Whether a given mode breaks into oscillation depends on whether the
gain of the active medium exceeds the various inherent losses for that
particular mode frequency. We say loosely that a given mode is at
“threshold” when the gain just equals the losses. The gain can be increased
by increasing the power of the pump. When oscillation develops, however,
nonlinearities of the process introduce a saturation of the gain, preventing
further increase of gain with increased pump power. Nonetheless, as we
shall see, the statistical properties of the emitted radiation are influenced by
the degree to which the pump exceeds threshold. In addition, as the pump
power increases, generally speaking, more modes of the cavity reach
threshold, and the output contains several oscillating lines at different
frequencies.

Our initial considerations are restricted to the case of single-mode laser
oscillation. Later we focus on the more common but more difficult case of
multimode oscillation.

4.4.1 Single-Mode Oscillation

The most highly idealized model of laser light is a purely monochromatic
oscillator of known amplitude S, known frequency »,, and fixed but
unknown absolute phase ¢. The real-valued representation of such a signal,
assumed linearly polarized, is

u(t) = Scos[2mvyt — ¢]. (4.4-1)

To incorporate the fact that we never know the absolute phase of the
oscillation, ¢ must be regarded as a random variable, uniformly distributed
on (—a,m). The result is a random process representation that is both
stationary and ergodic.
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The first-order statistics of the instantaneous amplitude can be most
easily found by calculating its characteristic function. Since the process is
stationary, we can set ¢ = 0, in which case

My (@) = E[exp( jwScos¢)]

_ _217; [ exp(juScoss) dg = Jy(wS),  (442)

where J, is a Bessel function of the first kind, zero order. Fourier inversion
of this function yields (Ref. 4-12, p. 366) a probability density function

o3 5 ]-1
pylu) = {[w ST ] ul < 5 (4-4'3)
0 otherwise,

which is plotted in Fig. 4.8a.
As for the intensity of the signal u(z), we have

‘ 2
I =|Sexp[—jQ2mvyt — ¢)]| = S2
Thus the probability density function for / can be written
pi(1)=8(I-S?), (4.4-4)

which is shown in Fig. 4-8b.
A first step toward a more realistic model 1s taken by incorporating the
fact that no real oscillation has a perfectly constant phase. Rather, to a

Sp(u) pi(D
10—
05— t
- & > |
-1 0 1 S s?
(aj (b)

Figure 4-8. Probability density functions p,,(u) of the amplitude and p,(I) of the intensity
of a perfectly monochromatic wave of unknown phase.
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degree that depends on the type of laser and the precautions taken for
stability, the phase undergoes random fluctuations with time. Thus we
modify Eq. (4.4-1) to read

u(t) = Scos[2mvyt — 6(1)], (4.4-5)

where 6(¢) represents the temporal fluctuations of the phase.

The randomly varying phase component 6(¢) can arise from a variety of
sources, including acoustically coupled vibrations of the end mirrors of the
laser cavity and noise inherent in the output of any noise-driven nonlinear
oscillator. In all cases the phase fluctuations can be interpreted as arising
from a random fluctuation of the frequency of the oscillation.

To make these ideas more precise, let the total phase of the oscillating
mode be represented by y(z),

(1) = 2mpyt — 0(1). (4.4-6)
The instantaneous frequency of the oscillation can then be defined by
sl d o y_, 14
l’i(t)—' Vo dt\l’(t)_ Yo Yo dt (44'7)

and is seen to consist of a mean », minus a randomly fluctuating compo-
nent

1 4dé(q)

ve(t) 2 4 (4.4-8)

In most cases of interest, the physical process causing frequency fluctua-
tions can be regarded as generating a zero mean, stationary fluctuation
vr(t) of the instantaneous frequency. It follows that

6(1) = 2wf_’ pe(£) dt (4.4-9)

is a nonstationary random process, although the following argument shows
it to be stationary in first increments. The structure function of 8(t) is
independent of the time origin, as demonstrated by

Dy(ty,1;) = [0(t2) - 0(’1)]2

t1+t2) 2

= 42 foorect _( 2 ve(€)d¢

— o0 2 1

_ gw%f(;(l - g)ry(n) dn, (4.4-10)
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where I, is the autocorrelation function of vg(¢), T = t, — t,, and manipu-
lations similar to those used prior to Eq. (3.4-9) have been carried out. If the
delay 7 is much longer than the correlation time of w»g(¢), the structure
function becomes

D,(r) = 87727_[000I‘V(n)dn, (4.4-11)

or, in words, the mean square phase difference is linearly proportional to the
time separation 7. Such a property is also characteristic of a diffusion
process and of Brownian motion of a free particle.

As for the probability density functions of the amplitude and intensity of
the wave with constant strength and randomly varying phase, they are
identical with those of Fig. 4-8, for the phase is again uniformly distributed
on the interval (—, 7) and the intensity remains constant.

A final step in sophistication of the model is to allow the amplitude of
the mode to fluctuate randomly in time, as invariably happens in practice to
some degree. A solution to the linearized Van der Pol oscillator equation
(Ref. 4-13) describing a CW laser oscillator operating well above threshold
shows that the emitted wave has a time structure of the form

u(t) = Scos[2mwot ~ 6(t)] +u, (1), (4.4-12)

where S and », are regarded as known constants, #(¢z) is a randomly
time-varying phase of the diffusion-type discussed above, and u,(¢) 1s a
weak stationary noise process, with a spectrum centered at », and a
relatively narrow bandwidth (Ar < »;). The strength of the noise compo-
nent diminishes as the laser operates further and further above threshold.

It can be argued from a physical viewpoint that the first term of (4.4-12)
represents the result of stimulated emission, whereas the second term
represents a small residual amount of spontaneous emission. In this case it
is reasonable to ascribe Gaussian statistics to u,(z) and to assume that it is
independent of 6(t). At a fixed time ¢, the first term has a probability
density function given by (4.4-3), whereas the second term has a Gaussian
density function. For operation well above threshold, the Gaussian function
has a standard deviation o that is much less than §. Therefore, the
convolution of the two density functions yields a slightly smoothed version
of Fig. 4.8a for the density function of amplitude.

As for the intensity of the mode, we note that it is the squared length of a
strong constant-amplitude, random-phase phasor S plus a weak circular
complex Gaussian phasor A, representing the complex envelope of the
Gaussian noise term. The probability density function of / can be found by
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noting that

I=1S+A,>=S|>+2Re{S*A, }. (4.4-13)
Now

S=Sef A, =A4¢*

where 4,, 0, and ¢, are independent and 6 and ¢, are uniformly distrib-
uted on (—, 7). The real part of 2S*A, is a Gaussian random variable,’
with zero mean and variance

o} = 4Szzzcosz(0 —¢,) =4I, %
=211, (4.4-14)

We conclude that the intensity / obeys (approximately) a Gaussian density
function

(—’;’—S)i} (4.4-15)

1
p(l)= ——= CXP{— =
vamlgly 4lgly

valid for I > I,

An alternative solution for the probability density function of the in-
tensity of a laser operating above or below threshold has been found by
Risken (Ref. 4-14), who solved a nonlinear Fokker-Planck equation to
obtain the probability density function directly. The result is a density
function of the form

2 L exp{ — ! —-w2 I1>0
pr(I)=1{ mly 1+ erfw i VI, B

0 otherwise,
(4.4-16)

where I, is the average intensity at threshold; w is a parameter that varies
from large negative values well below threshold, to zero at threshold, to

*Note that Re{S*4, } = SA,cos(¢, — ). Since ¢, is uniformly distributed and 4,, is Rayleigh
distributed, the resulting product obeys Gaussian statistics.
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large positive values well above threshold; and erf w is a standard error
function,

2 v
erfw=— | exp(—x?)dx, erf(—w) = —erfw. (4.4-17
=) ew(=x7) (=w) (44-17)

The average intensity of the laser output is related to the average intensity at
threshold by

1 +erfw (4'4-18)

When w < 0, the laser is well below threshold, and p,(/) is approxi-
mately negative exponential, as for thermal light,

2w __ziw_l,}
pi(I)={ JnI, eXp{ yr I, =9 (4.4-19)
0 I <0.

When w = 0, the laser is just at threshold, and p,(I) has the shape of half
of a Gaussian curve,

(4.4-20)

Finally, in the most common case of a laser far above threshold, w > 0,
and p,(I) has the form of a Gaussian density with mean I = wx I,

1 I—wirl,)’
p,(I) = ;‘I;CXP{‘( Ja I, )} =0 (4.4-21)

0 I < 0.

Recall that the previous approximation (4.4-15) predicted a similar result,
which suggests the association

I = W\/;T_IO

_ \/',,',_10 (w > 0).
Iy 4w

I

(4.4-22)
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Figure 4-9. Risken’s solution for the probability density function of the intensity of a laser
oscillator (single mode).

o

The general probability density function of Eq. (4.4-16) is plotted for several
values of w in Fig. 4-9.

In our future discussions it is often convenient to assume that the laser is
operating so far above threshold that fluctuations of intensity are insignifi-
cant. Thus the randomly phase-modulated cosine of Eq. (4.4-5) is most
commonly used to represent the light from a single-mode laser.

4.4.2 Multimode Laser Light

Whereas single-mode oscillation can be achieved with some lasers if special
precautions are taken, lasers are more commonly found to oscillate in a
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multitude of transverse and /or longitudinal modes. Assuming that the laser
1s oscillating well above threshold, a reasonable model for the steady-state

output is

u(r) = % S,cos[2av,t — 6,(1)], (4.4-23)

1=1

where N is the number of modes, S; and », are the amplitude and center
frequency of the ith mode, and 6,(¢) is a time varying phase associated with

that mode.
The most commonly used model for multimode laser light assumes that

the modes oscillate independently, with no appreciable degree of phase
locking. Such a model must be used with great caution, however. If the
phase fluctuations are caused by vibrations of the end mirrors of the laser,
then clearly the fluctuations of the various modes will be statistically
dependent. Furthermore, even if the phase fluctuations arise as an integral
part of the oscillation mechanism, the laser is fundamentally a nonlinear
device, and significant mode coupling can occur as a result of these
nonlinearities. For example, if a frequency component generated by nonlin-
ear intermodulation between two modes happens to coincide with the
frequency of a third mode, some degree of phase locking can occur. Such
effects are particularly strong for a laser operating well above threshold,
where the nonlinearities are most significant. (For a review of techniques for
intentionally introducing mode locking in lasers, see, for example, Ref.
4-15).

Recognizing that the model is not valid under many conditions, we
nonetheless investigate the properties of light emitted by a laser oscillating
n several independent modes. A reasonable approximation to this condition
an be obtained for a gas laser oscillating just above threshold, although
trictly speaking, a spontaneous emission Gaussian noise term should be
dded to the model (4.4-23) in this case. (However, it should be noted that
ust above threshold the laser may well oscillate in only one or two modes).

The characteristic function of the amplitude of a single mode is given,
ccording to (4.4-2), by

M, (w) = Jy(wS;). (4.4-24)

or N independent modes, the characteristic function is

M,(w)= ﬁJo(wS,), (4.4-25)
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and if all modes have equal amplitudes \/I/N, the result is

M, (w) = JON(w % ) (4.4-26)

To obtain the probability density function, the characteristic function must
be Fourier transformed.

Hodara (Ref. 4-16) and Mandel (Ref. 4-17) have shown that for two
equal strength modes, the density function for amplitude is

1 2 u? -
pu(u) ={ 2 TK( 1'27') lul < v21 (4.4-27)

0 otherwise,

Pu(u)

12

10—
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Figure 4-10. Probability density function of the amplitude of a wave consisting of N
equal-strength independent modes. The total intensity 7 is held constant and equal to unity. A
Gaussian curve is indistinguishable from the N = 10 curve on this plot.
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where K () is a complete elliptic integral of the first kind. For our purposes,
we simply subject Eq. (4.4-26) to a digital Fourier transformation and plot
the curves of p, (u) for various values of N in Fig. 4-10.

As more and more independent modes are added, the probability density
function is seen to approach Gaussian form, as expected in accordance with
the central limit theorem. For N as small as 5, there is little visible difference
between the true density function and a Gaussian function. From the point
of view of classical, first-order statistics, there is little difference between
multimode laser light (N > 5) and thermal light, provided the major as-
sumption of no phase locking is satisfied.

As for the probability density function of the intensity of multimode
laser light, the problem is even more difficult than for amplitude. We
consider first the case of two independent modes, with intensities kI and
(1 — k)I. Reference to Fig. 4-11 and the law of cosines shows that the total
instantaneous intensity can be expressed as

I=kI+(1~k)+2/k(l ~k)Icosy =1I[1+2/k(1 = k)cosy],
(4.4-28)
where
y=2a(v, —v)t — 0,(¢) +0,(2). (4.4-29)

As a result of the uniform distributions of ¢, and ¢, and their assumed
statistical independence, { is uniformly distributed on (—#, 7). Thus the

Figure 4-11. Phasor diagram to aid in the
computation of /.
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characteristic function of the instantaneous intensity is

M,;(w) ;—ijﬂexp{jwl_[l + 2/k(1 -k cos¢]} dy

exp( jwl ) Jo(2eIVk (1 - k) ). (4.4-30)

li

Fourier inversion yields a probability density function

I[1-2/k(0 = %)
[w\/(zi k(l—k))z—-(l—l—)z]—l for <I< ]

Il1+2/k(1 k)]

0 otherwise.

P/(I) =

(4.4-31)

This density function is shown plotted in Fig. 4-12 for various values of k.

TPI(I) b=
\A/
15H- k=0.99
k=09
10 k=05
\\
) ~
™~ Negative
~~ exponential
T4/
| | I
0 05 1.0 15 20 T

Figure 4-12. Probability density function of the instantaneous intensity of two independent
modes with fraction k of the total intensity in one mode and (1 — k) in the other.
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Also shown dotted is the negative exponential distribution associated with
the intensity fluctuations of thermal light. This curve is approached as the
number of independent modes is increased.

Although the density function for 7 with more than two modes present is
not readily found, it is possible to calculate the standard deviation of the
intensity with N equal strength independent modes present and to compare
it with the standard deviation of I for thermal light. The reader is asked to
verify in Problem 4-11 that the ratio of standard deviation to mean intensity
with N equal strength independent modes satisfies the equation

f’il =1~ L (4.4-32)

This dependence on N is illustrated in Fig. 4-13. Note that as N increases,
the ratio a,/I approaches the value unity characteristic of polarized thermal
light. When more than five independent modes are present, the ratio is
within 10% of the value appropriate for thermal light. Thus we again see
that the approach towards “ pseudothermal” light is very rapid with increas-
ing number of modes.

Q
~

7 Polarized
thermal light
A
1.0r ——————————————— —
L
—
0.5
[ I A I O O
> 3 4 5 6 7 8 9 10"

Figure 4-13. Ratio of standard deviation o; to mean 7 for the intensity of light emitted by a
laser oscillating in N independent, equal-strength modes.
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Finally, we emphasize again that the resemblance of multimode laser
light to thermal light is true only when the various oscillating modes are
uncoupled. In practice, the situations in which this assumption is satisfied
are probably rather limited.

4.4.3 Pseudothermal Light Produced by Passing Laser Light
Through a Moving Diffuser

A light wave having first-order classical statistical properties indistinguish-
able from polarized thermal light can be produced by passing laser light
(single mode or multimode) through a moving diffuser. Such light differs
from thermal light primarily through the much greater energy it possesses
per temporal fluctuation interval (or “correlation time”); this point is
treated in more detail in Chapter 9.

Figure 4-14 illustrates the experimental arrangement for producing
pseudothermal light of this type. A laser illuminiates a diffuser, such as
ground glass. On a very fine spatial scale, the diffuser introduces extremely
complex and irregular deformations of the incident wavefront, with phase
changes generally many times 27 radians. At a distant point P, the light
may be regarded as consisting of many independent contributions from
different “correlation areas” on the diffuser, where the diffuser is regarded
as one particular realization drawn from an ensemble of possible diffusers.
These contributions are randomly phased, and hence the complex field
observed may be regarded as resulting from a random phasor sum. The field
thus obeys complex Gaussian statistics, and the intensity obeys negative
exponential statistics over an ensemble of microscopically dissimilar di-
ffusers, as it has been assumed that negligible depolarization of the light
has occurred.

If the diffuser is now moved continuously. the field and intensity fluctuate
with time, taking on many independent realizations of the underlying

Diffuser Observation
in motion point
o Po
Laser i

Figure 4-14. Production of pseudothermal light from laser light by means of a moving
diffuser.
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statistical distribution. Thus the light intensity fluctuates randomly in time,
obeying negative exponential statistics as for polarnized thermal light, but
with a far narrower bandwidth than true thermal light. For a further
detailed discussion of the relationship between this kind of light and
ordinary thermal light, see Ref. 4-18.

REFERENCES

4-1 R.J. Glauber, “Photon Statistics,” in Laser Handbook, Vol. 1 (F. T. Arecchi and E O.
Schulz-Dubois, editors), North-Holland Publishing Company, Amsterdam, pp. 1-43
(1972).

4-2 S Silver, J. Opt. Soc. Am., 52, 131 (1962).

4-3 M Born and E. Wolf, Principles of Optics, 2nd rev. ed.,, MacMillan Company, New
York (1964).

4-4 J. W. Goodman, [Introduction to Fourier Optics, McGraw-Hill Book Company, New
York (1968).

4-5 M. V. Klein, Optics, John Wiley & Sons, New York (1970).

4-6 R. C. Jones, J. Opt. Soc. Am., 31, 488 (1941); 31, 500 (1941); 32, 486 (1942); 37, 107
(1947); 37, 110 (1947); 38, 671 (1948).

4-7 E. Wolf, Nuovo Cimento, 13, 1165 (1959).

4-8 N. Wiener, J. Math. Phys. (MIT), 7, 109 (1927-1928).

4-9 D. C. Murdoch, Linear Algebra for Undergraduates, John Wiley & Sons, New York
(1957).

4-10 G. B. Parrent and P. Roman, Nuovo Cimento, 15, 370 (1960).
4-11 E. L. O'Neill, Introduction to Staustical Optics, Addison-Wesley, Reading, MA (1963).

4-12 R. N. Bracewell, The Fourier Transform and 1ts Applications, McGraw-Hill Book
Company, New York (1965).

4-13 J. A. Armstrong and A. W. Smith, “Experimental Studies of Intensity Fluctuations in
Lasers,” Progress in Opucs, Vol. VI (E. Wolf, editor), North-Holland Publishing
Company, Amsterdam, pp. 211-257 (1967).

4-14 H. Risken, “Statistical Properties of Laser Light,” Progress in Optics, Vol. VIII (E. Woll,
editor), North-Holland Publishing Company, Amsterdam, pp. 239-294 (1970).

4-15 L. Allen and D. G. C. Jones, *“Mode Locking in Gas Lasers,” Progress in Optics, Vol. IX
(E. Wolf, editor), North-Holland Publishing Company, Amsterdam, pp. 181-233 (1971).

4-16 H. Hodara, IEEE Wescon Proceedings, paper 17.4 (1964).
4-17 L. Mandel, Phys. Rev., 138, B753 (1965).
4-18 W. Martienssen and E. Spiller, Am. J. Phys., 32, 919 (1964).

ADDITIONAL READING

B. Daino, P. Spano, M. Tamburrini, and S. Piazzolla, “ Phase Noise and Spectral Line Shape in
Semiconductor Lasers,” IEEE J. Quant. Electron., QE-19, 266-270 (1983).



PROBLEMS 153

PROBLEMS

4-1

4-2

4-3

4-4

4-5

4-6

Starting with Eq. (4.1-10), show that if Av << ¥ and r < ¢/Av for all
P;, then

eij(r/X)
u(Py, 1) = fzf 5, u(PLOx(6) ds
can be used to describe the propagation of u(P, t).

Show that the characteristic function of the intensity of polarized
thermal light is given by

1
1 —jol’

Ml(w) =

Show that the coherency matrix of natural light is unaffected by any
unitary polarization transformation.

By finding the trace of the transformed coherency matrix, show that
the intensity transmitted by a polarization analyzer set at +45° to
the X axis can be expressed as

=43, +3,] +Re{J,,},

where J__, J

xx> Syys
incident light.

By finding the trace of the transformed coherency matrix, show that
the intensity transmitted by a quarter-wave plate followed by a
polarization analyzer set at +45° to the X axis can be expressed as

and J,, are elements of the coherency matrix of the

I= %[JXX +J,,] +Im{J,}

where J__, Jyy, and J, , are again elements of the coherency matrix of
the incident light, and it has been assumed that the quarter-wave

plate delays u, with respect to u , by 90°.

Consider a light wave that has X- and Y-polarization components of
its electric field at point P given by

u,(r) = exp —j27r(17 - ézl)t]
Av
2

uY(t)=exp:—j27r(17+ )t}
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4-8

SOME FIRST-ORDER PROPERTIES OF LIGHT WAVES

(a) Show that at time ¢ the electric vector makes an angle

_ Av
cos2w(v + -2—)t

_ -1
6(t) = tan A,
cosZw(V — —2—)t

with respect to the X axis, and thus the polarization direction is
entirely deterministic.

(b) Show that such light has a coherency matrix that is identical
with that of natural light, for which the polarization direction 1s
entirely random.

Show that the standard deviation o, of the instantaneous intensity of
partially polarized thermal light is

1+ P2
2

o, = 7

as asserted in Eq. (4.3-43).

Consider the analytic signal representation of a monochromatic
signal

u(t) = Sexp[ —j(2mrot — ¢)],

where S and v, are known constants, whereas ¢ is a random variable
uniformly distributed on (—, 7). Let

u”(t) = Re{u(t)} = Scos[2my,t — ¢]
u(t) = Im{u(r)} = —Ssin[27vyr — ¢]

(a) Show that the conditional density function of u?, given u(", is

P (1) = 82 = (u)? 8[(u9)? + (u”)? - §2]

(b) Show that the joint density function p(u‘”, u?) is given by

p(u”,u) = Z8[(u”) +(u®)’ - 57]
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(¢) Show that u‘” obeys the same probability density function as
u(" that is,

1
5t~ (a)

p(u) = (lu) < S)

(d) Show that, whereas E[u‘”uD]= 0, u” and 4" are not inde-

pendent.
Hinr:
8(x — x,)
s[/(x)] = ¥ o
&, |2
x,, of dx x=x,
f(x)

(see Ref. 2-4, pp. 37 and 38).

4-9 Present an argument demonstrating that thermal light remains ther-
mal light after propagation to a distant observation point, but that
laser light may or may not retain the form

u(¢) = Sexp{ —j[2mvor — 6(1)]}.

4-10 Consider a single-mode laser emitting light described by the analytic
signal

u(t) = exp{ —j[2mvet — 6(1)] ).

(a) Assuming that Af(¢) is an ergodic random process, show that
the autocorrelation function of u(¢) is given by

I‘U(I‘Z’ tl) = e_jzm'OT MA&(I)’

where M, ,(w) is the characteristic function of the phase differ-
ence A8 = 6(t,) — 0(1,).

(b) Show that for a zero mean Gaussian 6(¢), arising from a
stationary instantaneous frequency process,

rU(T) _ e—_]Z‘”VOTe—(l/z)Dg(T)’

where Dy(7) is the structure function of the phase process 0(¢).
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4-11

4-12

4-13

SOME FIRST-ORDER PROPERTIES OF LIGHT WAVES

Let the field emitted by a laser oscillating in N equal-strength but
independent modes be represented by

N

u(r) = X exp{ —j(2n¥,t — ¢,)),

k=1

where the ¢, are uniformly distributed on (—#, 7) and are statisti-
cally independent. Find an expression for the ratio of the standard
deviation of intensity g, to the mean intensity , expressing the result
as a function of N.

Show that the Jones matrix of a polarization analyzer set at angle +a
to the x axis is given by

2 .
_ | cos“a Sin a cos «
L(a)=|" .,
sSinacosa  Sin“a

Is this matrix unitary?

Show that the second moment I of the intensity of a wave is not

equal to the fourth moment [u("]* of the real amplitude of that
wave, the difference being due to a low-pass filtering operation (and a
scaling by a factor of 2) that are implicit in the definition of intensity.
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Coherence of Optical Waves

The statistical properties of light play an important role in determining the
outcome of most optical experiments. In many cases of practical impor-
tance, however, a satisfactory description of the experiment can be formed
with far less than a complete statistical model. Most commonly, a descrip-
tion in terms of certain second-order averages known as coherence functions
is entirely adequate for predicting experimental outcomes. Attention is
focused in this chapter on the properties of such second-order averages.

The origins of the modern concept of coherence can be found in the
scientific literature of the late nineteenth and early twentieth centuries.
Particularly noteworthy early contributions were made by E. Verdet (Ref.
5-1), M. vonLaue (Ref. 5-2), M. Berek (Ref. 5-3), P. H. van Cittert (Ref.
5-4), F. Zernike (Ref. 5-5), and others. In more recent times, developments
of major importance are found in the work of H. H. Hopkins (Ref. 5-6), A.
Blanc-Lapierre and P. Dumontet (Ref. 5-7), and E. Wolf (Ref. 5-8). These
few references are far from a complete list of important advances, but
fortunately the interested reader can easily trace the historical evolution of
these 1ideas with the help of two volumes of reprints of original papers,
together with an extensive bibliography, available under the editorship of L.
Mandel and E. Wolf (Ref. 5-9).

Before proceeding with detailed discussions, it is perhaps worth briefly
mentioning the distinction between two types of coherence, temporal
coherence and spatial coherence. When considering temporal coherence, we
are concerned with the ability of a light beam to interfere with a delayed
(but not spatially shifted) version of itself. We refer to such division of a
light beam as amplitude splitting. On the other hand, when considering
spatial coherence we are concerned with the ability of a light beam to
interfere with a spatially shifted (but not delayed) version of itself. We refer
to this type of division of light as wavefront splitting. Clearly, the ideas can
be generalized to allow both temporal and spatial shifting, which will lead
us to the concept of the mutual coherence function. The type of coherence
that is needed in any particular case depends on the particular experiment
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we are attempting to understand on an analytical basis. These ideas are
developed in greater detail in the sections that follow.

For alternative discussions of much of the material covered here, the
reader can consult Refs. 5-10 through 5-14.

5.1 TEMPORAL COHERENCE

Let u( P, t) be the complex scalar representation of an optical disturbance at
point P in space and instant ¢ in time. Associated with u( P, t) is a complex
envelope A(P, t). Since u( P, ¢) has a finite bandwidth A», we expect the
amplitude and phase of A(P, t) to be changing at a rate determined by Av.
If a finite time duration 7 is of interest, we expect A(P,t) to remain
relatively constant during the interval + provided r < 1/Av. In other
words, the time functions A(P, t) and A(P,t + 1) are highly correlated, or
coherent, provided 7 is much less than the “coherence time” 7. = 1/Av.

The concept of temporal coherence can be given a more precise definition
and description by considering the interference of light waves in an inter-
ferometer first introduced by Michelson (Ref. 5-15).

5.1.1 The Michelson Interferometer

Consider the interferometer illustrated in Fig. 5-1. Light from a point source
S is collimated (i.e., the rays are made parallel) by the lens L, and falls on
the beam splitter (a partially reflecting mirror) BS. A portion of the incident
light is reflected and passes to the moveable mirror M,. This light is
reflected from M,, is again incident on the beam splitter, and a portion is
again transmitted, this time to the lens L,, which brings the rays to a focus
on detector D.

Simultaneously, a portion of the original light from S is transmitted by
the beam splitter, passes through the compensating plate C, is incident on
and reflected from the fixed mirror M, and again passes through the
compensating plate. A portion of this light is reflected from the beam
splitter and finally is focused on the detector D by lens L,. Thus the
intensity of the light incident on the detector is determined by interference
of the light from the two arms of the interferometer.

The compensator C serves the purpose of assuring that the light in both
arms of the interferometer travels the same distance in glass, thus guarantee-
ing that both beams have suffered the same dispersion in passage from the
source S to the detector D.

If the mirror M, is moved from the position required for equal path-
lengths in the two arms of the interferometer, a relative time delay is
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Figure 5-1. The Michelson interferometer, including the point source §, the lenses £, and
L,, mirrors M, and M, beam splitter BS, compensator C, and detector D.

introduced between the two interfering beams. As the mirror moves, the
light falling on the detector passes from a state of constructive interference
to a state of destructive interference and back to constructive interference,
with a mirror movement of A/2 (a pathlength difference of A) between
bright fringes. Superimposed on this rapid oscillation of intensity is a
gradually tapering envelope of fringe modulation, caused by the finite
bandwidth of the source and the gradual decorrelation of the complex
envelope of the light as the pathlength difference increases. A typical pattern
of interference is shown in Fig. 5-2, with intensity plotted against mirror
displacement / from the position of equal pathlengths. Such a display of
intensity vs. pathlength difference is referred to as an interferogram.

The general behavior of the interferogram can be explained in simple
physical terms. The extended spectrum of the source can be regarded as
consisting of many monochromatic components. Each such component
generates a perfectly periodic contribution to the interferogram, but with a
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Figure 5-2. Intensity incident on the detector D versus normalized mirror displacement 4 /A,
where A is the mean wavelength. The envelope of the fringe pattern is drawn dotted.

period depending on its particular optical frequency. At zero pathlength
difference (h = 0), all such components add in phase, producing a large
central peak in the interferogram. As the mirror is displaced from the
zero-delay position, each monochromatic fringe suffers a phase shift that
depends on its particular temporal frequency. The result is a partially
destructive addition of the elementary fringes and a consequent drop in the
fringe depth on the interferogram. When the relative delay grows large
enough, the addition of elementary fringes is nearly totally destructive, and
the interferogram remains at its constant average value.

It is evident from the preceding discussions that the drop in the fringe
depth of the interferogram can be explained in either of two equivalent
ways, in terms of a “dephasing” of elementary fringes or in terms of a loss
of correlation due to the finite pathlength delay. The role of the autocorrela-
tion function of the light beam will become more evident in the simple
analysis that follows.



TEMPORAL COHERENCE 161

5.1.2 Mathematical Description of the Experiment

The response of the detector D is governed by the intensity of the optical
wave falling on its surface. For virtually all applications involving true
thermal light, the detector may be assumed to average over a time duration
that is infinitely long. (Effects of finite averaging time, which can be
important with pseudothermal light, are treated in Section 6.2.) Taking
account of the relative time delay 24 /c suffered by the light in the arm with
the moveable mirror, the intensity incident on the detector can be written as

1,(h) <‘Klu(t)+1<2u(z+%) 2>, (5.1-1)

where K, and K, are real numbers determined by the losses in the two
paths and u(¢) is the analytic signal representation of the light emitted by
the source. Expanding this expression, we find

2>

o)
R+ o)

+K1K2<u*(t+-2—gh—)u(t)>. (5.1-2)

Io(h) = KXu(0)[?) + K§<

Thus the important role played by the autocorrelation function of the light
wave in determining the observed intensity becomes evident.

Because of the fundamental role played by the time averages in (5.1-2),
special symbols are adopted for them. In particular we use the notation

[+ %)
ult + —
c

Io & (u()]?) = < > (5.1-3)

and
(1) = (u(t+ 7)u*(t)). (5.1-4)

The function I'(7), which is the autocorrelation function of the analytic
signal u(?z), is known as the self coherence function of the optical dis-
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turbance. In this abbreviated notation we write the detected intensity as

I,=(KX+K})I, + lezr(%) + Kler*(%’l)
2 2 2h

In many cases it is convenient to work with a normalized version of the
self coherence function, rather than the self coherence function itself.
Noting that I, = I'(0), we choose to normalize by this quantity, yielding

L(r)

Y(7) = I0)’ (5.1-6)

which is known as the complex degree of coherence of the light. We note for
future reference the important properties

y(0)=1 and |y(7)|<1 (5.1-7)

[cf. Eq. (3.4-5)]. In terms of this quantity, the detector intensity is given by

2K, K 2h
- 2 2 o2 foukiel -
Ip(h) = (K + KZ)IO[l + T ZzRe{y( - )}] (5.1-8)

With the goal of reaching an analytic expression that clearly describes an
interferogram of the type depicted in Fig. 5-2, we express the complex
degree of coherence in the following general form:

v(7) = v(r)exp{—j[2777 — a(7)]}, (5.1-9)

where y(7) = |y(7)|, # is the center frequency of the light and a(7) =
arg{y(7)} + 2#vr. Using this expression, assuming equal losses in the two
arms of the interferometer (K; = K, = K), and noting that »/c = 1 /A, we
can express the interferogram in the form

I,(h) = 2K210{1 + y(z—cfi)cos[2w(2f;l-) - a(%}l)]} (5.1-10)

The expression (5.1-10) can now be compared with Fig. 5-2, which was
asserted to be typical of the structure of the interferogram. In the vicinity of
zero relative pathlength difference (h = 0), we have y(2h/c)=1 and
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a(2h/c) =0 from Eq. (5.1-7). Thus near the origin, the interferogram
consists of a fully modulated cosine, with intensity varying from 4K ?[, to
zero about a mean level 2K °I,,. As the pathlength difference 4 is increased,
the amplitude modulation y(24/c) falls from unity towards zero, and in
addition the fringes may suffer a phase modulation a(24/c¢), depending on
the nature of the spectrum of the light.

The depth of the fringes observed in the vicinity of any pathlength
difference 4 can be described in precise terms using the concept of fringe
visibility first introduced by Michelson. The visibility of a sinusoidal fringe
pattern is defined by

Imax N Imin

Imax + Imin

ll>

2 (5.1-11)

where I, and I, are the intensities at the maximum and minimum of the
fringe. In the near vicinity of mirror displacement h, the interferogram in
Eq. (5.1-10) can be seen to have a visibility

2h

v (h) =ly(7)|= y(zh) (5.1-12)

c

when losses in the two arms are equal. The reader can readily show that for
unequal losses, the visibility is

(5.1-13)

V(h)=—~————————2K1K2 y(g—’—').

K} +K; \c

As the pathlength difference 24 grows large, the visibility of the fringes
drops, and we say that the relative coherence of the two beams has
diminished. When the visibility has fallen to approximately zero, we say that
the pathlength difference has exceeded the coherence length of the light, or
equivalently, that the relative time delay has exceeded the coherence time.

Clearly, then, the concept of temporal coherence has to do with the ability of
two relatively delayed light beams to form fringes. Note that all the preceding
definitions have utilized time averages. If the random processes of concern
are ergodic, ensemble averages could be used instead. In addition, there are
some cases in which we must deal with nonergodic wavefields and for which
we use exclusively ensemble averages (see Section 7.5.2). In the next section
we explore in more detail the relation of the interferogram to the power
spectral density of the light beam.
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5.1.3 Relationship of the Interferogram to the Power Spectral Density of
the Light Beam

As we have seen, the character of the interferogram obtained from a
Michelson interferometer is determined by the self coherence function I'(7),
or equivalently by the complex degree of coherence y(7), of the light
emitted by the source. In addition, we know from Section 3.4 that, for a
stationary random process, an intimate relationship exists between these
correlation functions and the power spectral density of the source. In
particular, from Eq. (3.8-34) we have

I'(7) =fooo4g(”')(v)e"12"”dv, (5.1-14)

where @("")(») is the power spectral density of the real-valued optical
disturbance u‘”(¢). Equivalently, we can express the complex degree of
coherence y(7) in terms of Z(""(») by

[Tageoye
(1) = == =f G(v)Ye 2™ dp, (5.1-15)
f4€¢("’)(v)dv 0
0

where (») is a normalized power spectral density,

(r,r)
. oog () forv >0
G(v) = f G (v)dy (5.1-16)
0
0 otherwise.

We note that the normalized power spectral density has unit area,

f()w?(v) dv =1. (5.1-17)

If we know the preceding relationship between y(r) and %(»), we can
readily predict the form of the interferograms obtained with light having
different shapes of power spectral density. Some specific examples are now
considered. For a low-pressure gas discharge lamp, the shape of the power
spectrum of a single line is determined primarily by the Doppler shifts of
the light emitted from moving radiators that suffer infrequent collisions. In
this case the spectral line is known to have approximately a Gaussian shape
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Figure 5-3. (a) Normalized power spectral density %(v) and (b) envelope y(7) of the
complex degree of coherence for three line shapes.

(Ref. 5-16),

G(v) = 2\/{7_1;1;3 exp[—(b/frﬁ V/;}D)z}, (5.1-18)

where the normalization is chosen to satisfy (5.1-17), and A» is the half-
power bandwidth. This spectrum is shown in Fig. 5-3a. By a simple inverse
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Fourier transformation we obtain the corresponding complex degree of
coherence,

7AvT

¥(r) = exp{‘ E — ) ]exp( ~jamin). (5.1-19)

Note that the phase a(7) is zero in this case, so the interferogram contains
fringes of constant phase, but with visibility decreasing in accord with the
modulus of y(71),

v(7) = CXP[*(Z% )2} (5.1-20)

as shown in Fig. 5-3b.

For a high-pressure gas discharge lamp, the spectral shape is determined
primarily by the relatively frequent collisions of radiating atoms or mole-
cules. The spectral line in this case can be shown to have a Lorentzian shape
(Ref. 5-16),

I(v) = 2(77‘AV)__

2’ 1-21)
1+(2v—v) (5.1-21

Av

where again » 1s the center frequency of the line and Av is its half-power
bandwidth (see Fig. 5-3a). The corresponding complex degree of coherence
is readily shown to be

y(7) = exp[ —mAv|7|] exp[ —j27P7]. (5.1-22)

Again the interferogram observed with a Michelson interferometer will
exhibit fringes of constant phase, but with an envelope decreasing as

y(7) = exp[ — mAv|7]]. (5.1-23)

This envelope is shown in Fig. 5-3b as a function of the parameter Avr.
Occasionally in theoretical calculations it is convenient to assume a
rectangular power spectral density

G(v) =Zl—vrect(p[;p). (5-1.24)

A simple Fourier transformation shows that the corresponding complex
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degree of coherence is
y(7) = sinc(Av7)exp(~j27v1), (5.1-25)

where sincx £ sinwx/mx. In this case the envelope of the interference
pattern is given by
y(7) = |sincAvr|, (5.1-26)

and the phase function a(7) is not zero for all . Rather, a(7) jumps
between 0 and 7 radians as we pass from lobe to lobe of the sinc function,

0 2n < |Avr|<2n+1

alr) = {77 m+1<lbvr|<2n+2 T OLZ

(5.1-27)

Both the power spectral density @(v) and the envelope y(7) are shown in
Fig. 5-3.

All the preceding examples yield interferograms that are even functions
of delay A. This is a universal property of such interferograms and is simply
an indication that it does not matter which of the two beams is delayed with
respect to the other.

In addition, in all the examples the complex degree of coherence has been
expressible as a product of exp(~j27¥7) and a real-valued factor. This
property is a result of our choice of line shapes that are even functions of
(v — »), (i.e.,, symmetrical about 7). More generally, the choice of an
asymmetrical line profile will yield a y(7) that is the product of exp(—j27v )
and a complex-valued function. Thus the phase function a(7) can take on
more general values than just 0 or 7.

In many applications it is desirable to have a precise and definite
meaning for the term “coherence time.” Such a definition can be made in
terms of the complex degree of coherence, but there are a multitude of
definitions in terms of y(7) that can be imagined [see Ref. 5-17, Chapter 8§,
for a discussion of various possible measures of the “width” of a function
such as y(7)]. However, in future discussions there is one definition that
arises most naturally and most frequently. Accordingly, following Mandel
(Ref. 5-18), we define the coherence time =, of the disturbance u(¢) by

T, & f~°o°°|y('r)]2d'r. (5.1-28)

If this is to be a meaningful definition, it is necessary that 7. have a value
that is the same order of magnitude as 1/A». That such is indeed the case
can be found by substituting Eqgs. (5.1-19), (5.1-22), and (5.1-25) into
(5.1-28) and performing the required integration in each case. The results
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are as follows:

2In2 1 0.664 Gaussian

¢ T Av Av line
_ _}_ _ 0.318 Lorentzian
T 7Ay T Ay line (5.1-29)
7. =1/Av. rectangular
¢ line

Thus the order of magnitude does indeed agree with our intuition, and
hence the specific definition of (5.1-28) will be used in the future. (See
Problem 5-2 for calculation of some typical values of 7, for some specific
sources.)

h

Figure 5-4. Typical midinfrared interferogram plotted with two different horizontal scales.
The vertical axis represents detected intensity, and the horizontal axis represents optical path
difference. The maximum optical path difference is 0.125 centimeters. (Courtesy of Peter R.
Griffiths, University of California, Riverside and the American Association for the Advance-
ment of Science. Reprinted from P. R. Griffiths, Science, vol. 222, pp. 297-302, 21 October
1983. Copyright 1983 by the American Association for the Advancement of Science.)
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5.1.4 Fourier Spectroscopy

We have seen that the character of the interferogram observed with a
Michelson interferometer can be completely determined if the power spec-
tral density of the light is known. This intimate relationship between the
interferogram and the power spectrum can be utilized for a very practical
purpose. Namely, by measurement of the interferogram it is possible to
determine the unknown power spectral density of the incident light. This
principle forms the basis of the important field known as Fourier spectros-
copy (for reviews of this field, see Refs. 5-19 and 5-20).

The general steps involved in obtaining a spectrum by Fourier spectros-
copy are as follows. First, the interferogram must be measured. The move-

Relative spectral energy

I I 1 I\
4000 3200 2400 1600 800

Wave number

Figure 5-5. The Fourier transform of Figure 5-4, representing the spectrum of the source. The
vertical axis represents power spectral density, and the horizonal axis represents optical
wavenumber (2#/X) in inverse centimeters. The resolution achieved is 8 centimeters™'.
(Courtesy of Peter R. Griffiths, University of California, Riverside and the American Associa-
tion for the Advancement of Science. Reprinted from P. R. Griffiths, Science, vol. 222, pp.

297-302, 21 October 1983. Copyright 1983 by the American Association for the Advancement
of Science.)
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able mirror travels, usually under interferometric control, from the position
of zero pathlength difference into a region of large pathlength difference.
The intensity of the light is measured as a function of time during this
process, and the resulting interferogram is digitized. A digital Fourier
transformation, usually using fast Fourier transform techniques (Ref. 5-21)
yields a spectrum. A typical interferogram is shown in Fig. 5-4, and the
power spectral density obtained from this interferogram is shown in Fig.
5-5.

Fourier spectroscopy has been found to offer distinct advantages over
more direct methods (e.g., grating spectroscopy) in certain cases. First, there
is an advantage in terms of light flux utilization (throughput), which we do
not dwell on here (see Ref. 5-19). Of more direct interest to us, it was first
shown by Fellgett (Ref. 5-22) that Fourier spectrometers can have an
advantage over more conventional spectrometers in terms of the signal-to-
noise ratio achieved in the measured spectrum. This advantage holds when
the chief source of noise i1s additive detection noise and in general does not
hold when photon noise is the limiting factor. As a consequence, Fourier
spectroscopy has found considerable application in the infrared, often
eliminating the need for detector refrigeration.

5.2 SPATIAL COHERENCE

In discussing temporal coherence, we noted that every real source has a
finite bandwidth; therefore, for sufficiently large time delays 7, the analytic
signals u(P,t) and u(P,t + 7) become decorrelated. To concentrate on
temporal coherence, we assumed that the source emitting the radiation was
a perfect point source. In practice, of course, any real source must have a
finite physical size, and as a consequence it is necessary to take this finite
size into account. To do so leads us to the realm of spatial coherence. In this
case we consider the two analytic signals u(P,, ) and u( P,, t) observed at
two space points P, and P,, ideally with zero relative time delay. When
P, = P,, the two waveforms are, of course, perfectly correlated. As P, and
P, are moved apart, however, some degree of loss of correlation can in
general be expected. We accordingly say that the wave emitted by the source
has a limited spatial coherence. These ideas can be put on firmer ground by
considering the interference of light in the classic experiment of Thomas
Young (Ref. 5-23).

S5.2.1 Young’s Experiment

Consider the experiment illustrated in Fig. 5-6. A spatially extended source
S illuminates an opaque screen in which two tiny pinholes have been
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Figure 5-6. Young’s interference experiment.

pierced at points P, and P,. At some distance behind the opaque screen a
viewing screen is placed, and the pattern of interference of the light from
the two pinholes can be observed on this screen.

Light passing through the pinholes travels to the viewing screen, suffering
time delays r,/c and r,/c, respectively, in the process. If the delay
difference (r, — r;)/c is much less than the coherence time 7, of the light
from the source, fringes of interference can be expected, with a depth of
modulation (visibility) that depends on the degree of correlation between
the light waves incident on the two pinholes. Thus the cross-correlation
(u(P,t + T)u*(P,, t)) can be expected to play an important role in de-
termining the visibility of the observed fringes.

As with the case of the Michelson interferometer, there is another
equivalent viewpoint that lends further insight into the character of the
observed fringes. If the light is approximately monochromatic and originates
from a single point source, sinusoidal fringes of high contrast are observed
on the viewing screen. Now if a second point source, o the same wavelength
as the first, but radiating independently, is added, a second fringe pattern is
generated. The period of this fringe pattern is the same as that of the first,
but the position of zero pathlength difference is shifted with respect to the
corresponding position for the first fringe (see Fig. 5-7).

If the pinhole separation is small, the fringes are very coarse, and the
shift of one fringe with respect to the other is a negligible fraction of a
period. If the pinhole separation is large, however, the fringe period is small,
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and the fringe is shifted by a significant fraction of its period (perhaps even
many periods). The two fringes may then partially cancel, with a loss of
visibility resulting. If the source is an extended collection of many indepen-
dent radiators, destructive cancellation of fringes can result in nearly a total
loss of visibility for large pinhole spacings. This physical explanation is
illustrated in Fig. 5-7.

To place the concepts discussed above on firmer ground and to discover
the assumptions that may be buried in our intuitive discussion, we turn to a
simple mathematical analysis of Young’s experiment.

5.2.2 Mathematical Description of Young’s Experiment

With reference again to Fig. 5-6, we wish to calculate mathematically the
intensity of the light reaching point (. As we have done previously, we
again assume that the averaging time 1s effectively infinite, a valid assump-
tion for true thermal light. The desired intensity is accordingly expressed as

1(Q) = (u*(Q, 1)u(Q,1)). (5.2-1)

To proceed further, it is necessary to express u(Q,¢) in more detail,
presumably in terms of the analytic signals u(P,,t) and u(P,, t) reaching
pinholes P, and P,. At this point the assumption is usually made that
u(Q,r) can be expressed as a weighted superposition of u(P;,t) and
u( P,, t), each suitably delayed,

u(Q,t)=K1u(P1,t—%—) +K,_u(P2,t——%>, (5.2-2)

where K, and K, are (possibly complex-valued) constants. With reference to
Section 4.1.3, it becomes clear that such an expression is indeed possible,
provided the light is narrowband and the pinholes are not too large. In
particular, with the help of Eq. (4.1-12), we write

ff Xj(}\arl) S = J[ 7 J>\rz By 529)

pinhole pinhole
Py P,

IR

where 8,, 6,, r,, and r, are indicated in Fig. 5-6. (For consideration of the
case of broadband light, the reader may consult Problem 5-4). In writing
(5.2-3), it has been implicitly assumed that the pinholes are so small that the
incident fields are constant over their spatial extent. For circular pinholes of
diameter & and a source with maximum linear dimension D, a sufficient
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condition to assure accuracy of this assumption is that

Az
0 < —b— R (5.2-4)
where z is the normal distance from the source to the pinhole plane.
Using Egs. (5.2-2) and (5.2-1), the intensity of the light at Q is readily

shown to be
2 I’ 2 ry\|*
10) = I, fu Pt = 2) ) + P2 u Poy 1 = 2)
+K1K’§<u(P1,t—%)u*(Pz,t—%»
+K’1"K2<u*(P1,t - %)u(Pz,z - —rc%)> (5.2-5)

For convenience we again adopt some special symbols for quantities that
are of particular importance. For a stationary optical source, we define

sy
-2

representing, respectively, the intensities produced at Q by light from
pinholes P, and P, individually. In addition, to account for interference
effects, we introduce the definition

T,(7) & (u(P,,t + T)u*(P,, 1)), (5.2-7)

10(Q) & |K1|2<
(5.2:6)

10(0) 2 |K2|2<

representing the cross-correlation function of the light reaching pinholes P,
and P,. This function, first introduced by Wolf (Ref. 5-8), is called the
mutual coherence function of the light and plays a fundamental role in the

theory of partial coherence.
In terms of the above quantities, the intensity of Q can now be expressed

in shorter form:

ry — n

1(Q) = 19(Q) + IP(Q) + K,K3Tyy( 2=

ry —r
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Now T',,(7) can be readily shown to have the property that I',;(—7) =
I'% (7). Furthermore, since both K, and K, are purely imaginary numbers
(Eq. 5.2-3), we see that K, K% = K{K, = K, K,, where K, = [K,| and K, =
IK,|- Thus the expression for the intensity at Q becomes

1(Q) = 19(Q) + 19(Q) + K,K, Ty 2=

ry —r
+K1K21‘{';( 2 - ‘),

or equivalently

r,—n

1(Q) = IV(Q) + I?(Q) + 2K1K2Re{1‘12( )} (5.2-9)

A further simplification results if we introduce a normalization of the
coherence function, as was done in discussing the Michelson interferomecter.
In this case we have, from Schwarz’s inequality,

Ty, (7)1 < [T (0) Ty (0)] 7, (5.2-10)

where I'),(7) and I,,(7) are the self-coherence functions of the light at
pinholes P, and P,. Note that I'},(0) and I',,(0) represent the intensities of
the light incident on the two pinholes. The inequality (5.2-10) leads us to
define a normalized mutual coherence function in the form

a Flz(") i
) ® [[,,(0) Ty, (0)] % 5210

which is called the complex degree of coherence. [Strictly speaking, y,,(T)
should perhaps be called the complex degree of mutual coherence and y(7)
of Section 5.1 should be called the complex degree of self coherence, but
this distinction is seldom worth making.] From the inequality (5.2-10) we
can readily see that

0 <ly,(7) <1 (5.2-12)
Noting further that
19(Q) = K12F11(0)

I19(Q) = K;15,(0),

(5.2-13)
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we can immediately rewrite the expression (5.2-9) for I(Q) in the more
convenient form

1(0) = 19(Q) + 1(Q) + 2/TP(Q)1P(Q) Re{ y,s 21},

c

(5.2-14)

To make further progress toward discovering the basic nature of the
fringe patterns, we note that the complex degree of coherence, which is a
normalized cross-correlation function of two random processes with center
frequencies », can always be written in the form

Yi2(7) = Yu(")exp{ _1[2771—’7 - alz('r)]}- (5.2-15)

Substituting this expression in (5.2-14), we find

1(0) = IV(Q) + 19(Q)
+2T0(Q)TP(0) o 2 Jeos| 23 212 ) - gy 2212}

c c

(5.2-16)

Although we are not yet in a position to specify precisely the geometric
character of the interference pattern, we can draw some general conclusions
at this point. The first two terms of Eq. (5.2-16) represent the intensities
contributed by the pinholes individually. For pinholes of finite size, 7"(Q)
and 7@(Q) will vary in the observation plane in accord with the diffraction
patterns of the pinhole apertures, but for the present we assume that the
pinholes are so small that these intensities are constant across the observa-
tion region. Riding on this constant bias we find a fringe pattern, with a
period determined by # and other geometric factors, and having a slowly
varying amplitude and phase modulation. In the vicinity of zero pathlength
difference (r, — r; = 0), the fringes have a classical visibility

2‘/1(1)](2)

= To. oM (5.2-17)
Since v,,(0) represents the cross-correlation coefficient of the (underlying)
waveforms u(P,,t) and u(P,,?), we conclude that y,,(0) [or ¥~ when
IV =[] is a measure of the coherence of the two optical vibrations. A
description of how y,,(0) changes with changing distance between P, and
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P, is accordingly a description of the spatial coherence of the light striking
the pinhole plane.

Note that in the general form of the Young’s experiment discussed so far,
both temporal and spatial coherence effects play a role. The envelope of the
fringe pattern at zero pathlength difference is an indication of spatial
coherence effects, whereas the tapering and eventual vanishing of the fringe
envelope at large pathlength differences is an indication of temporal
coherence effects. Ultimately we shall separate these two effects, but first we
take up some geometric considerations that will allow us to specify the
character of the fringe pattern in even greater detail.

5.2.3 Some Geometric Considerations

To specify more precisely the geometrical structure of the fringes, it is
necessary to relate the delay difference (r, — r,)/c to various geometric
factors, including the spacing of the pinholes, the distance to the observa-
tion plane, and the coordinates of the observation point Q. Such a relation-
ship can be found with the help of Fig. 5-8. Let pinhole P, have transverse
coordinates (§;,7m;) and pinhole P, have transverse coordinates ({,,7,),
both in the plane of the opaque screen. The viewing screen is assumed
parallel to and a distance z, from the opaque screen. The coordinates of the
observation point Q on the viewing screen are represented by (x, y).
The distances r, and r, are given exactly by the expressions

no= 224 (8 - x) +(n, - )

(5.2-18)
2 2
r, = 222 +($2 - x) +(772 -y).
n
Jr y
. . A Q(x, y)
P, A .
(&, 1)) @—
)’2
(&, o)

Py

3 22 s o

Figure 5-8. Interference geometry for Young’s experiment.



178 COHERENCE OF OPTICAL WAVES

To obtain a simple result, we make the usual paraxial approximations, valid
when the pinholes and the observation point are close to the optical axis. In
particular, we assume that

;> Yx2 4y, > g4l oz Y2+ 9). (5.2-19)

With these approximations we obtain

2 2
ry = 22\/1 + (&, -—zx) + (m, —y)

) z3
_ (gl_x)z (771_}’)2
=z, + 7z, + 2z, (5.2-20)
and similarly
o =0 ()
ry=z,+ T + T (5.2-21)

Using these results, the pathlength difference takes the form

= (¢, - x)2 +(772 _)’)2 — (¢, - x)z ~(m _)’)2 (5.2-22)

r, —
2
2z,

or equivalently

1
P = 2—5[(55 +m3) ~ (&2 +m2) +2(¢, — &)x + 2(n, — my)y].

(5.2-23)
Finally, we define the symbols
Py £ V&5 + 3, p1= V& + ni (5.2-24)
representing the distance of the pinholes from the optical axis, and
Aé=¢§,-§&, An=1n,—-mn (5.2-25)

representing the § and n spacings of the two pinholes. Thus the pathlength
difference is expressed as

1
ry—r = 32;[pg — 02 — 2Aéx ~ 2Any]. (5.2-26)

Returning to the general expression (5.2-16) for the intensity distribution
in the observation plane, Eq. (5.2-26) can be used to discover the exact form
of the fringe pattern in the (x, y) plane. Referring to Fig. 5-9a, which is
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Figure 5-9. Geometric properties of the fringes.

drawn for the case of a,, constant, we find the fringe crests and nulls to run
normal to the line joining P, and P, with a spatial fringe period given by

Az
L=-—2 (5.2-27)
d
where A = ¢/7 and d = \/ (A¢)” +(An)’ is the distance between the two

pinholes.
Figure 5-9b shows a typical profile of the fringe along the x’ axis, which

passes through P, and P,, with the assumptions that I®(Q) and 1?(Q)
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are constant over the region shown, while a;, and 7(p3 — p3)/Az, are
identically zero. We note several properties of these fringes. The fringe
envelope is centered at a point that corresponds to zero relative pathlength
difference, which is taken to be the origin of the x” axis. The fringe period is
given by (5.2-27) and the half-width of the fringe packet along the x’ axis is

z,C

Avd’

Al = (5.2-28)

The total number of fringes appearing under the tapering envelope is

Al 7
N=2 7= 23—;. (5.2-29)
From the preceding discussions, it is clear that the results of a Young’s
interference experiment are dependent on both temporal and spatial
coherence effects. Since we wish to concentrate on spatial coherence effects
for the moment, it is necessary to impose further restrictions on the light
that make temporal coherence effects negligible.

5.2.4 Interference Under Quasimonochromatic Conditions

To express the field incident at the observation point Q as a simple
weighted sum of the (properly delayed) fields incident on the pinholes, it
was necessary to assume that the light is narrowband. We now add a second
assumption. Namely, we assume that the coherence length of the light is
much greater than the maximum pathlength difference encountered in
passage from the source to the interference region of interest. Stated
mathematically, we require that for all source points and all points in the
observation region of interest,

(r2 + ;) _(rl + rf)
¢

< (5.2-30)

c?

Ay < v and

where the various distances involved are shown in Fig. 5-6. Such light is said
to satisfy the quasimonochromatic conditions.

The addition of the second assumption in the preceding paragraph results
in the assurance that the fringe contrast will be constant over the observa-
tion region of interest. Utilizing this fact, considerable simplifications in the
forms of the mutual coherence function and the complex degree of coherence
are possible. These functions can now be rewritten as

T(r) = J,e

(5.2-31)

Yi2(7) = pse R
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where
Ji; £ T1,(0) = (u(Py, 1)u*(Py, 1)) = (A(Py, 1)A*(P,, 1)) (5.2-32)
is called the mutual intensity of the light at pinholes P, and P, and

J12
[1(P)1(P,)]"?

iy = ¥12(0) = (5.2-33)

is called the complex coherence factor of the light. In effect, J,, may be
regarded as a phasor amplitude of a spatial sinusoidal fringe, whereas p,, is
simply a normalized version of J;, having the property

0 < |pp,l < 1. (5.2-34)

Note that in writing (5.2-32) and what follows it has been tacitly assumed
that (r, — r))/c <1, and (ry — r{)/c < 7, a slightly more restrictive
condition than stated in (5.2-30).

The character of the fringe pattern can be stated more explicitly by
substituting the expressions in (5.2-31) into Eqgs. (5.2-9) and (5.2-14). Under
paraxial conditions [r, — r, given by (5.2-26)] and tiny pinholes [IV(Q) =
1O 1D(Q) =19, IV and I® constants] the interference pattern in the
(x, y) plane can be expressed by

2
I(x,y) =1V + 1P 4 2K1K2J12cos[~r: (Aéx + Any) + ¢,
2

(5.2-35)
or

b

2
I(x,y) =10+ 1%+ 2\/1(”1(2);112005[7\—:—(A£x + Any) + ¢4,
2

(5.2-36)
where Ji, = |Jp,], p1; = w0, and

L g
¢ = arg{dy} = 5703 = #1) = @2 (0) — - (3 — ).

(5.2-37)
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Under the quasimonochromatic conditions, and assuming /" and 7
are constant, the observed interference pattern has constant visibility and
constant phase across the observation region. The visibility ¥~ may be
expressed in terms of the modulus u,, of the complex coherence factor by

‘/ Ly
VIO (1(1)_.#1(2)),

- I 4 1(2)#12

Y=y (10 = 1),

(5.2-38)

When p,, = 0, the fringes vanish, and the two light waves are said to be
mutually incoherent. When u,, = 1, the two waves are perfectly correlated,

pi2=1 0< pype ] k12 =0
1(x,0) 1(+.O) O
Iynp
I
N
4
A} 1 Y
1(x,0) 1(x.0) 1(x,0)
. )
&
i
23
\ 1 1
1(».0) 1(x 0) 1(x.0)
o
©
I
&
B \ 1

Figure 5-10. Fninge patterns obtained for various values of the complex coherence factor
(1(1) — 1(2)).
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and the two waves are called mutually coherent. For an intermediate value
of u,,, the two waves are partially coherent.

Figure 5-10 shows the character of the fringe patterns observed under
various conditions on u,, and ¢,, and under the assumption that /) = | @,
Note that the fringe position corresponding to ¢,, = 0 is arbitrary, but once
selected it should be retained without change for all fringes.

A number of new quantities have been defined in this and previous
sections. As an aid to the reader, we summarize the names and definitions of
these quantities in Table 5-1.

5.2.5 Effects of Finite Pinhole Size
The pinholes utilized in the Young’s interference experiment have, until

now, been assumed to be so small that the centers of their diffraction
patterns cover the entire observation region. Under quasimonochromatic

Table 5-1 Names and Definitions of Various Measures of Coherence

Temporal or

Symbol Definition Name Spatial Coherence
(7)) (u(Py,t+ mHu*(P,t)) Self Temporal
[Note I},(0) = I(P))] coherence
function
¥;1(7) Ly(r) Complex degree Temporal
I}, (0) of (self)
coherence
I,(r)  (u(P,t+ 7r)u*(Py,t)) Mutual Spatial
coherence and temporal
function
r
¥12(7) 12(7) v Complex Spatial
[T, (0) T3, (0)] degree of and temporal
coherence
Jis (u( Py, tyu*( Py, 1)) Mutual Spatial
=I,(0) intensity quasimonochromatic
J
TH08 ——1—2—1—/5 = v,,(0) Complex Spatial
[31:92] coherence quasimonochromatic

factor




184 COHERENCE OF OPTICAL WAVES

conditions, the result is a fringe of constant-amplitude riding on a bias level
that is constant over the field of interest. The disadvantage of using such
small pinholes is, of course, that little light reaches the observation plane;
therefore, we must know in more detail the effects of enlarging the size of
the pinholes.

Assuming that the pinholes are still sufficiently small to produce Fraun-
hofer diffraction patterns (rather than Fresnel diffraction patterns) in the
observation plane, we can readily specify the distribution of intensity
produced by each pinhole. For circular pinholes of diameter §, we find that
the intensities /M (Q) and 1®(Q) produced by the pinholes individually
are Airy patterns (see Ref. 5-24, pp. 63, 64):

V]

z, + 2 2 z, +z 2
| Al ) )
2(0) - [ 107 2—= - ‘
I = | =— =
Az, l 8 ( 21+22§ )2+( 5tz )2
| 7\./‘:2 o 1 ! 4 1 7’1 i
| 8 z, + 2y, \? z, +z AN
Ji I (X - 252) +()’ - = 2712)
5 A4 \? Az, 2 Z
19(0) = (52| 1072
Az, : T ( 21+22£)2+( 2y + 2z, \?
i Az, * 1 ? Y 2y 7)2) ]

(5.2-39)

where z, and z, are shown in Fig. 5-11a, 4 = 7(8/2)? is the area of a
pinhole, whereas I(P;) and I(P,) are the intensities incident on the
pinholes. In writing these expressions, it has been assumed that the source
size 1s sufficiently small so as not to “smooth” these diffraction patterns.
The required condition is

Az,

—_—

5 (5.2-40)

D <«

where D is the maximum linear dimension of the source.
Figure 5-11b illustrates the overlapping diffraction patterns. Each pattern
has a width of 2.44Az,/8 between first zeros, and the centers of the patterns

are separated by distance
z; + z,

d = —=4d,
2

(5.2-41)
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Figure S-11. (a) Geometry of the experiment, (b) partially overlapping diffraction patterns.

where d is the separation of the pinholes. Thus we can expect nearly
complete overlap of the two diffraction patterns if

i< BB 2, (5.2-42)
o (2, +2z,)8

If the pinholes are too far apart, the intensities 1 V(Q) and 1P(Q) will
not be equal, even if I(P)) and I(P,) are equal. Furthermore, the fringe
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visibility ¥~ will not be constant and will not equal the modulus p,, of the
complex coherence factor. Although p,, can be recovered from the mea-
sured visibility and measured diffraction patterns by means of

19(Q) +12(Q) (5.2-43)
2/19(0)19(Q) "

the correction factor depends on which portion of the interference pattern is
used for the visibility measurement, and further it will change if the pinhole
separation is modified.

These difficulties can be alleviated if the interference measurements are
made with a slightly different optical system illustrated in Fig. 5-12. In this
case the source is placed in the front focal plane of a positive lens, the
observation screen in the back focal plane of a second lens, and the pinhole
screen between the two lenses. For circular pinholes with diameter 8, equal
intensities /(P,) = I(P,) = I, and quasimonochromatic light, the inter-

ference pattern becomes
12
‘7T
Abvied
b
e

P12 =

2
)12

L

I(x,y)= 2(

Z|x

{1 + plzcos[ X/ (Aéx + Any) + ay, } (5.2-44)

Note that, in addition to causing complete overlap of the two diffraction
patterns, this optical system has the effect of canceling the phase factor

Positive
lenses

pd

/

e f ———] fe———f ——
Screen with Observation
pinholes plane

Figure 5-12. Optical system for interference experiment.

Source
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5-13. Photograph of interference pattern.
(Courtesy of B. J. Thompson and the
Optical Society of America. From B. .
Thompson and E. Wolf J. Opt. Soc; vol.
47, p. 899, 1957.)

(7/Af)(p% — p?). Figure 5-13 shows a photograph of an interference pat-
tern obtained with such a system. The visibility of the fringes is the same at
all points in the interference pattern.

5.3 CROSS-SPECTRAL PURITY

Many problems in coherence theory are simplified if the light of concern has
the property that the complex degree of coherence can be factored into a
product of a component depending only on spatial coordinates and a
component depending only on time delay. Such a coherence function is said
to be reducible. This property will be seen to be expressible as a different
but entirely equivalent relationship in the spectral domain, where it is
referred to as cross-spectral purity, a concept first introduced by Mandel
(Ref. 5-25). By way of background, it is first helpful to consider a general
problem: when two different light beams, each having the same normalized
power spectral density ¢(»), are superimposed, what is the shape of the
power spectral density of the resultant beam? In the subsection to follow,
we answer this question. Attention is then turned to the concept of
cross-spectral purity and the conditions under which it can hold. The final
subsection deals with an example of a light beam that is not cross-spectrally
pure.

5.3.1 Power Spectrum of the Superposition of Two Light Beams

Consider two narrowband, statistically stationary light beams represented
by analytic signals u( P, ¢) and u(P,, t). These waves may be regarded as
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arising from two pinholes at points P, and P, in a Young’s interference
experiment. The two waves are superimposed after suffering delays 7, and
7,, yielding a resultant light wave

u(Q,t)=Klu(Pl,t—'rl)+K2u(P2,t—1'2) (5.3-1)

at a fixed point Q.

Suppose that the power spectral densities of u,(#) and u,(¢) have
identical shapes. Stated in mathematical terms, we require that their normal-
ized power spectra [cf. Eq. (5.1-16)] be equal,

G.(v) = g,(v) 2 9(»). (5.3-2)

Our goal is to find the relationship between the normalized spectrum at Q
and the normalized spectra of the component beams.
Consider first the (self) coherence function of the light at Q. We have

To(r) = <u(Q, 1 + 1)u*(Q.1))
= KT, (1) + KiTy(7) + KK, Tjp(7 — 1 + 7)
+K,K,T, (1, — 1, + 1), (5.3-3)
where K, = |K,|, K, = |K,|, and
T, (7) = (u,(z+ 7)ur(s)). (5.3-4)
Recalling that I, (1) = T'5(—r), we can write I';(7) as
Io(7) = KT, (7) + KiTp(7) + KK, Ty (7 — 7 + 1)
+ K, K,I%(m, — 1, — 7). (5.3-5)

Normalizing by I';(0), and noting that, since the normalized spectra of the
two beams are equal, their complex degrees of self coherence must likewise
be identical, we obtain the complex degree of coherence at Q,

Y1, (7) +iy(mn—mt +5y i (n—71—1)

Yo(7) = 1 + ARe{v,,(7, — 1)} (5.3-6)

’

where the constant A is given by

]/ M@
PAZ bt b (5.3-7)

IO+ 1@
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Moving to the spectral domain, a Fourier transformation of Eq. (5.3-6)
yields the normalized power spectrum at Q,

?(V) + ARe{?12(1’)6)@[j?.'rw('rl ~ 1'2)]} |

1+ ARe{y,5(m, — 7))} (5.38)

?Q(v) =

Note that the denominator of (5.3-6) did not depend on r and thus was not
transformed. In addition, we have used the fact that

F {Ean(r) + 1907 (— ) = Re(9(0)]. (539

The result (5.3-8) provides us with an explicit expression for the spectrum
of the combined light beam at Q. We now compare this spectrum with the
spectra of the original light beams.

5.3.2 Cross-Spectral Purity and Reducibility

With the result of Eq. (5.3-8) in hand, we can now investigate the conditions
under which the normalized spectrum ?Q(Au) of the superimposed light
waves is equal to the normalized spectrum %(») of the component beams.
When these two spectra are equal, the light is said to be cross-spectrally
pure, a term borrowed from the field of genetics and meant to imply that the
two progenitors (the original beams that were superimposed) have produced
a progeny (the new light beam) that has the same properties as the
progenitors, at least as far as the shape of the power spectral density is
concerned. Consider the difference of the spectra in question,

ARC{?lz(")eﬁz"m_T‘)v ~ Yp(7, — 71)?(")}
1+ ARe{ylz('r2 - 1'1)}

9,(v) - 9(v) =

(5.3-10)

For this expression to be zero for all 1Y) and I®, and independent of
T, — T;, we must have

G ,(v)e 2"y — g (1, — 1)%(v) = 0. (5.3-11)

One way this requirement can be satisfied is for the light at P, and P, to be
completely uncorrelated for all =, — 7,. Then

ng(”) =0, 712(”2 - 71) = 0. (5-3'12)

However, we seek less restrictive conditions.
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It soon becomes evident that condition (5.3-11) cannot be satisfied in the
most general case, for the left-hand term oscillates indefinitely with =, — 7,
while the right-hand term eventually drops to zero. Therefore, we can expect
that some restrictions must be placed on the delay difference if we are to
achieve approximate equality.

To this end, let the delay difference be written

T~ 1 =T+ A, (5.3-13)

where for the moment 7, is arbitrary, but Ar is restricted to be much less
than 1/A», Av being the bandwidth of the light. With this restriction, is it
now possible to satisfy the required equation?

For the small range of Ar allowed, we can show that

Y, (79 + A1) = v, (7)exp{ —j27v AT}, (5.3-14)

where » represents the center frequency of the cross spectrum ?lz(v). The
steps involved in proving this assertion are:

(1) Note

00 A .
Yi2(7 + A7) =f0 Ga(v)e2minringy. (5.3-15)

2) Letv=»+8v (—Av/2 <év <Ar/2).
(3) Approximate exp{ —j27érvAr} = 1.

From these three steps, Eq. (5.3-14) follows. Substitution of the ap-
proximate expression for y,,(7, + A7) in Eq. (5.3-11) yields the following
equation that must be satisfied if the normalized spectrum of the superim-
posed light beams is to equal that of the component beams:

glz(y)eﬁjzmoy = Y12(70)?(V)- (5.3-16)

Some comments are in order before continuing. The reader may question
whether Eq. (5.3-16) can be expected to hold in general, for it appears that
the left-hand side will be oscillatory in », as a result of the exponential,
whereas the right-hand side will be nonoscillatory for any smooth Z(»).
This objection is in general valid but can be overcome if we choose the delay
o correctly. In fact, if the delays suffered by the light on its travel from the
source to the two pinholes differ by more than 1/Av, the cross spectrum
@,,(v) will itself be oscillatory (see discussion that follows). However, if the
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delay difference 7, after the pinholes is chosen to cancel the delays suffered
by the light on the way to the pinholes, the exponential term on the left of
Eq. (5.3-16) will exactly cancel the oscillatory behavior of ?lz(v) itself. To
achieve the equality desired in Eq. (5.3-16), therefore, it is necessary that the
delay 7, be chosen so that the total delays, from source to observation plane,
are equalized. This requirement is equivalent to one that chooses 7, to
maximize v;,( 7).

The preceding assertion that the cross-spectral density ?12(11) can itself
be oscillatory is best illustrated by considering two light beams at points P,
and P, that are identical except for a relative delay 7. We suppose that one
beam has been advanced by 7/2 and the other has been retarded by the
same amount. The two beams have the same power spectrum Z(»). The
delays in time can be represented equivalently by means of transfer func-
tions in the frequency domain. The appropriate transfer functions are

beam retarded by %)

]] g o (5.3-17)

beam advanced by —%)

H,(v) = exp[+j2m¢

Ny N

H,(v) = exp[—j2wv

Now using the expression (3.5-8) for the cross-spectral density of two
linearly filtered random processes, we obtain a cross-spectral density

g,(v)=9(v)exp{ j2nv7}, (5.3-18)

which has an oscillatory component. Thus we see that when there are
relative delays present as the light travels to the pinholes, the cross-spectral
density of the light will have an oscillatory component and that proper
choice of the delay 7, in Eq. (5.3-16) will cancel this oscillatory component.

We note in passing that it can readily be shown that the superposition of
two light beams that are identical except for a relative delay 7 resuits in a
new spectrum %'(») of the form

&'(v) = 26W)[1 + cos2nmvT]. (5.3-19)

Such a spectrum is illustrated in Fig. 5-14. It should be clear that if the
delay 7 satisfies 7 > 1/Av, the new spectrum will exhibit fringes and will
thus be different from the original spectra of the component beams. [Spec-
tral fringes of this type were used by W. P. Alford and A. Gold to measure
the velocity of light (Ref. 5-26).] This basic phenomenon of spectral fringing
must be avoided by proper choice of 7, if cross-spectral purity of the light is
to be achieved.
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Figure 5-14. Power spectra 9, () and 21%(v), showing departure from cross-spectral purity.

Having chosen the delay term 7, properly, and restricting the delay term
At to be much smaller than 1/A», Eq. (5.3-16) can be satisfied. It 1s helpful
to examine the form of the same equation, but expressed in the time
domain, rather than the frequency domain. An inverse Fourier transforma-

tion of the equation yields
Y27+ 7)) = Y12 (1) ¥(7). (5.3-20)

Any complex degree of coherence with the preceding property is said to be
reducible, and we see that, within the approximations and restrictions made
above, reducibility is entirely equivalent to cross-spectral purity. Note that
the reducible property of the complex degree of coherence is the property
we initially set out to explore. Namely we were seeking an understanding of
when the complex degree of coherence factors into a product of a spatial
part and a temporal part. Since 7, is a constant, Eq. (5.3-20) is precisely the
factorization property we were seeking.

A bit of physical interpretation of the spectral representation (5.3-16)
might be helpful at this point. The left-hand side of the equation can be
regarded as expressing the cross-correlation between the spectral compo-
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nents that are in the vicinity of frequency » for each of the two beams, but
with one beam delayed with respect to the other by 7,. The right-hand side
expresses that correlation as being proportional to v,,(7,). The factor 2(v)
is simply a normalization that represents the relative amount of power
present at frequency ». Equation (5.3-15) can thus be interpreted as stating
that, for two beams to be cross spectrally pure, all frequency components of
one beam must have the same normalized cross-correlation with the corre-
sponding frequency components of the other beam.

Since the delay 7, has been chosen to maximize y,,(7,), it is clear that the
quasimonochromatic conditions are satisfied, and we could equally well
express the reducibility result (5.3-20) in terms of the complex coherence

factor p,,,
Y12(7 + ”0) = l‘le("')- (5-3'21)

In closing this section, we summarize by stating that factorization of the
complex degree of coherence yields great simplifications in many problems
for which both temporal and spatial coherence play an important role. Such
factorization is possible if the light is cross-spectrally pure. Often cross-spec-
tral purity is simply assumed without any real justification other than the
simplification that results. Such an assumption may or may not be valid in
any particular case: For example, if the light arises from a source that
radiates with an angularly dependent optical spectrum, cross-spectral purity
generally will not hold. An example of such a source is considered in
Section 5.3.3.

5.3.3 Laser Light Scattered by a Moving Diffuser

An example of light that is not cross-spectrally pure is afforded by consider-
ing the wave transmitted by a moving diffuser (such as ground glass) when
illuminated by ideal laser light. The geometry is illustrated in Fig. 5-15. The
CW laser provides plane wave illumination by essentially monochromatic
light. The diffuser is moving with constant linear velocity v in the vertical
direction. An opaque screen pierced by two tiny pinholes P, and P, is
placed immediately adjacent to the diffuser, allowing us to perform a
Young’s interference experiment on the light transmitted by the diffuser.
Our goal is to determine whether the complex degree of coherence I';,(7) of
the light transmitted by a moving diffuser can be expressed in product form

Y12(7) = pyv(7), (5.3-22)

that is, to discover whether the transmitted light is cross-spectrally pure.
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Figure 5-15. Measurement of the mutual coherence function of light transmitted by a moving
diffuser.

The diffuser may be represented in terms of its amplitude transmittance
t(x, y). For simplicity we assume that the pinholes are oriented vertically
along the y axis, and hence the x dependence of t , is dropped.! Under unit
intensity normally incident plane wave illumination, the diffuser produces
an optical field with amplitude distribution

u(y;¢) =t (y — vt)exp(—j2nt), (5.3-23)
where 7 is the frequency of the incident laser light.

Considering pinholes located at positions y, and y,, the mutual coherence
function of interest is

Lio(7) =Ty, yos 1) = (t(yy — vt = or)t5(p, — vr))e 27",
(5.3-24)
Neglecting any small component of absorption by the diffuser, we have

(Ita(y —vt)?y =1 (5.3-25)

and hence I'(y1, y5; 7) = Y(y1, y25 7)- _ o
The statistical fluctuations of the transmitted fields arise from the statisti-

cal structure of the diffuser. (The detailed spatial structure of the diffuser is

" Implicit here is the assumption that the pinholes are much smaller than the finest structure of

ty.
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unknown a priori.) We make the reasonable assumption that the random
process t ((y) is spatially ergodic” (and hence stationary) in y and has a
statistical autocorrelation function

Y.(Ay) £t,(y + Ay)ti(y). (5.3-26)

In terms of this quantity, the complex degree of coherence y(y,, y,; 7) of
the transmitted field can now be expressed as

Yy, y57) =Y, (Ay —vr)e 277, (5.3-27)

where Ay = y, — y, is the pinhole separation. This complex degree of
coherence is in general not separable into a product of space and time
factors as required for cross-spectral purity. For example, when the correla-
tion function y,(Ay) of the diffuser has Gaussian form

2
v,(Ay) = exp| —a(ay)?], (5.3-28)
the complex degree of coherence is readily seen to be
Y(y1, yy; 7) = 7B g gRavrhypms2mie (5.3-29)

As an interesting exercise, the reader 1s asked to prove (see Problem 5-8)
that if the same laser light is passed through two closely spaced diffusers,
moving in exactly opposite directions with equal speeds, the transmitted
light is cross-spectrally pure when the correlation function y,(Ay) has
Gaussian form.

5.4 PROPAGATION OF MUTUAL COHERENCE

The detailed structure of an optical wave undergoes changes as the wave
propagates through space. In a similar fashion, the detailed structure of the
mutual coherence function undergoes changes, and in this sense the mutual
coherence function is said to propagate. In both cases the underlying
physical reason for propagation rests on the wave equation obeyed by the
light waves themselves. In this section we first derive some basic propaga-
tion laws obeyed by mutual coherence and later show that the mutual
coherence function obeys a pair of scalar wave equations.

By spatially ergodic, we mean that all space averages equal corresponding ensemble averages.
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5.4.1 Solution Based on the Huygens—Fresnel Principle

The simplest method for discovering the propagation laws obeyed by
mutual coherence is to begin with the Huygens—Fresnel principle, as pre-
sented previously in Section 4.1, knowing that the complex fields satisfy
such equations, we can easily derive the corresponding relations for mutual
coherence.

The general problem of interest is illustrated in Fig. 5-16. A light wave
with arbitrary coherence properties propagates from left to right. Knowing
the mutual coherence function I'(P,, P,; ) on the surface 2,, we wish to
find the mutual coherence function I'(Q,,Q,;7) on surface Z,. Stated in
more physical terms, our goal is to predict the results of Young’s inter-
ference experiments with pinholes Q, and O, when we know the results of
Young’s interference experiments with all possible pinholes P; and P,.

Our analysis centers on the case of narrowband light, discussed in
Section 4.1.3. Results for broadband light are also presented later in the
section. We begin by noting that the mutual coherence function on £, is by
definition

F(Qla QZ; ’T) = <U(Q1,t + T)U*(Q2,1)>. (5~4'1)

The fields on 2, can be related to the fields on X, with the help of Eq.
(4.1-12), valid for narrowband light. In particular, we have

u(Ql,t+'r)" ( 1,t+7“")X(a)dSh

W (Q,, 1) = ff(krz w(Pyt = 2)x(6)dS,  (542)

Figure 5-16. Geometry for propagation of
mutual coherence, where 8, and 6, represent,
respectively, the angle between P;Q, and the
surface normal at P, and the corresponding
angle for P,Q,.
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Substituting (5.4-2) in (5.4-1) and interchanging orders of integration and
averaging, we find

<u(P d
r(0,.0x7) = [[ [f .
s 3 (A)'rr,
x x(8,)x(6,) dS, dS,. (5.4-3)
The time average in the integrand can be expressed in terms of the mutual

coherence function on 2, yielding the basic propagation law for mutual
coherence (under the narrowband assumption)

I(Q),05:7) = [f ffI‘(Pl,Pz;¢+ L )x}(\i) X)(\fj) ds, ds,.

2 %

(5.4-4)

The reader can readily show (see Problem 5-9), starting with Eq. (4.1-9),
that for broadband light, the corresponding relationship is

I'(Q1, 0y )“—fff —’—F(Pl’PZ’T—F ;rl)

%

. x(01) x(8)

2 wer, 2wcr,

Returning to the case of narrowband light, we now invoke the second
quasimonochromatic condition, namely, that the maximum difference of
pathlengths is much smaller than the coherence length of the light. With this
assumption we can find the corresponding propagation laws for mutual
intensity. When the quasimonochromatic conditions are satisfied, we find
the mutual intensity on X2, by noting that

J(QI’Q2)= P(Q1’Q2§0)- (5-4'6)

Using (5.4-4) with 7 = 0, and further noting [cf. Eq. (5.2-31)] that

I‘(Pl,Pz; Q—:—ﬂ) = J(P,, P,)exp —j%\ﬁ(r2~ D, (5.47)
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we have

3(01,0)) = [f [[3CP,, Pexp| -3 (r = 1) "{fj) "—{2) ds, ds,,

%

(5.4-8)

which represents the basic propagation law for mutual intensity.
The intensity distribution on the surface 2, can readily be found by
letting Q, — Q, in (5.4-8). Thus

1(Q) = ff ffJ(Pl,Pz)exp{_jzﬂ(’z;\‘ r)

% %

ds, ds,,

(5.4-9)

where the quantities r{, rJ, 6/, and 6, differ from r,, r,, 8,, and 6, in Fig.
5-16 because Q, and Q, have merged. The new geometry is illustrated in
Fig. 5-17.

Thus the basic propagation laws for mutual coherence and mutual
intensity have been derived. The reader is reminded that, because the results
were derived from the Huygens—Fresnel principle, the assumptions imposed
in deriving that principle are also implicit here. In particular, the distances
r, and r, (or »/ and ;) must be much larger than a wavelength, a condition
satisfied in all applications of interest to us here.

’ Figure 5-17. Geometry for calculation of the inten-
*1 2 sity on Z,.
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5.4.2 Wave Equations Governing Propagation of Mutual Coherence

The basic propagation laws for mutual coherence have been found from the
Huygens-Fresnel principle; however, it i1s of some general interest to ex-
amine the propagation problem on a more fundamental level. In this section
we begin with the scalar wave equation governing the propagation of fields
and show that the mutual coherence function obeys a pair of wave
equations, a fact first discovered by E. Wolf.

In free space, the real wave disturbance u(")(P,t) obeys the partial
differential equation

1 9 (r)
“C—zwu (P,t)=0, (5.4-10)

Vzu(’)(P’ t) —
where V2 = 92/9x% + 3%/3y% + 92/3z?% is the Laplacian operator. Now
if both sides of this equation are Hilbert transformed, after an interchange
of orders of operators it follows that

2
L 9 o, 1)=0 (5.4-11)

v 2u® P,t) ——
( ) c? 913

where u()(P,t) is the Hilbert transform of u‘”(P,t). We conclude that
both the real and imaginary parts of the analytic signal u( P, ) obey the
wave equation and thus that

2
vzu(P,t)—%gt—iu(P,t)=0. (5.4-12)

Now by definition, the mutual coherence function is given by I'j,(7) =
(u,(t + 7)u%(z)), where u;(t) = u( P, t) and u,(¢) £ u(P,, t). Let the oper-
ator v} be defined by

2 2 2
2 a O 4 d + d
axt Ay}l 9z}

: (5.4-13)

where P, has coordinates (x,, y;, z;). We apply the operator v directly to
the definition of I'},(7), yielding

ViTyp (1) = viu (2 + 7)ut(1))

= (viu(r + 7)uz(1)). (5.4-14)
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But since
1 d%u, (1 +
viw(t+ 1) == 1 Z), (5.4-15)
¢t I(t+1)
we see'
%u,(t + d%u, (1 +
viT,(7) = _15 il Z)“*i(t) = lz i > T)“’S(t)
¢t a(r+7) c ar
1 92 N
= ;5 _3—7—2-<u1(t + 'T)uz(t)>. (5.4-16)

The time-averaged quantity is simply the mutual coherence function, and
hence

1 92
viTiu(1) = = —Tu(r). (5.4-17)
¢’ dr

In a similar fashion, the operator v} = 3%/3x3 + 9%/dy} + 3°/3z2
can be applied to the definition of T'},(r), yielding a second equation

1 92
szrlz(”) = 2F12(T), (5.4-18)
c® ar

which I'j,(7) must also satisfy. Thus I';,(7) propagates in accord with a
pair of wave equations. The relationships derived in Section 5.4.1 are in fact
certain specialized solutions of this pair of equations. For a discussion of
rigorous general solutions to this pair of equations, the reader may wish to
consult Ref. 5-10, Section 10-7.

As an exercise (see Problem 5-10), the reader is asked to verify that the
mutual intensity J,, propagates in accord with a pair of Helmholtz equa-
tions,

2 TV =
Vid, +(k)J, =0
T\2
where k = 27 /).
In manipulating the right-hand side of this equation, we have used the fact that

u (t+ 1) _u(r+ 1)
a(t+ 1) dr?

as can readily be proved from the fundamental definition of a derivative.
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5.4.3 Propagation of Cross-Spectral Density

Our previous discussion and our treatments to follow rest heavily on the
laws of propagation of the mutual coherence function and mutual intensity,
It is also possible to treat these same problems in terms of propagation of
cross-spectral density, that is, the Fourier transform of the mutual coherence
function. Here we briefly discuss the relationship of such solutions to those
we rely on here.

From the basic definition of cross-spectral density [cf. Eq. (3.5-5)], the
mutual coherence function can be expressed as an inverse Fourier transform
of the cross-spectral density function,

T,(7) = /()ooglz(”)evzwfd”s (5.4-20)

where it has been noted that ¥, is zero for negative frequencies. Knowing
the propagation equations obeyed by mutual coherence [Eqs. (5.4-17) and
(5.4-18)], we can apply these laws to Eq. (5.4-20) and deduce the corre-
sponding laws for cross-spectral density. Interchange of orders of differenti-
ation and integration allows the new equations to be written

oo 1 9% ]
v2________ g v e—jZ-nu'rdV:O
f(‘) L 1 Cz (9'TZA 12( )

d 1 92 ]
[vi -5 5 |%a(v)e v ar =0, (5.4-21)
0 c 0r° |

For these equations to hold for all delays 7 and all cross-spectral densities,
the integrands of the integrals on the left must vanish. Applying the ~
derivatives to the exponentials, which contain the only dependence on that
variable, we obtain a pair of Helmholtz equations that must be satisfied by
the cross-spectral density,

27y

vig,(v) + (‘_C“’)zglz(") =0

27y
c

vi9,0) +(222) 9(0) = 0. (5.422)

The main significance of this result is appreciated by examining Eq.
(5.4-19), which presents the Helmholtz equations satisfied by the mutual
intensity J,,. Remembering that k = 27v/c, we see that cross-spectral
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density and mutual intensity obey the same set of Helmholtz equations. The
only difference is the appearance of frequency » in Egs. (5.4-22) wherever
the center frequency # would appear in (5.4-19). This observation leads us
to the following general conclusion:

Cross-spectral densities obey the same propagation laws as do mutual
intensities. To find the solution for cross-spectral density, the corresponding
result for mutual intensity can be used, subject only to the requirement that
the parameter v must be replaced by v.

In attacking coherence problems in the frequency domain using cross-
spectral density, it is sometimes useful to introduce the definition of yet
another coherence quantity, known as (Ref. 5-27) the complex degree of
spectral coherence and defined as

ng(V)
n(r) = T 5.4-23)
’ ) [gll(")gzz(”)] / (

where ¢,,(v) and %,,(») are the power spectral densities of the light at
points P, and P,, respectively. The complex degree of spectral coherence
can be shown to satisfy the inequality

0 <|p,(v) <1, (5.4-24)

The reader interested in studying proofs of these relationships is referred
to Ref. 5-27. We have chosen to use mutual intensities in our analyses,
rather than cross-spectral densities, primarily because J,;, directly describes
the amplitude and phase of a spatial fringe, whereas cross-spectral density is
one step further removed from the physics of the problems of concern.

5.5 LIMITING FORMS OF THE MUTUAL COHERENCE FUNCTION
In this section we consider certain limiting conditions of coherence that are
important idealizations in practical calculations. In particular, the concepts
of a coherent wavefield and an incoherent wavefield are defined.

5.5.1 A Coherent Field

In terms of the definitions of coherence already introduced, we are led
naturally to say that the optical waveforms observed at points P, and P,,
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subject to relative time delay 7, are fully coherent provided

()= 1. (5.5-1)

Although this condition defines perfect coherence for particular points
(P, P,) and a particular time delay 7, we might inquire whether there is a
more general definition that will allow the entire wavefield to be referred to
as fully coherent.

One possible definition is to call a wavefield fully coherent provided

lY,(7)|=1 forall (P, P,)and allr. (5.5-2)

Such a definition is overly restrictive, however, since no real experiment
involves simultaneously all values of delay 7. Furthermore, it can be shown
to be satisfied only for monochromatic waves, leading us to seek a weaker
and more widely applicable definition.

A less stringent condition was introduced by Mandel and Wolf (Ref.
5-28). According to this definition, a wavefield is called fully coherent if, for
every pair of points (P, P,), there exists a delay 7, [a function of (P,, P,)]
such that |y;,(7,)| = 1. Stated mathematically, we require that

max |y,,(7)] =1 for every pair (P, P,). (5.5-3)

If the field is cross-spectrally pure, an equivalent definition is easily seen
to be

lwol = 1 for every pair (P, P). (5.5-4)

Some physical insight into the concept of perfect coherence can be
obtained by expressing the condition |y;,(7,,)] = 1 in terms of the complex
envelopes of the two wave disturbances. From the definition of the complex
degree of coherence we have

Ku( Py, t + 75 )u*(Py, 2))]

2 (712) ] = (5.5-5)
[<|“(P1’t + 712)12)<|u(P2,t)|2>]1/2
Now using the fact that
u(P,t) = A(P,t)e *™ (5.5-6)
we can equivalently write
IKA(Py, t + 1,5)A*(P,, 1))
112 (Ti2) 1 = 1 -2 2:1)) (5.5-7)

[A(Py, t + m,)12)A(Py, 1) 3]



204 COHERENCE OF OPTICAL WAVES

It is now useful to apply Schwarz’s inequality, which states that

< Ulf(t)lzdtﬂg(t)lzdtJl/z, (5.5-8)

'ff(t)g*(t)dt

with equality if and only if
g(t) = kif(¢), (5.5-9)

where k is a complex constant.
Applying (5.5-8) and (5.5-9) to (5.5-7), we see that |y,,(),)| =1 if and
only if

A(Pz, t) = kle(Pl,t + 712), (5.5'10)

where k,, is a complex constant that in general depends on the points P,
and P,.

Stating the above result in words, a wavefield is called perfectly coherent
if and only if, for every pair of points P, and P,, there exists a time delay
T, such that the complex envelopes of the two waveforms, relatively
delayed by the required 7,,, differ by only a time-independent complex
constant.

When the quasimonochromatic conditions are imposed on the wavefield
of concern, the situation simplifies somewhat. In any one experiment it is
likely that a multitude of different pinhole spacings will be involved. If we
insist that the quasimonochromatic conditions be satisfied, by implication
we mean they should simultaneously be satisfied for all pinhole pairs
involved in the experiment, thus implying that for all points (P, P,) the
same delay 7, should be required to eliminate temporal coherence effects.
Furthermore, if we let pinhole P, approach pinhole P,, thus including
negligibly small (or zero) spacings in our experiment, it is clear that the
unique delay 7,, required to maximize |I';,(7)| must in fact be identically
zero. From Eq. (5.5-10), the complex envelopes at P, and P, are now
related by

A(Pz,t)=k12A(Pl,t), (5.5'11)

where again k,, depends on the particular points (P,, P,). Thus the complex
envelopes at all points vary in unison, differing from each other only by
time-invariant amplitude and phase factors.

A useful special form for the mutual intensity, valid in the fully coherent,
quasimonochromatic case, can be found by expressing the complex en-
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velopes A(P,, t) and A(P,, t) in terms of the complex envelope A(P,, ¢) at a
prechosen reference point P,. We define time-invariant phasor amplitudes
A(P,) and A(P,) in terms of the complex envelope at P, as follows:

A(P,,t
A(P,1) = A(Pl)—-(—g—;)—;
[1(,)]"
A(P,,t
A(P,,t) = A(Pz)———(—-o——l)—;. (5.5-12)
[1(P)])"
The mutual intensity is now calculated to be
3, = (AP, DA* (P, 1)) = A(PDAR(Py).  (5.5-13)

Alternatively, the complex coherence factor can be expressed in the form

iy, = exp{ j{¢(P) — o(P,)]}, (5.5-14)
where

¢(P;) = arg{A(P,)}, o(P,) = arg{A(P,)}. (5.5-15)

For fully cokerent, quasimonochromatic radiation, the fringe pattern gener-
ated by a Young’s interference experiment takes the form

1(Q) = I1D(Q) + I9(Q)

2'”("2 — "1)

+2/1O(Q)ID(Q) cos| “—=-5—= + ¢(P,) ~ ¢(P)

(5.5-16)

for every pinhole pair (P,, P,). When the intensity of the wave is uniform,
the visibility of the fringes is always unity, but the phase of the fringe
pattern will change as P, and P, are changed.

5.5.2 An Incoherent Field

For a fully coherent field, the fluctuations of the complex envelopes of the
wave at P, and P, are perfectly correlated, provided the appropriate delay
7,, 1s introduced. The logical opposite of a fully coherent field is called an
incoherent field. Thus we might reasonably define a field to be incoherent if

IT,(7)[=0 forall P, # P, and for all . (5.5-17)
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Although such a definition is indeed the logical opposite of a fully
coherent field, it is not a very useful definition in practice. The reason can
readily be seen by substituting I'( P, P,; 7 + (r, — r;)/c] = 0 in Eq. (5.4-4).
If this is first integrated over the surface Z,, the integrand is zero every-
where except when P, = P,, where it has a finite value. The result of the
integration is thus precisely zero, and we have the result

I'(Q,,0,7)=0. (5.5-18)

Letting » = 0 and @, = Q,, we see that (5.5-18) implies that 1(Q,) = 1(Q,)
= (. Thus if the wavefield on 2, is incoherent in the sense defined above, it
does not propagate to 2,!

The physical explanation of the above seemingly nonphysical result lies
in the evanescent-wave phenomenon. A wavefield incoherent in the sense of
(5.5-17) has infinitesimally fine spatial structure. However, spatial structure
finer than a wavelength corresponds to nonpropagating evanescent waves
(see, e.g., Ref. 5-24, pp. 50 and 51). Hence the perfectly incoherent surface
does not radiate.

When the evanescent-wave phenomenon is taken fully into account, it
can be shown that for a propagating wave, coherence must exist over a
linear dimension of at least a wavelength. For quasimonochromatic light,
the mutual intensity most closely approximating incoherence, yet still corre-
sponding to a propagating wave, is found to be (Ref. 5-11, pp. 57-60)

Jl(-’z\/(’ﬁ - x,)° +(y — )’2)2)

B (x, = %) + (0 = »)

J(PI’PZ) = \/I(P1)I(P2) 2

’

(5.5-19)

where P, and P, are assumed to lie in a plane and have coordinates (x,, y;)
and (x,, y,), respectively; J;(x) is a Bessel function of the first kind, order
1; and k = Zw/—k.

In practical computations, the form (5.5-19) is rather cumbersome to use.
If a wave with such a mutual intensity passes through an optical system that
has resolution in the (x, y) plane that is much coarser than A, the exact
shape of J(P,;, P,) is not of consequence. In this case the mutual intensity
corresponding to incoherence can be approximated by

J(P,, P,) = kI(P)8(x; ~ X3, yy — ¥5), (5.5-20)

where 8(-, -) represents a two-dimensional Dirac delta function. The con-
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stant k should be chosen to assure that the volume of the function J( P, P,)
in (5.5-20) is the same as in (5.5-19). The required value is

K = (7‘)2. (5.5-21)

T

If coherence extends over more than a wavelength, but the optical system
that follows still cannot resolve a coherence area, the 8-function representa-
tion for J(P,, P,) is still valid, although the appropriate value of k is no
longer A2/, Since the constant k ultimately affects the intensity level but
not spatial structure, it is often replaced by unity for simplicity. Since this
constant has dimensions of squared length [cf. Eq. (5.5-21)], however, we
retain it in our future mathematical expressions to assure dimensional
consistency.

5.6 THE VAN CITTERT-ZERNIKE THEOREM

In nearly all optical problems involving light that does not originate from a
laser, the original optical source consists of an extended collection of
independent radiators. Such a source can reasonably be modeled as incoher-
ent in the sense defined in the preceding section, provided only that the
optical elements through which the light passes are incapable of resolving
the individual radiating elements on the source. Accordingly, it is of some
special interest to know precisely how mutual intensity propagates away
from an incoherent source. The character of the mutual intensity function
produced by an incoherent source is fully described by the Van
Cittert—Zernike theorem, which is undoubtedly one of the most important
theorems of modern optics. As the name implies, the theorem was first
demonstrated in papers by Van Cittert (Ref. 5-4) and Zernike (Ref. 5-5).

5.6.1 Mathematical Derivation

Restricting our attention to quasimonochromatic light, we have previously
shown that mutual intensity propagates according to the law

50,0 = [f [fap, Pjers| /57 (= r)| 5L X0 s s,

(5.6-1)

regardless of the initial state of coherence represented by J(P,, P,). For the
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special case of an incoherent source, we further have [Eq. (5.5-20)] that
J(PI,P2)= KI(Pl)a(lpl — Py). (5.6-2)

Simple substitution and use of the “sifting” or “sampling” property of the &
function yields a mutual intensity

Jep| 2115 | X00) 208

A ry r,

J Ql’ Q2
( ()

(5.6-3)

where the required geometrical factors are illustrated in Fig. 5-18.
To simplify this expression further, we make certain assumptions and
approximations as follows:

(1) The extents of the source and observation region are much less than
the distance z separating them. Thus

1
—_—.— = “—2' (56-4)

(2) Only small angles are involved. Thus
x(0,) = x(6,) = 1. (5.6-5)

The mutual intensity in the observation region now takes the form

J(Ql,Qz)-— { r, rl)}dS. (5.6-6)
N y
1 A
~—T~ x
Y A
W =
ry \ \,
4 / /
— ___J& i /
P, F’-2_ // /A\
/" Observat
A z L | e
A Solirce \Qz ‘r
2 F

Figure 5-18. Geometry for derivation of the Van Cittert-Zernike theorem.
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At this point we specifically adopt the planar geometry shown in Fig.
5-18; that 1s, the source and observation regions are assumed to lie in
parallel planes separated by distance z. Furthermore, in accord with our
previous assumptions (5.6-4) and (5.6-5), we introduce the *paraxial”
approximations

)2 2
= (=€) + () m ey 228 a0

2 2
=G 8+ m e AT

(5.6-7)

Finally, we adopt the definitions Ax = x, — x;, Ay = y, — y,, and the
convention that I(§, n) equals zero when (&, n) lies outside the finite source
region Z. The final form of the Van Cittert-Zernike theorem then follows:

J(xq, y15 %5, 32) = 1(& n)eXp[ 'T(A% + Ayn)|dédn.

(5.6-8)
In this expression, the phase factor y is given by
m 2 2 2 N = T (2 2
4/:%[(?‘24’}’2)_("1 +Y1)]‘“j\‘;(92_91) (5.6-9)

where p, and p, represent, respectively, the distances of the points (x,, y,)
and (x,, y,) from the optical axis.
It 1s often more convenient to express this theorem in normalized form,

writing the complex coherence factor as

eV ff I(¢, n)exp[ T(Axé + Ayn)] dé¢dn
P'(xl’}ﬁ;xz’)’z) = ,

ff1(£,n)d£dn

(5.6-10)

thus eliminating the awkward scaling factors. In most practical applications
involving incoherent sources, to a good approximation I(x,, y,) = I(x,, ¥,),
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and hence |u(x,, y;; X,, ;)| also represents the classical visibility of the
fringes that would be produced in Young’s experiment.

5.6.2 Discussion

The Van Cittert—Zernike theorem, stated mathematically in Eq. (5.6-8), can
be expressed in words as follows: aside from the factor exp(—j;y) and
scaling constants, the mutual intensity J(x,, y;; X,, »,) can be found by a
two-dimensional Fourier transformation of the intensity distribution 1(£, n)
across the source. This relationship can be likened to the relationship
between the field across a coherently illuminated aperture and the field
observed in the Fraunhofer diffraction pattern of that aperture, although the
physical quantities involved are entirely different. In this analogy, we regard
the intensity distribution I(§,n) as analogous to the field across the aper-
ture and J(x,, y;; x,, y,) as analogous to the field in the Fraunhofer
diffraction pattern. The relationship (5.6-8) is the same as the corresponding
Fraunhofer diffraction formula. We emphasize again that this analogy is
only a mathematical one, however, for the physical situations described by
the same equation are entirely different, as are the physical quantities
involved. We further note that, as implied by Eq. (5.6-7), the Founer
transform relationship between J(x,, y;; X5, ,) and I(§,7) holds over a
wider range of distances than would the analogous Fraunhofer diffraction
equation, for the paraxial approximation is valid in regions of both Fresnel
and Fraunhofer diffraction (see Ref. 5-24, Chapter 4).

Noting that the modulus of the complex coherence factor |u| depends
only on the difference of coordinates (Ax, Ay) in the (x, y) plane, it is
possible to define the coherence area A, of the light in a manner entirely
analogous to the definition (5.1-28) of coherence time .. For our purposes,
the coherence area is defined by

4.2 [[is(ax,ay)?daxday. (5.6-11)

The reader may wish to prove, with the help of Problem 5-15, that for a
uniformly bright incoherent source of area 4 and any shape, the coherence
area A, at distance z from the source is

A, = (Zzs)z = (ézz, (5.6-12)

where §g is the solid angle subtended by the source from the origin of the
observation region.
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Returning to the general expression (5.6-10) for p, we consider conditions
under which the factor exp(—jy) can be dropped in the expression for the
complex coherence factor. Since

bl
¥ =5-(p3 - 1) (5.6-13)
three different conditions can be identified:

1. If the distance z is so large that z > 2[(p2 — p?)/A], then ¢ < 7/2
and exp(—/jy) = 1.

2. If the measurement points Q; and @, are intentionally maintained at
equal distances from the optical axis (although their spacing may be
changed in both size and direction), ¢ is identically zero.

3. If, rather than lying in a plane, the pinholes lie on a reference sphere of
radius z, centered on the source, the phase factors vanish.

In such cases the phase factor ¥ can, of course, be dropped.

Finally, we remind the reader that the mathematical result relating p,, to
the source intensity distribution can be understood qualitatively by consid-
eration of a simple Young’s experiment with the extended source. Just as a
point source will create interference fringes of perfect visibility, each point
on an incoherent source will create a separate fringe of high visibility. If the
source size is too large, these elementary fringe patterns add with signifi-
cantly different spatial phases, and the contrast of the overall fringe pattern
is reduced. The mathematical statement of the Van Cittert—Zernike theorem
is simply a precise statement of this relationship between the intensity
distribution across the source and resulting fringe contrast for given loca-
tions of the pinholes.

5.6.3 An Example

As an example of the use of the Van Cittert—Zernike theorem, the complex

coherence factor p,, of the light produced by a uniformly bright, incoher-
ent, quasimonochromatic circular disk of radius a will be calculated. The
intensity distribution of the source is thus assumed to be

I(¢,n) = Iocirc——;—, (5.6-14)
where
1 w<l
cirew2(1/2 w=1 (5.6-15)

0 w>1.
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To find J(xy, y;; X,, y,), we must Fourier transform this distribution. We
note first that (Ref. 5-24, pp. 15 and 16)

V€2 + 52 } ~ 2J1(27ra\/v§, + v%,)
a

=g , (5.6-16)

[,2 2
ayvy + vy

where % {-} i1s a two-dimensional Fourier transform operator,

F { cire

F(g(t,m) 2 [[e(t.mer @ mdgdy,  (5.617)

and J,(-) is a Bessel function of the first kind, order 1. Furthermore, in
accord with the scaling factors in the exponent of Eq. (5.6-8), we must
substitute

_Ax _ 4y
D VARERE AN VA G619
The result is
ma’l,k Jl(%gimx)z +(Ay)2)
J(x1, Y15 X0 ¥y) = —— 2e_N 2 2ma 2
(Az) S(ax)" + (Ay)
| .

(5.6-19)

for the mutual intensity function, and the corresponding complex coherence
factor is

A (Z T+ (a7
p(xl’yl;xz,y2)=e“"'° 2 2ma 2 2
v\/(Ax) +(Ay)

(5.6-20)

Note that the first factor e /¥ depends on both (x,, y;) and (x,, »,),
whereas the second factor depends only on the spacing of the two points,

5 = \/(7Ax)2 +(Ay)*. Thus the modulus |p,,] depends only on Ax and Ay
and is shown in Fig. 5-19. The first zero of J,(2map) appears at p = 0.610/a,
and hence the first zero of |u,,| occurs at spacing

sp = 0.610°% (5.6-21)




THE VAN CITTERT-ZERNIKE THEOREM 213

[#12]

Ay

2 \X

so= 061022

Figure 5-19. Modulus |p,,| of the complex coherence factor versus coordinate differences A x
and Ay in the (x, y) plane.

Remembering our small-angle approximation, the angular diameter @ of the
source, viewed from the origin of the (x, y) plane, is § = 2a/z. Thus the
spacing for the first zero of |p,,| can also be expressed as

| >l

sp=1.222. (5.6-22)

The coherence area of the light emitted by the source can be found with
the help of the results of Problem 5-15. For a circular incoherent source of
radius a, the coherence area at distance z is

3.2 322
_AzZ _Az (5.6-23)

A
< Ag 7ma’

Recognizing that only small angles are involved in our analysis, we note that
the solid angle subtended by the source, viewed from the origin of the (x, y)
plane, is

AS
"z—z— . (5 .6-24)

I
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Figure 5-20. Fringe patterns produced by a circular incoherent source for various spacings s,
Sy, $3, 54 of pinholes.
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We see that the coherence area can be expressed as

AN
I
i

(5.6-25)

<
©

as was previously stated in Eq. (5.6-12).

Suppose that the points (x,, y,) and (x,, y,) correspond to pinholes in
an opaque screen and that fringes of interference are observed some
distance behind the screen. Our knowledge of the character of p,, allows us
to predict the character of the fringes obtained at each possible spacing s of

(a) (b)

Figure 5-21. Photographs of the fringes obtained from a circular incoherent source with
various spacings of pinholes. The spacing of the pinholes progressively increases in parts a-g.
(Courtesy of B. J. Thompson and E. Wolf, J. Opt. Soc. Am., vol. 47, pp. 898, 899, 1957.)
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(c) (d)
Figure 5-21. Cont.

the pinholes. Suppose, for simplicity, that (x;, y,) and (x,, »,) are always
equally distant from the optical axis, thus assuring that ¢ = 0. The predict-
ed fringe patterns obtained for various spacings are shown in Fig. 5-20.
Note the increasing spatial frequency of the fringes as s is increased, the
vanishing of fringe contrast at spacing s,, and the reversal of phase of the
fringes when the spacing s corresponds to the first negative lobe of
the Bessel function. Photographs of interference patterns obtained at vari-
ous spacings are shown in Figure 5-21, where the finite size of the fringe
patterns is due to the finite width of the diffraction patterns of the pinholes
used.

Throughout our discussions it has been assumed that the circular source
1s centered on the optical axis. If the source is offset from this position by
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Figure 5-21. Cont.

displacements A§{ and A7 in the (£, ) plane, the shift theorem of Fourier
analysis (Ref. 5-24, p. 9) implies that the new complex coherence factor p},
can be expressed in terms of the old complex coherence factor (source
centered on axis) p,, by

, 2w
P2 = p2exp| 5 (A84x + Andy)). (5.6-26)

Thus the modulus |p,,| of the complex coherence factor is unaffected by a
translation of the source, but the phase of the fringes is changed in
proportion to the source translation increments (A§, An) and in proportion
to the pinhole spacings (Ax, A y).
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(2)
Figure §-21. Cont.

5.6.4 A Generalized Van Cittert—Zernike Theorem'

In deriving the Van Cittert-Zernike theorem, the §-function form of the
source mutual intensity function was used to represent an incoherent source.
We consider now a more general form of the Van Cittert-Zernike theorem
that applies to a restricted class of partially coherent sources, including an
incoherent source in the previous sense as a special case. The effect of a

A rudimentary form of the result to be derived here was first demonstrated in Ref. 5-29. A
more elegant and more complete result has been derived in Ref. 5-30. For a review of work in
this area relating coherence theory and radiometry, see Ref. 5-31.



THE VAN CITTERT-ZERNIKE THEOREM 219

small but nonzero coherence area on the source will be evident from these

results.
The mutual intensity function of the source is assumed to be of the form

J(&1,m15 €0,m,) = [1(51”01)1(52’772)]1/21"(‘55’An)- (5.6-27)

Implicit in this form is the assumption that the complex coherence factor p
depends only on coordinate differences (A¢, An) in the (£, 1) plane. Such is
often the case in practice (see, e.g., Section 7.2). A radiator having a mutual
intensity in the form of Eq. (5.6-27) has come to be known as a “quasi-
homogeneous™ source.

As a further approximation we assume that the source size is much larger
than a coherence area A, on the source and that any spatial structure
associated with the source intensity distribution is coarse compared with 4.
These assumptions allow us to approximate the mutual intensity function of
the source by

J(gl’ nl’ £2’ 712) = I(g’ ﬁ)p'(Ag’ A"l), (56'28)
where'
_ +
IVETIET S )
+
An=m,—m, =0 > 12 (5.6-29)

This approximate form can now be substituted in the relationship

I(x1, y13 %2, 3,) = (7\12)2 f_f{of-l(épm;&z,ng)

2
><exp[—1—7;r£(r2 - rl)] d¢ dn,d¢,dn, (5.6-30)

which is the general propagation law (5.4-8) for mutual intensity, taken
under paraxial conditions. Under such conditions, the difference r, — r,

TEquivalently, §, = £ —A§/2, £, =E +A8/2, my =7 — An/2, my, =7 + /2.
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takes the approximate form

1
r—rn =5 [(x3 +y7) —(xf +y2) + (6 + m3) = (& + a})

~2(x38, + yama) + 2(x, 6, + )’1"11)]
1
= Z[(xz +x1)(xy = x1) +(» +y) (32— 1)

+(§2 + 51)(52 - £1) +(712 + 711)("12 - "11)
~2(x,6; — x,6) = 2(ym; = yim)]- (5.6-31)

Now we use the previous definitions for £, 3, A¢, and Ay, and additionally
define

f=x1+x2’ Ax = x, — x;
2
_ »nty
y= 12 2, Ay=Y2_Y1- (5-6'32)

Substituting these definitions in expression (5.6-31), we obtain
r—r = —i—[)?Ax +JAy + EAL + HAn

~Axf —xAE — Ayw — yAq). (5.6-33)

At this point we find it convenient to impose the following assumption
(which is discussed in more detail shortly):

z > 4§—A—§ and z > 471_43_71_ (5.6-34)
A A
for all A¢ Am, £ and % of interest in the experiment. This assumption
allows us to drop the third and fourth terms of (5.6-33). Now when the
modified Eqgs. (5.6-33) and (5.6-28) are substituted into the integral (5.6-30),
taking account of the change of variables of integration, we obtain
—J¥ it 2
e s _ 27 : _ z
J(x1, y15 %2, 12) = o) // 1(£,n)exp[J§(Ax£ +Ayn)} ddn
z — o0

x [f w(ag, amexp| 72T (x¢ + 3m) | ang dam,

(5.6-35)



THE VAN CITTERT-ZERNIKE THEOREM 221

where ¢ is given by (27/Az)(XAx + yAy), which is equivalent to our previ-
ous definition (5.6-9).

To afford easy comparison with the previous form of the Van
Cittert—Zernike theorem, we adopt a special symbol for the-last double
integral,

k(X,y) = fp,(Ag An)exp[ 'K—-(xA.S +yAn)] dA¢dAy, (5.6-36)

in which case the mutual intensity is expressed by

% v)e " rr -
3(x2, 213 %2, 32) = "(’;’Xyz))i _/[ol(z,ﬁ)exp[ 73T (axE +0y7) | dEdn
(5.6-37)

Thus the constant k of the previous Van Cittert-Zernike theorem has
become a function of coordinates (X, y). As a consequence, the modulus |p|
of the complex coherence factor is no longer a function only of coordinate
differences (Ax, Ay).

Our physical interpretation of the generalized Van Cittert—Zernike theo-
rem is as follows. Since p(A§, An) is much narrower in the (A, An) plane
than I(£,7) is in the (£,7) plane, the factor (X, 7) will be broad in (X, 7)
whereas the integral will be narrow in (Ax, Ay), a consequence of the
reciprocal width relations of Fourier transform pairs (Ref. 5-17, pp.
148-163). We interpret the integral factor as representing the correlation of
the light as a function of the separation of two exploratory points (x;, y;)
and (x,, y,), whereas the factor x(X, y) represents a coarse variation of
average intensity in the (x, y) plane. Exactly as in the case of incoherent
light, it is the source size that determines the coherence area of the observed
wave, but in addition the source coherence area influences the distribution of
average intensity over the (x, y) plane.

We close this section with some comments on the conditions (5.6-34) that
were used to obtain the generalized result. If D represents the maximum
linear dimension of the source and d, represents the maximum linear
dimension of a coherence area of the source, the required condition will be
satisfied provided

Dd,
7\ )

(5.6-38)
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where it has been noted that I(£,%) drops to zero when £ + 7> > D/2

and p(A¢, An) drops to zero when yA£2 + An? > d,. Equation (5.6-38)
may be interpreted as requiring that the observation distance z be at least as
large as the geometric mean of the far-field distances for apertures of
diameter D and d_. As a particular example, we suppose that D = 1072 m,
d,=10"° m, and A=5%10"7 m, in which case it is required that :
satisfy z > 0.4 m. The reader may wish to verify (see Problem 5-16) that,
when a positive lens with focal length f is placed between the source and
the observation plane and when the observation plane is the rear focal plane
of that lens, the restrictions (5.6-34) are no longer necessary, and thus the
generalized Van Cittert-Zernike theorem holds under a wider set of circum-
stances than directly treated here.

5.7 DIFFRACTION OF PARTIALLY COHERENT LIGHT BY AN
APERTURE

Suppose that a quasimonochromatic wave is incident on an aperture in an
opaque screen, as illustrated in Fig. 5-22. In general, this wave may be
partially coherent. We wish to calculate the intensity distribution I(x, y)
observed across a parallel plane at distance z beyond the aperture.

5.7.1 Effect of a Thin Transmitting Structure on Mutual Intensity

The diffracting aperture shown in Fig 5-22 may be represented by an
amplitude transmittance function

t(¢,7)= {1 (£,7)in 2 (5.7-1)

0 otherwise.

More generally, the aperture may contain absorbing and /or phase shifting
structures that are characterized by an arbitrary complex-valued amplitude
transmittance function within the aperture,’ subject only