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Preface 

Since the early 1960s it has gradually become accepted that a modern 
academic training in optics should include a heavy exposure to the concepts 
of Fourier analysis and linear systems theory. This book is based on the 
thesis that a similar stage has been reached with respect to the tools of 
probability and statistics and that some training in the area of statistical 
optics should be included as a standard part of any advanced optics 
curriculum. In writing this book I have attempted to fill the need for a 
suitable textbook in this area. 

The subjects covered in this book are very physical but tend to be 
obscured by mathematics. An author of a book on this subject is thus faced 
with the dilemma of how best to utilize the powerful mathematical tools 
available without losing sight of the underlying physics. Some compromises 
in mathematical rigor must be made, and to the largest extent possible, a 
repetitive emphasis of the physical meaning of mathematical quantities is 
needed. Since fringe formation is the most fundamental underlying physical 
phenomenon involved in most of these subjects, I have tried to stay as close 
as possible to fringes in dealing with the meaning of the mathematics. I 
would hope that the treatment used here would be particularly appealing to 
both optical and electrical engineers, and also useful for physicists. The 
treatment is suitable for both self-study and for formal presentation in the 
classroom. Many homework problems are included. 

The material contained in this book covers a great deal of ground. An 
outline is included in Chapter 1 and is not repeated here. The course on 
whch this text is based was taught over the 10 weeks of a single academic 
quarter, but there is sufficient material for a full 15-week semester, or 
perhaps even two academic quarters. The problem is then to decide what 
material to omit in a single-quarter version. If the material is to be covered 
in one quarter, it is essential that the students have previous exposure to 
probability theory and stochastic processes as well as a good grasp of 
Fourier methods. Under these conditions, my suggestion to the instructor is 
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to allow the students to study Chapters 1-3 on their own and to begin the 
lectures directly with optics in Chapter 4. Later sections that can be omitted 
or left to optional reading if time is short include Sections 5.6.4, 5.7, 6.1.3, 
6.2, 6.3, 7.2.3, 7.5, 8.2.2, 8.6.1, 8.7.2, 8.8.3, 9.4, 9.5, and 9.6. It is perhaps 
worth mentioning that I have also occasionally used Chapters 2 and 3 as the 
basis for a full one-quarter course on the fundamentals of probability and 
stochastic processes. 

The book began in the form of rough notes for a course at Stanford 
University in 1968 and thus has been a long time in the making. In many 
respects it has been too long in the making (as my patient publisher will 
surely agree), for over a period of more than 15 years any field undergoes 
important changes. The challenge has thus been to treat the subject matter 
in a manner that does not become obsolete as time progresses. In an 
attempt to keep the information as up to date as possible, supplementary 
lists of recent references have been provided at the ends of various chapters. 

The transition from a rough set of notes to a more polished manuscript 
first began in the academic year 2973-1974, when I was fortunate enough to 
spend a sabbatical year at the Institute d'optique, in Orsay, France. The 
hospitality of my immediate host, Professor Serge Lowenthal, as well as the 
Institute's Director, Professor Andre Marechal, was impeccable. Not only 
did they provide me with all the surroundings needed for productivity, but 
they were kind enough to relieve me of duties normally accompanying a 
formal appointment. I am most grateful for their support and advice, 
without which this book would never have had a solid start. 

One benefit from the slowness with which the book progressed was the 
opportunity over many years to expose the material to a host of graduate 
students, who have an uncanny ability to spot the weak arguments and the 
outright errors in such a manuscript. To the students of my statistical optics 
courses at Stanford, therefore, I owe an enormous debt. The evolving notes 
were also used at a number of other universities, and I am grateful to both 
William Rhodes (Georgia Institute of Technology) and Timothy Strand 
(University of Southern California) for providing me with feedback that 
improved the presentation. 

The relationshp between author and publisher is often a distant one and 
sometimes not even pleasant. Nothing could be further from the truth in 
this case. Beatrice Shube, the editor at John Wiley & Sons who encouraged 
me to begin this book 15 years ago, has not only been exceedingly patient 
and understanding, but has also supplied much encouragement and has 
become a good personal friend. It has been the greatest of pleasures to work 
with her. 

1 owe special debts to K.-C. Chn,  of Beijing University, for his enormous 
inves tmen t of time in reading the manuscript and suggesting improvements, 
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and to Judith Clark, who typed the manuscript, including all the difficult 
mathematics, in an extremely professional way. 

Finally, 1 am unable to express adequate thanks to my wife, Hon Mai, 
and my daughter Michele, not only for their encouragement, but also for the 
many hours they accepted being without me while I labored at writing. 

Stan ford, California 
October 1984 
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Introduction 

Optics, as a field of science, is well into its second millennium of life; yet in 
spite of its age, it remains remarkably vigorous and youthful. During the 
middle of the twentieth century, various events and discoveries have given 
new life, energy, and richness to the field. Especially important in this 
regard were (1) the introduction of the concepts and tools of Fourier 
analysis and communication theory into optics, primarily in the late 1940s 
and throughout the 1950s, (2) the discovery and successful realization of the 
laser in the late 1950s, and (3) the origin of the field of nonlinear optics in 
the 1960s. It is the thesis of this book that a less dramatic but equally 
important change has taken place gradually, but with an accelerating pace, 
throughout the entire century, namely, the infusion of statistical concepts 
and methods of analysis into the field of optics. It is to the role of such 
concepts in optics that this book is devoted. 

The field of statistical optics has a considerable hstory of its own. Many 
fundamental statistical problems were solved in the late nineteenth century 
and applied to acoustics and optics by Lord Rayleigh. The need for 
statistical methods in optics increased dramatically with the discovery of the 
quantized nature of Light, and particularly with the statistical interpretation 
of quantum mechanics introduced by Max Born. The introduction by 
E. Wolf in 1954 of an elegant and broad framework for considering the 
coherence properties of waves laid a foundation within which many of the 
important statistical problems in optics could be treated in a unified way. 
Also worth special mention is the serniclassical theory of light detection, 
pioneered by L. Mandel, which tied together (in a comparatively simple 
way) knowledge of the statistical fluctuations of classical wave quantities 
(fields, intensities) and fluctuations associated with the interaction of light 
and matter. This history is far from complete but is dealt with in more detail 
in the individual chapters that follow. 



2 INTRODUCTION 

1.1 DETERMINISTIC VERSUS STATISTICAL PHENOMENA 
AND MODELS 

In the normal course of events, a student of physics or engineering first 
encounters optics in an entirely deterministic framework. Physical quantities 
are represented by mathematical functions that are either completely 
specified in advance or are assumed to be precisely measurable. These 
physical quantities are subjected to well-defined transformations that mod- 
ify their form in perfectly predictable ways. For example, if a monochro- 
matic light wave with a known complex field distribution is incident on a 
transparent aperture in a perfectly opaque screen, the resulting complex 
field distribution some distance away from the screen can be calculated 
precisely by using the well-established diffraction formulas of wave optics. 

The students emergng from such an introductory course may feel 
confident that they have grasped the basic physical concepts and laws and 
are ready to find a precise answer to almost any problem that comes their 
way. To be sure, they have probably been warned that there are certain 
problems, arising particularly in the detection of weak light waves, for 
which a statistical approach is required. But a statistical approach to 
problem solving often appears at first glance to be a "second-class" ap- 
proach, for statistics is generally used when we lack sufficient information to 
carry out the aesthetically more pleasing "exact" solution. The problem may 
be inherently too complex to be solved analytically or numerically, or the 
boundary conditions may be poorly defined. Surely the preferred way to 
solve a problem must be the deterministic way, with statistics entering only 
as a sign of our own weakness or limitations. Partially as a consequence of 
this viewpoint, the subject of statistical optics is usually left for the more 
advanced students, particularly those with a mathematical flair. 

Although the origins of the above viewpoint are quite clear and under- 
standable, the conclusions reached regarding the relative merits of deterrnin- 
istic and statistical analysis are very greatly in error, for several important 
reasons. First, it is difficult, if not impossible, to conceive of a real 
engineering problem in optics that does not contain some element of 
uncertainty requiring statistical analysis. Even the lens designer, who traces 
rays through application of precise physical laws accepted for centuries, 
must ultimately worry about quality control! Thus statistics is certainly not 
a subject to be left primarily to those more interested in mathematics than 
in physics and engineering. 

Furthermore, the view that the use of statistics is an admission of one's 
limitations and thus should be avoided is based on too narrow a view of the 
nature of statistical phenomena. Experimental evidence indicates, and in- 
deed the great majority of physicists believe, that the interaction of light and 
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matter is fundamentally a statistical phenomenon, which cannot in principle 
be predicted with perfect precision in advance. Thus statistical phenomena 
play a role of the greatest importance in the world around us, independent 
of our particular mental capabilities or limitations. 

Finally, in defense of statistical analysis, we must say that, whereas both 
deterministic and statistical approaches to problem solving require the 
construction of mathematical models of physical phenomena, the models 
constructed for statistical analysis are inherently more general and flexible. 
Indeed, they invariably contain the deterministic model as a special case! 
For a statistical model to be accurate and useful, it should fully incorporate 
the current state of our knowledge regarding the physical parameters of 
concern. Our solutions to statistical problems will be no more accurate than 
the models we use to describe both the physical laws involved and the state 
of knowledge or ignorance. 

The statistical approach is indeed somewhat more complex than the 
deterministic approach, for it requires knowledge of the elements of proba- 
bility theory. In the long run, however, statistical models are far more 
powerful and useful than deterministic models in solving physical problems 
of genuine practical interest. Hopefully the reader will agree with this 
viewpoint by the time this book is completed. 

1.2 STATISTICAL PHENOMENA IN OPTICS 

Statistical phenomena are so plentiful in optics that there is no difficulty in 
compiling a long list of examples. Because of the wide variety of these 
problems, it is difficult to find a general scheme for classifying them. Here 
we attempt to identify several broad aspects of optics that require statistical 
treatment. These aspects are conveniently discussed in the context of an 
optical imaging problem. 

Most optical imaging problems are of the following type. Nature assumes 
some particular state (e.g., a certain collection of atoms and/or molecules in 
a distant region of space, a certain distribution of reflectance over terrain of 
unknown characteristics, or. a certain distribution of transmittance in a 
sample of interest). By operating on optical waves that arise as a conse- 
quence of this state of Nature, we wish to deduce exactly what that state is. 

Statistics is involved in this task in a wide variety of ways, as can be 
discovered by reference to Fig. 1-1. First, and most fundamentally, the state 
of Nature is known to us a priori only in a statistical sense. If it were known 
exactly, there would be no need for any measurement in the first place. Thus 
the state of Nature is random, and in order to properly assess the perfor- 
mance of the system, we must have a statistical model, ideally representing 
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Propagation 
medium 

Source u:: / I I Focusing v Detector A 

Object optics 
(state of nature) 

Figure 1-1. An optical imaging system. 

the set of possible states, together with their associated probabilities. Usu- 
ally, a less complete description of the statistical properties of the object will 
suffice. 

Our measurement system operates not on the state of Nature per se, but 
rather on an optical representation of that state (e.g., radiated light, 
transmitted light, or reflected light). The representation of the state of 
Nature by an optical wave has statistical attributes itself, primarily as a 
result of the statistical or random properties of all real light waves. Because 
of the fundamentally statistical nature of the interaction of light and matter, 
all optical sources produce radiation that is statistical in its properties. At 
one extreme we have the chaotic and unordered emission of light by a 
thermal source, such as an incandescent lamp; at the other extreme we have 
the comparatively ordered emission of light by a continuous-wave (CW) gas 
laser. Such light comes close to containing a single frequency and traveling 
in a single direction. Nonetheless, any real laser emits light with statistical 
properties, in particular random fluctuations of both the amplitude and 
phase of the radiation. Statistical fluctuations of light are of great impor- 
tance in many optical experiments and indeed play a central role in 
determining the character of the image produced by the system depicted in 
Fig. 1-1. 

After interacting with the state of Nature, the radiation travels through 
an intervening medium until it reaches our measurement instrument. The 
parameters of that medium may or may not be well known. If the medium is 
a perfect vacuum, it introduces no additional statistical aspects to the 
problem. On the other hand, if the medium is the Earth's atmosphere and 
the optical path is a few meters or more in length, the random fluctuations 
of the atmospheric index or refraction can have dramatic effects on the wave 
and can seriously degrade the image obtained by the system. Statistical 
methods are required to quantify this degradation. 
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The light eventually reaches our measurement apparatus, which performs 
some desired operations on it before it is detected. For example, the light 
beam may pass through an interferometer, as in Fourier spectroscopy, or 
through a system of lenses, as in aerial photography. How well are the exact 
parameters of our measurement instrument known? Any lack of knowledge 
of these parameters must be taken into account in our statistical model for 
the measurement process. For example, there may be unknown errors in the 
wavefront deformation introduced by passage through the lens system. Such 
errors can often be modeled statistically and should be taken into account in 
assessment of the performance of the system. 

The radiation finally reaches an optical detector, where again there is an 
interaction of light and matter. Random fluctuations of the detected energy 
are readily observed, particularly at low light levels, and can be attributed to 
a variety of causes, including the discrete nature of the interaction between 
light and matter and the presence of internal electronic detector noise 
(thermal noise). The result of the measurement is related in only a statistical 
way to the image falling on the detector. 

At all stages of the optical problem, including illumination, transmission, 
image formation, and detection, therefore, statistical treatment is needed in 
order to fully assess the performance of the system. Our goal in this book is 
to lay the necessary foundation and to illustrate the application of statistics 
to the many diverse areas of optics where it is needed. 

1.3 AN OUTLINE OF THE BOOK 

Eight chapters follow this Introduction. Since many scientists and engineers 
working in the field of optics may feel a need to sharpen their abilities with 
statistical tools, Chapter 2 presents a review of probability theory, and 
Chapter 3 contains a review of the theory of random processes, which are 
used as models for many of the statistical phenomena described in later 
chapters. The reader already familiar with these subjects may wish to 
proceed directly to Chapter 4, using the earlier material primarily as a 
reference resource. 

Discussion of optical problems begins in Chapter 4, which deals with the 
" first-order" statistics (i.e., the statistics at a single point in space and time) 
of several hnds  of light waves, including light generated by thermal sources 
and light generated by lasers. Also included is an introduction to a for- 
malism that allows characterization of the polarization properties of an 
optical wave. 

Chapter 5 introduces the concepts of time and space coherence (which 
are "second-order" statistical properties of light waves) and deals at length 
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with the propagation of coherence under various conditions. Chapter 6 
extends this theory to coherence of order higher than 2 and illustrates the 
need for fourth-order coherence functions in a variety of optical problems, 
including classical analysis of the intensity interferometer. 

Chapter 7 is devoted to the theory of image formation with partially 
coherent light. Several analytical approaches to the problem are introduced. 
The concept of interferometric imaging, as widely practiced in radio astron- 
omy, is also introduced in this chapter and is used to lend insight into the 
character of optical imaging systems. The phase retrieval problem is intro- 
duced and discussed. 

Chapter 8 is concerned with the effects of random media, such as the 
Earth's atmosphere, on the quality of images formed by optical instruments. 
The origin of random refractive-index fluctuations in the atmosphere is 
reviewed, and statistical models for such fluctuations are introduced. The 
effects of these fluctuations on optical waves are also modeled, and image 
degradations introduced by the atmosphere are treated from a statistical 
viewpoint. Stellar speckle interferometry, a method for partially overcoming 
the effects of atmospheric turbulence, is discussed in some detail. 

Finally, Chapter 9 treats the semiclassical theory of light detection and 
illustrates the theory with analyses of the sensitivity limitations of amplitude 
interferometry, intensity interferometry, and stellar speckle interferometry. 

Appendixes A through C present supplemental background material and 
analysis. 
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Since this book deals primarily with statistical problems in optics, it is 
essential that we start with a clear understanding of the mathematical 
methods used to analyze random or statistical phenomena. We shall assume 
at the start that the reader has been exposed previously to at least some of 
the basic elements of probability theory. The purpose of thls chapter is to 
provide a review of the most important material, to establish notation, and 
to present a few specific results that will be useful in later applications of the 
theory. The emphasis is not on mathematical rigor, but rather on physical 
plausibility. For more rigorous treatment of the theory of probability, the 
reader may consult texts on statistics (e.g., Refs. 2-1 and 2-2). In addition, 
there are many excellent engineering-oriented books that discuss the theory 
of random variables and random processes (e.g., Refs. 2-3 through 2-8). 

2.1 DEFINITIONS OF PROBABILITY AND RANDOM VARIABLES 

By a random experiment we mean an experiment with an outcome that 
cannot be predicted in advance. Let the collection of possible outcomes be 
represented by the set of events { A ) .  For example, if the experiment 
consists of the tossing of two coins side by side, the possible "elementary 
events" are HH, HT, TH, TT, where H indicates "heads" and T denotes 
"tails." However, the set {A) contains more than four elements, since 
events such as "at least one head occurs in the two tosses" (HH or H T  or 
T H )  are included. If A, and A,  are any two events, the set { A )  must also 
contain A, and A,, A, or A,, not A, and not A,. In this way, the complete 
set { A) is derived from the underlying elementary events. 

If we repeat the experiment N times and observe the specific event A to 
occur n times, we define the relative frequency of the event A to be the ratio 
n / N .  It is then appealing to attempt to define the probability of the event A 
as the limit of the relative frequency as the number of trials N increases 
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without bound, 

n 
P ( A )  = lim - .  

N + a o  AJ 
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Unfortunately, although this definition of probability has physical ap- 
peal, it is not entirely satisfactory. Note that we have assumed that the 
relative frequency of each event will indeed approach a limit as N increases, 
an assumption we are by no means prepared to prove. Furthermore, we can 
never really measure the exact value of P ( A ) ,  for to do so would require an 
infinite number of experimental trials. As a consequence of these difficulties 
and others, it is preferable to adopt an axiomatic approach to probability 
theory, assuming at the start that probabilities obey certain axioms, all of 
whlch are derived from corresponding properties of relative frequencies. The 
necessary axioms are as follows: 

(1) Any probability P ( A )  obeys P ( A )  2 0. 
( 2 )  If S is an event certain to occur, then P ( S )  = 1. 
( 3 )  If A, and A ,  are mutually exclusive events, that is, the occurrence of 

one guarantees that the second does not occur, the probability of the 
event A,  or A, satisfies 

P ( A ,  or A , )  = P ( A , )  + P ( A , ) .  

The theory of probability is based on these axioms. 
The problem of assigning specific numerical values to the probabilities of 

various events is not addressed by the axiomatic approach, but rather is left 
to our physical intuition. Whatever number we assign for the probability of 
a given event must agree with our intuitive feeling for the limiting relative 
frequency of that event. In the end, we are simply building a statistical 
model that we hope will represent the experiment. The necessity to hypo- 
thesize a model should not be disturbing, for every deterministic analysis 
likewise requires hypotheses about the physical entities concerned and the 
transformations they undergo. Our statistical model must be judged on the 
basis of its accuracy in describing the behavior of experimental results over 
many trials. 

We are now prepared to introduce the concept of a random variable. To 
every possible elementary event A of our underlying random experiment we 
assign a real number u ( A ) .  The random variablet U consists of all possible 

+Here and in Chapter 3 we consistently represent random variables by capital letters and 
specific values of random variables by lowercase letters. 
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u(A), together with an associated measure of their probabilities. Note 
especially that the random variable consists of both the set of values and 
their associated probabilities and hence encompasses the entire statistical 
model that we hypothesize for the random phenomenon. 

2.2 DISTRIBUTION FUNCTIONS AND DENSITY FUNCTIONS 

A random variable U is called discrete if the experimental outcomes consist 
of a discrete set of possible numbers. A random variable is called continuous 
if the experimental results can lie anywhere on a continuum of possible 
values. Occasionally, a mixed random variable is encountered, with out- 
comes that lie on either a discrete set (with certain probabilities) or on a 
continuum. 

In all cases it is convenient to describe the random variable U by a 
probability distribution function FU(u), which is defined byt 

Fu(u)  = Prob(U s u ) ,  (2.2-1) 

or in other words, the probability that the random variable U assumes a 
value less than or equal to the specific value u. From the basic axioms of 
probability theory we can show that FU(u) must have the following 
properties: 

(1) FU(u) is nondecreasing to the right. 
(2) F U ( - m ) =  0. 
(3) Fu(+ 00) = 1. 

Figure 2-1 shows typical forms for FU(u) in the discrete, continuous, and 
mixed cases. Note that the probability that U lies between the limits 
a < U < b can be expressed as 

Of more importance to us in practical applications will be the probability 
density function, represented by pu(u)  and defined by 

+The symbol Prob ( ) means the probability that the event described within the brackets 
occurs. 
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Figure 2-1. Typical probability distribution functions for (a) discrete, ( b )  continuous, and ( c )  
mixed random variables. 
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For a continuous random variable U, there is no difficulty in applying this 
definition, for FU(u) is everywhere differentiable. Noting from the definition 
of a derivative that 

F,(U) - F,(u - Au) 
p u ( u )  = lim 

Au  9 

A u + O  

we see that for sufficiently small AM, 

p U ( u )  A M  = F,(u) - F,(u - Au) = Prob(u - A M  < U 5 u}, 

or in words, p,( u) A M  is the probability that U lies in the range u - A u  < 
U 5 u. From the fundamental properties of F"(u), it follows that pu(u)  
must have the basic properties 

The probability that U assumes a value between the limits a and b can be 
expressed in terms of the probability density function by 

When U is a discrete random variable, FU(u) is discontinuous, and 
hence p,(u) does not exist in the usual sense. By introducing Dirac 6 
functions (Ref. 2-9, Chapter 5), however, we can include this case withn our 
framework. The probability density function becomes 

where { ul, u,, . . . , u,, . . . } represents the discrete set of possible numerical 
values, and the S function is defined to have the propertiest 

6 ( ~  - u,) = 0; f Uk, 

The density function for a mixed random variable contains both a continu- 

va he symbol g ( u i )  signifies the limit of g ( u )  as u approaches uk from the left. For a 
continuous g ( u ) ,  g(u, )  = g(u,) .  
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Areas 

(b) (c) 

Figure 2-2. Typical probability density functions for ( a )  discrete, ( b )  continuous, and ( c )  
mixed random variables. 

P(u4) 

+ u  

Areas P(u3) 

Pbl) A 

ous component and 6-function components. Figure 2-2 illustrates the 
character of probability density functions in these three cases. 

Two specific probability density functions will illustrate the continuous 
and discrete cases; both are important to us for later work: 

u1 u2 "3 u4 

1 

1 
Gaussian density p , ( u )  = 

\ 
P(u2) 

00 

( k ) k e - z  - k ) ,  Poisson density p ,  ( u ) = 
k - 0  

where ii, a, and are parameters. 

2.3 EXTENSION TO TWO OR MORE JOINT RANDOM VARIABLES 

Consider two random experiments with sets of possible events { A )  and 
{ B ) . If the events are taken in pairs, one from each set, we define a new set 
of possible joint outcomes, which we denote { A X B }. The relative frequency 
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with which the specific event A occurs jointly with the specific event B is 
denoted n/N, where N is the number of joint experimental trials, whereas n 
is the number of times A and B occur as joint results of the two experi- 
ments. We assign a joint probability P(A, B) to this pair of outcomes, and 
the specific value of this probability is determined by our intuitive notions 
concerning the limiting value of the relative frequency n / N .  Since it is a 
probability, P ( A ,  B) must satisfy the axioms given in Section 2.1, 

To each outcome A of the first experiment we assign a numerical value 
u(A) and to each outcome B of the second experiment a value v(B). The 
joint random variable UV is defined to be the collection of all possible joint 
numbers (u,  v), together with an associated measure of probability. 

The probability distribution function FUv(u, v) for the joint random 
variable UV is defined as 

FU,(u, u )  b Prob{U I u and V 5 u )  (2.3-1) 

and the probability density function puv(  u, v) by 

Here the partial derivatives must be interpreted as existing either in the 
usual sense or in a &function sense, depending on whether Fuv is or is not 
continuous. The density function pu,(u, u )  must have unit volume, that is, 

/ / P u v ( ~ ,  V )  dudv = 1. 

If we know the joint probabilities of all specific events A and B, we may 
wish to determine the probability that a specific event A occurs, regardless 
of the particular event B that accompanies it. Reasoning directly from 
relative frequency concepts, we can show that 

P ( A )  = C P ( A ,  B) 
all 
B 

and similarly 

all 
A 
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Values P ( A )  and P ( B )  so defined are referred to as the marginal probabili- 
ties of A and B, respectively. 

In a similar fashion, the marginal probability density functions of the 
random variables U and V derived from the two random experiments are 
defined by 

These functions are the density functions of one random variable when the 
particular value assumed by the second random variable is of no concern. 

The probability of observing the event B in one experiment, given that 
the event A has already been observed in the other experiment, is called the 
conditional probability of B given A  and is written P ( B ( A ) .  Note that the 
relative frequency of the joint event ( A ,  B) can be written 

where n  is the number of times the joint event ( A ,  B) occurs in N trials, 
whereas m is the number of times A  occurs in N  trials, regardless of the 
particular value of B. But m / N  represents the (marginal) relative frequency 
of A,  whereas n / m  represents the (conditional) relative frequency of B, 
given that A has occurred. It follows that the probabilities of concern must 
satisfy 

P ( A ,  B )  = P ( A ) P ( B ( A )  

Similarly, 

Taken together, (2.3-5) and (2.3-6) imply that 

which is known as Bayes ' rule. 
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Following the above reasoning, the conditional probability density func- 
tions of U and V are defined by 

Finally, we introduce the concept of statistical independence. Two ran- 
dom variables U and V are called statistically independent if knowledge 
about the value assumed by one does not influence the probabilities 
associated with possible outcomes of the second. It follows that for statisti- 
cally independent random variables, we have 

This fact, in turn, implies that 

or, in words, the joint probability density function of two independent 
random variables factors into the product of their two marginal density 
functions.? 

2.4 STATISTICAL AVERAGES 

Let g ( u )  be a function that for every real number u assigns a new real 
number g(u) .  If u represents the value of a random variable, g ( u )  is also 
the value of a random variable. 

We define the statistical average (mean value, expected value) of g( u )  by 

For a discrete random variable, p u ( u )  is of the form 

More generally, two events A and B are statistically independent if P( A ,  B) = P( A) P( B). 
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with the result that 

For a continuous random variable, however, the average must be found by 
integration. 

2.4.1 Moments of a Random Variable 

The simplest average properties of a random variable are its moments, which 
(if they exist) are obtained by setting 

in Eq. (2.4-1). Of particular importance is the first moment (mean value, 
expected value, average value), 

00 

ii = ( up&) du, 

and the second moment (mean-square value), 

- 00 

u 2  = /- 00u2p, (u)  du. 

Often, the fluctuations of a random variable about its mean are of 
greatest interest, in which case we deal with the central moments, obtained 
with 

Of most importance is the second central moment, or variance, defined by 

As a simple exercise (see Problem 2 4 ,  the reader can prove the following 
relationshp between the moments of any random variable: 

The square root of the variance, o, is called the standard deviation and is a 
measure of the dispersion or spread of values assumed by the random 
variable U. 
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2.4.2 Joint Moments of Random Variables 

Let U and V be random variables jointly distributed with probability 
density function pu,(u, v). The joint moments of U and V are defined by 

u n v m k  // unvmpu,(u, v) dudv. 

Of particular importance are the correlation of U and V, 

00 

ruv = G =  // uvPuv(u~  v) dudv, (2.4-9) 
- 00 

the covariance of U and V, 

and the correlation coeficient 

The correlation coefficient is a direct measure of the similarity of the 
fluctuations of U and V. As we show in the argument to follow, the modulus 
of p always lies between zero and one. The argument begins with Schwarz's 
inequality, which states that for any two (real or complex-valued) functionst 
f(u, v) and g(u, v)? 

l o o  12 60 oo 
2 

( / / f (u ,u)g(u,v)dudvl  2 // / f ( u , v )  12dudv /I g ( u , v ) /  dudv 

with equality if and only if 

g(u, v) = af *(u, v). 

where a is a complex constant and * indicates a complex conjugate. Making 
the specific choices 

*We shall consistently use boldface characters to indicate quantities that are or could be 
complex valued. 
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we obtain 

or equivalently )CuvJ I u,ov, thus proving that 

If p = 1, we say that U and V are perfectly correlated, meaning that their 
fluctuations are essentially identical, up to possible scaling factors. If 
p = -1, we say that U and V are anticorrelated, meaning that their 
fluctuations are identical but in an opposite sense (again up to scaling 
factors), with a large positive excursion of U accompanied by a large 
negative excursion of V, for example. 

When p is identically zero, U and V are said to be uncorrelated. The 
reader can easily show (see Problem 2-2) that two statistically independent 
random variables are always uncorrelated. However, the converse is not true; 
that is, lack of correlation does not necessarily imply statistical indepen- 
dence. A classic illustration is provided by the random variables 

with 63 a random variable uniformly distributed on ( - lr/2,lr/2), that is, 

\ O  otherwise. 

Knowledge of the value of V uniquely identifies the value of U, and hence 
the two random variables are statistically dependent. Nonetheless, the reader 
can verify (see Problem 2-3) that U and V are uncorrelated random 
variables. 
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2.4.3 Characteristic Functions 

The characteristic function of a random variable U is defined as the expected 
value of exp( jou), 

00 

M u ( u )  a / exp( jwu)pu(u) du. (2.4-1 8) 
-00  

Thus the characteristic function is the Fourier transformt of the probability 
density function of U. If this integral exists, at least in the sense of 6 
functions, the relationship is an invertible one, and the probability density 
function is expressible as 

1 O0 

pu(u)  = -/ 2 m  -, Mu(o)exp(-jou) dw. 

The characteristic function thus contains all information about the first-order 
statistical properties of the random variable U. 

Under certain circumstances it is possible to obtain the characteristic 
function (and hence the probability density function by 2.4-19) from 
knowledge of the n th-order moments for all n. To demonstrate this fact, we 
expand the exponential in Eq. (2.4-18) in a power series, 

" (jwu)" 
exp( jwu) = C 

n - 0  
n! 

If we assume that the orders of summation and integration can be inter- 
changed, we obtain 

[As a result of conditions required for validity of the interchange of orders 
of integration and summation given above, this result is valid only if all the 
moments are finite and the resulting series converges absolutely (Ref. 2-3).] 

In addition, if the nth absolute moment J>,lul "p,(u) du exists, then the 
nth moment of U can be found from 

as is made plausible by Eq. (2.4-20). 

'For a brief review of Fourier transforms, see Appendix A. 
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The characteristic functions of the Gaussian and Poisson random vari- 
ables are readily shown to be 

0 *w2 
Gaussian: Mu(w) = e x p (  jwc) 

00 

Poisson: Mu(w) = - (')' e i e x p (  jwk) 
k = O  k !  

On occasion we shall have use for the joint characteristic function of two 
random variables U and V, defined by 

The joint density function is recoverable from MuV(wu, u ,) by a two- 
dimensional Fourier inversion. In addition, joint moments of U and V are 
expressible in the form (see Problem 2-5) 

provided (unvml < GO. 

Finally, the n th-order joint characteristic function of the random vari- 
ables U,, U,, . . . , Un is defined by 

1 a"+" 
unvm = rnMUV(uU.uv) (j) "'" 3 w t  3w 

Equivalently, in matrix notation we can write 

(2.4-23) 
w u = w y = 0  

where g and g are column matrices, 
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and the superscript t indicates a matrix transpose operation. The n th-order 
joint probability density function p , ( g )  can be obtained from M,(g) by 
an n th-order Fourier inversion. 

2.5 TRANSFORMATIONS OF RANDOM VARIABLES 

It is important in practical applications to be able to determine the 
probability density function of a random variable after it has been subjected 
to a linear or nonlinear transformation. Generally we know the probability 
density function p,(u) of the random variable U, and U is subjected to a 
transformation 

The problem is then to find the probability density function p,(z). Differ- 
ent approaches to this problem are possible, depending on the nature of the 
function f (u) .  

2.5.1 General Transformation 

We first treat the most general case, in which we assume only that f (u )  is 
single valued; thus each value of u maps into only one value of z. (For each 
z ,  however, there may be many values of u.) Figure 2-3 illustrates one 
possible function f ( u). 

To find p,(z), the most general approach is to first find the distribution 
function FZ(z) and then differentiate it with respect to z. Again referring to 
Fig. 2-3, we choose a specific value of z and let the symbol L, represent the 
set of all points on the u axis that map into values less than or equal to that 
z (L, is the crosshatched region of the u axis.) The region L, is, of course, a 
function of the particular value of z chosen. Now the probability that Z I z 
can be expressed as 

F, ( z )  = Prob ( U lies in L, ) . (2.5-2) 

The density function p,(z) is then given by 

d 
p,(z) = -Prob(U lies in L, ) .  

dz 

The application of this formalism is best understood with the aid of an 
example. Let U be a random variable with known density function p,(u) 



RANDOM VARIABLES 

Particular 

--- 

I I I I I I 
1 U 

I 
Figure 2-3. The crosshatched line segments represent the values of u for which the random 
variable Z will be less than or equal to the particular value of z shown. 

and let z = au2. The problem is to find p,(z). We first plot the function 
z = a u 2  in Fig. 2-4. Then we choose a particular value of z and identify the 
region L,, as shown in the figure. Clearly, 

Thls expression can be restated in the form 

To find the density function p,(z), it remains to differentiate (2.5-5) with 
respect to z. As an aid in this task, we make use of the general relation 
(which will be useful several times in the future) 

In this particular example we have 

for one integral and 
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Figure 2-4. The transformation z = rru2. The crosshatched region, bounded by u = i m, 
is the region L,. 

for the second. It follows that 

The reader may wish to try other examples suggested in Problem 2-7. 

2.5.2 Monotonic Functions 

If the transformation z = f ( u )  is a one-to-one mapping and thus invertible 
(each value of u  maps into one value of z and each value of z arises from a 
unique value of u ) ,  a simpler procedure can be used to find p,(z). Such a 
transformation is shown in Fig. 2-5. Consider a small increment A z  about 
the point z .  If we map this incremental region back through the transforma- 
tion, we obtain an increment Au about the point u  = f - ' ( z ) ,  where f -' is 
the inverse of f.  Now we use the fact that 

Prob(Z in A z )  = Prob(U in A u ) .  (2.5-8) 

For small Au and Az, this equality can be stated approximately as 
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Figure 2-5. Example of a one-to-one probability transformation. 

where u = f - ' ( z ) .  Furthermore, again for small A M  and Az, 

Substituting (2.5-10) in (2.5-9) and canceling Az, we obtain a relationship 
that becomes exact as Au and Az approach zero, 

Since du/dz = (dz/du)-l, we can equivalently write 

where Jdz/du) must be expressed in terms of the variable I. With either 
(2.5-11) or (2.5-12), p,(z) can easily be calculated in any specific case. 

Interpreting Eq. (2.5-12) in a physical way, we note that the slope &/du 
of the transformation controls the manner in which probability density in 
the u domain is spread over the z domain. If Idz/du( is large, a small region 
of u is mapped into a large region of 2; hence the probability density is 
spread thinly in the z domain. On the other hand, if )dz/duJ is small, a large 
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region of the u axis is mapped into a small region of the z axis, and 
probability density is accordingly mounded high in that region. 

As an example of the application of this method, consider the transfor- 
mation 

z,= cos u (2.5-13) 

and a probability density function 

\ 0 otherwise. 

This transformation is invertible over the region of u for which p,(u) is 
nonzero; the inverse function is 

The required derivative is 

and thus 

0 otherwise. 

Figure 2-6 shows a plot of p,(u), the transformation z = cosu, and the 
resulting p,(z). 

When the function z = f (u) is not invertible but does consist of invert- 
ible segments, a procedure similar to that used above can be employed. If 
on the nth segment the function can be represented by the invertible 
function f,(u), the probability density function of z can be written 

As a specific example we again take the square law characteristic z = au2, 



(c) 

Figure 2-6. Plots of (a) the probability density before transformation, ( b )  the transformation 
law, and ( c )  the probability density after transformation. 
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which can be inverted in segments as follows: 

On both segments we have 

and thus 

in agreement with Eq. (2.5-7). 

2.5.3 Multivariate Probability Transformations 

Consider two jointly distributed random variables W and Z that are 
functionally related to two underlying jointly distributed random variables 
U and V by 

We assume that the joint density function p,,(u, u )  is given, and we wish 
to find the joint density function p ,,(w, z ). 

In the most general case of interest, the mapping [Eq. (2.5-19)] is single 
valued [i.e., a given pair (u, u) maps into only one pair (w, z)], but not 
necessarily one to one and invertible. By analogy with Eqs. (2.5-2) and 
(2.5-3), we must find the joint distribution function FWz(w,  z) and then 
differentiate it with respect to w and z .  Let A,, represent the region of the 
(u, u) plane for which the inequalities W < w and Z < z  are both satisfied. 
Then 

F,,(w, z )  = ~ r o b ( ( u ,  u )  lies in A,,) 
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and 
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a2 
P W Z ( W ~ Z ) =  ,,az Prob((u, v) lies in A,, 1 .  

Since this most general approach will not be required in our later considera- 
tions, we defer an example to the problems (see Problem 2-8). 

If the mappings f ( u, u) and g(u, u) are one to one and have inverses, a 
simpler approach is possible. We write u and u in terms of w and z as 
follows: 

The probability that the values of u and u lie in an incremental area Au Av 
is equal to the probability that w and z lie in the elementary area AwAz, 
representing the projection of Au Av through the inverse transformation. 
Thus 

P w z ( ~ ,  2 )  AwAz = puv(u ,  u) Au Au.  (2.5-23) 

But for small ( Au, Au)  we have 

Au Au z I JI AwAz, 

where I JI is the Jacobian of the inverse transformation 

and the 11 1 )  signs indicate the modulus of the determinant. If Au  and Au 
are allowed to become arbitrarily small, the approximation (2.5-24) becomes 
arbitrarily good. Substituting (2.5-24) in (2.5-23) and canceling AwAz, we 
obtain 

which represents our final result. 
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In conclusion we note that the Jacobian JJI plays the same role as the 
derivative (du/dzl  in Eq. (2 .5- l l ) ,  indicating the redistribution of probabil- 
ity density due to the transformation. An example of the use of this result is 
deferred to the next section. 

2.6 SUMS OF REAL RANDOM VARIABLES 

Attention is now turned to the important problem of finding the probability 
density function of a random variable that is itself the sum of two other 
random variables. Let the random variable Z be defined as 

where U and V are random variables with joint probability density function 
puv(u, v) .  Knowing p,,(u, v ) ,  we wish to find p Z ( z ) .  For illustration 
purposes we shall find the solution by two different methods. 

2.6.1 Two Methods for Finding p Z ( z )  

As our first method for finding p , ( z ) ,  we calculate F Z ( z )  and differentiate 
with respect to z .  Figure 2-7 illustrates the calculation; choosing a particular 
value of z  we draw the line z  = u + v and identify the region within which 
the random variable Z is less than or equal to z .  The distribution function 

Figure 2-7. The shaded region represents the area within which Z I 2. 
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Fz(z) represents the probability that (u, u )  falls within this region. Calculat- 
ing this probability, we write 

With the help of Eq. (2.5-6), Fz(z) is differentiated with respect to z, 
yielding 

Thus from a given joint density function p,, we can now calculate p,. 
Next an alternative method for calculating the same result is illustrated. 

Here the result (2.5-26) for multivariate transformations is used. Since we 
have only one equation relating z, u, and v, a second transformation must 
be invented to suit our purposes. Exactly what the second transformation 
should be is not obvious, but it can be found with some trial-and-error 
experience. We choose the simple transformation w = u, yielding the pair of 
transformations 

z = u + v  

This transformation pair is invertible as follows: 

The Jacobian of the inverse transformation is 

With the use of Eq. (2.5-26), therefore, the joint density function of w and 
z is 

P W Z ( W ~  2) = P U V ( ~  - w,w)* (2.6-7) 

But we are interested only in the marginal density function pz(z), which we 
obtain by integrating p,, with respect to w, 

which is identical with the previous result (2.6-3). 
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2.6.2 Independent Random Variables 

If the random variable Z represents the sum of two independent random 
variables U and V, the function p , ( z )  acquires a particularly simple 
relation to the probability density functions of U and V. For independent U 
and V, the integrand of Eq. (2.6-8) factors, 

yielding 

Such an integral is recognized to be a convolution and arises so frequently 
that we use a special notation for it. In shorthand notation, we write the 
convolution (2.6-10) as 

The fact that p ,  is the convolution of p ,  and p ,  can also be derived in 
another way by using characteristic functions. Because of the brevity of this 
proof we present it here. The characteristic function of Z is by definition 

M . ( u )  = exp( j o z )  = exp[ j w ( u  + v ) ] .  (2.6-12) 

But since U and V are independent, the last average can be split into the 
product of two averages, 

Thus the characteristic function of Z is the product of the characteristic 
functions of u and v.  To find p , ( z )  we must inverse Fourier transform 
M , ( o ) .  But the inverse Fourier transform of a product of two functions is 
equal to the convolution of their individual inverse Fourier transforms. 
Hence we again obtain the result that p , ( z )  is equal to the convolution of 
p ,  and p,. This proof is a good indication of the simplifications that can 
often be obtained by reasoning with characteristic functions rather than 
directly with probability density functions. 

2.6.3 The Central Limit Theorem 

A basic theorem of enormous importance to us in later applications of 
statistics is the central limit theorem. In our discussion we first state the 
theorem in a form useful to us, then mention a set of sufficient conditions 
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that assure that it holds, and finally present an intuitive and nonrigorous 
" proof." 

Let U,, U2, . . . , U, be independent random variables with arbitrary proba- 
- bility distributions (not necessarily the same), means ii,, u,, . . . , ii,l, and 

2 2 variances o, , a,, . . . ,o:. Furthermore, let the random variable Z be defined 
by 

(Note that for every n ,  Z has zero mean and unit standard deviation.) Then 
under certain conditions that are often met in practice and are discussed 
below, as the number n of random variables tends to infinity, the probabil- 
i ty density function p,(r ) approaches a Gaussian density, 

There exists a large body of statistical literature on the conditions 
required for this theorem to hold. Here we are satisfied to state a set of 
sufficient conditions as follows (Ref. 2-6, p. 201):$ there must exist two 
positive numbers p and q such that 

a ? > p > O  
for all i .  

E [lu, - ii,13] < 9 

Finally, a brief and nonrigorous "proof' of the central limit theorem is 
presented. Let M,(u)  represent the characteristic function of the random 

- variable U, - u,; we assume that all such characteristic functions exist. It 
follows from (2.6-13) that the characteristic function of Z is 

According to the first condition of (2.6-16), the oi are bounded from below. 
Hence for any given o it is always possible to find an n large enough that 

t ~ e s s  stringent sufficient conditions can be stated (see Ref. 2-1, pp. 431-433). If the I/, have 
identical distributions, it sufices that the mean and variance of that distribution be finite. If the 
4 have different distributions, it suffices that they have finite means and finite (2 + B)th 
absolute central moment for some 6 > 0 and that they satisfy the so-called Lyapunov 
condition. 



GAUSSIAN RANDOM VARIABLES 3 3 

the argument of M i  is extremely small. The second condition of (2.6-16) 
guarantees that for small argument, Mi(w/ h o t )  is convex and parabolic 
[cf. Eq. (2.4-20)], 

Thus for sufficiently large n,  the characteristic function of Z behaves as 

Letting n grow without bound, we find 

a Fourier transform of this result yields 

Thus the density function of Z is asymptotically Gaussian. 
A word of caution should be injected here. Whereas p,(z) is asymptoti- 

cally Gaussian, the Gaussian density function may or may not be a good 
approximation to p,(z) for a finite n. The quality of the approximation 
depends on just how large n may be and how far out in the "tails" of p,(z) 
we wish to work. Results of questionable accuracy may be obtained if the 
Gaussian approximation is used to calculate probabilities of extremely large 
and improbable excursions of 2. Nonetheless, the central limit theorem is of 
great utility when applied to problems that contain enormous numbers of 
independent contributions. 

2.7 GAUSSIAN RANDOM VARIABLES 

In many problems in physics and engineering we encounter random phe- 
nomena that are the result of many additive and independent random 
events. By virtue of the central limit theorem, Gaussian statistics accord- 
ingly play a role of unsurpassed importance in the statistical analysis of 
physical phenomena. In this section we summarize the most important 
properties of Gaussian random variables. 
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2.7.1 Definitions 

RANDOM VARIABLES 

A random variable U is called Gaussian (or normal) if its characteristic 
function is of the form 

[ TI. M , ( w )  = exp joli - 

By appropriate differentiations of Mu(#), we can show that P and o are 
indeed the mean and standard deviation of the random variable U. More 
generally, the nth central moment is found to be 

1 . 3 . 5 .  . . .  
( - 6). = j -(n - t )o"  neven 

(2.7-2) 
0 n odd 

A Fourier inversion of Mu@) shows that the probability density function 
of U is 

A plot of this density function is shown in Fig. 2-8. 

Figure 2-8. The Gaussian probability density function. 



GAUSSIAN RANDOM VARIABLES 35 

Furthermore, n random variables Ul, U,, . . . , U, are said to be jointly 
Gaussian if their joint characteristic function is of the form 

where 

and C is an n x n covariance matrix, with element o,; in the ith row and 
k th column defined by 

The corresponding n th-order probability density function can be shown to 
be 

where I_CI and _C-I are the determinant and matrix inverse of _C, respec- 
tively, and g is a column matrix of the u values. 

Of most importance for our future work is the form of (2.7-7) when we 
have two jointly distributed Gaussian random variables U and V? each 
having zero mean, and with o$ = a: = o 2. In this case (2.7-7) becomes 

where 

Figure 2-9 shows contours of constant probability density in the ( u ,  u )  plane 
for the cases p = 0, 0 < p < 1, and p = 1. As the correlation coefficient 



Figure 2-9. Contours of constant probability 
density for a joint Gaussian density with 
- 2 2 2 
u = li = 0, a(, = o, = o , and (a )  p = 0, (b) 
0 < p < 1, ( c )  p = 1. 
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increases in a positive sense, the density function passes from circular 
symmetry to elliptical shape, with major axis along the line u = v.  For 
negative correlation coefficient, the major axis is the line u = - v. 

2.7.2 Special Properties of Gaussian Random Variables 

In addition to arising with great frequency in practical problems, the 
Gaussian random variable is notable for its many special properties that 
make it particularly easy to deal with. Here we summarize these properties, 
in most cases with at least an intuitive kind of proof. 

(a) Two Uncorrelated Jointly Gaussian Random Variables Are Also Statis- 
tically Independent. As pointed out in Section 2.4.2, lack of correlation 
rarely implies statistical independence. In the case of jointly distributed 
Gaussian random variables, however, the two properties are synonymous. 
To demonstrate this fact, we let the correlation coefficient p in Eq. (2.7-8) 
be identically zero, in which case the joint density function becomes 

Since the joint density function factors into the product of the two marginal 
density functions, U and V are independent. 

(b) The Sum of Two Statistically Independent Jointly Gaussian Random 
Variables Is Itself Gaussian. Suppose that U and V are Gaussian and 
independent, with characteristic functions 

[ q]. M v ( w )  = exp j w o  - 
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Let Z be the sum of U and V. Then by Eq. (2.6-13) we have 

Thus Z is a Gaussian random variable with mean ii + u' and variance 
2 2 aU + a,. 

(c) The Sum of Two Dependent (Correlated) Gaussian Random Variables 
Is Itself Gaussian. Let U and V be jointly Gaussian random variables with 
correlation coefficient p # 0. In addition, for simplicity let ii = 6 = 0 and 
0: = a: = u2. Then 

Let the random variable Z again be the sum of U and V. From Eq. (2.6-3), 
we obtain 

00 - 
- I_, du . 

2 no ',/G 
We next complete the square in the exponent of the integrand, giving 

The integral can be performed to yield 

- ( u -  ;I2 
- 
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Thus Z is Gaussian, with zero mean and variance 

When p + 0, a; -r 2u2, whereas when p -r 1, a: -t 4a2. 

(d) Any Linear Combination of Jointly Gaussian Random Variables, De- 
pendent or Independent, Is a Gaussian Random Variable. Let Z be defined 
by 

where the a ,  are known constants and the Lr, are jointly Gaussian. By 
repeated application of the result (2.7-lo), Z is readily seen to be Gaussian. 

(e) For Jointly Gaussian Random Variables U,, U,, . . . , 6, Joint Moments 
of Order Higher than 2 Can Always Be Expressed in Terms of the First- and 
Second-Order Moments. A moment of the form ufu4 . . u,k can be 
obtained by partial differentiation of the characteristic function as follows 
[cf., Eq. (2.4-23)]: 

Since the only parameters appearing in the characteristic function are means 
and covariances, the ( p  + q + + + k)th-order moment must be express- 
ible in terms of these first- and second-order moments. 

By differentiating the characteristic function an appropriate number of 
times, it is possible to prove the following basic property of zero-mean 
Gaussian random variables: 

where x, indicates the summation over all possible distinct groupings of the 
2k variables in pairs. It can be shown that there are ( 2 k ) ! / 2 k  k! such 
distinct groupings. For the most important case of k = 2, we have 
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This relationship is known as the moment theorem for real Gaussian random 
variables. 

2.8 COMPLEX-VALUED RANDOM VARIABLES 

In the previous sections we have studied the properties of random variables 
that take on real values. Frequently in the study of waves it is necessary to 
consider random variables that take on complex values. Accordingly, it will 
be helpful to explore briefly the methods that are used to describe complex- 
valued random variables. 

2.8.1 General Descriptions 

Underlying the definition of every random variable there is a space of events 
{ A )  and a set of associated probabilities P( A). If to each event A we assign 
a complex number u(A) ,  the set of possible complex numbers, together with 
their associated probability measures, define a complex-valued random 
variable U. 

To describe mathematically the statistical properties of the random 
variable U, it is usually most convenient to describe the joint statistical 
properties of its real and imaginary parts. Thus if U = R + jI  represents a 
complex random variable that can take on specific complex values u  = r + ji, 
a complete description of U entails specification of either the joint distribu- 
tion function of R and I ,  

F,(u) A i )  A Prob( R _< r and I 5 i ) ,  (2.8-1) 

or the joint density function of R and I,  

or, alternatively, the joint characteristic function of R and I, 

For n joint complex random variables U,, U,, . . . , U,, , which take on 
specific values u ,  = r, + ji,, u ,  = r, + ji,, and so on, the joint distribution 
function may be written 
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where the probability in question is the joint probability that all the events 
indicated occur, and the argument of Fu is regarded as a matrix with n 
complex elements, 

Corresponding to the distribution function Fu (a is a joint probability 
density function of the 2n real variables {r,, r,, . . . , r,,, i,, i2 , .  . . , i,,), 

Finally, it is possible to describe the joint statistics by means of a character- 
istic function defined by 

M. ( w ) E [exp( j w t u ) ]  (2.8-7) 

where _w and g are column matrices with 2n real-valued entries, 

2.8.2 Complex Gaussian Random Variables 

The n complex random variables U1,U2,. . . ,Un are said to be jointly 
Gaussian if their characteristic function is of the form 

where g is again given by (2.8-8), is a column matrix with 211 real-valued 
elements that are the mean values of the elements of g, and _C is a 2n x 2n 
covariance matrix, with real-valued elements, defined by 
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By means of a 2n-dimensional Fourier transformation of MU(@), the 
corresponding probability density function is found to be 

1 1 
P ~ ( - u )  = ( 2 " )  n l ~ ~ 1 / 2  exp{- ?(g  - ii)'cl(u - a)) (2-8-11) 

where I_CI and _C-' are, respectively, the determinant and inverse of the 
2n X 2n covariance matrix _C. 

For future reference, it is useful to define a special class of complex 
Gaussian random variables. But to do so we must first define some new 
symbols. Let and i be n-element column matrices of the real parts and 
imaginary parts, respectively, of the n complex random variables U, ( k  = 
1,2, .  . . , n);  thus 

Further, let the following covariance matrices be defined: 

c ( ~ ~ )  6 E [([ - ~ ) ( r  - ? ) ' I ,  - - c""P E [ ( j  - i : ) ( j  -!')*I 

We call the complex U, ( k  = 1,2,.  . . , n) jointly circular complex random 
variables if the following special relations hold: 

The origin of the term "circular" is perhaps best understood by consider- 
ing the simple case of a single circular complex Gaussian random variable. 
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We have 

where o,! and 0: are the variances of the real and imaginary parts of U, 
whereas p is the correlation coefficient of the real and imaginary parts. 
Imposition of the circularity conditions (2.8-14) and (2.8-15) yields the 
requirements 

Thus the 2 x 2 covariance matrix _C is given by 

and for the case of Gaussian statistics, the probability density function of U 
becomes 

Contours of constant probability are circles in the (r, i)  plane, and hence U 
is called a circular complex Gaussian random variable. 

Note that the real and imaginary parts of a circular complex Gaussian 
random variable are uncorrelated and hence independent. If U, and U, are 
two such joint random variables, however, the real part of U, may have an 
arbitrary degree of correlation with the real and imaginary parts of U2, 
provided only that the conditions 

are satisfied, in accord with (2.8-15). 
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Circular complex Gaussian random variables are frequently encountered 
in practice. An important property of such random variables is the complex 
Gaussian moment theorem, whch can be derived from the real Gaussian 
moment theorem (2.7-13), together with the conditions (2.8-14) and (2.8-15) 
for circularity. Let U,, U,, . . . , UZk be zero-mean jointly circular complex 
Gaussian random variables. Then 

where X denotes a summation over the k! possible permutations 
( p ,  4, .  . . , r )  of (1,2,. . . , k). For the simplest case of k = 2, we have 

2.9 RANDOM PHASOR SUMS 

In many areas of physics, and particularly in optics, we must deal with 
complex-valued random variables that arise as a sum of many small 
"elementary" complex-valued contributions. The complex numbers of con- 
cern are often phasors, representing the amplitude and phase of a mono- 
chromatic or nearly monochromatic wave disturbance. A complex addition 
of many small independent phasors results, for example, when we calculate 
the total complex amplitude of the wave that arises as a result of scattering 
by a collection of small, independent scatterers. More generally, such 
complex sums occur whenever we add a number of complex-valued analytic 
signals, which are defined and discussed in detail in Section 3.8. Sums of 
complex-valued random variables are referred to here as random phasor 
sums, and their properties are discussed in this section. 

2.9.1 Initial Assumptions 

Consider a sum of a very large number N of complex phasors, the k th 
phasor having random length a,/ fl and random phase 6,. The resultant 
phasor, with length a and phase 8 ,  is defined by 

and is illustrated in Fig. 2-10. 
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Imaginary 
Part 

Real 
Pad 

Figure 2-10. Random phasor sum. 

For simplicity of analysis, we make a number of assumptions about the 
st a tis tical properties of the elementary phasors composing the sum, proper- 
ties that are generally satisfied in practical problems of interest: 

(1) The amplitude a,/ and phase $, of the k th elementary phasor are 
statistically independent of each other and of the amplitudes and 
phases of all other elementary phasors. 

(2) The random variables are - identically distributed for all k, with 
mean E and second moment a2. 

(3) The phases $, are all uniformly distributed on (-T, T). 

Of the various assumptions, 1 is the most important, whereas 2 and 3 can 
both be relaxed, with some changes in the results [see, e.g., Ref. 2-10, pp. 
119-137, and Appendix B]. 

Let the real and imaginary parts r and i of the resultant phasor be 
defined by 

Noting that both r and i are sums of many independent random contribu- 
tions, we conclude that by virtue of the central limit theorem, both r and i 
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will be approximately Gaussian random variables for large N.? To specify in 
detail the joint density function for r and i, we must first calculate i ,  7, u:, 
of, and their correlation coefficient p. 

2.9.2 Calculations of Means, Variances, and the Correlation Coefficient 

The mean values of the real and imaginary parts r and i are calculated as 
follows: 

Here we have explicitly used the facts that a, and @, are independent and 
identically distributed for all k. But in addition, by assumption 3, the 
random variable is uniformly distributed on (-n, n), with the result -- 
cos 4 = sin 4 = 0 and hence 

Thus both the real and the imaginary parts have zero means. 
To evaluate the - variances - 0,' and of, we can equivalently evaluate the 

second moments r and i2 (since f = ; = 0). Using the independence of the 
amplitudes and phases, we write 

But in addition: 

0 k # n  
cos @,cos +,, = sin @,sin @,, = 

k = n ,  

t~ subtlety has been avoided in this argument. Although the marginal statistics of r and r 
clearly are asymptotically Gaussian, we have not proved that the two random variables are 
jointly Gaussian. Such a proof is provided in Appendix B. 
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again due to the uniform distribution of the phases. Thus we have 

Finally we evaluate the correlation between r and i ,  

Noting that cos 4 sin+ = f sin 24, we have 

-- 
cos+sin+=O k # n  

cos +,sin +n = 
$ s i n 2 + = 0  k = n .  

Thus the real and imaginary parts of the resultant are uncorrelated. Note 
that the zero means, equality of variances, and lack of correlation are true 
for any N, finite or infinite. 

To summarize our results, we now know that in the limit of very large N, 
the joint density function of the real and imaginary parts of the random 
phasor sum is asymptotically ( N  4 oo) 

where 

In the terminology given in Section 2.8, the random variable a representing 
the resultant is a circular complex Gaussian random variable. Figure 2-11 
shows contours of constant probability density in the (r ,  i )  plane. 

The reader will find in Appendix B that when a distribution p,(+) other 
than uniform is chosen for the phase of an elementary phasor, the resulting 
two-dimensional joint density function will in general not have zero means, 
equal variances, and zero correlation coefficient. Rather, the contours of 
constant probability density will be ellipses in the complex plane (see, e.g., 
Problem 2-10). 
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2.9.3 Statistics of the Length and Phase 

In the previous section we found the joint statistics of the real and 
imaginary parts of a random phasor sum. In many applications it is desired 
to know instead the statistics of the length a and phase 8 of the resultant, 
where 

1 L  8 = tan- . 
r 

The change from rectangular to polar coordinates is a one-to-one mapping, 
and hence we can use the methods given in Section 2.5.3. to find the joint 
statistics of a and 8. The inverse functions are 

r = acos8 

i = asind, 

and the corresponding Jacobian is 

Figure 2-1 1. Contours of constant probability density in the ( r ,  i )  plane. 

I1 JII = 

dr dr - - 
aa 88 
ai d i - - 
da 88 

llcos8 -asinO// - - = a .  
sin 8 a cos 8 

(2.9-9) 
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Thus we have a joint density function 

whlch becomes, with the help of (2.9-5), 

a a 2  - 7 T < e s 7 T  
a > O  (2.9-11) 

otherwise. 

The marginal densities of the length and phase can now be found. 
Integrating first with respect to angle 8, we have 

a 
 PA^) = J" pA,(a, 6 )  do 

= i 7 e x p ( - }  u a > *  

-71 

0 otherwise. 

T h s  density function is known as a Rayleigh density function and is plotted 
in Fig. 2-12. Its mean and variance are 

To find the probability density function of the phase 8, we integrate Eq. 
(2.9-11) with respect to a, 

0 otherwise. 

But the integral is precisely the integral of a Rayleigh density function and 
hence must be unity. We conclude that the phase 0 of the resultant is 
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Figure 2-12. Rayleigh probability density function. 

uniformly distributed on ( -  n, n), 

\ 0 otherwise. 

Note that the joint density function pAe(a ,  0 )  can be expressed as a 
simple product of the marginal densities p , ( a )  and p a ( @ ) .  Thus A and O 
are independent random variables, as were the real and imaginary parts R 
and I described in Section 2.9.2. 

2.9.4 A Constant Phasor Plus a Random Phasor Sum 

We consider next the statistical properties of the sum of a constant known 
phasor plus a random phasor sum. Without loss of generality, the known 
phasor can be taken to be entirely real and positive with length s (thls 
simply amounts to choosing a phase reference that coincides with the phase 
of s). Figure 2-13 illustrates the compIex sum of interest. 
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Figure 2-13. Sum of a constant phasor and a random phasor sum. 

The real part of the resultant phasor is readily expressible as 

whereas the imaginary part remains as before, 

Thus the only effect of adding the known phasor has been to add a bias to 
the real part of the resultant phasor. In the limit of large N, the joint 
statistics of R and 1 remain approximately Gaussian, but with a modified 
mean, 

Again our chief interest is often in the statistics of the length a  and phase 
0 of the resultant phasor. Since the transformation to polar coordinates is 
identical to that considered earlier, the Jacobian remains a ,  and 

( a  cos 0 - s)*  + ( a  a > O  
2u2 -77<es77 

0 otherwise. 
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To find the marginal density function for A ,  we must evaluate 

The integral can be expressed as 2slo(as/02), where I, is a modified Bessel 
function of the first kind, zero order. Thus 

a ' O (2.9-20) 

otherwise, 

which is known as a Rician density function. 
Figure 2-14 plots apA(a) against a/a for various values of the parameter 

k = s/a. As the strength of the known phasor increases, the shape of the 
probability density function changes from that of a Rayleigh density to 
what will be seen in the next section to be approximately a Gaussian density 
with mean equal to s. 

0 1 2 3 4 5 6 7 8 a 

Figure 2-14. Probability density function of the amplitude A of the sum of a constant phasor 
(length s )  and a random phasor sum (variance u 2 ) .  Parameter k = s /a .  (After J .  B. Thomas, 
Ref. 2-6, p. 163. Reprinted with the permission of the author and John Wiley and Sons, Inc.) 
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Two moments of the density function (2.9-20) will be of use to us in later 
chapters. These are the mean value, 

and the second moment, 

These integrals can be evaluated and yield (see Ref. 2-6, Section 4.8) 

where I ,  and I, are modified Bessel functions of the first kind, orders zero 
and one, respectively. 

-7r - T I  lT 7r 0 2 T 
Figure 2-15. The probability density function pe(B) for a constant phasor plus a random 
phasor sum. Again the parameter k is s / a .  (After J. B. Thomas, Ref. 2-6, p. 167. Reprinted 
with the permission of the author and John Wiley and Sons, Inc.) 
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To find the marginal density function p,(B) for the phase, we must 
evaluate 

The integration is a difficult one, so we present only the result here (see Ref. 
2-6, Section 4.8 again): 

where 

A plot of p,(B) is shown in Fig. 2-15 for various values of k = s/a. When 
k = 0, the distribution is uniform, whereas with increasing k the density 
function becomes more narrow, converging toward a S function at 8 = 0, 
the phase of the constant phasor. 

2.9.5 Strong Constant Phasor Plus a Weak Random Phasor Sum 

When the known phasor is much stronger than the random phasor sum, the 
results obtained in the previous section simplify considerably. Thus we wish 
to consider the approximate form of the expressions for p,(a) and pe(9) 
when s >> a,  or equivalently k >> 1. One approach is to apply the condition 
s >> a to equations (2.9-20) and (2.9-25) and to discover the approximate 
forms through mathematical approximation. However, we choose here a 
more physical approach that yields exactly the same results in a more 
appealing way. 

Our approximation is based on the observation that when s a, we are 
dealing with a tiny probability "cloud" centered on the tip of an extremely 
long, known phasor, as shown in Fig. 2-16. In such a case, with extremely 
high probability, the resultant of the random phasor sum is much smaller 
than the length of the known phasor. As a consequence, variations in the 
length a of the total resultant are caused primarily by the real part of the 
random phasor sum, whereas variations of the phase B of the resultant are 
caused primarily by the imaginary part of the random phasor, which is 
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A 

Noise 
cloud 

Re 

Figure 2-16. Large constant phasor s plus a small "noise cloud." 

orthogonal to the known phasor. Since the real part of the random phasor 
sum is Gaussian with zero mean, we have that 

As for the phase 0, with s >> a its fluctuations will be small about zero, 
and 

Therefore 

or 

We conclude that both A and O are approximately Gaussian for s >> a. 
For the amplitude we have mean ii = s and variance a: = a 2, whereas for 
the phase we have 8 = 0 and a: = l / k  = a 2 / s  '. These results provide 
useful approximations when the condition s  >> a is met. 
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PROBLEMS 

2-1 Show that for any random variable U, 

u 2  = o2  + (ii)2. 

2-2 Show that any two statistically independent random variables have a 
correlation coefficient that is zero. 

2-3 Given the random variables 

U = coso  

with 

77 --  77 

2 
< t ? s  - 

2 
otherwise, 

show that p = 0. 



PROBLEMS 5 7 

2-4 Prove the following properties of characteristic functions: 

(a) Every characteristic function has value unity at zero argument. 

(b) The second-order characteristic function M ,,( w ,, w ,) with 
w , = 0 is equal to the characteristic function M ,(a)  of the 
random variable U alone. 

(c) For two independent random variables U and V, 

2-5 Show that the moment u"vm, if it exists, can be found from the joint 
characteristic function M ,,( w ,, w ,) by the formula 

2-6 (a) Show that a sum of two statistically independent Poisson- 
distributed random variables is Poisson distributed. 

(b) Show that if K is Poisson distributed, then 

2-7 Find the probability density function of the random variable Z in 
terms of the known density function p,( u )  when 
(a) z = a u  + b 

(b) z = ( jU' - l < u s l  
otherwise. 

2-8 Using the method given in Eq. (2.5-20), find the joint probability 
density function p ,,( w, z ) when 

and p,,(u, v) = rect u rect v, where rect x = 1 for 1x1 5 4 and is 
zero otherwise. 

2-9 Consider two independent, iden tically distributed random variables 
8, and @,, each of which obeys a probability density function 

0 otherwise. 
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(a) Find the probability density function of the random variable Z 
defined by 

(b) If Z represents a phase angle that can only be measured modulo 
277, show that, despite the result of (a), Z is uniformly distrib- 
uted on ( - n, n). 

2-10 Consider the random phasor sum in Section 2.9.1 with the single 
change that the phases +, are uniformly distributed on (- n/2, n/2). 
Find the following quantities: i ,  ;, of, o:, and p,,. Make a rough plot 
of the contours of constant probability in the complex plane. 

2-11 Let the random variables Ul and U2 be jointly Gaussian, with zero 
means, equal variances, and correlation coefficient p # 0. Consider 
new random variables V, and V2 defined by a rotational transforma- 
tion about the origin of the ( u , ,  24,) plane, 

where rp is the rotation angle. Show that if rp is chosen to be 45", V, 
and V2 are independent random variables. What are the means and 
variances of Vl and V2 in this case? 

2-12 Consider n independent random variables U,, (I,, . . . , L(, , each of 
which obeys a Cauchy density function, 

(a) Show that this density function violates one of the conditions 
(2.6-16) associated with the validity of the central limit theorem. 

(b) Show that the random variable 

obeys a Cauchy distribution for all n. 

2-13 A certain computer contains a random number generator that gener- 
ates numbers with uniform relative frequencies (or probability den- 
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sity) on the interval (0,l). Suppose, however, that it is desired to 
simulate trials of a random variable Z with density function p,(z) 
that is not uniform. 

(a) If the values generated by the computer are represented by u, 
with 

1 O < u < l  
pu (U)  " ( 0  otherwise, 

show that by means of a monotonic transformation z = g(u) it 
is possible to obtain the desired p,(z), and that if u = G(z) 
represents the inverse of g(*), then G should be chosen to satisfy 

where / is an indefinite integral. 
(b) Show that to generate a random variable with probability den- 

sity 

o s z < o o  
otherwise, 

either of the following transformations could be used: 



Random Processes 

A natural generalization of the concept of a random variable is a random 
process, for whlch the basic unpredictable or random events are functions 
(usually of time and/or space) rather than numbers. The theory of random 
processes thus deals with the mathematical description of functions having a 
structure that cannot be predicted in detail in advance. Such functions play 
a role of great importance in optics; for example, the wave amplitude 
emitted by any real source has properties that change with time in an 
unpredictable way to some degree. In this chapter we review the basic 
concepts underlying the theory of such random phenomena. Emphasis is 
placed here on functions of time. However, generalizations to functions of 
space are straightforward. 

3.1 DEFINITION AND DESCRIPTION OF A RANDOM PROCESS 

Underlying the concept of a random process is again a random experiment, 
with a set of possible events { A )  and an associated probability measure. To 
define a random variable, we assigned a real-valued number u(A) to each 
elementary event A. To define a random process, we assign a real-valued 
function u( A; t ), with independent variable r ,  to each elementary event A.  
The collection of possible " sample functions" u( A ;  t ), together with their 
associated probability measure, constitute a random process. 

In general, the explicit dependence of the random process on the underly- 
ing set of events {A)  is not indicated in notation, with the random process 
represented by the symbol U ( t )  and the specific sample functions indicated 
by lowercase letters u ( t ) .  It should be remembered, however, that U ( t )  
consists of an entire ensemble of possible u(t ), together with a measure of 
their probabilities. 

There are various possible ways to describe a random process mathemati- 
cally. Most general is a complete denumeration of all sample functions 
composing the random process, together with a specification of their proba- 
bilities. We illustrate this complete description with the following example. 
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Let the underlying random experiment consist of two tosses of a "fair" 
coin, that is, a coin that is equally likely to land heads or tails. The 
"elementary events" in the set { A) are A, = HH, A, = HT, A,  = TH, and 
A, = TT. To each elementary event we assign a sample function as shown 
below: 

In each case the probability associated with the corresponding event must 
be calculated. Note that if several different events generate the same sample 
function, all possible ways of generating each sample function must be 
discovered, and the probability that any of these events occurs becomes the 
probability associated with that sample function. Thus, with much labor we 
arrive at a denurneration of all sample functions in the ensemble, together 
with their probabilities; a complete description of the random process is 
then in hand. 

Such a complete description is seldom possible or even desirable. In most 
practical applications only a partial description of the random process is 
needed for calculation of the quantities of physical interest. Various differ- 
ent kinds of partial descriptions are possible. In some applications it may 
suffice to view the parameter t as fixed and to specify the $rst-order 
probability density function of the random variable U ( t ) ,  which we denote 
by p,(u; t ). From such a description we can specify ii, u 2  and other 
moments of U for any value of t. 

More commonly, the second-order probability density function of U with 
parameter values t, and t, is required. Figure 3-1 illustrates the ensemble of 
waveforms and a pair of parameter values t, and t2. The second-order 
density function is the joint density function of the random variables U(t,) 
and U(t2). In general this density function depends on both r, and I ,  and 
hence is denoted p,(u,, 1.4,; t,, t,), where u, = u(t,), u, = u( t , ) .  From 
such a description we can calculate joint moments, such as 
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In some cases, even hgher order density functions may be required. To 
completely describe the random process U(t), it must be possible to specify 
the k th-order density function p,(u , ,  u,, . . . , u,; t , ,  t , ,  . . . , t,) for all k. 
Such a description is equivalent to the complete description discussed 
previously and generally is just as difficult to state. In practice, a complete 
description is never needed. 

In closing, we note that a random process is a mathematical model that is 
useful to us only before the exact sample function u(t) is determined by 
measurement. Before the measurement, the random process represents our 
a priori state of knowledge. After u(t) has been determined by measure- 
ment, only one sample function remains of interest, namely, the one that 
was observed. 

Figure 3-1. An ensemble of sample functions, where t I  and t2 are the parameter values for 
which the joint density function pu (ul, u2; tl  , t 2 )  is specified. 
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3.2 STATIONARITY AND ERGODICITY 

Of the infinite variety of random process models that could in principle be 
constructed, only certain restricted types are of great importance in physical 
applications. Various restricted classes are defined and discussed in ths  
section. T h s  classification is by no means complete or exhaustive but merely 
identifies certain types of models we deal with in the future. 

A random process is called strictly stationary if the kth-order joint 
probability density function p,( u,, u,, . . . , u,; I,, t ,, . . . , t ,  ) is independent 
of the choice of time orign for all k. Stating this definition mathematically, 
we require that 

= pU(u1, u?,. . . , u k ;  t I  - T, t2  - T,. . . , t k  - T )  

(3.2-1) 

for all k and all T. For such a process, the first-order density function is 
independent of time and hence can be written pu(u). Similarly, the 
second-order density function depends only on the time difference r = 

t ,  - t ,  and can be written pU(ul, 2.4,; 7). 

A random process is called wide-sense stationary if the following two 
conditions are met: 

(i) E [u(t )] is independent of t. 

(ii) E[u(t,)u(t,)] depends only on r = t, - t,. 

Every strictly stationary random process is also wide-sense stationary; 
however, a wide-sense stationary process need not be strictly stationary. 

If the difference U(t,) - U(t,) is strictly stationary for all t, and t,, U(t ) 
is said to have stationary  increment^.^ If O(t) is a strictly stationary random 
process, the new random process 

[constructed from integrals of the sample functions of @(t)] is nonsta- 
tionary but does have stationary increments. Such random processes play an 
important role in certain practical problems. 

'We should differentiate here between strictly stationary increments and wide-sense stationary 
increments. For simplicity, however, we try to avoid using too many qualifiers and assume the 
kind of stationarity actually needed in each case. 
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Since a full description of a random process is seldom needed or even 
possible, we are generally satisfied with descriptions of finite-order (espe- 
cially first- and second-order) statistics. In such cases it is necessary only to 
know the stationarity properties of the random process to finite order. (For 
example, are the second-order statistics strictly stationary, wide-sense sta- 
tionary, or stationary in increments?) When in the future we refer to a 
random process simply as stationary, without specifying the type or order of 
stationarity, we mean that the particular statistical quantities necessary for 
use in our calculation are assumed to be independent of the choice of time 
origin. Depending on just what calculations are to be performed, the term 
may mean different types of stationarity in different cases. When there is 
danger of confusion, the exact type of stationarity assumed is stated 
precisely. 

The most restrictive class of random processes and the class used most 
frequently in practice is the class of ergodic random processes. In this case 
we are interested in a comparison of the properties of an individual sample 
function as it evolves along the time axis, with the properties of the entire 
ensemble at one or more specific instants of time. We may state this in the 
form of a question by asking whether each sample function is in some sense 
typical of the entire ensemble. 

For a more precise definition, a random process is called ergodic if every 
sample function (except possibly a subset with zero probability) takes on 
values along the time axis (i.e., "horizontally") with the same joint relative 
frequencies observed across the ensemble at any instant or collection of 
instants (i.e., " vertically"). 

For a random process to be ergodic, it is necessary that it be strictly 
stationary. This requirement is perhaps best understood by considering an 
example of a random process that is nonergodic by virtue of nonstationar- 
ity. Sample functions of such a process are shown in Fig. 3-2. Suppose that 
all sample functions have exactly the same relative frequency distributions 
along the time axis. Now clearly the relative frequencies observed across the 
process at time instants t l  and t will not be the same since the fluctuations 
of all sample functions are greater at t, than at t,. Thus there is no unique 
distribution of relative frequencies across the process. Hence the relative 
frequencies observed across the process and along the process cannot be 
equal for all time. The process is thus nonergodic. 

Although a process must be strictly stationary to be ergodic, not all 
strictly stationary processes are necessarily ergodic. We illustrate thls fact 
with a specific example. Let U ( t )  be the random process 

where w is a known constant, whereas A and @ are independent random 
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variables with probability density functions 

- - n < + I n  

otherwise. 

Because of the uniform distribution of @ on ( - n, n), ths random process is 
strictly stationary. However, as illustrated in Fig. 3-3, a single sample 

t 1 t2  

Figure 3-2. Sample functions of a nonstationary random process. 
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function is not typical of the entire process. Rather, there are two classes of 
sample functions; one class has amplitude 1 and the other, amplitude 2. 
Each class occurs with probability $. Clearly the relative frequencies ob- 
served along a sample function with amplitude 1 are different from the 
relative frequencies when the amplitude is 2. Thus not all sample functions 
have the same relative frequencies in time as those observed across the 
process. 

If a random process is ergodic, any average calculated along a sample 
function (i.e., a time average) must equal the same average calculated across 
the ensemble (i.e., an ensemble average). Thus if g(u) is the quantity to be 
averaged, we have that the time average, 

' 
Figure 3-3. A stationary process that is nonergodic. 
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must equal the ensemble average 

For an ergodic random process, time and ensemble averages are equal and 
interchangeable. 

An important question remains. How can we methodically determine 
whether a certain random process model, which we believe accurately 
represents the random phenomenon under study, is ergodic? To establish 
ergodicity, it is necessary to consider the entire ensemble of sample func- 
tions. This ensemble can be said to be ergodic provided (Ref. 2-5, p. 56): 

(a) The ensemble is strictly stationary. 
(b) The ensemble contains no strictly stationary subensembles that occur 

with probability other than zero or one. 

It should be noted that some random phenomena require a nonergodic 
ensemble for accurate modeling. 

Figure 3-4. The hierarchy of classes of random processes. 
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The hierarchy of types of random processes is illustrated in Fig. 3-4, 
whch shows the progression from the broad collection of all random 
processes to the far narrower class of ergodic random processes. The circles 
within circles represent subsets of the broader collections in each case. 

3.3 SPECTRAL ANALYSIS OF RANDOM PROCESSES 

Let u(t) be a known function of time. Two different classes of time 
functions can be distinguished. If u(t ) has the property that 

we say that u( t ) is Fourier transformable. On the other hand, it may be that 
u(t) does not satisfy (3.3-1) but does satisfy 

in whch case we say that u(t) has jinite average power. In each case it is 
important in practice to be able to specify the distribution of energy [when 
Eq. (3.3-1) is satisfied] or average power [when Eq. (3.3-2) is satisfied] over 
frequency. Such descriptions are called, respectively, the energy spectral 
density (energy spectrum) and the power spectral density (power spectrum) 
of the function u(t). 

Similarly, if U(t) is a random process with sample functions satisfying 
(3.3-1) or (3.3-2), it is important to be able to characterize the manner in 
whlch energy or average power is distributed over frequency, not just for 
one sample function but for the entire random process. Since the particular 
sample function that will occur experimentally is unknown in advance, the 
logical quantity to be concerned with is the expected distribution of energy 
or average power over frequency. These expected or mean distributions are 
called, respectively, the energy spectral density and the power spectral density 
of the random process U ( t ) .  The distinction between spectral densities of 
known functions and of random processes is an important one and is 
developed in further detail in the following section. 

3.3.1 Spectral Densities of Known Functions 

If u(t) is a Fourier transformable function, then 
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always exists. Further, according to Parseval's theorem (Ref. 2-6, p. 380), 
the area under I Q(v)1 is equal to the total energy contained in u(t); that 
is, 

Thus the quantity 

has the dimensions of energy per unit frequency, and we accordingly refer 
to it as the energy spectral density of u(t). 

On the other hand, suppose that u ( t )  is not Fourier transformable but 
does have finite average power. Then, in general, the integral (3.3-3) does 
not exist. However, the truncated function 

\ 0 otherwise 

does have a transform, which we denote by eT(v) .  Furthermore, the 
quantity I 'lVT ( v )  1 represents the distribution of energy over frequency for 
the truncated waveform u,( t ). Thus the normalized energy spectrum 

has the dimension of power per unit frequency, and we are logically led to 
define the power spectral density of u ( t )  by 

g ( v )  2 lim IQ,(v)12 
7' T-r  a0 

Such a definition works adequately for some functions. For example, the 
reader may wish to prove, by means of the limiting process above, that the 
function 

u ( t ) = l  (a l l t )  

has a power spectral density 
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Therefore, whereas strictly speaking, the limit above does not exist in this 
case, it does exist in the sense of S functions. 

Unfortunately, however, there are also many functions for which the limit 
does not even exist in the sense of 8 functions. Rather, the value of 9 , ( v )  
fluctuates erratically at each v as T is increased without bound. Such is 
often the case when u(t) represents a sample function of a stationary 
random process. 

In addition, note that the above definitions of B(v) and 9(v) apply only 
for a single function u(t), but a random process contains an entire ensemble 
of different functions. Clearly a different definition of power spectral density 
is needed for a random process. 

3.3.2 Spectral Density of a Random Process 

There exists a simple and logical modification of the definitions of energy 
and power spectral densities that proves quite satisfactory in practice. Since 
we wish to find a spectral distribution that characterizes an entire random 
process, it is logical to define such quantities in terms of averages over the 
entire random process. Accordingly, we define the energy and power spec- 
tral densities, respectively, by 

Su(v) )P lim E [l@,(v)121 
T T + w  

The latter limit does indeed exist in most cases of practical interest. 
Several basic properties of spectral density functions follow directly from 

the definitions (3.3-7): 

(i) 8Jv) 2 0, Y,(v) 2 0; energy and power spectral densities are non- 
negative (and real-valued). 

(ii) gU(- v) = BU(v), gU(-  v) = g,(v); energy and power spectral den- 
sities are even functions of v, provided U(t) is a real-valued random 
process. 

(hi) 
00- 

(* &(v) dv = ( u2(t)  dt, 

- 
00 u 2  for U(t) stationary 

( u2(t)  ) for U (  t ) nonstationary . 
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Proofs of these properties are straightforward. Property (i) follows directly 
from the positivity of the right-hand sides of Eq. (3.3-7). Property ( i i)  
follows from the hermitian character of Q ( v )  and W , . ( v )  [i.e., Q ( -  v )  = 

C * ( v ) ,  4PT(- V )  = 4P:(v)] for any real-valued u ( t ) .  Property (iii) for the 
energy spectral density follows from Parseval's theorem and an interchange 
of orders of averaging and integration. Property (iii) for power spectral 
densities can be proved by noting 

1 00 

= T -  lim 03 , E [ / - ,  1 Q , ( v ) 1 2 d v ]  = T-+ lim Go l~[jOO T u $ ( t )  d t ]  
-MI 

where Parseval's theorem was used in the last step. Continuing, 

1 
lim - E  [ j e  u $ ( t )  d t ]  = lim L/T'2 6 [ u $ ( t ) ]  dt 

T+oo T - CX) T - r m  T - T / 2  

if U ( t )  is stationary 

if U( t ) is nonstationary. 

Thus the basic properties have been proved. 

3.3.3 Energy and Power Spectral Densities for Linearly Filtered 
Random Processes 

Let the random process V ( t )  consist of sample functions that result from 
passing all sample functions of the random process U ( t )  through a known 
linear filter? Then V ( t )  is called a linearly filtered random process. In the 
case of a random process with Fourier transformable sample functions, we 
wish to find the relationship between the energy spectral densities & ( v )  of 
the filter output and &,(v )  of the filter input. If the sample functions of 
U ( t )  are not Fourier transformable but do have finite average power, the 
desired relationship is between the power spectral densities Y,(v)  and 
S , ( v ) .  

The case of Fourier transformable waveforms is considered first. The 
linear filter is assumed to be time invariant, in whlch case a single output 
sample function is related to the corresponding input sample function u(t  ) 

For a review of the properties of linear filters, see, for example, Ref. 2-9, Chapter 9. 



RANDOM PROCESSES 

by a convolution 

where h (t ) represents the known response of the filter at time t to a unit 
impulse applied at time t = 0 (i.e., h(t) is the "impulse response" of the 
filter). In the frequency domain, t h s  relationshp becomes a simple multi- 
plicative one, 

where Y ( v )  and @(v) are the Fourier transforms of v(t) and u ( t )  and 
H ( v )  is the Fourier transform of h(t)  (called the transfer function). The 
definition given in Eq. (3.3-7a) is now used for BV(v), 

Thus the average spectral distribution of energy in the random process is 
modified by the simple multiplicative factor (&'(u) 1 2. 

For the case of finite-average-power processes, the relationship between 
the power spectral densities $,(v) and gU(v)  must be found by a more 
subtle argument. In this case the Fourier transforms Y ( v )  and @(v) 
generally do not exist. However, the truncated waveforms o,(t) and u,.(t) 
do have transforms YT(v) and QT(v). Furthermore, although the relation- 
s h p  is not exact due to "end effects," we can nonetheless write 

with an approximation that becomes arbitrarily good as T increases.+ 
Subject to the same approximation, we have the frequency domain relation- 
ship 

The approximation arises because the response of the filter to a truncated excitation is in 
general not itself truncated. As T grows, however, these end effects eventually have negligible 
consequence. 
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The power spectral density of v(t) can now be written 

g y ( v )  = lim E [ I ~ T ( ~ ) I ~ ]  = lim 
T-.m T T+ 00 T 

= 1.#'(v)l2 lim ~ [ l @ , ( v ) l ~ I  
T 9 

T + m  

or equivalently 

Thus the power spectral density of the output random process is simply 
the squared modulus of the transfer function of the filter times the power 
spectral density of the input random process. 

3.4 AUTOCORRELATION FUNCTIONS AND THE 
WIENER-KHINCHIN THEOWM 

In the theory of coherence (Chapter 5) a role of great importance is played 
by correIation functions. In preparation for these discussions, we accord- 
ingly introduce the concept of an autocorrelation function. 

Given a single known time function u(t), which may be one sample 
function of a random process, the time autocorrelation function of u(t) is 
defined by 

- - lim lT" u(t + r ) u ( t )  dt. 
T - m  T -7'12 

Closely related, but a property of an entire random process U(t), is the 
statistical autocorrelation function, defined by 

From a physical point of view, the time autocorrelation function measures 
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the structural similarity of u(t) and u(t + T), averaged over all time, 
whereas the statistical autocorrelation function measures the statistical 
similarity of u(t,) and u(t2) over the ensemble. 

For a random process with at least wide-sense stationarity, ru is a 
function only of the time difference r = r, - r,. For the more restrictive 
class of ergodic random processes, the time autocorrelation functions of all 
sample functions are equal to each other and are also equal to the statistical 
autocorrelation function. For ergodic processes, therefore, 

all sample 
functions 

It is thus pointless to distinguish between the two types of autocorrelation 
function for such processes. 

Two important properties of autocorrelation functions of processes that 
are at least wide-sense stationary follow directly from the definition: 

(i) ru(0) = u 2 

(ii) I?,(-T) = ru( r ) .  

A third property, 

(iii) lr"( T )I 5 ru(o), 

can be proved using Schwarz's inequality [cf. argument leading to Eq. 
(2.4-16)). 

However, a major practical importance of autocorrelation functions lies 
in the very special relationship they enjoy with respect to power spectral 
density. In the derivation to follow we shall show that, for a process that is 
at least wide-sense stationary, the autocorrelation function and power 
spectral density form a Fourier transform pair, 

00 

= /' 00ylu(v)e-~2nvT dv. (3.4-6) 

This very special relationshp is known as the Wiener-Khinchin theorem. 
To prove the above relationship, we begin with the definition of power 

spectral density, 
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Since u(t  ) is real valued, we have Q*,(v) = Q T (  - v ) ,  and we further note 
that$ 

Substituting (3.4-8) in (3.4-7), we find 

E [ I * T ( ~ ) I ~ I  1 E 77 
T = - // rect rect - E [ u ( l )  u ( ~ ) ]  T 

- a3 
T 

The expectation is recognized as the statistical autocorrelation function of 
U ( t ) .  For the sake of generality, we allow q )  to depend on both 6 and 
q,  deferring our assumption of stationarity until a later point. Thus we 
obtain 

Now with a simple change of variables, with 6 replaced by t + 7 and 11 by t, 
the integral becomes 

E [ lQ,(v) l21  1 t + 7  t 
T 

= - T 17 -00 r e c t 7  rect- T r(t + T ,  1 )  exp( j 2 8 v ~ )  d t d r .  

The power spectral density g u ( v )  is the limit of this quantity as T -. oo. 
Interchanging orders of integration with respect to T and the limit, and 
noting that for any fixed T 

1 a, t + T  t 
lim - rect - 

T 
rect- r(t + 7 ,  t )  dt = (T(I  + 7 ,  t ) ) ,  

T 

we obtain 

where the angle brackets, as usual, signify a time averaging operation. 

 ere and throughout, the function rect x is defined to be unity for 1x1 I and zero otherwise. 
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The result [Eq. (3.4-9)] shows that the power spectral density of any 
random process, stationary or nonstationary, can be found from a Fourier 
transform of a suitably averaged autocorrelation function. When the ran- 
dom process is at least wide-sense stationary, we have r,(t + T ,  t )  = rU(7)  
and 

which is the relationship that was to be proved. Provided thls transform 
exists, at least in the sense of 6 functions, the inverse relationship 

follows from the basic properties of Fourier transforms. 
The importance of autocorrelation functions stems from two sources. 

First (and of particular relevance in Fourier spectroscopy), the autocorrela- 
tion of a signal can often be directly measured, thereby providing an 
experimental means for ultimately determining the power spectral density of 
the signal. The experimentally measured autocorrelation function is Fourier 
transformed by either digital or analog means to provide a distribution of 
power over frequency. 

Second, the autocorrelation function often provides an analytic means 
for calculating the power spectral density of a random process model 
described only in statistical terms. Often it is much easier to calculate the 
autocorrelation function of Eq. (3.4-2) than to directly calculate the power 
spectral density using (3.3-7). However, once the autocorrelation function is 
found, the power spectral density is easily obtained by means of a Fourier 
transformation. 

To illustrate with a simple example, consider a random process U(t) with 
a typical sample function as shown in Fig. 3-5. The value of u(t) jumps 
between + 1 and - 1. Assume that our statistical model, based on physical 
intuition about the phenomenon underlying the process, is that the number 
n of jumps occurring in a I T )  second interval obeys Poisson statistics, 

where k is the mean rate (jumps per second). The autocorrelation function 
Tu(t,, t l )  is given by 
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But 

even number of 
~ r o b ( u ( t , )  = u( t2 ) )  =  rob( jumps in 17 1 I 

odd number of 
Prob(u(t,) t ~ ( r , ) )  =  rob( jumps in 171 I 

Thus 

'U(l29 '1) = 
( k 1 7 1 ) ~  e-*171 

m even m! 
rn odd m! 

The series is simply equal to e-klTl, so 

&,(I,, t,) = & ( T )  = exp(- 2k171). (3.4-1 3) 

We see that the process is wide-sense stationary, and on Fourier transforma- 
tion of r U ( r )  we find the power spectral density 

Both the autocorrelation function and the power spectral density are 
illustrated in Fig. 3-6. To find the power spectral density directly from the 
definition would require appreciably more work than that involved in the 
preceding calculation. 

Figure 3-5. Sample function of a random process. 
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For our later use, it  will be convenient to define some additional 
quantities closely related to the au tocorrelation function. First, we define the 
autocovariance function, 

Thus 

(6) 
Figure 3-6. Autocorrelation function and corresponding power spectral density. 
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specifies the close relationshp between autocovariance functions and auto- 
correlation functions. 

A second quantity of considerable utility is the structure function 
Du( t2 ,  t , )  of the random process U ( t ) ,  as defined by 

The structure function and the autocorrelation function are related by 

The structure function has the advantage that it depends only on the delay 
7 = t 2  - t ,  even for some random processes that are not wide-sense sta- 
tionary. For example, it is easy to show that a random process that is 
nonstationary but is stationary in increments has a structure function that 
depends only on r .  Of course, Du( t , ,  t , )  depends only on r  for stronger 
types of stationarity, too. If U ( t )  is wide-sense stationary, D"(T)  and 
r u ( r )  are related by 

In addition, D U ( r )  can be expressed in terms of the power spectral density 
$u(v>,  

3.5 CROSS-CORRELATION FUNCTIONS AND CROSS-SPECTRAL 
DENSITIES 

A natural generalization of the concept of an autocorrelation function is the 
cross-correlation function of two random processes U ( t )  and V ( t ) ,  as 
defined by 

In addition to the ensemble-average definition above, we can define the 
time-average cross-correlation function, 
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The random processes U(t) and V(t) are said to be jointly wide-sense 
stationary if r u v ( t 2 ,  1 , )  depends only on the time difference 7 = r 2  - t , .  in 
whlch case 

ruv(t29 tl)  = r ' u v ( d -  (3  5 3 )  

For such processes, the cross-correlation function exhibits the following 
properties 

- 
(i)  ruv (0 )  = uu 

( ii) r u v ( - 7 )  = rvU(7) 

(iii) u v  [ ~ U ( ~ ) r ' v ( o ) ] ~ ' ~  (3 5 4 )  

The first two properties follow directly from the definition. Proof of the 
thud property requires the help of Schwarz's inequality. 

Closely related to cross-correlation functions are cross-spectral density 
functions, defined by 

g U v ( v )  A lim E [ @ , ( v ) ~ ; i v ) ]  
T-+ m T 

The functions gUv(v)  and gv,(v) may be regarded as measures of the 
statistical similarity of the random processes U(t ) and V ( t  ) at each frequency 
v. The cross-spectral density is in general a complex-valued function. In 
addition, it has the following basic properties 

(1)  ~ V U ( Y )  = % v ( v )  for any real-valued 
random processes 

(i) YUV( -4 = ~ ; v ( Y )  U(t)  and V(t). (3.5-6) 

By an argument strictly similar to that leading to Eq. (3.4-lo), we can prove 
the important fact that for jointly wide-sense stationary random processes 
U(t) and V(t), fi,,(v) and rUy(r )  are a Fourier transform pair; that is, 
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In addition, using a derivation analogous to that used in Section 3.3.3, we 
can discover the effect of linear filtering on the cross-spectral density. 
Referring to Fig. 3-7, let the random process U ( t )  be passed through a 
linear, time-invariant filter with transfer function .#',(v) to produce a 
random process W ( t ) ,  and let V ( t )  be passed through a linear, time-in- 
variant filter with transfer function .#,(v) to produce a random process 
Z ( t ) .  By straightforward extension of the arguments in Section 3.3.3, we can 
show that 

The reader may well be wondering what the utility of the concepts 
introduced in this section might be. Cross-correlation functions and cross- 
spectral density functions are found to play extremely important roles in the 
theory of optical coherence, for they are directly related to the fringe-form- 
ing capabilities of light beams. For the present it suffices to point out that 
these concepts arise quite naturally when we consider a random process 
Z ( t )  having sample functions z ( t )  that are sums of the sample functions 
u ( t  ) and v ( t  ) of two jointly wide-sense stationary random processes U ( t  ) 
and V ( t ) ;  thus 

For such a process, the power spectral density is easily seen to be 

g z ( v )  = lim E [ f 2 T ( v ) d ; ( v ) ]  
T+m T 

= lim E [ (  + . ~ , ( v ) ) ( * : ( v )  + . ~ , * ( v ) ) l  - 

Figure 3-7. Transformation of cross-spectral density under 
linear filtering. 
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Expanding the argument of the expectation and averagng the four resulting 
terms individually, we obtain 

The corresponding relationship for the autocorrelation function of Z ( t )  is 

Clearly the autocorrelation function and power spectral density of Z( t )  
depend not only on the corresponding properties of U( t ) and V( t ) individu- 
ally, but also on the statistical relationship between these two latter processes, 
through the cross-correlation functions and the corresponding cross-spectral 
densities. 

3.6 THE GAUSSIAN RANDOM PROCESS 

Just as Gaussian random variables represent the most important kind of 
random variable in physical applications, so too the Gaussian random 
process plays a role of major importance. The underlying reason for this 
importance is again the fact that many physical phenomena are composed 
of a multitude of independent additive contributions, whlch, as a result of 
the central limit theorem leads to Gaussian statistics. Here we briefly review 
the most important properties of the Gaussian random process. 

3.6.1 Definition 

A random process U(t ) is said to be a Gaussian random process if the 
random variables U(t,), U(t,), . . . , U(t, ), . . . are jointly Gaussian random 
variables for all finite sets of time instants. For n time instants t,, t,, . . . , t,,, 
the joint probability density function is thus of the form 

where 
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and _C is a covariance matrix with element in the ith row and j th  column 
defined by 

Corresponding to the density function of Eq. (3.6-1) is the joint char- 
acteristic function of the n jointly Gaussian random variables 

where 

3.6.2 Linearly Filtered Gaussian Random Processes 

The Gaussian random process possesses many unique properties that make 
it particularly simple to deal with. One such property is the following: a 
linearly filtered Gaussian random process is also a Gaussian random process. 

A rigorous proof of this fact is beyond the scope of our treatment (see, 
e.g., Ref. 2-7, pp. 155-157). However, the following loose argument makes 
the result plausible. If V(t) is a linearly filtered random process, each 
sample function u(t) can be related to an input sample function u ( t )  by 
means of a superposition integral, 

where h(t, 5) is response of the filter at time t to a unit impulse applied at 
time 5. The integral can be written as a Limit of approximating sums, 

where E, is a point in the k th subinterval of width 85. Over the ensemble of 
input sample functions, the value ~ ( 5 , )  is Gaussianly distributed, by 
assumption. Since h(t, 5,) is simply a known real number, each term of the 
sum obeys Gaussian statistics over the ensemble. Finally, the sum of any 
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number of Gaussian random variables, dependent or independent, is itself 
Gaussian. Hence the first-order statistics of u(t) are Gaussian. 

Thus the Gaussian random process has a certain unique kind of perma- 
nence. Although passage through a linear filter may change the parameters 
of the distribution (i.e., means, variances, covariances), the Gaussian char- 
acter of the random process is retained. 

3.6.3 Wide-Sense Stationarity and Strict Stationarity 

A final unusual and important property of the Gaussian process is the 
following: a Gaussian random process that is stationary in the wide sense is 
also strictly stationary. The proof of this fact is straightforward. The n th-order 
probability density function of Eq. (3.6-1) depends only on the means and 
covariances of the n sampled values. If the random process U(t) is wide-sense 
stationary, the mean is independent of time and the covariances depend 
only on the time differences between the instants involved. It follows 
directly that the n th-order density function is independent of the time origin 
for all n, and hence U(t) is strictly stationary. When dealing with Gaussian 
random processes, therefore, we rarely specify the type of stationarity 
possessed by the process, since the two most important lunds of stationarity 
are equivalent. 

3.6.4 Fourth-Order Moments 

In some applications it is desirable to know the fourth-order moment of the 

form u2( t )  u2( t  + 7) of a stationary, zero-mean, real-valued Gaussian 
random process. Such a moment is needed, for example, in calculating the 
autocorrelation function at the output of a square-law device, for which the 
output u(t) and input u(t) are related by 

T h s  moment can readily be found with the help of Eq. (2.7-13), valid for 
zero-mean, real-valued, Gaussian random variables. Applying thls equation, 
we find that 
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More generally, for a moment of the form u( t,) u( t2)  u( t3)  u(t4) ,  we have 

In optical applications, such moments are often of interest, but generally 
for complex-valued random processes. The relationships are somewhat 
different in this case, as we shall demonstrate in Section 3.9. 

3.7 THE POISSON IMPULSE PROCESS 

Of great importance in many optical problems is the Poisson impulse 
process. In this section we develop some of the basic properties of such 
processes in preparation for later consideration of various problems associ- 
ated with the detection of light. 

3.7.1 Definitions 

Considet a random process U ( t )  with sample functions u(t) that consist of 
a multitude of Dirac delta (or impulse) functions, as illustrated in Fig. 3-8a. 
This random process will be called a Poisson impulseprocess or, for brevity, 
simply a Poisson process, if the following two conditions are satisfied: 

(1) The probability P ( K ;  t,, t,) that K impulses fall within the time 
interval { t, < t _< t, ) is given by 

where h ( t )  >_ 0 is called the rate of the process. 

(2) The numbers of impulses falling in any two nonoverlapping time 
intervals are statistically independent. 

A typical rate function A($) is illustrated in Fig. 3-86 for the sample 
function shown. From (3.7-1) it can readily be shown that, for a given X(t), 
the mean and second moment of the number of impulses (or "events") in 
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the time interval (t ,  < t s t,) are given by 

In addition, the following moment theorem can be shown to hold (see 
Problem 2-6): 

Two important cases can be distinguished. First, the rate function h(t) 
may be a known (i.e., deterministic) function, in which case all randomness 

f 6) 
Figure 3-8. ( a )  A sample function of a Poisson impulse process, together with ( b )  the 
corresponding rate function. 
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associated with the process U(t) arises from transformation of a given X(t) 
into a sample function u(t) of the Poisson process. Alternatively, the rate 
X(t ) may itself be a sample function of a random process A(t ), in which 
case U(t) is often called a doubly stochastic Poisson process. In this latter 
case, some of the randomness of U ( t )  can be attributed to the transforma- 
tion of a specific A(t) into a sample function u(t) and some to the statistical 
uncertainties about X(t ) itself. 

Finally, we note that in most practical applications of the theory, the 
random process U(t) consists not of perfect unit-area impulses, but rather 
of a multitude of finite-width pulses. Thus each impulse S(t - t,) is 
replaced by a finite pulse h(t - t,). In some cases the pulses may all have 
identical shape and area. Such a process may be regarded as being gener- 
ated by passage of a Poisson impulse process through a linear, time-invariant 
filter with impulse response h(t), as illustrated in Fig. 3-9a. 

Alternatively, some phenomena (e.g., the output of a photomultiplier 
tube) require modeling by a process characterized by random changes of 
pulse shape and area from pulse to pulse. Such a process may be regarded 
as arising from passage of a Poisson impulse process through a randomly 
time-varying linear filter with an impulse response h(t; T )  that is a sample 
function of a random process, as illustrated in Fig. 3-96. Both Poisson 
processes described in the preceding paragraphs are referred to as linearly 
filtered Poisson processes. 

In order to develop some physical intuition regarding the reasons why the 
Poisson process is so important in practice, we devote the next two sections 
to discussion of equivalent conditions that lead to Poisson statistics. 

3.7.2 Derivation of Poisson Statistics from Fundamental Hypotheses 

It is possible to arrive at the statistical model described in the previous 
section from a number of different sets of hypotheses (see Ref. 2-3, Chapter 
16). The set to be discussed in this section is perhaps the most fundamental 
and most meaningful physically. Our derivation is a slight generalization of 
that found in Ref. 2-7 (Section 7.2). Throughout thls and the following 
section, the rate function h(t)  is assumed to be known. The case of a 
stochastic X(t) is deferred to Section 3.7.5. 

We begin with the following three basic hypotheses: 

(1) For sufficiently small At, the probability of a single impulse occurring 
in the time interval t to t + A t  is equal to the product of A t  and a real 
nonnegative function X ( t ); thus 

P(1; t, r + At) = h( t )At .  (3  -7-4) 
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(2) For sufficiently small At, the probability that more than one impulse 
occurs in A t  is negligibly small (i.e., there are no "multiple" events); 
hence 

P ( 0 ;  t, t + A t )  = 1 - h ( t )  A t .  (3.7-5) 

(3) The numbers of impulses in nonoverlapping time intervals are statisti- 
cally independent . 

With these assumptions we can now ask, what is the probability P(K;  t ,  
t + r + AT) that K impulses occur in the time interval t to t + r + AT? If 
AT is small, there are only two ways that we could obtain K impulses in 
( t, t + T + AT). Specifically, we could have K impulses in ( t, t + T )  and no 
impulses in ( t  + 7, t + r + AT), or we could have K - 1 impulses in 
( t ,  t + r)  and one impulse in ( t  + r ,  t + r + AT). Employing all three 
hypotheses above, we write 

P ( K ;  t, t + r + AT) = P ( K ;  t ,  t + r ) [ 1  - X(t + r ) ~ r ]  

Rearranging terms and dividing by AT, we obtain 

Now letting AT go to zero, we find that P ( K ;  t, t + 7 )  must satisfy the 
differential equation 

d P ( K ;  t ,  t + 7)  
= A ( ?  + T ) [ P ( K  - I ; I , ~  1- 7 )  - P ( K ; r , t  + r ) ] .  

d r  

By using standard methods for the solution of linear differential equations, 
coupled with the boundary condition P(0;  t, t ) = 1, we are led uniquely to 
the solution 

in agreement with Eq. (3.7-1). 
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When dealing with Poisson processes in the future, we shall feel free to 
use the three fundamental hypotheses above whenever it proves convenient. 

3.7.3 Derivation of Poisson Statistics from Random Event Times 

An alternative model that leads to the same type of Poisson process is based 
on certain assumptions about the statistical distribution of event times t , .  

Suppose that we have a collection of a large number N of "events," 
which we drop onto the infinite time interval. A random process can then be 
constructed by inserting a unit impulse function at the location of each 
event. We assume that the N events are dropped onto the time axis in 
accord with the following hypotheses: the N  event times t ,  ( k  = 1 , 2 , .  . . , N )  
are ( 1 )  statistically independent and ( 2 )  identically distributed with prob- 
ability density function p ( t , ) .  

Using the two properties above, we readily conclude that the number K 
of events lying in any subinterval ( t , ,  t , )  obeys a binomial distribution, 

Now suppose that we let N + m and p ( t )  -, 0, subject to the restriction 
that 

remains fixed for each t .  The probability of obtaining k events or impulses 
in ( t , ,  t  ,) becomes, for any fixed N, 

N - K  

Letting N become large, we have 

1 N - K  

[ 1 i 2 d ]  11 i [ 1 ~ / i 2 h ( ( ) d ( ] N + e x p ( - l i 2 h ( 5 ) d f ) ,  4 1 
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Thus 

lim P ( K ;  t , ,  t 2 )  = 
N 4  oo K !  

whch is again the Poisson distribution. In addition, since the event times t ,  
are statistically independent and there is an inexhaustible supply of events 
( N  -+ oo), the number of events occurring in one interval conveys no 
information about the number occurring in a second disjoint interval. Hence 
the numbers of events in nonoverlapping intervals are statistically indepen- 
dent. 

Thus we have arrived at the same random process model from two 
different sets of hypotheses. In the future we shall use the set of hypotheses 
that best suits our purpose. 

3.7.4 Energy and Power Spectral Densities of Poisson Processes 

In this section we investigate the energy spectral density and power spectral 
density of Poisson impulse processes. Note that because such processes are 
composed of ideal 6 functions and because an ideal S function contains 
infinite energy, it might seem that only power spectral densities are of 
interest in this case. However, we shall see that the energy spectral density is 
of utility when the rate function h ( t )  is Fourier transformable, that is, when 
l",IX(t) 1 dt < oo. On the other hand, when the rate function is not Fourier 
transformable but does have finite average power, that is, when jm_l h(t)ldt 
= oo but lim,, , ( l / ~ ) l r / ; j , X ~ ( t )  dt < CQ, the power spectral density is 
the quantity of most interest. Again we assume that h ( t )  is an entirely 
deterministic function and defer generalization to Section 3.7.5. 

Let X( t  ) be a Fourier-transformable function. A sample function of the 
corresponding Poisson impulse process can be expressed as 

whlch depends on the K + 1 random variables t , ,  t , ,  . . . , t ,  and K .  This 
sample function has a Fourier transform 
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The corresponding energy spectrum for this one sample function is 

The energy spectral density for the random process U(t) is thus 

Now the expectation with respect to t,, t , ,  . . . , t ,  and K can be per- 
formed in two steps. First we average with respect to times t, under the 
assumption that K is given and then average with respect to K. This 
procedure is justified by noting that 

Thus we rewrite (3.7-12) as 

where EK signifies expected value with respect to K, whereas E t I K  means 
the expected value with respect to the times t , ,  given the value of K. 

Recall that the times t, are identically distributed, independent random 
variables. Furthermore, from the proportionality (3.7-9) between p( t )  and 
h(t), we must have 

with the normalization chosen to assure unit area. To perform the averaging 
operation, it is helpful to consider two different sets of terms. There exist K 
separate terms for which k = q, and each such term contributes unity. In 
addition there are K 2  - K terms having k + q. Using (3.7-14) and the 
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independence of t, and t,, we find 

m 00 / _h ( r , )  e dtk _h(t,)  e-~'""q dt, 

E, , ,  (exp [ j 2 n v ( t k  - I,)] ) = (_ A ( t )  dl [* h ( t )  dt 

- - I ~ ( V ) I '  - ~ A ( V )  ( k  # ( I )7 (3.7-1 5 )  
( B ) '  (Q2 

where P ( v )  is the Fourier transform of A(t), gA(v) is the energy spectral 
density of h ( t  ), and we have used the fact (see Eq. 3.7-2) that 

Performing the final expectation over K, we obtain 

- 
But for a Poisson distributed K, K 2  = (B) '  + K, and hence 

Thus the energy spectral density of a Poisson impulse process consists of a 
constant R plus the energy spectral density of the rate function. Note that, 
because of the constant R, the total energy associated with U(t) is infinite 
even though h(t  ) has finite energy. 

When the rate function is not Fourier transformable but does have finite 
average power, some change in the argument must be made. First, we 
truncate the random process U(t) so that it is identically zero outside the 
interval ( -  T/2, T/2). Then a single sample function u, ( t )  can again be 
written in terms of K + 1 random variables, 

and the corresponding Fourier transform is given by 



94 RANDOM PROCESSES 

The probability density function of the times t, must now be taken to be 

0 otherwise. 

The power spectral density is found from the definition 

The average is performed as before. Denoting by &- the average number of 
events in the T-second interval, we find 

Now 

K T  - lim - - lim L/T'2 ~ ( t )  dt ( A )  (3.7-22) 
T T T - m  T - ~ / 2  

and 

lim luT(v)12 
T - + m  T = ~ A ( v ) ,  

where ( A )  is the time-averaged rate of the process and 9,(v) is the power 
spectral density of the rate function A(t). Thus 

provides the desired relationshp between the power spectral densities of 
U(t) and X(t). Figure 3-10 shows the relationshp between S,(v) and 
g,(v) in pictorial form. Note that U ( t )  contains infinite total average 
power, even though the average power content of A(t) is finite. Note also 
that the limits appearing in Eqs. (3.7-22), (3.7-23) have tacitly been assumed 
to exist, at least in the sense of 6 functions. 
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Figure 3-10. Power spectral density of a Poisson impulse process. 

3.7.5 Doubly Stochastic Poisson Processes 

Suppose that X ( t )  is not a known function, but rather is a single sample 
function of a random process A ( t ) .  The various moments of the random 
process U(r )  calculated earlier may now be regarded as conditional mo- 
ments, conditioned by a particular realization X ( t  ). Moments for the doubly 
stochastic Poisson process can be calculated simply by averaging the earlier 
results over the statistics of the random process A ( t ) .  

We illustrate with some simple examples. It was previously stated [Eq. 
(3.7-2)] that, for a known h ( t ) ,  the mean number of events in the interval 
(tl ,  t 2 )  is 

If X ( t )  is a sample function of a stationary random process A ( t ) ,  we must 
additionally average over A  to obtain 

where stationarity of A ( t )  is used in the last step, and r = f 2  - t l .  
As for the second moment of K, for a given sample function A ( t )  we 

have 
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Averaging over the ensemble A ( t ), we obtain 

where rA is the autocorrelation function of A(t), which has been assumed 
wide-sense stationary . Using arguments similar to those preceding Eq. 
(3.4-9), we can reduce the double integral to a single integral, 

Noting that rA({) = (h)2 + en({), where CA([) is the autocovariance func- 
tion of A ( t ) ,  we obtain 

Equivalently, the variance of K is given by 

whch exceeds the variance o: = K associated with a Poisson impulse 
process having a known rate function A(t). The higher variance is due to 
the statistical fluctuations associated with the random process A(t). We 
defer a further discussion of t h s  fact, as well as a more detailed evaluation 
of o:, to Chapter 9. 

Finally, we consider modifications of Eqs. (3.7-18) and (3.7-24) for 
energy spectral density and power spectral density when h( t )  is a sample 
function of a random process. By definition, the energy spectral density and 
power spectral density are given by 

gU(v) = lim I.? [ I ' U T ( V ) I ~ ]  
T 9 

T--r bO 

where a T ( v )  is given explicitly by Eq. (3.7-20). Evaluation of the expecta- 
tions of the sums involved in a manner identical to that already used for the 
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case of deterministic rate functions, leads us to 

b , ( v )  = lim (% + E [ / " T ( ' ) I ' ]  T ) T-+ m 

Finally, allowing T to become arbitrarily large, we obtain 

- A  where X = ( E [ X ( t ) ] ) .  Thus we see that in the case of a stochastic rate 
function, both spectral densities consist of a constant plus the correspond- 
ing spectral density of the stochastic rate process. 

3.7.6 Linearly Filtered Poisson Processes 

Finally, we consider the case of a linearly filtered Poisson process, and in 
particular the energy or power spectral density of such a process. First it  is 
assumed that the process consists of pulses of identical shape and area; thus 
any truncated sample function is of the form 

t  K 

+ ( t )  = rect- 7- z h ( t  - t k ) .  ( 3 .7 -33 )  
k - 1 

As illustrated in Fig. 3-9a ,  such a process may be regarded as arising from 
passage of a Poisson impulse process through a linear time-invariant filter. 
If Z ( V )  represents the transfer function of the required filter, i.e. 

then Eqs. (3 .3 -10)  and (3 .3 -12)  allow us to express the spectral density of the 
linearly filtered Poisson process as the product of l.#'(v)1 and the spectral 
density of the underlying Poisson impulse process. The results are 

& U ( V )  E ~ x ( y ) ~ 2  + I ~ ( ~ ) I ~ & A ( V )  ( 3 . 7 - 3 5 )  

and 

g u b )  = X I J I D ( V ) I ~  + I J P ( v ) I ~ ~ A ( v )  ( 3 . 7 - 3 6 )  

for the energy spectral density and the power spectral density, respectively. 
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If the pulses composing U ( t )  have random shape and area, a modifica- 
tion is necessary. Illustrating for the case of an energy spectral density, we 
have 

and 

where # ( v ;  t , )  is the Fourier transform of the pulse shape associated with 
the kth pulse, 

The expectation applied to Eq. (3.7-38) must now be taken over the 
statistics of t , ,  t,, . . . , t,, K and the statistics of the X ( v ;  1,). 

Again it is helpful to consider separately the K terms for which k = q 
and the K 2  - K terms for which k + q. For the former terms, our previous 
contribution K to the energy spectrum must be multiplied by I#(v;  t , )  12, 
which we assume to be the same for all t ,  and hence representable as 
1#(v ) l2 .  For the K~ - K terms with k # q, we must multiply by 

( v ; t  ) # * ( v;  t ) If the statistics of different pulses are independent, 
t h s  multiplier reduces to [ # ( v ) I 2 .  Thus we obtain for the energy and 
power spectral densities 

and 

In closing we note that implicit in these results is the assumption that the 
statistics of X ( v ;  t , )  are independent of the statistics of A ( t ) .  
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3.8 RANDOM PROCESSES DERIVED FROM ANALYTIC SIGNALS 

It is common practice in physics and engineering to represent real-valued 
signals by related complex-valued signals. The complex representation is 
chosen such that its real part is the original real-valued signal; thus provided 
that only linear operations are performed on the complex signal, the original 
signal can be specified at any stage simply by taking the real part of the 
complex waveform. 

The reason for preferring a complex representation, rather than the 
real-valued signal itself, can be traced to a fundamental property of linear, 
time-invariant systems. Specifically, the eigenfunctions of such a system are 
complex exponentials of the form exp( - j2lrvt). Thus if we represent the 
Linear, time-invariant system by an operation Y {  ), we can show that 

where X ( v )  is the transfer function of the system, evaluated at frequency v 
(for a proof of this fact, see Ref. 2-9, p. 186). Passage of a real-valued signal 
through the system requires operations on both positive- and negative- 
frequency complex exponentials and thus entails a greater amount of 
algebra. 

With these comments as motivation, we turn to an examination of 
complex signal representation in greater mathematical detail. 

3.8.1 Representation of a Monochromatic Signal by a Complex Signal 

Consider a monochromatic (i.e., single-frequency) real-valued signal u ('I( t ) 
described by 

where A ,  v,, and 9 represent constant amplitude, frequency and phase, 
respectively. The complex representation of t h s  signal is 

whch has a real part equal to the original u(')(t). Related to t h s  complex 
representation is the phasor amplitude of u(t), defined by 

and representing the amplitude and phase of the monochromatic signal. 
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Note that the imaginary part of the complex representation has not been 
chosen arbitrarily, but rather is closely related to the original real-valued 
signal. 

Exactly what operations are involved in arriving at the specific complex 
representation of (3.8-2)? The question is most readily answered by 
frequency-domain reasoning. Let the real-valued signal be expanded in 
complex exponential components, 

Representing the Fourier transform operation by an operator F{ ), we 
further note that 

Therefore, the Fourier spectrum of u ( ' ) ( t )  is 

A  - A 
@ ( v )  = - e  2 J+S(v  + v , )  + - e J + S ( v  2  - v o ) .  

For the complex representation u ( t ) ,  however, we have 

S ( u ( t ) )  = A e J $ 8 ( v  - v , ) .  (3.8-4) 

Thus the relationship between d r ) ( t )  and u(t ) can be stated as follows: in 

F lu(')(t)l F ( u ( t > l  

Area 
gA,--~b Area 

A 
Area 

A/ Ae J $ A ~ J &  

v ='u 

Figure 3-11. Fourier spectra of ( a )  a monochromatic real-valued signal and ( b )  its complex 
represen tation. 
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passing from u( ' ) ( t )  to u ( t ) ,  we double the strength of the positive frequency 
component and entirely remove the negative frequency component. T h s  opera- 
tion is illustrated for the monochromatic case in Fig. 3-1 1. It is this very 
specific operation that imposes a fixed relationshp between the real and 
imaginary parts of u( t ) .  

3.8.2 Representation of a Nonmonochromatic Signal by a Complex Signal 

Suppose we are given a real-valued nonmonochromatic signal u( ' ) ( t )  with 
Fourier transform ' ) / ( v ) .  How can we represent u( ' ) ( t )  by a complex signal 
u(t)?  We can follow exactly the same procedure used in the monochromatic 
case, doubling the positive frequency components and removing the nega- 
tive frequency components. Thus our definition is 

~ ( t )  2 / * q ( v ) e - ~ 2 ~ ' 1  d v .  
0 

The function u ( t )  is called the analytic signal representation of u r ( t ) .  For a 
comprehensive discussion of the properties of analytic signals, see Refs. 3- 1 
and 3-2. 

Before turning attention to the properties of the analytic signal, one 
mathematical fine point should be clarified. This fine point concerns exactly 
what is done to the spectrum at v = 0 in passing from u(')(r)  to u ( t ) .  The 
question is immaterial if u ( ' ) ( t )  contains no 8-function component at v = 0, 
for changing the spectrum by a finite amount at a single point will not affect 
u(t ). If  u ( ' ) ( t )  does contain a 8-function component at v = 0, the conven- 
tion will be adopted that the 8-function component remains unchanged. 
This convention allows us to represent in the frequency domain the opera- 
tion of passing from u( ' ) ( t )  to u(t ) by 

where 

+ 1 v > o  
sgn v = v = O .  

Thus 

~ ( t )  = /* [I + s g n v ] ' ) / ( v ) e - ~ ~ ~ ~  d v .  
- 00  
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The Fourier integral representation of u(t) above allows us to discover 
some important properties of the analytic signal. Representing the inverse 
Fourier transform operation by an operator 9s-'{ }, we see that u(t) can be 
expressed as the sum of two terms, 

( t )  = { ( v )  +.F1{sgnvQ(v)}.  

The first term is simply u(')(t), the original signal. With use of the 
convolution theorem, the second term can be expressed by 

Noting that 9- fSsgn v }  = ( - j/nt ) (see Appendix A), we find 

u(')(6) 
" ( I )  = d r ) ( t )  + f I d l ,  = - m  - t 

where the symbol f '4, indicates that the Cauchy principal value of the 
integral must be taken. That is 

1 '- L u ( ' ) ( ( )  1 f m  u'"(() d l  - lim - 
C - t  = , d o  6 - 1  

d t  + Uiri(S) d l ] .  = - m  t + ~  

The integral transformation of (3.8-10) is known as the Hilbert transform of 
u(')(t) (for a more detailed discussion of Hilbert transforms, see also Ref. 
2-9, pp. 267-272). 

The important properties of the analytic signal can now be stated on the 
basis of Eqs. (3.8-8) and (3.8-9): 

(iii) . . ~ { u ( ~ ) ( t ) )  = -jsgn v *{u(')(t)) 

Thus the real part of the analytic signal is indeed the original real-valued 
signal we started with. The imaginary part of the analytic signal is simply 
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Figure 3-12. Construction of an analytic signal from a real signal. 

the Hilbert transform of the original signal. Finally, the spectrum of the 
imaginary part of the analytic signal can be obtained by multiplying the 
spectrum of the real part by - j  sgn v. 

The last property, represented by Eq. (3.8-13), lends itself to a useful 
interpretation. The imaginary part of the analytic signal can be obtained by 
passing the real part through a linear, time-invariant filter with transfer 
function 

We refer to such a filter as a "Hilbert transforming" filter. The construction 
of the analytic signal u(t) from the real signal d r ) ( t )  can thus be repre- 
sented diagrammatically as shown in Fig. 3-12. 

3.8.3 Complex Envelopes or Time-Varying Phasors 

Consider a real-valued waveform u(')(t) that is nonmonochromatic but 
nonetheless possesses a "narrowband" power spectrum. As illustrated in 
Fig. 3-13, if A v  represents the nominal width of the spectrum about its 
center frequency v,, we require that A v -c v,. 

Such a signal may be written in terms of a slowly varying envelope A(t) 
and a slowly varying phase +(t)  as follows: 

To a good approximation, doubling the positive frequency components and 
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Figure 3-13. Power spectrum of a narrowband signal. 

removing the negative frequency components yields an analytic signal with 
only one exponential component of (3.8-1 5), 

By analogy with the monochromatic case, we define the time-varying phasor 
amplitude, or the complex envelope, of u(t) by 

For any signal (wideband or narrowband), we can write the analytic 
signal representation in the form 

If the signal is narrowband, the complex envelope A(t) varies much more 
slowly than the complex carrier exp( - j 2  n v,t ), and IA(t ) I is approximately 
the same as A ( t )  in Eq. (3.8-15). 

3.8.4 The Analytic Signal as a Complex-Valued Random Process 

If the real signal u ( ' ) ( t )  is a sample function of a random process U(t), the 
analytic signal may be regarded as a sample function of a complex-valued 
random process U( t ) .  We consider some of the basic properties of such a 
random process in this section. 

The reader may be concerned that we have defined the analytic signal in 
terms of the Fourier transform of the real-valued signal and that such a 
spectrum does not exist for a random process. However, we could define the 
analytic signal alternatively as 
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in complete accord with the definition (3.8-8), but without introducing 
Fourier transforms at all. Thus the analytic signal representing a sample 
function of a random process is indeed well defined. 

For a complete description of the random process U(t ), it is necessary to 
specify the joint statistics of the real and imaginary parts of the process for 
all possible collections of time instants. However, specification of the 
statistics of U ( t  ) at even a single point in time is in general difficult, for the 
joint statistics of the real and imaginary parts must be found, based on 
knowledge of the statistics of only the real part and the Hilbert transform 
rela tionship 

The problem is a difficult one except in the case of a Gaussian U(t  ) treated 
in the section to follow. 

Nonetheless, of general interest, regardless of the probability density 
functions involved, are the autocorrelation functions and cross-correlation 
functions of the real and imaginary parts of U(t). To find these functions, 
we use the linear filtering interpretation of the Hilbert transform operation, 
as implied by Eq. (3.8-14). Let the function T ~ ' ) ( T )  represent the autocor- 
relation function of the real process U(t), which is assumed to be at least 
wide-sense stationary but otherwise arbitrary. The corresponding power 
spectral density of the real process is 

The power spectral density of the imaginary part of the process is 
represented by 8#9')(v). Using Eqs. (3.3-12) and (3.8-14), we find that 

2 g ( r ,  r ) ( , )  g $ * ' ) ( v )  = I - j sgn vl 

Furthermore, provided the random process U(')(t) has zero mean (its power 
spectral density has no 6-function component at v = O), we can conclude 
that 

AS a consequence, 



and thus 

q y ; ) ( T )  = q y J ) ( T ) *  

As for the cross-correlation functions 
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(3.8-24) 

we use Eqs. (3.5-8) and (3.8-14), with one filter having transfer function 
unity and the second having transfer function -j sgn v. The result is 

= 1 -(+jsgn  v)9r*')(v) = jsgn v 9$*')(v) (3.8-26) 

and similarly 

From these results we conclude first that 

and in addition, from (3.8-27), that 

It is convenient for future applications to define the autocorrelation 
function of a complex-valued random process by 

When the real and imaginary parts of U(t) are at least wide-sense sta- 
tionary, r&) SO defined has the following basic properties: 
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By expanding the analytic signals in terms of their real and imaginary 
parts, we can readily show that (3.8-30) becomes 

= [ (  + ( )  + j )  - ( I .  (3.8-32) 

Using Eqs. (3.8-24) and (3.8-28), we see directly that 

Thus the real part of the complex autocorrelation function is just twice the 
autocorrelation function of the original real-valued random process. Fur- 
thermore, using (3.8-29), we see that the imaginary part of r,(r) is just 
twice the Hilbert transform of the autocorrelation function of the real 
random process. 

We consider next the Fourier transform of I'u(r), which we call the 
power spectral density of the complex-valued random process U(t). Proceed- 
ing directly, we have 

Thus the autocorrelation function &(T) of an analytic signal has a one-sided 
Fourier spectrum and is itself an analytic signal. 

Finally, we consider the cross-correlation function of two jointly wide- 
sense stationary analytic signals, defined by 

Ths  particular function plays a role of central importance in the theory of 
partial coherence. With the notation 

direct substitution in Eq. (3.8-35) yields an expanded form of r,,(r), 
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In a manner identical to that used in arriving at (3.8-33), we can readily 
reduce t h s  equation to the simpler form 

As with the case of the autocorrelation function, the cross-correlation 
function of two analytic signals has a one-sided Fourier spectrum and thus 
is itself an analytic signal, as can be demonstrated with the help of Eq. 
(3.5-8). 

3.9 THE COMPLEX GAUSSIAN RANDOM PROCESS 

In most general terms, a complex random process U ( t )  is called a complex 
Gaussian random process if its real and imaginary parts are joint Gaussian 
processes. Consider a real-valued Gaussian random process ~ ( " ( t )  and the 
corresponding complex random process U(t) consisting of the analytic 
signal representations of the real sample functions of U(')(t). Since Gauss- 
ian statistics are preserved under linear operations of the form of Eq. 
(3.6-S),  for a Gaussian u(')(t) the imaginary part u(')(t) defined by Eq. 
(3.8-20) also obeys Gaussian statistics. Thus the real and imaginary parts of 
U ( t )  are both Gaussian random processes. We conclude that the analytic 
signal representation of a Gaussian random process is a complex Gaussian 
random process. However, not every complex Gaussian random process has 
sample functions that are analytic signals. 

In later chapters, we shall occasionally be interested in calculating 
fourth-order moments u* ( t, )u* ( t, )u( t, )u( t ,) of a complex Gaussian ran- 
dom process. Such calculations can be performed with the help of the 
complex Gaussian moment theorem, provided u(tl), u(tZ), u(h) and u(t,) 
obey circular joint Gaussian statistics, that is, provided 

and 

(iii) u t ) ( t  ) = - ( t  ) ( t m )  ; m, n = 1,2 ,3 ,4  (3.9-1) 

A random process satisfying (3.9-1) is said to be a circular complex random 
process. Fortunately, an analytic signal representation of a zero-mean 
random process does indeed satisfy the circularity conditions, as evidenced 
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by Eqs. (3.8-24) and (3.8-28). With these conditions satisfied, the fourth-order 
moment is given by 

Of special interest in the later work will be the case t ,  = t,, t, = t,, for 
which 

where we have used the fact that ru(t, ,  t,) equals r,*(t,, t,). The reader is 
reminded again that these relationships hold only for circular complex 
Gaussian random processes. 

In certain applications to be encountered in later chapters, it will be helpful 
to be able to expand the sample functions u(t) of a complex random process 
U ( t )  in terms of a set of functions orthonormal on the interval ( - T/2 ,  T /2) .  
Even greater benefits will accrue if, over the ensemble, the expansion 
coefficients are uncorrelated random variables, and we now attempt to find 
such an expansion. 

Let the set of functions {+,(t), +,(t), . . . , +n(t), . . . } be orthonormal and 
complete on the interval (-  T / 2 ,  T/2) .  Then any reasonably well behaved 
sample function u(t) can be expanded in the form 

where 

and the expansion coefficients b, are given by 
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Now we ask whether, for a random process with a given autocorrelation 
function r U ( t 2 ,  tl), it is possible to choose a particular set of orthonormal 
functions such that the expansion coefficients {b, ) are uncorrelated. 

For simplicity we assume that the random process U(t) has zero mean 
for all time; the process may be nonstationary in other respects, however. 
The mean value of every expansion coefficient can now be seen to be zero, 
since 

E [b,] = E [u(1)1 +:(I) dt = 0. (3 .lo-4) 
- T / 2  

Thus for the expansion coefficients to be uncorrelated, we require that 

For satisfaction of the uncorrelated condition (3.10-5), the orthonormal 
set { +,(t)) must be properly chosen. To discover the conditions imposed 
on ( +m(t )), we substitute Eq. (3.10-3) directly into (3.10-5), yielding 

Suppose now that the set {+m(t)) is chosen to satisfy the integral equation 

The correlation of the expansion coefficients then becomes 

as required. 
The requirement placed on the set of functions {am(t ) )  by the integral 

equation (3.10-7) can be stated in mathematical language familiar to some: 
the required set of functions { h ( t ) )  is the set of eigenfunctions of an 
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integral equation having r,(t,, r , )  as its kernel, and the set of coefficients 
{ h ,  ) is the corresponding set of eigenvalues. 

Many mathematical subtleties have been ignored in the preceding discus- 
sion. Orders of expectation and integration have been freely interchanged 
without stating requirements on the functions involved to ensure validity. 
For our purposes, it suffices simply to state that the autocorrelation function 
r,(r2, t,) should be a continuous function of its arguments. For a more 
detailed mathematical discussion, the reader should consult Ref. 3-3. 
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PROBLEMS 

3-1 Let the random process U ( t )  be defined by 

~ ( t )  = Acos(2nvt - 8 ) ,  

where v is a known constant, Q, is uniformly distributed on ( -  T, a), 
and the probability density function of A is given by 

and A and @ are statistically independent. 

(a) Calculate (u2(t)) for a sample function with amplitude 1 and a 
sample function with amplitude 2. - 

(b) Calculate u 2. 

(c) Show that 
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where ( u 2 ) ,  and (u2), represent the results of part a for 
amplitudes of 1 and 2, respectively. 

3-2 Consider the random process U(t) = A, where A is a random vari- 
able uniformly distributed on ( - 1,l). 

(a) Sketch some sample functions of this process. 
(b) Find the time autocorrelation function of U(t). 
(c) Find the statis tical autocorrelation function of U( f ). 
(d) Is U(t ) wide-sense stationary? Is it strictly stationary? 
(e) Is U(t) an ergodic random process? Explain. 

3-3 An ergodic random process with autocorrelation function r , (~)  = 

(N0/2)6(r) is applied to the input of a linear, time-invariant filter 
with impulse response h(t). The output V(t) is multiplied by a 
delayed version of U(t), forming a new random process Z(t), as 
indicated below in Figure 3-3p. Show that the impulse response of 
the filter can be determined from measurements of (z(t)) as a 
function of delay A. 

Figure 3-3p 

U(t )  

3-4 Consider the random process 

Z ( r )  = Ucos a t ,  

h( t )  

where U is a random variable with probability density function 

(a) What is the probability density function of the random variable 
Z(O)? 

I 

+ 

Variable , 
delay A 
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(b) What is the joint density function of Z(0) and Z(1)? 
(c) Is this random process strictly stationary, wide-sense stationary, 

or ergodic? 

3-5 Find the statistical autocorrelation function of the random process 

where a,, a,, v,, v, are known constants whereas 0, and @, are 
independent random variables uniformly distributed on (-n,  n). 
What is the power spectral density of U(t)?  

3-6 A certain random process U ( t )  takes on equally probable values + l 
or 0 with changes occurring randomly in time. The probability that n 
changes occur in time r is known to be 

where the mean number of changes is ii = a ~ .  Find and sketch the 
autocorrelation function of this random process. 

Hint : 
1 C r L -  1 - r  when Ir] c 1, 

3-7 A certain random process U ( t )  consists of a sum of rectangular 
pulses of the form p( t  - t,) = rect((t - t , ) / b ) ,  occurring with mean 
rate ii. The times of occurrence are random, with the number of 
pulses emitted in a T-second interval being Poisson distributed with 
mean ZT. This random input is applied to a nonlinear device with 
input-output characteristic 

Find 

(a) 5. 

3-8 Assuming that U(t) is wide-sense stationary, with mean ii and 
variance a 2, which of the following functions represent possible 
structure functions for U(t )? 

(a) Du(7)  = 2a2[1 - e-"IT1] 
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(b) DU(7) = 2u2[1 - ~ ~ T ~ C O S ~ T ]  
(c) D,(r) = 2u2[1 - sinar] 
(d) DO(?) = 2cr2[l - cosar]  
(e) DO(?) = 2u2[1 - recta?] 

3-9 Prove that the Hilbert transform of the Hilbert transform of u(t) is 
- u( t ), up to a possible additive constant. 

3-10 Parseval's theorem, in generalized form, states that for any two 
Fourier transformable functions f(t) and g(t) with transforms S ( v )  
and g(v), 

Show that if u(t) and v(t ) are analytic signals, 

3-11 Given that the autocorrelation function of an analytic signal u(t) is 
r U ( r ) ,  show that the autocorrelation function of (d/dt)u(t) is 
- ( a * / a ~ ~ ) r , ( ~ ) .  
Hint: Use frequency domain reasoning. 

3-12 Find the analytic signal representation for the function 

~ ( t )  = rect t. 

3-13 (a) Show that for an analytic signal representation of a real-valued 
narrowband random process, the autocorrelation function of the 
complex process U(t) (assumed wide-sense stationary) can be 
written in the form 

where g(r) is a slowly varying function of r by comparison with 
the complex carrier. 

(b) Show further that when U(t) has a power spectral density that is 
even about the center frequency v,, g(r)  is entirely real valued. 

3-14 Let V(t) be a linearly filtered complex-valued random process with 
sample functions given by 

~ ( t )  = Jm h(t - r ) u ( r )  d r ,  
-00 
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where U(t) is a complex-valued input process and h(t) is the impulse 
response of a time-invariant linear filter. 

(a) Show that, for a wide-sense-stationary input process, 

where 

- 
(b) Show that the mean-square value 1v(t)l2 of the output is given by 

- 
/v12 = (m H ( - r ) r U ( 7 )  d r .  

3-15 Find the power spectral density of a doubly stochastic Poisson 
impulse process having a rate process described by 

where @ is a random variable uniformly distributed on ( -77 ,  n) and 
A, and v, are constants. 



Some First-Order Properties of 
Light Waves 

Discussions of the statistical characteristics of optical radiation properly 
include consideration of first-order properties (i.e., at a single time instant), 
second-order properties (two time instants), and hgher-order properties 
(three or more time instants). In this chapter we restrict attention to 
first-order properties of light waves. The discussion begins with a nonstatis- 
tical topic, the propagation of light waves under various restrictions on 
optical bandwidth. Attention is then turned to the first-order statistics of the 
amplitude and intensity of polarized, unpolarized, and partially polarized 
thermal light. Finally, various statistical models for the light emitted by a 
laser are considered. 

The discussions presented in this chapter are entirely in classical terms. 
The reader should be aware that, paralleling the classical theory of fluctua- 
tions of light, there exists a rigorous quantum mechanical theory (see, e.g., 
Ref. 4-1). The quantum mechanical treatment is not covered here, partly 
because of the considerable background in quantum mechanics required 
and partly because the classical theory (together with the semiclassical 
treatment of detection found in Chapter 9) appears to be adequate, from a 
practical point of view, in nearly all experiments of interest to the optical 
sys tems engineer. 

Throughout this chapter, and indeed throughout the entire book, we deal 
with a scalar theory of light waves. The scalar quantities dealt with may be 
regarded as representing one polarization component of the electric or 
magnetic field, with the approximation that all such components can be 
treated independently. This approximation neglects the coupling between 
various components of the electric and magnetic fields imposed by Maxwell's 
equations. Fortunately, the experiments presented in Ref. 4-2 indicate that 
the scalar theory yields accurate results provided only moderate or small 
diffraction angles are involved. 
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4.1 PROPAGATION OF LIGHT WAVES 

As necessary background for material to follow in later chapters, we turn 
attention to a nonstatistical topic, namely, the propagation of light waves. 
This discussion is simply a brief review and tabulation of the important 
results. For more detailed treatments of the problem, see, for example, Ref. 
4-3, Chapter 8, or Ref. 4-4, Chapter 3. 

4.1.1 Monochromatic Light 

Let u( P, t ) representt the scalar amplitude of one polarization component 
of the electric or magnetic field associated with a monochromatic optical 
disturbance. (In accord with the philosophy of the scalar theory, we treat 
each component independently.) Here P represents a position in space and 
t a point in time. The analytic signal associated with u(P, t )  is 

where v is the frequency of the wave and U( P, V )  is its phasor amplitude. 
Let this wave be incident from the left on the infinite surface 2 shown in 

Fig. 4-1. We wish to specify the phasor amplitude of the field at the point Po 
to the right of the surface in terms of the field on 2.  The solution to this 
problem can be found in most standard texts on optics (again, consult Ref. 
4-3 or 4-4, e.g.). We express the solution here in a form known as the 
Huygens-FresneZ principle, which states that, provided the distance r (see 
Fig. 4-1) is much greater than a wavelength A, 

where X = c / v  is the wavelength of the light (c  is the velocity of light), r is 
the distance from P, to Po, 0 is the angle between the line joining Po to P, 
and the normal to Z (see Fig. 4-I), and ~ ( 0 )  is an "obliquity factor" with 
the properties ~ ( 0 )  = 1 and 0 5 ~ ( 8 )  1 1. 

t Beginning in this chapter and continuing hereafter, we drop the notational distinction between 
a random process and its sample functions. Although it is useful in purely statistical discussions 
to represent the process by a capital letter and a sample function by a lowercase letter, this 
distinction is seldom necessary in the discussion of physical applications of the theory. An 
exception is the notation for probability density functions. Such functions are generally 
subscripted by a capital letter representing the random variable of concern. 
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Figure 4-1. Propagation geometry. 

The Huygens-Fresnel principle can be interpreted in a quasiphysical way 
as follows. Each point on 2 acts as a new "secondary source" of spherical 
waves. The strength of the secondary source at P, is proportional to 
(jX)-'U( P,, v), and that source radiates with a directional amplitude 
pattern ~ ( 8 ) .  

The Huygens-Fresnel principle, as expressed by Eq. (4.1-2), will serve as 
our fundamental physical law governing the propagation of monochromatic 
light. In addition, as we see in the sections to follow, it can be used to find 
similar relations for nonmonochromatic light. 

4.1.2 Nonmonochromatic Light 

Let u(P, t ) be a nonmonochromatic wave, with an associated analytic signal 
u(P, t). Although u(P, t )  is in general not Fourier transformable, we can 
truncate it to the interval (-  T/2, T/2), yielding a Fourier-transformable 
function uT(P, I ) .  Now uT(P, t )  can be represented by an analytic signal 
uT(P,  t )  that is Fourier transformable, even though its imaginary part is not 
truncated. 

From the basic properties of analytic signals, in particular Eq. (3.8-8), we 
have 

where QT(P,  v) is the Fourier transform of the real signal uT(P, t ). Using 
this relationship, we now derive an expression for u(P,, t )  in terms of 
u(P,, t ), where Po and P, are as shown previously in Fig. 4-1. 
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To begin, we note 

u ( P ~ ,  t )  = lim uT(Po,  t )  = lim 2 4 , ( ~ , ,  v ) e - ~ * " "  d v .  
T-roo T - + m  

But from the Huygens-Fresnel principle, as expressed by Eq. (4.1-2), 

Noting that h = c/v, we use Eq. (4.1-3) and change orders of integration to 
write 

Differentiation of Eq. (4.1-3) with respect to t yields 

and as a consequence the bracketed quantity in (4.1-6) can be expressed in 
terms of a time derivative. The result is 

Finally, letting T -, oo, we obtain the fundamental relationship describing 
the propagation of nonmonochromatic waves, 

In closing, the reader is reminded that our derivation utilized the form of 
the Huygens-Fresnel principle valid only when the distance r in Fig. 4-1 is 
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always much greater than the wavelength A ,  and hence a similar restriction 
applies to Eq. (4.1-9). This condition is well satisfied in all problems of 
interest to us in the future. 

4.1.3 Narrowband Light 

As a final relation of future interest, we derive a specialized form of Eq. 
(4.1-9) valid for nonmonochromatic light that is narrowband, that is, light 
with bandwidth Av much smaller than the center frequency Y. 

According to Eq. (4.1-6), we can write 

Now noting that A v  << Y, the following approximation can be made with 
good accuracy: 

The quantity within braces is simply uTIPl, t - (r/c)]. Thus, with the 
- A definition A = c/5, and letting T grow infinitely large, we find 

This relationship will serve as our fundamental law of propagation for 
narrowband disturbances. Again, it is strictly valid only for r > A. 

This concludes our discussion of the nonstatistical propagation laws 
obeyed by light waves. These first-order relationships will be particularly 
useful to us in Chapter 5. Our attention is now turned to first-order 
statistical properties of various kinds of light waves. 

4.2 POLARIZED AND UNPOLARIZED THERMAL LIGHT 

A great majority of optical sources, both natural and man-made, emit light 
by means of spontaneous emission from a collection of excited atoms or 
molecules. Such is the case for the sun, incandescent bulbs, and gas 
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discharge lamps, for example. A large collection of atoms or molecules, 
excited to high energy states by thermal, electrical, or other means, ran- 
domly and independently drop to lower energy states, emitting light in the 
process. Such radiation, consisting of a large number of independent 
contributions, is referred to as thermal light. 

To be contrasted with the chaotic wave emitted by a thermal source is the 
relatively well-ordered stimulated radiation erni t ted by a laser. Excited 
atoms or molecules, confined within a resonant cavity, radiate synchro- 
nously, or in unison, in a well-ordered and hghly dependent fashion. Such 
light, which we refer to simply as laser light, is discussed in Section 4.4. 

Both thermal light and laser light consist of waves that fluctuate ran- 
domly with time. Thus either lund of light must ultimately be treated as a 
random process. In this section we concentrate on the first-order statistics of 
the amplitude and intensity of thermal light. 

4'2.1 Polarized Thermal Light 

Consider the light emitted by a thermal source and passed by a polarization 
analyzer, with polarization direction lying, for example, along the x axis. 
The real-valued function ux(P, t ) represents the x-component of the elec- 
tric field vector, observed at point P and time t. Because of the presence of 
the polarization analyzer, the y-component of the field u , ( P ,  t)  is zero. For 
the present, we refer to such a light wave as polarized thermal light, although 
a more general definition of polarized light emerges in later discussions (see 
Section 4.3). 

Since the source in question is thermal, the time waveform u ,(P, t ) can 
be regarded as a sum of a great many independent contributions, 

all 
atoms 

where u , ( P ,  t )  is the x-component of the field contributed by the ith atom. 
Since the number of radiating atoms is usually enormous, we conclude, with 
the help of the central limit theorem, that u ,(P, t ) is a Gaussian random 
process for a polarized thermal source. 

Often it is most convenient to work with the analytic signal representa- 
tion of the polarized wave u,(P, t)  or alternatively with the complex 
envelope 

where I; is the center frequency of the wave. For such representations we 
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I m 

Figure 4-2. Complex envelope of polarized thermal light at a fixed time and a fixed point in 
space. 

have 

u x ( f ' ,  1 )  = C u , ( P ,  1 )  (4.2-2) 
all 

atoms 

all 
atoms 

where u ,  (P, t ) and A , ( P ,  t ) are the analytic signal and complex envelope 
representations, respectively, of the wave component contributed by the i th 
elementary radiator. When the central limit theorem is applied to both the 
real and imaginary parts of (4.2-2) and (4.2-3), we see that, under the 
assumption that the various contributions are randomly phased and inde- 
pendent, u x ( P ,  t )  and A x ( P ,  t )  are both circular complex Gaussian random 
processes. 

Figure 4-2 shows the complex envelope A .(P, t )  at a particular point P 
and time instant t, consisting of a great many independent complex 
phasors. Since there is no relationship between the phases of the individual 
atomic contributions, we can reasonably model the phases of the A , ( P ,  t )  as 
statistically independent and uniformly distributed on ( -  r, r ) . t  Thus 

If the arrival time of the radiation from a particular atom is totally unpredictable, the phase of 
that radiation is uniformly distributed on the primary interval. 
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A ,(P, t ) has all the properties of the random phasor sum discussed in 
Section 2.9. In particular, its real and imaginary parts are independent, 
identically distributed zero-mean Gaussian random variables. 

Detectors of optical radiation respond not to field strength, but rather to 
optical power or intensity. Accordingly, the statistical properties of the 
intensity of an optical wave are of considerable practical importance. We 
define the instantaneous intensity Ix(P ,  t )  of the polarized wave to be the 
squared modulus of the analytic signal representation of the field, 

We reserve the unmodified term "intensity" for the time average, or under 
the assumption of ergodicity, the ensemble average of the instantaneous 
intensity I , (P ,  t), 

I x ( P )  A ( I ~ ( P ,  t ) )  = j X ( p ) .  (4.2-5) 

The instantaneous intensity is, of course, a random process. Since I,(P, t )  
is the squared length of a random phasor sum, we can readily use the 
knowledge developed in Section 2.9 to find its first-order probability density 
function. For brevity, we use the notation 

in the discussion to follow. We know that A obeys a Rayleigh probability 
density function, 

\ 0 otherwise, 

where o 2  represents the varianca of the real and imaginary parts of 
A ,( P, t). The transformation 

is monotonic on (0, GO), and thus we can use Eq. (2.5-11) to write 

0 otherwise. 
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Figure 4-3. Probability density function of the instantaneous intensity of polarized thermal 
light. 

Thus the instantaneous intensity obeys a negative exponential probability 
density function. This distribution has the important property that its 
standard deviation or is equal to its mean f, both of which equal 2a2, 

Hence in a slightly more compact notation we have 

I 0 otherwise. 

This density function is plotted in Fig. 4-3. 
Knowing the properties of polarized thermal light, we turn now to 

consideration of unpolarized thermal light. 

4.2.2 Unpolarized Thermal Light 

Light from a thermal source is regarded as unpolarized if two conditions are 
met. First, we require that the intensity of the light passed by a polarization 
analyzer, situated in a plane perpendicular to the direction of propagation 
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of the wave, be independent of the rotational orientation of the analyzer. 
Second, we require that any two orthogonal field components u .(P, t )  and 
u,(P, t )  have the property that (ux(t + 7)u*,(i)) is identically zero for all 
rotational orientations of the X-Y coordinate axes and for all delays T .  

(For a further discussion of unpolarized light, see Section 4.3.) This type of 
light is also often referred to as "natural" light. 

Since the light arises from a thermal source, the arguments of the 
previous section can be applied to each individual polarization component, 
yielding the conclusion that ux(P, t )  and uy(P, t )  are circular complex 
Gaussian random processes. Furthermore, since they are uncorrelated for all 
relative time delays, the two processes are statistically independent. 

The instantaneous intensity of the wave is defined by 

From the previous section, I,(P, t )  and I,(P, t )  each obey negative- 
exponential statistics. Moreover, from the definition of unpolarized light, 
I,(P, t )  and Iy(P,  t )  have equal means, 

and are statistically independent random processes. To find the first-order 
probability density function of the total instantaneous intensity, we must 
find the density function of the sum of two independent random variables 
having identical density functions 

With the help of Eq. (2.6-10) and Fig. 4-4, we write the required convolution 
as 

2 
P A I )  = (4 (7)2ex~(-2$)exp[- $ ( I  - I)] df 1 2 0  

I 0 otherwise 
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Figure 4-4. Factors in the integrand of the convolution equation. 

P I V )  = (4.2-13) 
0 otherwise. 

This density function is plotted in Fig. 4-5. 

Figure 4-5. Probability density function of the instantaneous intensity of unpolarized thermal 
light. 
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Note that unpolarized thermal Light has considerably less probability of 
having an extremely small value of instantaneous intensity than does 
polarized thermal light. In addition, we can readily show that the ratio of 
standard deviation a, to mean I, which was unity for polarized thermal 
light, is reduced to a value of dv for unpolarized thermal light. 

4.3 PARTIALLY POLARIZED THERMAL LIGHT 

Having discussed the properties of polarized and unpolarized thermal Iight, 
we are led naturally to inquire whether a more general theory exists, a 
theory capable of dealing with intermediate cases of partial polarization. 
Such a theory does indeed exist, and we accordingly devote effort to 
presenting it here. To do so requires some initial explanation of a matrix 
theory capable of conveniently describing partially polarized light and the 
transformations to which it may be subjected. For more detailed discussions 
of the general subject of partial polarization, the reader may wish to consult 
Ref. 4-3, Section 10.8, or Ref. 4-5. 

4.3.1 Passage of Narrowband Light Through 
Polarization-Sensitive Instruments 

We consider now a mathematical formalism for describing the effects of 
various optical instruments on the polarization of transmitted light. A 
convenient formalism was first developed by R. C. Jones (Ref. 4-6) for 
monochromatic waves. The same formalism can be used for narrowband 
light, provided the bandwidth of the light is so narrow that the instrument 
in question affects all spectral components identically (Ref. 4-7). 

Let u,(t) and u,(t) represent the X- and Y-components of the electric 
or magnetic field at a particular point P in space. The state of this field is 
represented by a two-element column matrix U_, 

Suppose that the light is now passed through an optical instrument that may 
contain polarization sensitive elements (polarizers, retardation plates, etc.) 
and consider the field leaving the instrument at a point P' that is the 
geometric projection of P through the instrument. The state of this field is 
represented by a matrix U_' similar to (4.3-I), but with elements u',(t) and 
u;(t). Now if the instrument in question contains only linear elements, as is 
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most often the case, the matrix U'can be expressed in terms of U by the 
simple matrix formula 

where _L is the 2 x 2 polarization matrix representing the effects of the 
instrument. 

The matrix representations of some very simple types of physical opera- 
tions will be useful to us in future discussions. First, and perhaps simplest, 
we consider the effect of a rotation of the X-Y coordinate system. Thls 
simple operation can be regarded as an "instrument" that transforms the 
original field components u ,(t ) and u ,(t ) into new components u',(t) and 
u',(t ) according to the matrix operator 

L = [ c o ~ B  sine]  
- sin8 cos 8 

where 8 is the rotation angle illustrated in Fig. 4-6. 
A second important type of simple instrument is a retardation plate 

which, by means of a birefringent material, introduces a relative delay 
between the two polarization components. If the velocities of propagation of 
the X- and Y-polarization components are v ,  and v y ,  a plate of thickness d 
introduces a time delay 

Figure 4-6. Old ( X,  Y) and new ( XI, Y') 
coordinate systems after rotation by angle 8. 
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of the X-component relative to the Y-component. In accord with the 
narrowband condition, we require that rd be much less than l/Av. In t h s  
case the retardation plate can be represented by a matrix (written in 
symmetrical form for simplicity) 

where 

is the phase delay of the X-component relative to the Y-component. We 
note in passing that both the rotation matrix (4.3-3) and the retardation 
matrix (4.3-5) are unitary matrices; that is, they have the property that 
L,~ = , where kt is the hermitian conjugate of _L and is the identity 
matrix 

As a final example, we mention without proof (see Problem 4-12) that the 
matrix representation of a polarization analyzer, oriented at angle a to the 
X axis, is 

cos 2a sin a cos a 
sin a cos a sin2a I 

Thus each type of polarization instrument has its own matrix representa- 
tion. Furthermore, if light is passed through a series of such instruments, 
their combined effect can be represented by a single matrix whlch is a 
product of the individual matrices involved. Thus if light passes through 
instruments with matrices L ,, I,,, . . . , J!,, we have 

and the total effect is equivalent to a single instrument with matrix 

where the usual rules of matrix multiplication are to be observed. 
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4.3.2 The Coherency Matrix 

We now consider the problem of describing the state of polarization of a 
wave. In general, the direction of the electric vector may fluctuate with time 
in a complicated deterministic or random manner. A useful description is 
supplied by the so-called coherency matrix introduced by Wiener (Ref. 4-8) 
and Wolf (Ref. 4-7). 

Consider the 2 x 2 matrix defined by 

where the infinite time average ( . ) is to be applied to each of the elements 
of the product matrix. Equivalently, J may be expressed as 

where 

Jxx ' (ux( f )u%(f ) )  Jyx (uy(t)u*X(f)) 

The matrix J so defined is called the coherency matrix of the wave. The 
elements on the main diagonal of J are clearly the average intensities of the 
X- and Y-polarization components. The off-diagonal elements are the 
cross-correlations of the two polarization components. 

From a purely mathematical point of view, we can identify some funda- 
mental properties of the coherency matrix. First, from (4.3-13) it is clear 
that Jxx and Jyy are always nonnegative and real. Second, the element J,, is 
equal to the complex conjugate of the element J,,. Thus _J is an hermitian 
matrix and can be written in the form 

Jxx J 
- = [J; :.*:I- 

Furthermore, by a direct application of Schwarz's inequality to the defini- 
tion of Jx,, we can show that 
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and hence the determinant of _J is nonnegative 

Equivalently, we say that J is nonnegative definite. Finally, the matrix J has 
the important property that its trace is equal to the average intensity of the 
wave, 

When an optical wave passes through a polarization instrument, its 
coherency matrix is in general modified. Let J '  represent the coherency 
matrix at the output of the instrument and J the coherency matrix at the 
input. How are J ' and _J related? The answer is easily found for narrowband 
light by substituting (4.3-2), which describes the transformation of the wave 
components, into the definition (4.3-11) of the coherency matrix. The result 
is 

where we have used the fact that (_~lJ)t = UtLt. 
Specific forms of the coherency matrix under various conditions of 

polarization can readily be deduced simply from the definitions of its 
elements. Some obvious examples are: 

Linear polarization 
in the X direction 

Linear polarization 
in the Y direction 

Linear polarization 
at + 45" to the X axis 

Less obvious is the case of circularly polarized light. A wave is circularly 
polarized if the average intensity passed by a polarization analyzer is 
independent of the angular orientation of the analyzer and if the direction 
of the electric vector rotates with uniform angular velocity and period 1/5. 
The circular polarization is said to be in the right-hand sense if the direction 
of the vector rotates with time in a clockwise sense when the wave is viewed 
head-on (i.e., looking toward the source). The polarization is circular in the 
left-hand sense if the rotation is counterclockwise. 
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For right-hand circular polarization, the analytic signals u .(t ) and u ,( t ) 
take the form 

where A ( t )  is a slowly varying complex envelope. Note that in a time 
interval At l / A v ,  A(t) is approximately constant and the electric vector 
simply undergoes a rapid rotation of direction. The coherency matrix for 
this kind of Light is readily found by substituting (4.3-22) in the definitions 
(4.3-13), with the result 

r 1 
Right-hand circular polarization J = 7 [ - :] . (4.3-23) 

For left-hand circular polarization, the corresponding relationships are 

and 

r 1 
Left-hand circular polarization J = 5 [ Y J ]  . (4.3 -25) 

Note in particular that for both types of circular polarization, the average 
intensities of the two polarization components are equal, but in addition the 
two components are perfectly correlated, as they have a correlation coeffi- 
cient with unity magnitude, 

Next, the important case of "natural" light is considered. By this term we 
mean that the light has two important properties. First, like circularly 
polarized light, natural light has equal average intensity in all directions; 
that is, if the wave is passed through a polarization analyzer, the average 
transmitted intensity is independent of the angular orientation of the 
analyzer. Unlike the case of circular polarization, however, natural light is 
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characterized by a direction of polarization that fluctuates randomly with 
time, all directions being equally likely. The analytic signals representing the 
two polarization components of natural light can be written in the form 

where A ( t )  is a slowly varying complex envelope describing the phasor 
amplitude of the electric vector at time t, and 8(t) is the slowly varying 
angle of polarization with respect to the X axis. If the angle 9 is uniformly 
distributed on (-a, a), the coherency matrix is readily found to be 

where again _f is the identity matrix. 
It is a simple matter to show (see Problem 4-3) that if light with a 

coherency matrix given by (4.3-28) is passed through any instrument 
described by a unitary polarization matrix (e.g., a coordinate rotation or a 
retardation plate), the coherency matrix remains in the form (4.3-28). If the 
coherency matrix has this form, therefore, it is impossible to reintroduce 
correlation between the X and Y field components by means of an 
instrument with a unitary polarization matrix. 

In closing this basic discussion of the coherency matrix, we point out that 
the elements of this matrix have the virtue that they are measurable 
quantities. Clearly, J,, and Jyy, which represent the average intensities of 
the X- and Y-polarization components, can be directly measured with the 
aid of a polarization analyzer, oriented sequentially in the X and Y 
directions. To measure the complex-valued element J,, , two measurements 
are required. If a polarization analyzer is set at +45O to the X axis, the 
transmitted intensity is (see Problem 4-4) 

Since Jxx and Jyy are known, the real part of Jxy is thus determined. Now if 
a quarter-wave plate is introduced to retard the Y-component with respect 
to the X-component by a/2 radians, followed by a polarization analyzer 
oriented again at 45' to the X axis, the transmitted intensity is (see Problem 
4-5) 
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thus allowing the imaginary part of J,, to be determined. Since J,, = J;, 
the entire coherency matrix has thus been established. 

4.3.3 The Degree of Polarization 

It would be highly desirable, both aesthetically and from a practical point of 
view, to find a single parameter that will characterize the degree to which a 
wave can be said to be polarized. For the case of a linearly polarized wave, 
this parameter should have its maximum value (unity for convenience), for 
such a wave is fully polarized by any reasonable definition. For circularly 
polarized light, the parameter should again have its maximum value, for 
such light can be made linearly polarized, without loss of energy, by means 
of a quarter-wave retardation plate. For the case of natural light, the 
parameter should have value zero, for the polarization direction is totally 
random and unpredictable in this case. 

A parameter that measures the degree of statistical dependence between 
the two polarization components would be ideally suited for our purpose. In 
general, however, such a parameter would require full knowledge of the 
joint statistics of u ,(t ) and u ,(t ). For simplicity, a more limited measure of 
polarization is adopted, one that depends only on the correlation parame- 
ters J,,, J,,,, and J,, of the coherency matrix. Such a definition is quite 
adequate in most applications, particularly if the light is thermal in origin. 
However, it is not difficult to find an example of a light wave that has a 
coherency matrix identical with that of natural light and yet has a fully 
deterministic and predictable behavior of its polarization direction (see 
Problem 4-6). Recognizing these possible pitfalls, we consider the definition 
of a degree of polarization 9 based on the properties of the coherency 
matrix. 

What are the key differences between the coherency matrices of light that 
we would logically call fully polarized (e.g., linearly or circularly polarized) 
and light that we would logically call unpolarized (e.g., natural light)? The 
differences are not merely the presence or absence of off-diagonal elements, 
for such elements are zero in both Eqs. (4.3-19) and (4.3-28), yet the former 
corresponds to fully polarized light and the latter to unpolarized light. 

Some help is afforded by the following physical observations. For light 
polarized at 45' to the X axis, it is possible to diagonalize the coherency 
matrix by means of a simple coordinate rotation, changing (4.3-21) to 
(4.3-19), for example. Similarly, for the case of circularly polarized light, a 
quarter-wave plate followed by a coordinate rotation of 45" results in light 
linearly polarized along the X axis and thus diagonalizes the coherency 
matrix. In both cases a lossless polarization transformation has eliminated 
the off-diagonal elements. Perhaps, then, the key difference between polarized 
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and unpolarized light lies in the form of the coherency matrix after 
diagonalization . 

Further support for this idea is afforded by some very general results 
from matrix theory. It is possible to show that for every hermitian matrix J, 
there exists a unitary matrix transformation _P such that 

where A,  and A ,  are the (real-valued) eigenvalues of _J (Ref. 4-9). Further- 
more, any coherency matrix _J can be shown to be nonnegative definite; 
therefore, A, and A, are nonnegative. If these results are interpreted 
physically, for every wave there exists a lossless polarization instrument that 
will eliminate all correlation between the X- and Y-polarization compo- 
nents. The required instrument (i.e., the required _P) depends on the initial 
coherency matrix J, but can always be realized with a combination of a 
coordinate rotation and a retardation plate (Ref. 4-10). 

If A, and A ,  are identical (as for natural light), clearly the degree of 
polarization (however we define it) must be zero. If either A, or A ,  is zero 
(as for light polarized linearly along the X or Y axes), the degree of 
polarization must clearly be unity. To arrive at a logical definition of the 
degree of polarization, we note that the diagonalized coherency matrix can 
always be rewritten in the following way: 

where we have assumed, without loss of generality, that A,  2 X ,. The first 
matrix on the right is recognized as representing unpolarized light of 
average intensity 2 A,, whereas the second matrix represents linead y 
polarized light of intensity A, - A,. Thus light with arbitrary polarization 
properties can be represented as a sum of polarized and unpolarized 
components. We define the degree of polarization of the wave as the ratio of 
the intensity of the polarized component to the total intensity, 

Thus a general definition has been arrived at. 
The degree of polarization can be expressed more explicitly in terms of 

the elements of the original coherency matrix, if desired. To do so, we note 
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that the eigenvalues A, and A, are, by definition, solutions to the equation 

Straightforward solution of the resulting quadratic equation in A yields 

Thus the degree of polarization can be written as 

It is not difficult to show that any unitary transformation of the coherency 
matrix does not affect the trace of that matrix. As a consequence, we can 
always regard the intensity of a partially polarized wave as being the sum of 
the intensities A, and A, of two uncorrelated field components. The average 
intensities of these components are expressible in terms of the degree of 
polarization 9 as follows 

where we have simply noted that trLJ] = P and substituted (4.3-36) in 
(4.3-35). If the light is thermal in origin, lack of correlation implies statisti- 
cal independence of both the field components and the corresponding 
intensities. 

The preceding discussion of partially polarized light is not an exhaustive 
one, for many interesting subjects have been omitted. We mention in 
particular the Stokes parameters and Mueller matrices, neither of which 
have been treated here. However, we limit our discussion to those aspects 
that will be useful to us in later material, and hence the reader is referred to 
Refs. 4-3 (Chapter lo), 4-5, and 4-11 for more complete discussions. 

4.3.4 First-Order Statistics of the Instantaneous Intensity 

We close this discussion of partially polarized light with a derivation of the 
probability density function of the instantaneous intensity of thermal light 
with an arbitrary degree of polarization 9. As we have seen in the previous 
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section, it is always possible to express the instantaneous intensity of a 
partially polarized wave as the sum of two uncorrelated intensity compo- 
nen t s 

I ( P , ~ ) =  I , ( P , ~ ) + I , ( P , ~ ) .  (4.3-38) 

Furthermore, if the light is thermal in origin, the intensity components are 
also statistically independent, as a result of the independence of the underly- 
ing complex Gaussian field components. The average intensities of these two 
components are, from Eq. (4.3-37), 

where J is the total average intensity. 
Since I,  and I ,  are squared moduli of circular complex Gaussian fields, 

each obeys negative-exponential statistics; that is, 

for I ,  2 0 and 1, 2 0. The probability density function for the total 
intensity I  is most easily found by first calculating the characteristic 
function MI(w). Using the independence of 1, and I,, we can express the 
characteristic function as a product of two characteristic functions (cf. 
Problem 4-2): 

where a partial fraction expansion has been used in the last step. A Fourier 
inversion now yields a density function of the form 
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1 .o 

0.5 

0.5 1 .O 1.5 2.0 2.5 

Figure 4-7. Probability density function of the instantaneous intensity of a thermal source 
with degree of polarization 9. 

This density function is plotted in Fig. 4-7 for several values of 8. The 
results are seen to agree with Figs. 4-3 and 4-5 for the cases P = 1 and 
9 = 0, respectively. 

Finally, for a partially polarized thermal source it can readily be shown 
(see Problem 4-7), that the standard deviation o, of the instantaneous 
intensity is given by 

4.4 LASER LIGHT 

Having examined the first-order proper ties of thermal light, which is the 
type of light most often encountered in practice, we now turn attention to 
the more difficult problem of modeling the first-order properties of light 
generated by a laser oscillator. The problem is made difficult not only by the 
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complicated physics that describes the operation of even the simplest kind 
of laser, but also by the vast multitude of types of laser that exist. No one 
model could be hoped to accurately describe the statistical properties of 
laser light in all possible cases. The best that can be done is to present 
several models that describe certain idealized properties of laser light. 

By way of background, we briefly describe in an intuitive way the 
principle of laser action. A laser consists of a collection of atoms or 
molecules (the "active medium") excited by an energy source (the "pump") 
and contained within a resonant cavity that provides feedback. Spontaneous 
emission from the active medium is reflected from the end mirrors of the 
cavity and passes again through the active medium, where it is reinforced by 
additional stimulated emission. Stimulated emission contributions from 
different passes through the active medium will add constructively only for 
certain discrete frequencies or modes. 

Whether a given mode breaks into oscillation depends on whether the 
gain of the active medium exceeds the various inherent losses for that 
particular mode frequency. We say loosely that a given mode is at 
" threshold" when the gain just equals the losses. The gain can be increased 
by increasing the power of the pump. When oscillation develops, however, 
nonlineari ties of the process introduce a saturation of the gain, preventing 
further increase of gain with increased pump power. Nonetheless, as we 
shall see, the statistical properties of the emitted radiation are influenced by 
the degree to which the pump exceeds threshold. In addition, as the pump 
power increases, generally speaking, more modes of the cavity reach 
threshold, and the output contains several oscillating lines at different 
frequencies. 

Our initial considerations are restricted to the case of single-mode laser 
oscillation. Later we focus on the more common but more difficult case of 
multimode oscillation. 

4.4.1 Single-Mode Oscillation 

The most highly idealized model of laser light is a purely monochromatic 
oscillator of known amplitude S,  known frequency v,, and fixed but 
unknown absolute phase 9. The real-valued representation of such a signal, 
assumed linearly polarized, is 

To incorporate the fact that we never know the absolute phase of the 
oscillation, + must be regarded as a random variable, uniformly distributed 
on ( - n, 7) .  The result is a random process representation that is both 
stationary and ergodic. 
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The first-order statistics of the instantaneous amplitude can be most 
easily found by calculating its characteristic function. Since the process is 
stationary, we can set t = 0, in which case 

where J, is a Bessel function of the first kind, zero order. Fourier inversion 
of this function yields (Ref. 4-12, p. 366) a probability density function 

[ n @ - 7 ] - l  lul s s 
0 otherwise, 

which is plotted in Fig. 4.8a. 
As for the intensity of the signal u ( t ) ,  we have 

Thus the probability density function for I can be written 

which is shown in Fig. 4-8b. 
A first step toward a more realistic model is taken by incorporating the 

fact that no real oscillation has a perfectly constant phase. Rather, to a 

la  l Ib, 

Figure 4-8. Probability density functions pu ( u)  of the amplitude and p, ( I )  of the intensity 
of a perfectly monochromatic wave of unknown phase. 
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degree that depends on the type of laser and the precautions taken for 
stability, the phase undergoes random fluctuations with time. Thus we 
modify Eq. (4.4-1) to read 

where 8 ( t )  represents the temporal fluctuations of the phase. 
The randomly varying phase component B ( t )  can arise from a variety of 

sources, including acoustically coupled vibrations of the end mirrors of the 
laser cavity and noise inherent in the output of any noise-driven nonlinear 
oscillator. In all cases the phase fluctuations can be interpreted as arising 
from a random fluctuation of the frequency of the oscillation. 

To make these ideas more precise, let the total phase of the oscillating 
mode be represented by 4 ( t  ), 

The instantaneous frequency of the oscillation can then be defined by 

and is seen to consist of a mean vo minus a randomly fluctuating compo- 
nent 

In most cases of interest, the physical process causing frequency fluctua- 
tions can be regarded as generating a zero mean, stationary fluctuation 
vR(t  ) of the instantaneous frequency. It follows that 

is a nonstationary random process, although the following argument shows 
it to be stationary in first increments. The structure function of O ( t )  is 
independent of the time origin, as demonstrated by 
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where I', is the autocorrelation function of v,(t), T = t2  - tl, and manipu- 
lations similar to those used prior to Eq. (3.4-9) have been carried out. If the 
delay 7 is much longer than the correlation time of v,(t), the structure 
function becomes 

or, in words, the mean square phase difference is linearly proportional to the 
time separation 7. Such a property is also characteristic of a diffusion 
process and of Brownian motion of a free particle. 

As for the probability density functions of the amplitude and intensity of 
the wave with constant strength and randomly varying phase, they are 
identical with those of Fig. 4-8, for the phase is again uniformly distributed 
on the interval ( - n, n )  and the intensity remains constant. 

A final step in sophistication of the model is to allow the amplitude of 
the mode to fluctuate randomly in time, as invariably happens in practice to 
some degree. A solution to the linearized Van der Pol oscillator equation 
(Ref. 4-13) describing a CW laser oscillator operating well above threshold 
shows that the emitted wave has a time structure of the form 

where S and v, are regarded as known constants, B(t) is a randomly 
time-varying phase of the diffusion-type discussed above, and u,(t) is a 
weak stationary noise process, with a spectrum centered at v, and a 
relatively narrow bandwidth (Av << v,). The strength of the noise compo- 
nent diminishes as the laser operates further and further above threshold. 

It can be argued from a physical viewpoint that the first term of (4.4-12) 
represents the result of stimulated emission, whereas the second term 
represents a small residual amount of spontaneous emission. In this case it 
is reasonable to ascribe Gaussian statistics to u,(t) and to assume that it is 
independent of B(t). At a fixed time t, the first term has a probability 
density function given by (4.4-3), whereas the second term has a Gaussian 
density function. For operation well above threshold, the Gaussian function 
has a standard deviation a that is much less than S. Therefore, the 
convolution of the two density functions yields a slightly smoothed version 
of Fig. 4.8a for the density function of amplitude. 

As for the intensity of the mode, we note that it is the squared length of a 
strong constant-amplitude, random-phase phasor S plus a weak circular 
complex Gaussian phasor A, representing the complex envelope of the 
Gaussian noise term. The probability density function of I can be found by 
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noting that 

Now 

where A,, 8, and 4, are independent and 8 and are uniformly distrib- 
uted on (-a, a). The real part of 2S*A, is a Gaussian random variable,? 
with zero mean and variance 

We conclude that the intensity I obeys (approximately) a Gaussian density 
function 

valid for Is >> f,. 
An alternative solution for the probability density function of the in- 

tensity of a laser operating above or below threshold has been found by 
Risken (Ref. 4-14), who solved a nonlinear Fokker-Planck equation to 
obtain the probability density function directly. The result is a density 
function of the form 

0 otherwise, 

where lo is the average intensity at threshold; w is a parameter that varies 
from large negative values well below threshold, to zero at threshold, to 

'Note that Re(S*A,) = SA,cos(+, - 8 ) .  Since +, is uniformly distributed and A,, is Rayleigh 
distributed, the resulting product obeys Gaussian statistics. 
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large positive values well above threshold; and erf w is a standard error 
function, 

erf w = - ~ n ' e x p ( - x 2 ) d ~ ,  e r f ( - w ) = - e r f w  (4.4-17) 
R 0 

The average intensity of the laser output is related to the average intensity at 
threshold by 

e " '  1. 
1 + erf w 

When w ez 0, the laser is well below threshold, and p, (Z)  is approxi- 
mately negative exponential, as for thermal light, 

When w = 0, the laser is just at threshold, and p , ( I )  has the shape of half 
of a Gaussian curve, 

Finally, in the most common case of a laser far above threshold, w >> 0, 
and p , ( I )  has the form of a Gaussian density with mean f = w&lo, 

Recall that the previous approximation (4.4-15) predicted a similar result, 
which suggests the association 
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Figure 4-9. Risken's solution for the probability density function of the intensity of a laser 
oscillator (single mode). 

The general probability density function of Eq. (4.4-16) is plotted for several 
values of w in Fig. 4-9. 

In our future discussions it is often convenient to assume that the laser is 
operating so far above threshold that fluctuations of intensity are insignifi- 
cant. Thus the randomly phase-modulated cosine of Eq. (4.4-5) is most 
commonly used to represent the light from a single-mode laser. 

4.4.2 Multimode Laser Light 

Whereas single-mode oscillation can be achieved with some lasers if special 
precautions are taken, lasers are more commonly found to oscillate in a 
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multitude of transverse and/or longitudinal modes. Assuming that the laser 
is oscillating well above threshold, a reasonable model for the s teady-state 
output is 

where N is the number of modes, S, and Y, are the amplitude and center 
frequency of the ith mode, and (( t)  is a time varying phase associated with 
that mode. 

The most commonly used model for multimode laser light assumes that 
the modes oscillate independently, with no appreciable degree of phase 
locking. Such a model must be used with great caution, however. If the 
phase fluctuations are caused by vibrations of the end mirrors of the laser, 
then clearly the fluctuations of the various modes will be statistically 
dependent. Furthermore, even if the phase fluctuations arise as an integral 
part of the oscillation mechanism, the laser is fundamentally a nonlinear 
device, and significant mode coupling can occur as a result of these 
nonlinearities. For example, if a frequency component generated by nonlin- 
ear intermodulation between two modes happens to coincide with the 
frequency of a th rd  mode, some degree of phase locking can occur. Such 
effects are particularly strong for a laser operating well above threshold, 
where the nonlinearities are most significant. (For a review of techniques for 
intentionally introducing mode locking in lasers, see, for example, Ref. 
4-1 5). 

Recognizing that the model is not valid under many conditions, we 
nonetheless investigate the properties of light emitted by a laser oscillating 
n several independent modes. A reasonable approximation to this condition 
:an be obtained for a gas laser oscillating just above threshold, although 
,trictly speaking, a spontaneous emission Gaussian noise term should be 
ldded to the model (4.4-23) in t h s  case. (However, it should be noted that 
ust above threshold the laser may well oscillate in only one or two modes). 

The characteristic function of the amplitude of a single mode is given, 
ccording to (4.4-2), by 

or N independent modes, the characteristic function is 
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and if all modes have equal amplitudes dm, the result is 

To obtain the probability density function, the characteristic function must 
be Fourier transformed. 

Hodara (Ref. 4-16) and Mandel (Ref. 4-17) have shown that for two 
equal strength modes, the density function for amplitude is 

0 otherwise, 

-2.5 -20  -1  5 -1.0 - 0 5  0 0 5 1 0  1 5  2 0 2 5 

Figure 4-10. Probability density function of the amplitude of a wave consisting of N 
equal-strength independent modes. The total intensity is held constant and equal to unity. A 
Gaussian curve is indistinguishable from the N = 10 curve on this plot. 
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where K ( - )  is a complete elliptic integral of the first hnd .  For our purposes, 
we simply subject Eq. (4.4-26) to a digital Fourier transformation and plot 
the curves of p , ( u )  for various values of N in Fig. 4-10. 

As more and more independent modes are added, the probability density 
function is seen to approach Gaussian form, as expected in accordance with 
the central limit theorem. For N as small as 5, there is little visible difference 
between the true density function and a Gaussian function. From the point 
of view of classical, first-order statistics, there is little difference between 
multimode laser light ( N  z 5) and thermal light, provided the major as- 
sumption of no phase locking is satisfied. 

As for the probability density function of the intensity of multimode 
laser light, the problem is even more difficult than for amplitude. We 
consider first the case of two independent modes, with intensities k j  and 
(1 - k )  j. Reference to Fig. 4-1 1 and the law of cosines shows that the total 
instantaneous intensity can be expressed as 

where 

As a result of the uniform distributions of e2 and 8, and their assumed 
statistical independence, \CI is uniformly distributed on ( - n, n). Thus the 

Figure 4-1 1. Phasor diagram to aid in the 
computation of I .  
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characteristic function of the instantaneous intensity is 

Fourier inversion yields a probability density function 

0 otherwise. 

(4.4-31) 

This density function is shown plotted in Fig. 4-12 for various values of k. 

Figure 
modes 
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Also shown dotted is the negative exponential distribution associated with 
the intensity fluctuations of thermal light. This curve is approached as the 
number of independent modes is increased. 

Although the density function for I with more than two modes present is 
not readily found, it is possible to calculate the standard deviation of the 
intensity with N equal strength independent modes present and to compare 
it with the standard deviation of I for thermal light. The reader is asked to 
verify in Problem 4-11 that the ratio of standard deviation to mean intensity 
with N equal strength independent modes satisfies the equation 

This dependence on N is illustrated in Fig. 4-13. Note that as N increases, 
the ratio o , / l  approaches the value unity characteristic of polarized thermal 
light. When more than five independent modes are present, the ratio is 
within 10% of the value appropriate for thermal light. Thus we again see 
that the approach towards "pseudothermal" light is very rapid with increas- 
ing number of modes. 

Polarized 
thermal light 

/ 

Figure 4-13. Ratio of standard deviation a, to mean 1 for the intensity of light emitted by a 
laser oscillating in N independent, equal-strength modes. 
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Finally, we emphasize again that the resemblance of multimode laser 
light to thermal light is true only when the various oscillating modes are 
uncoupled. In practice, the situations in which this assumption is satisfied 
are probably rather limited. 

4.4.3 Pseudothermal Light Produced by Passing Laser Light 
Through a Moving Diffuser 

A light wave having first-order classical statistical properties indistinguish- 
able from polarized thermal light can be produced by passing laser light 
(single mode or multimode) through a moving diffuser. Such light differs 
from thermal light primarily through the much greater energy it  possesses 
per temporal fluctuation interval (or "correlation time"); thls point is 
treated in more detail in Chapter 9. 

Figure 4-14 illustrates the experimental arrangement for producing 
pseudothermal light of this type. A laser illumiriates a diffuser, such as 
ground glass. On a very fine spatial scale, the diffuser introduces extremely 
complex and irregular deformations of the incident wavefront, with phase 
changes generally many times 2 7 ~  radians. At a distant point Po the light 
may be regarded as consisting of many independent contributions from 
different "correlation areas" on the diffuser, where the diffuser is regarded 
as one particular realization drawn from an ensemble of possible diffusers. 
These contributions are randomly phased, and hence the complex field 
observed may be regarded as resulting from a random phasor sum. The field 
thus obeys complex Gaussian statistics, and the intensity obeys negative 
exponential statistics over an ensemble of microscopically dissimilar di- 
ffusers, as it has been assumed that negligible depolarization of the light 
has occurred. 

If the diffuser is now moved continuously. the field and intensity fluctuate 
with time, taking on many independent realizations of the underlying 

Observation 
point 

Figure 4-14. Production of pseudothermal light from laser light by means of a moving 
diffuser. 
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statistical distribution. Thus the light intensity fluctuates randomly in time, 
obeying negative exponential statistics as for polarized thermal light, but 
with a far narrower bandwidth than true thermal light. For a further 
detailed discussion of the relationship between thls kind of light and 
ordinary thermal light, see Ref. 4- 18. 
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PROBLEMS 

4-1 Starting with Eq. (4.1-lo), show that if Av << F and r << c / A v  for all 
P, , then 

can be used to describe the propagation of u(P, t ) .  

4-2 Show that the characteristic function of the intensity of polarized 
thermal light is given by 

4-3 Show that the coherency matrix of natural light is unaffected by any 
unitary polarization transformation. 

4-4 By finding the trace of the transformed coherency matrix, show that 
the intensity transmitted by a polarization analyzer set at + 45" to 
the X axis can be expressed as 

where Jxx, J,,, and Jx, are elements of the coherency matrix of the 
incident light . 

4-5 By finding the trace of the transformed coherency matrix, show that 
the intensity transmitted by a quarter-wave plate followed by a 
polarization analyzer set at +45O to the X axis can be expressed as 

where Jxx, J,,, and Jx, are again elements of the coherency matrix of 
the incident light, and it has been assumed that the quarter-wave 
plate delays u, with respect to u, by 90". 

4-6 Consider a light wave that has X- and Y-polarization components of 
its electric field at point P given by 
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(a) Show that at time t the electric vector makes an angle 

with respect to the X axis, and thus the polarization direction is 
entirely deterministic. 

(b) Show that such light has a coherency matrix that is identical 
with that of natural light, for which the polarization direction is 
en tirely random. 

4-7 Show that the standard deviation a, of the instantaneous intensity of 
partially polarized thermal light is 

as asserted in Eq. (4.3-43). 

4-8 Consider the analytic signal representation of a monochromatic 
signal 

where S and v, are known constants, whereas + is a random variable 
uniformly distributed on ( - n, s). Let 

(a) Show that the conditional density function of u"),  given u"), is 

(b) Show that the joint density function p(u ( ' ) ,  u ( ' ) )  is given by 
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(c) Show that u(') obeys the same probability density function as 
~ ( ' 1 ,  that is, 

(d) Show that, whereas E [u(')u(')] = 0, u(') and u(') are not inde- 
pendent. 

Hint: 

s I f (x ) l  = C 6 ( x  - xn)  

roots 
X" of x = x ,  

(see Ref. 2-4, pp. 37 and 38). 

4-9 Present an argument demonstrating that thermal light remains ther- 
mal light after propagation to a distant observation point, but that 
laser light may or may not retain the form 

4-10 Consider a single-mode laser emitting light described by the analytic 
signal 

(a) Assuming that AB(t) is an ergodic random process, show that 
the au tocorrelation function of u(t ) is given by 

where M,,(u) is the characteristic function of the phase differ- 
ence A 8  = 8(t2) - 8(t1). 

(b) Show that for a zero mean Gaussian 8(t), arising from a 
stationary instantaneous frequency process, 

where D&) is the structure function of the phase process 8(t). 
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4-11 Let the field emitted by a laser oscillating in N equal-strength but 
independent modes be represented by 

where the +, are uniformly distributed on (- a, a) and are statisti- 
cally independent. Find an expression for the ratio of the standard 
deviation of intensity 0, to the mean intensity j, expressing the result 
as a function of N. 

4-12 Show that the Jones matrix of a polarization analyzer set at angle + a 
to the x axis is given by 

cos 2a sin a cos a 

sin a cos a sin2a I 
Is this matrix unitary? 

- 
4-13 Show that the second moment of the intensity of a wave is not 

equal to the fourth moment [u(')I4 of the real amplitude of that 
wave, the difference being due to a low-pass filtering operation (and a 
scaling by a factor of 2) that are implicit in the definition of intensity. 



Coherence of Optical Waves 

The statistical properties of light play an important role in determining the 
outcome of most optical experiments. In many cases of practical impor- 
tance, however, a satisfactory description of the experiment can be formed 
with far less than a complete statistical model. Most commonly, a descrip- 
tion in terms of certain second-order averages known as coherence functions 
is entirely adequate for predicting experimental outcomes. Attention is 
focused in this chapter on the properties of such second-order averages. 

The origins of the modern concept of coherence can be found in the 
scientific literature of the late nineteenth and early twentieth centuries. 
Particularly noteworthy early contributions were made by E. Verdet (Ref. 
5-I), M. vonLaue (Ref. 5-2), M. Berek (Ref. 5-3), P. H. van Cittert (Ref. 
5-4), F. Zernike (Ref. 5-9,  and others. In more recent times, developments 
of major importance are found in the work of H. H. Hopkins (Ref. 5-6), A. 
Blanc-Lapierre and P. Dumontet (Ref. 5-7), and E. Wolf (Ref. 5-8). These 
few references are far from a complete list of important advances, but 
fortunately the interested reader can easily trace the historical evolution of 
these ideas with the help of two volumes of reprints of original papers, 
together with an extensive bibliography, available under the editorship of L. 
Mandel and E. Wolf (Ref. 5-9). 

Before proceeding with detailed discussions, it is perhaps worth briefly 
mentioning the distinction between two types of coherence, temporal 
coherence and spatial coherence. When considering temporal coherence, we 
are concerned with the ability of a light beam to interfere with a delayed 
(but not spatially shifted) version of itself. We refer to such division of a 
light beam as amplitude splitting. On the other hand, when considering 
spatial coherence we are concerned with the ability of a light beam to 
interfere with a spatially shifted (but not delayed) version of itself. We refer 
to this type af division of light as wavefront splitting. Clearly, the ideas can 
be generalized to allow both temporal and spatial shifting, which will lead 
us to the concept of the mutual coherence function. The type of coherence 
that is needed in any particular case depends on the particular experiment 
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we are attempting to understand on an analytical basis. These ideas are 
developed in greater detail in the sections that follow. 

For alternative discussions of much of the material covered here, the 
reader can consult Refs. 5-10 through 5-14. 

5.1 TEMPORAL COHERENCE 

Let u( P, t ) be the complex scalar representation of an optical disturbance at 
point P in space and instant t in time. Associated with u(P, t )  is a complex 
envelope A(P,  t ) .  Since u(P, t )  has a finite bandwidth Av, we expect the 
amplitude and phase of A(P,  t )  to be changing at a rate determined by Av. 
If a finite time duration T is of interest, we expect A(P, t )  to remain 
relatively constant during the interval T provided T a l / A v .  In other 
words, the time functions A(P, t )  and A(P, t + T )  are highly correlated, or 
coherent, provided 7 is much less than the "coherence time" T, s l / A v .  

The concept of temporal coherence can be given a more precise definition 
and description by considering the interference of light waves in an inter- 
ferometer first introduced by Michelson (Ref. 5-1 5). 

5.1.1 The Michelson Interferometer 

Consider the interferometer illustrated in Fig. 5-1. Light from a point source 
S is collimated (i.e., the rays are made parallel) by the lens L, and falls on 
the beam splitter (a partially reflecting mirror) BS. A portion of the incident 
light is reflected and passes to the moveable mirror M,. This light is 
reflected from M,,  is again incident on the beam splitter, and a portion is 
again transmitted, this time to the lens L,, which brings the rays to a focus 
on detector D. 

Simultaneously, a portion of the original light from S is transmitted by 
the beam splitter, passes through the compensating plate C, is incident on 
and reflected from the fixed mirror M, and again passes through the 
compensating plate. A portion of this light is reflected from the beam 
splitter and finally is focused on the detector D by lens L,. Thus the 
intensity of the light incident on the detector is determined by interference 
of the light from the two arms of the interferometer. 

The compensator C serves the purpose of assuring that the light in both 
arms of the interferometer travels the same distance in glass, thus guarantee- 
ing that both beams have suffered the same dispersion in passage from the 
source S to the detector D. 

If the mirror M, is moved from the position required for equal path- 
lengths in the two arms of the interferometer, a relative time delay is 
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Figure 5-1. The Michelson interferometer, including the point source S, the lenses L,  and 
L, ,  mirrors MI and M, beam splitter BS, compensator C, and detector D. 

introduced between the two interfering beams. As the mirror moves, the 
light falling on the detector passes from a state of constructive interference 
to a state of destructive interference and back to constructive interference, 
with a mirror movement of X/2 (a pathlength difference of X) between 
bright fringes. Superimposed on this rapid oscillation of intensity is a 
gradually tapering envelope of fringe modulation, caused by the finite 
bandwidth of the source and the gradual decorrelation of the complex 
envelope of the light as the pathlength difference increases. A typical pattern 
of interference is shown in Fig. 5-2, with intensity plotted against mirror 
displacement h from the position of equal pathlengths. Such a display of 
intensity vs. pathlength difference is referred to as an interferogram. 

The general behavior of the interferogram can be explained in simple 
physical terms. The extended spectrum of the source can be regarded as 
consisting of many monochromatic components. Each such component 
generates a perfectly periodic contribution to the interferogram, but with a 
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Figure 5-2. Intensity incident on the detector D versus normalized mirror displacement h/Th, 
where is the mean wavelength. The envelope of the fringe pattern is drawn dotted. 

period depending on its particular optical frequency. At zero pathlength 
difference ( h  = 0), all such components add in phase, producing a large 
central peak in the interferogram. As the mirror is displaced from the 
zero-delay position, each monochromatic fringe suffers a phase shift that 
depends on its particular temporal frequency. The result is a partially 
destructive addition of the elementary fringes and a consequent drop in the 
fringe depth on the interferogram. When the relative delay grows large 
enough, the addition of elementary fringes is nearly totally destructive, and 
the interferogram remains at its constant average value. 

It is evident from the preceding discussions that the drop in the fringe 
depth of the interferogram can be explained in either of two equivalent 
ways, in terms of a "dephasing" of elementary fringes or in terms of a loss 
of correlation due to the finite pathlength delay. The role of the autocorrela- 
tion function of the light beam will become more evident in the simple 
analysis that follows. 
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5.1.2 Mathematical Description of the Experiment 

The response of the detector D is governed by the intensity of the optical 
wave falling on its surface. For virtually all applications involving true 
thermal light, the detector may be assumed to average over a time duration 
that is infinitely long. (Effects of finite averaging time, whtch can be 
important with pseudothermal light, are treated in Section 6.2.) Taking 
account of the relative time delay 2 h/c suffered by the light in the arm with 
the moveable mirror, the intensity incident on the detector can be written as 

where K ,  and K ,  are real numbers determined by the losses in the two 
paths and u(t) is the analytic signal representation of the light emitted by 
the source. Expanding this expression, we find 

Thus the important role played by the autocorrelation function of the light 
wave in determining the observed intensity becomes evident, 

Because of the fundamental role played by the time averages in (5.1-2), 
special symbols are adopted for them. In particular we use the notation 

and 

The function I '(r), which is the autocorrelation function of the analytic 
signal u(t), is known as the self coherence function of the optical dis- 
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turbance. In this abbreviated notation we write the detected intensity as 

In many cases it is convenient to work with a normalized version of the 
self coherence function, rather than the self coherence function itself. 
Noting that I, = T(0), we choose to normalize by this quantity, yielding 

which is known as the complex degree of coherence of the light. We note for 
future reference the important properties 

y(0) = 1 and ly(r)l r 1 (5.1-7) 

[cf. Eq. (3.4-5)) In terms of this quantity, the detector intensity is given by 

With the goal of reaching an analytic expression that clearly describes an 
interferogram of the type depicted in Fig. 5-2, we express the complex 
degree of coherence in the following general form: 

where Y(T) = (Y(T)~ ,  1 is the center frequency of the light and a ( r )  
arg{ y(7)) + 21117. Using this expression, assuming equal losses in the two 
arms of the interferometer (K, = K, = K), and noting that C/c = l/x, we 
can express the interferogram in the form 

The expression (5.1-10) can now be compared with Fig. 5-2, which was 
asserted to be typical of the structure of the interferogram. In the vicinity of 
zero relative pathlength difference (h -= 0), we have y(2h/c) z 1 and 
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4 2  h / c )  = 0 from Eq. (5.1-7). Thus near the origin, the interferogram 
consists of a fully modulated cosine, with intensity varying from 4K21, to 
zero about a mean level 2~ *I,. As the pathlength difference h is increased, 
the amplitude modulation y(2h/c) falls from unity towards zero, and in 
addition the fringes may suffer a phase modulation cu(2h/c), depending on 
the nature of the spectrum of the light. 

The depth of the fringes observed in the vicinity of any pathlength 
difference h can be described in precise terms using the concept of fringe 
visibility first introduced by Michelson. The visibility of a sinusoidal fringe 
pattern is defined by 

where I,, and Ih, are the intensities at the maximum and minimum of the 
fringe. In the near vicinity of mirror displacement h, the interferogram in 
Eq. (5.1-10) can be seen to have a visibility 

when losses in the two arms are equal. The reader can readily show that for 
unequal losses, the visibility is 

As the pathlength difference 2h grows large, the visibility of the fringes 
drops, and we say that the relative coherence of the two beams has 
diminished. When the visibility has fallen to approximately zero, we say that 
the pathlength difference has exceeded the coherence length of the light, or 
equivalently, that the relative time delay has exceeded the coherence time. 

Clearly, then, the concept of temporal coherence has to do with the ability of 
two relatively delayed light beams to form fringes. Note that all the preceding 
definitions have utilized time averages. If the random processes of concern 
are ergodic, ensemble averages could be used instead. In addition, there are 
some cases in which we must deal with nonergodic wavefields and for which 
we use exclusively ensemble averages (see Section 7.5.2). In the next section 
we explore in more detail the relation of the interferogram to the power 
spectral density of the light beam. 
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5.1.3 Relationship of the Interferogram to the Power Spectral Density of 
the Light Beam 

As we have seen, the character of the interferogram obtained from a 
Michelson interferometer is determined by the self coherence function r ( r ) ,  
or equivalently by the complex degree of coherence y(r) ,  of the light 
emitted by the source. In addition, we know from Section 3.4 that, for a 
stationary random process, an intimate relationshp exists between these 
correlation functions and the power spectral density of the source. In 
particular, from Eq. (3.8-34) we have 

where 3"'~')(v) is the power spectral density of the real-valued optical 
disturbance u(')(t ). Equivalently, we can express the complex degree of 
coherence y ( r )  in terms of 9( r7r ) (v)  by 

49( r* r ) (v )e - j2"~~  dv 

~ ( 7 )  = & ( v ) e - ~ ~ " ~ ~  dv, (5.1-15) 
Lm49('9')(v) dv 

where @(v) is a normalized power spectral density, 

for v > 0 

0 otherwise. 

We note that the normalized power spectral density has unit area, 

If we know the preceding relationship between y ( r )  and @(v), we can 
readily predict the form of the interferograms obtained with light having 
different shapes of power spectral density. Some specific examples are now 
considered. For a low-pressure gas discharge lamp, the shape of the power 
spectrum of a single line is determined primarily by the Doppler shifts of 
the light emitted from moving radiators that suffer infrequent collisions. In 
t h s  case the spectral line is known to have approximately a Gaussian shape 
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Figure 5-3. ( a )  Normalized power spectral density @(v) and ( b )  envelope y ( 7 )  of the 
complex degree of coherence for three line shapes. 

(Ref. 5-16), 

where the normalization is chosen to satisfy (5.1-17), and A v  is the half- 
power bandwidth. This spectrum is shown in Fig. 5-3a. By a simple inverse 
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Fourier transformation we obtain the corresponding complex degree of 
coherence, 

Note that the phase a ( r )  is zero in this case, so the interferograrn contains 
fringes of constant phase, but with visibility decreasing in accord with the 
modulus of y ( T), 

as shown in Fig. 5-36. 
For a high-pressure gas discharge lamp, the spectral shape is determined 

primarily by the relatively frequent collisions of radiating atoms or mole- 
cules. The spectral line in this case can be shown to have a Lorentzian shape 
(Ref. 5-16), 

where again 5 is the center frequency of the line and A v  is its half-power 
bandwidth (see Fig. 5-3a). The corresponding complex degree of coherence 
is readily shown to be 

Again the interferogram observed with a Michelson interferometer will 
exhibit fringes of constant phase, but with an envelope decreasing as 

This envelope is shown in Fig. 5-36 as a function of the parameter AVT.  
Occasionally in theoretical calculations it is convenient to assume a 

rectangular power spectral density 

A simple Fourier transformation shows that the corresponding complex 
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degree of coherence is 

A where sincx = sin.rrx/nx. In this case the envelope of the interference 
pat tern is given by 

y ( r )  = IsincAv~1, (5 .1-26) 

and the phase function a(7) is not zero for all 7. Rather, a ( r )  jumps 
between 0 and ?r radians as we pass from lobe to lobe of the sinc function, 

Both the power spectral density @(v) and the envelope y(7) are shown in 
Fig. 5-3. 

All the preceding examples yield interferograms that are even functions 
of delay h. This is a universal property of such interferograms and is simply 
an indication that it does not matter which of the two beams is delayed with 
respect to the other. 

In addition, in all the examples the complex degree of coherence has been 
expressible as a product of exp(-j2m5.r) and a real-valued factor. This 
property is a result of our choice of line shapes that are even functions of 
(v - Y), (i.e., symmetrical about 5). More generally, the choice of an 
asymmetrical line profile will yield a y (7) that is the product of exp( - j2nFr) 
and a complex-valued function. Thus the phase function a(7) can take on 
more general values than just 0 or 7. 

In many applications it is desirable to have a precise and definite 
meaning for the term "coherence time." Such a definition can be made in 
terms of the complex degree of coherence, but there are a multitude of 
definitions in terms of y( r )  that can be imagined [see Ref. 5-17, Chapter 8, 
for a discussion of various possible measures of the "width" of a function 
such as ~ ( r ) ] .  However, in future discussions there is one definition that 
arises most naturally and most frequently. Accordingly, following Mandel 
(Ref. 5-18), we define the coherence time rc of the disturbance u ( t )  by 

If this is to be a meaningful definition, it is necessary that 7, have a value 
that is the same order of magnitude as l/Av. That such is indeed the case 
can be found by substituting Eqs. (5.1-19), (5.1-22), and (5.1-25) into 
(5.1-28) and performing the required integration in each case. The results 
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are as follows: 

1 0.664 - ,,/?.-=- Gaussian 
7c - A v  A v  line 

Lorentzian (5.1 -29) 
line 

rectangular 
line 

Thus the order of magnitude does indeed agree with our intuition, and 
hence the specific definition of (5.1-28) will be used in the future. (See 
Problem 5-2 for calculation of some typical values of 7, for some specific 
sources.) 

Figure 5-4. Typical midinfrared interferogram plotted with two different horizontal scales. 
The vertical axis represents detected intensity, and the horizontal axis represents optical path 
difference. The maximum optical path difference is 0.125 centimeters. (Courtesy of Peter R. 
Griffiths, University of California, Riverside and the American Association for the Advance- 
ment of Science. Reprinted from P. R. Grifiths, Science, vol. 222, pp. 297-302, 21 October 
1983. Copyright 1983 by the American Association for the Advancement of Science.) 
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5.1.4 Fourier Spectroscopy 

We have seen that the character of the interferogram observed with a 
Michelson interferometer can be completely determined if the power spec- 
tral density of the light is known. Thls intimate relationship between the 
interferogram and the power spectrum can be utilized for a very practical 
purpose. Namely, by measurement of the interferogram it is possible to 
determine the unknown power spectral density of the incident light. This 
principle forms the basis of the important field known as Fourier spectros- 
copy (for reviews of this field, see Refs. 5-19 and 5-20). 

The general steps involved in obtaining a spectrum by Fourier spectros- 
copy are as follows. First, the interferogram must be measured. The move- 

Wave number 

Figure 5-5. The Fourier transform of Figure 5-4, representing the spectrum of the source. The 
vertical axis represents power spectral density, and the horizonal axis represents optical 
wavenumber ( 2 r / X )  in inverse centimeters. The resolution achieved is 8 centimeters-'. 
(Courtesy of Peter R. Griffiths, University of California, Riverside and the American Associa- 
tion for the Advancement of Science. Reprinted from P. R. Griffiths, Science, vol. 222, pp. 
297-302, 21 October 1983. Copyright 1983 by the American Association for the Advancement 
of Science.) 
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able mirror travels, usually under in terferometric control, from the position 
of zero pathlength difference into a region of large pathlength difference. 
The intensity of the light is measured as a function of time during this 
process, and the resulting interferogram is digitized. A digital Fourier 
transformation, usually using fast Fourier transform techniques (Ref. 5-21) 
yields a spectrum. A typical interferogram is shown in Fig. 5-4, and the 
power spectral density obtained from this interferogram is shown in Fig. 
5-5. 

Fourier spectroscopy has been found to offer distinct advantages over 
more direct methods (e.g., grating spectroscopy) in certain cases. First, there 
is an advantage in terms of light flux utilization (throughput), whlch we do 
not dwell on here (see Ref. 5-19). Of more direct interest to us, it was first 
shown by Fellgett (Ref. 5-22) that Fourier spectrometers can have an 
advantage over more conventional spectrometers in terms of the signal-to- 
noise ratio achieved in the measured spectrum. This advantage holds when 
the chief source of noise is additive detection noise and in general does not 
hold when photon noise is the limiting factor. As a consequence, Fourier 
spectroscopy has found considerable application in the infrared, often 
eliminating the need for detector refrigeration. 

5.2 SPATIAL COHERENCE 

In discussing temporal coherence, we noted that every real source has a 
finite bandwidth; therefore, for sufficiently large time delays r ,  the analytic 
signals u(P, t )  and u(P, t + 7) become decorrelated. To concentrate on 
temporal coherence, we assumed that the source emitting the radiation was 
a perfect point source. In practice, of course, any real source must have a 
finite physical size, and as a consequence it is necessary to take t h s  finite 
size into account. To do so leads us to the realm of spatial coherence. In this 
case we consider the two analytic signals u(P,, t )  and u(P2, t )  observed at 
two space points P, and P2, ideally with zero relative time delay. When 
P, = P,, the two waveforms are, of course, perfectly correlated. As P, and 
P2 are moved apart, however, some degree of loss of correlation can in 
general be expected. We accordingly say that the wave emitted by the source 
has a limited spatial coherence. These ideas can be put on firmer ground by 
considering the interference of light in the classic experiment of Thomas 
Young (Ref. 5-23). 

5.2.1 Young's Experiment 

Consider the experiment illustrated in Fig. 5-6. A spatially extended source 
S illuminates an opaque screen in which two tiny pinholes have been 
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V ~ e w ~ n g  
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Figure 5-6. Young's interference experiment. 

pierced at points P, and P,. At some distance behind the opaque screen a 
viewing screen is placed, and the pattern of interference of the light from 
the two pinholes can be observed on this screen. 

Light passing through the pinholes travels to the viewing screen, suffering 
time delays r,/c and r,/c, respectively, in the process. If the delay 
difference (r, - r,)/c is much less than the coherence time r, of the light 
from the source, fringes of interference can be expected, with a depth of 
modulation (visibility) that depends on the degree of correlation between 
the light waves incident on the two pinholes. Thus the cross-correlation 
(u(P,, t + r)u*(P,, t)) can be expected to play an important role in de- 
termining the visibility of the observed fringes. 

As with the case of the Michelson interferometer, there is another 
equivalent viewpoint that lends further insight into the character of the 
observed fringes. If the light is approximately monochromatic and originates 
from a single point source, sinusoidal fringes of high contrast are observed 
on the viewing screen. Now if a second point source, of the same wavelength 
as the first, but radiating independently, is added, a second fringe pattern is 
generated. The period of this fringe pattern is the same as that of the first, 
but the position of zero pathlength difference is shifted with respect to the 
corresponding position for the first fringe (see Fig. 5-7). 

If the pinhole separation is small, the fringes are very coarse, and the 
shlft of one fringe with respect to the other is a negligible fraction of a 
period. If the pinhole separation is large, however, the fringe period is small, 
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Figure 5-7. Physical explanation far the loss of fringe visibi 
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and the fringe is shifted by a significant fraction of its period (perhaps even 
many periods). The two fringes may then partially cancel, with a loss of 
visibility resulting. If the source is an extended collection of many indepen- 
dent radiators, destructive cancellation of fringes can result in nearly a total 
loss of visibility for large pinhole spacings. This physical explanation is 
illustrated in Fig. 5-7. 

To place the concepts discussed above on firmer ground and to discover 
the assumptions that may be buried in our intuitive discussion, we turn to a 
simple mathematical analysis of Young's experiment. 

5.2.2 Mathematical Description of Young's Experiment 

With reference again to Fig. 5-6, we wish to calculate mathematically the 
intensity of the light reaching point Q. As we have done previously, we 
again assume that the averaging time is effectively infinite, a valid assump- 
tion for true thermal light. The desired intensity is accordingly expressed as 

To proceed further, it is necessary to express u(Q, t )  in more detail, 
presumably in terms of the analytic signals u(Pl, t ) and u(P,, t ) reaching 
pinholes P, and P,. At this point the assumption is usually made that 
u(Q, t )  can be expressed as a weighted superposition of u(P,, r )  and 
u( P,, t ), each suitably delayed, 

where K, and K,  are (possibly complex-valued) constants. With reference to 
Section 4.1.3, it becomes clear that such an expression is indeed possible, 
provided the light is narrowband and the pinholes are not too large. In 
particular, with the help of Eq. (4.1-12), we write 

pinhole 
Pl 

pinhole 
p2 

where O,, 4 ,  r,, and r, are indicated in Fig. 5-6. (For consideration of the 
case of broadband light, the reader may consult Problem 5-4). In writing 
(5.2-3), it has been implicitly assumed that the pinholes are so small that the 
incident fields are constant over their spatial extent. For circular pinholes of 
diameter 8 and a source with maximum Linear dimension D, a sufficient 
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condition to assure accuracy of this assumption is that 

where z is the normal distance from the source to the pinhole plane. 
Using Eqs. (5.2-2) and (5.2-I), the intensity of the light at Q is readily 

shown to be 

For convenience we again adopt some special symbols for quantities that 
are of particular importance. For a stationary optical source, we define 

representing, respectively, the intensities produced at Q by light from 
pinholes P, and P, individually. In addition, to account for interference 
effects, we introduce the definition 

representing the cross-correlation function of the light reaching pinholes P, 
and P,. This function, first introduced by Wolf (Ref. 5-8), is called the 
mutual coherence function of the light and plays a fundamental role in the 
theory of partial coherence. 

In terms of the above quantities, the intensity of Q can now be expressed 
in shorter form: 
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Now r12( r )  can be readily shown to have the property that r2,(- r )  = 

rfi(r). Furthermore, since both K, and K2 are purely imaginary numbers 
(Eq. 5.2-3), we see that K,K: = KfK, = K,K2, where K, = IK,l and K2 = 

IK21. Thus the expression for the intensity at Q becomes 

or equivalently 

A further simplification results if we introduce a normalization of the 
coherence function, as was done in discussing the Michelson interferometer. 
In this case we have, from Schwarz's inequality, 

where r11(7) and r2,(r)  are the self-coherence functions of the light at 
pinholes P1 and P2. Note that rll(0) and r2,(0) represent the intensities of 
the light incident on the two pinholes. The inequality (5.2-10) leads us to 
define a normalized mutual coherence function in the form 

which is called the complex degree of coherence. [Strictly speaking, y,,(r) 
should perhaps be called the complex degree of mutual coherence and y ( r )  
of Section 5.1 should be called the complex degree of self coherence, but 
this distinction is seldom worth making.] From the inequality (5.2-10) we 
can readily see that 

Noting further that 
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we can immediately rewrite the expression (5.2-9) for Z(Q) in the more 
convenient form 

To make further progress toward discovering the basic nature of the 
fringe patterns, we note that the complex degree of coherence, which is a 
normalized cross-correlation function of two random ,processes with center 
frequencies E, can always be written in the form 

Substituting this expression in (5.2-14), we find 

Although we are not yet in a position to specify precisely the geometric 
character of the interference pattern, we can draw some general conclusions 
at this point. The first two terms of Eq. (5.2-16) represent the intensities 
contributed by the pinholes individually. For pinholes of finite size, Z(l)(Q) 
and I ( ~ ) ( Q )  will vary in the observation plane in accord with the diffraction 
patterns of the pinhole apertures, but for the present we assume that the 
pinholes are so small that these intensities are constant across the observa- 
tion region. Riding on this constant bias we find a fringe pattern, with a 
period determined by 5 and other geometric factors, and having a slowly 
varying amplitude and phase modulation. In the vicinity of zero pathlength 
difference (r, - r, = O), the fringes have a classical visibility 

Since y,,(O) represents the cross-correlation coefficient of the (underlying) 
waveforms u( P,, t ) and u(P2, t ), we conclude that y,,(O) [or V' when 
1") = z ( ~ ) ]  is a measure of the coherence of the two optical vibrations. A 
description of how y12(0) changes with changing distance between P, and 
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P2 is accordingly a description of the spatial coherence of the light striking 
the pinhole plane. 

Note that in the general form of the Young's experiment discussed so far, 
both temporal and spatial coherence effects play a role. The envelope of the 
fringe pattern at zero pathlength difference is an indication of spatial 
coherence effects, whereas the tapering and eventual vanishing of the fringe 
envelope at large pathlength differences is an indication of temporal 
coherence effects. Ultimately we shall separate these two effects, but first we 
take up some geometric considerations that will allow us to specify the 
character of the fringe pattern in even greater detail. 

5.2.3 Some Geometric Considerations 

To specify more precisely the geometrical structure of the fringes, it is 
necessary to relate the delay difference (r2 - rl)/c to various geometric 
factors, including the spacing of the pinholes, the distance to the observa- 
tion plane, and the coordinates of the observation point Q. Such a relation- 
ship can be found with the help of Fig. 5-8. Let pinhole P, have transverse 
coordinates ( t , ,  ql)  and pinhole P2 have transverse coordinates ( t 2 ,  q2), 
both in the plane of the opaque screen. The viewing screen is assumed 
parallel to and a distance 2, from the opaque screen. The coordinates of the 
observation point Q on the viewing screen are represented by (x, y). 

The distances r, and r2 are given exactly by the expressions 

Figure 5-8. Interference geometry for Young's experiment. 
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To obtain a simple result, we make the usual paraxial approximations, valid 
when the pinholes and the observation point are close to the optical axis. In 
particular, we assume that 

With these approximations we obtain 

and similarly 

Using these results, the pathlength difference takes the form 

or equivalently 

Finally, we define the symbols 

representing the distance of the pinholes from the optical axis, and 

A t  = E2 - [ I ,  A77 = 772 - "71 (5.2-25) 

representing the t and 77 spacings of the two pinholes. Thus the pathlength 
difference is expressed as 

Returning to the general expression (5.2-16) for the intensity distribution 
in the observation plane, Eq. (5.2-26) can be used to discover the exact form 
of the fringe pattern in the (x, y) plane. Referring to Fig. 5-9a, which is 
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Figure 5-9. Geometric properties of the fringes. 

drawn for the case of a,, constant, we find the fringe crests and nulls to run 
normal to the line joining P, and P, with a spatial fringe period given by 

- 
A22 L = -  

d ' (5.2-27) 

where X = c/S and d = J- is the distance between the two 
pinholes. 

Figure 5-96 shows a typical profile of the fringe along the x' axis, which 
passes through P, and P2, with the assumptions that I( ' ) (Q)  and I ( ~ ) ( Q )  
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are constant over the region shown, while a,, and i r ( ~ ;  - P;) /~Z,  are 
identically zero. We note several properties of these fringes. The fringe 
envelope is centered at a point that corresponds to zero relative pathlength 
difference, which is taken to be the origin of the x' axis. The fringe period is 
given by (5.2-27) and the half-width of the fringe packet along the x' axis is 

z2c A1 2: - 
- A v d '  

The total number of fringes appearing under the tapering envelope is 

From the preceding discussions, it is clear that the results of a Young's 
interference experiment are dependent on both temporal and spatial 
coherence effects. Since we wish to concentrate on spatial coherence effects 
for the moment, it is necessary to impose further restrictions on the light 
that make temporal coherence effects negligible. 

5.2.4 Interference Under Quasimonochromatic Conditions 

To express the field incident at the observation point Q as a simple 
weighted sum of the (properly delayed) fields incident on the pinholes, it 
was necessary to assume that the light is narrowband. We now add a second 
assumption. Namely, we assume that the coherence length of the light is 
much greater than the maximum pathlength difference encountered in 
passage from the source to the interference region of interest. Stated 
mathematically, we require that for all source points and all points in the 
observation region of interest, 

A v  << Y and (r2 + r;) - (r1 + ri') 
C 

<< Tc, (5 -2-30) 

where the various distances involved are shown in Fig. 5-6. Such light is said 
to satisfy the quasimonochromatic conditions. 

The addition of the second assumption in the preceding paragraph results 
in the assurance that the fringe contrast will be constant over the observa- 
tion region of interest. Utilizing this fact, considerable simplifications in the 
forms of the mutual coherence function and the complex degree of coherence 
are possible. These functions can now be rewritten as 
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where 

r12(0) = (u(P1, t)u*(P2, 1)) = (A(p1, ~ ) A * ( P ~ ,  t ) )  (5.2-32) 

is called the mutual intensity of the light at pinholes P1 and P2 and 

is called the complex coherence factor of the light. In effect, J12 may be 
regarded as a phasor amplitude of a spatial sinusoidal fringe, whereas p12 is 
simply a normalized version of J12 having the property 

Note that in writing (5.2-32) and what follows it has been tacitly assumed 
that (r2 - rl)/c << T, and (r; - r{)/c -=z .rC, a slightly more restrictive 
condition than stated in (5.2-30). 

The character of the fringe pattern can be stated more explicitly by 
substituting the expressions in (5.2-31) into Eqs. (5.2-9) and (5.2-14). Under 
paraxial conditions [ r2 - r, given by (5.2-26)j and tiny pinholes [ I (')(Q) = 

I('), I(')(Q) = I('), I(') and constants] the interference pattern in the 
(x, y )  plane can be expressed by 
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Under the quasimonochromatic conditions, and assuming 1"' and I ( 2 )  
are constant, the observed interference pattern has constant visibility and 
constant phase across the observation region. The visibility V may be 
expressed in terms of the modulus p,,  of the complex coherence factor by 

When p12 = 0, the fringes vanish, and the two light waves are said to be 
mutually incoherent. When a,, = 1, the two waves are perfectly correlated, 

Figure 5-10. Fringe patterns obtained for various values of the complex coherence factor 
( I ( \ )  = 1 ( 2 1 ) .  
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and the two waves are called mutually coherent. For an intermediate value 
of p12, the two waves are partially coherent. 

Figure 5-10 shows the character of the fringe patterns observed under 
various conditions on p,, and +,, and under the assumption that I = I (,). 
Note that the fringe position corresponding to +,, = 0 is arbitrary, but once 
selected it should be retained without change for all fringes. 

A number of new quantities have been defined in ths  and previous 
sections. As an aid to the reader, we summarize the names and definitions of 
these quantities in Table 5-1. 

5.2.5 Effects of Finite Pinhole Size 

The pinholes utilized in the Young's interference experiment have, un ti1 
now, been assumed to be so small that the centers of their diffraction 
patterns cover the entire observation regon. Under quasimonochromatic 

Table 5-1 Names and Definitions of Various Measures of Coherence 

Temporal or 
SymboI Definition Name Spatial Coherence 

Self Temporal 
coherence 
function 

Complex degree Temporal 
of (self) 
coherence 

Mutual Spatial 
coherence and temporal 
function 

Complex Spatial 
degree of and temporal 
coherence 

Mutual Spatial 
intensity quasimonochromatic 

Complex Spatial 
coherence quasimonochromatic 
factor 
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conditions, the result is a fringe of constant-amplitude riding on a bias level 
that is constant over the field of interest. The disadvantage of using such 
small pinholes is, of course, that little light reaches the observation plane; 
therefore, we must know in more detail the effects of enlarging the size of 
the pinholes. 

Assuming that the pinholes are still sufficiently small to produce Fraun- 
hofer diffraction patterns (rather than Fresnel diffraction patterns) in the 
observation plane, we can readily specify the distribution of intensity 
produced by each pinhole. For circular pinholes of diameter 8,  we find that 
the intensities I ("(Q) and I ( 2 ) ( ~ )  produced by the pinholes individually 
are Airy patterns (see Ref. 5-24, pp. 63,64): 

where z, and z, are shown in Fig. 5-l la,  A = ~ ( 6 / 2 ) ~  is the area of a 
pinhole, whereas I(P,) and I(P,) are the intensities incident on the 
pinholes. In writing these expressions, it has been assumed that the source 
size is sufficiently small so as not to "smooth" these diffraction patterns. 
The required condition is 

where D is the maximum linear dimension of the source. 
Figure 5- l lb  illustrates the overlapping diffraction patterns. Each pattern 

has a width of 2.44Xz2/8 between first zeros, and the centers of the patterns 
are separated by distance 
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Figure 5-11. ( a )  Geometry of the experiment, ( b )  partially overlapping diffraction patterns. 

where d is the separation of the pinholes. Thus we can expect nearly 
complete overlap of the two diffraction patterns if 

If the pinholes are too far apart, the intensities I ( ' ) (Q)  and z ( ~ ' ( Q )  will 
not be equal, even if I ( P l )  and I ( P , )  are equal. Furthermore, the fringe 
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visibility 9'- will not be constant and will not equal the modulus p12 of the 
complex coherence factor. Although p12 can be recovered from the mea- 
sured visibility and measured diffraction patterns by means of 

the correction factor depends on which portion of the interference pattern is 
used for the visibility measurement, and further it will change if the pinhole 
separation is modified. 

These difficulties can be alleviated if the interference measurements are 
made with a slightly different optical system illustrated in Fig. 5-12. In thls 
case the source is placed in the front focal plane of a positive lens, the 
observation screen in the back focal plane of a second lens, and the pinhole 
screen between the two lenses. For circular pinholes with diameter 6, equal 
intensities I ( P , )  = I ( & )  = I, and quasimonochromatic light, the inter- 
ference pattern becomes 

Note that, in addition to causing complete overlap of the two diffraction 
patterns, this optical system has the effect of canceling the phase factor 

Positive 

l + - - - f 4  
Screen wrth 

I+---'---I 
Observation 

pinholes plane 

Figure 5- 12. Optical system for interference experiment. 
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5-13. Photograph of interference pattern. 
(Courtesy of B. 3. Thompson and the 
Optical Society of America. From B. J.  
Thompson and E. Wolf J. Opt. Soc; vol. 
47, p. 899, 1957.) 

( n / ~ j ) ( p ~  - p:). Figure 5-13 shows a photograph of an interference pat- 
tern obtained with such a system. The visibility of the fringes is the same at 
all points in the interference pattern. 

5.3 CROSS-SPECTRAL PURITY 

Many problems in coherence theory are simplified if the light of concern has 
the property that the complex degree of coherence can be factored into a 
product of a component depending only on spatial coordinates and a 
component depending only on time delay. Such a coherence function is said 
to be reducible. This property will be seen to be expressible as a different 
but entirely equivalent relationship in the spectral domain, where it is 
referred to as cross-spectral purity, a concept first introduced by Mandel 
(Ref. 5-25).  By way of background, it is first helpful to consider a general 
problem: when two different light beams, each having the same normalized 
power spectral density @(v), are superimposed, what is the shape of the 
power spectral density of the resultant beam? In the subsection to follow, 
we answer this question. Attention is then turned to the concept of 
cross-spectral purity and the conditions under which it can hold. The final 
subsection deals with an example of a light beam that is not cross-spectrally 
pure. 

5.3.1 Power Spectrum of the Superposition of Two Light Beams 

Consider two narrowband, statistically stationary light beams represented 
by analytic signals u(P,, t )  and u(P,, t ) .  These waves may be regarded as 
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arising from two pinholes at points P, and P2 in a Young's interference 
experiment. The two waves are superimposed after suffering delays 7, and 
T2, yielding a resultant light wave 

at a fixed point Q. 
Suppose that the power spectral densities of u,(t) and u2( t )  have 

identical shapes. Stated in mathematical terms, we require that their normal- 
ized power spectra [cf. Eq. (5.1-16)] be equal, 

Our goal is to find the relationship between the normalized spectrum at Q 
and the normalized spectra of the component beams. 

Consider first the (self) coherence function of the light at Q. We have 

where K 1  = IKII, K 2  = IK21, and 

Recalling that = r;(-~), we can write as 

Normalizing by ra(0), and noting that, since the normalized spectra of the 
two beams are equal, their complex degrees of self coherence must likewise 
be identical, we obtain the complex degree of coherence at Q, 

where the constant A is given by 
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Moving to the spectral domain, a Fourier translormation of Eq. (5.3-6) 
yields the normalized power spectrum at Q, 

Note that the denominator of (5.3-6) did not depend on 7 and thus was not 
transformed. In addition, we have used the fact that 

The result (5.3-8) provides us with an explicit expression for the spectrum 
of the combined light beam at Q. We now compare t h s  spectrum with the 
spectra of the original light beams. 

5.3.2 Cross-Spectral Purity and Reducibility 

With the result of Eq. (5.3-8) in hand, we can now investigate the conditions 
under which the normalized spectrum gQ(v) of the superimposed light 
waves is equal to the normalized spectrum @(v) of the component beams. 
When these two spectra are equal, the light is said to be cross-spectrally 
pure, a term borrowed from the field of genetics and meant to imply that the 
two progenitors (the original beams that were superimposed) have produced 
a progeny (the new light beam) that has the same properties as the 
progenitors, at least as far as the shape of the power spectral density is 
concerned. Consider the difference of the spectra in question, 

For this expression to be zero for all I(') and I(2),  and independent of 
T2 - r l ,  we must have 

One way this requirement can be satisfied is for the light at PI and P2 to be 
completely uncorrelated for all 7, - 7,. Then 

However, we seek less restrictive conditions. 
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It soon becomes evident that condition (5.3-11) cannot be satisfied in the 
most general case, for the left-hand term oscillates indefinitely with r2 - r,, 
whle the right-hand term eventually drops to zero. Therefore, we can expect 
that some restrictions must be placed on the delay difference if we are to 
achieve approximate equality. 

To ths  end, let the delay difference be written 

where for the moment 7, is arbitrary, but AT is restricted to be much less 
than l / A v ,  A v  being the bandwidth of the light. With this restriction, is it 
now possible to satisfy the required equation? 

For the small range of AT allowed, we can show that 

where i; represents the center frequency of the cross spectrum @,,(v). The 
steps involved in proving this assertion are: 

(1) Note 

(2) Let v = i; + Sv ( - A 4 2  < Sv < Av/2) .  
(3) Approximate exp{ - j2mSv AT ) G 1. 

From these three steps, Eq. (5.3-14) follows. Substitution of the ap- 
proximate expression for yl2(r0 + AT) in Eq. (5.3-11) yields the following 
equation that must be satisfied if the normalized spectrum of the superim- 
posed light beams is to equal that of the component beams: 

Some comments are in order before continuing. The reader may question 
whether Eq. (5.3-16) can be expected to hold in general, for it appears that 
the left-hand side will be oscillatory in v, as a result of the exponential, 
whereas the right-hand side will be nonoscillatory for any smooth @(v). 
Ths objection is in general valid but can be overcome i f  we choose the delay 
r0 correctly. In fact, if the delays suffered by the light on its travel from the 
source ro the two pinholes differ by more than l/Av, the cross spectrum 
@,,(v) will itself be oscillatory (see discussion that follows). However, if the 
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delay difference To after the pinholes is chosen to cancel the delays suffered 
by the light on the way to the pinholes, the exponential term on the ,left of 
Eq. (5.3-16) will exactly cancel the oscillatory behavior of #&) itself. To 
achieve the equality desired in Eq. (5.3-16), therefore, it is necessary that the 
delay ro be chosen so that the total delays, from source to observation plane, 
are equalized. This requirement is equivalent to one that chooses ro to 
maximize y I2 ( r0 ) .  

The preceding assertion that the cross-spectral density #,,(v) can itself 
be oscillatory is best illustrated by considering two light beams at points P, 
and P, that are identical except for a relative delay 7. We suppose that one 
beam has been advanced by ?/2 and the other has been retarded by the 
same amount. The two beams have the same power spectrum @(v). The 
delays in time can be represented equivalently by means of transfer func- 
tions in the frequency domain. The appropriate transfer functions are 

I I - j2n v $ I ( beam advanced by 1; ) . 

Now using the expression (3.5-8) for the cross-spectral density of two 
linearly filtered random processes, we obtain a cross-spectral density 

which has an oscillatory component. Thus we see that when there are 
relative delays present as the light travels to the pinholes, the cross-spectral 
density of the light will have an oscillatory component and that proper 
choice of the delay 7, in Eq. (5.3-16) will cancel this oscillatory component. 

We note in passing that it can readily be shown that the superposition of 
two light beams that are identicai except for a relative delay 7 results in a 
new spectrum 9 ' ( v )  of the form 

Such a spectrum is illustrated in Fig. 5-14. It should be clear that if the 
delay I satisfies 7 > l / A v ,  the new spectrum will exhibit fringes and will 
thus be different from the original spectra of the component beams. [Spec- 
tral fringes of this type were used by W. P. Alford and A. Gold to measure 
the velocity of light (Ref. 5-26).] This basic phenomenon of spectral fringing 
must be avoided by proper choice of ro if cross-spectral purity of the light is 
to be achieved. 
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Figure 5- 14. Power spectra gQ(v) and 2 1 1 ( v ) ,  showing departure from cross-spectral purity. 

Having chosen the delay term 7, properly, and restricting the delay term 
AT to be much smaller than l / A v ,  Eq. (5.3-16) can be satisfied. It is helpful 
to examine the form of the same equation, but expressed in the time 
domain, rather than the frequency domain. An inverse Fourier transforma- 
tion of the equation yields 

Any complex degree of coherence with the preceding property is said to be 
reducible, and we see that, within the approximations and restrictions made 
above, reducibility is entirely equivalent to cross-spectral purity. Note that 
the reducible property of the complex degree of coherence is the property 
we initially set out to explore. Namely we were seeking an understanding of 
when the complex degree of coherence factors into a product of a spatial 
part and a temporal part. Since 7, is a constant, Eq. (5.3-20) is precisely the 
factorization property we were seeking. 

A bit of physical interpretation of the spectral represen tation (5.3-16) 
might be helpful at this point. The left-hand side of the equation can be 
regarded as expressing the cross-correlation between the spectral compo- 
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nents that are in the vicinity of frequency v for each of the two beams, but 
with one beam delayed with respect to the other by 7,. The right-hand side 
expresses that correlation as being proportional to y,, ( 7,). The factor @( v ) 
is simply a normalization that represents the relative amount of power 
present at frequency v. Equation (5.3-15) can thus be interpreted as stating 
that, for two beams to be cross spectrally pure, all frequency components of 
one beam must have the same normalized cross-correlation with the corre- 
sponding frequency components of the other beam. 

Since the delay To has been chosen to maximize yl,(ro), it is clear that the 
quasimonochromatic conditions are satisfied, and we could equally well 
express the reducibility result (5.3-20) in terms of the complex coherence 
factor pI2, 

In closing this section, we summarize by stating that factorization of the 
complex degree of coherence yields great simplifications in many problems 
for which both temporal and spatial coherence play an important role. Such 
factorization is possible if the light is cross-spectrally pure. Often cross-spec- 
tral purity is simply assumed without any real justification other than the 
simplification that results. Such an assumption may or may not be valid in 
any particular case: For example, if the light arises from a source that 
radiates with an angularly dependent optical spectrum, cross-spectral purity 
generally will not hold. An example of such a source is considered in 
Section 5.3.3. 

5.3.3 Laser Light Scattered by a Moving Diffuser 

An example of light that is not cross-spectrally pure is afforded by consider- 
ing the wave transmitted by a moving diffuser (such as ground glass) when 
illuminated by ideal laser light. The geometry is illustrated in Fig. 5-15. The 
C W laser provides plane wave illumination by essentially monochromatic 
light. The diffuser is moving with constant linear velocity u in the vertical 
direction. An opaque screen pierced by two tiny pinholes P, and P2 is 
placed immediately adjacent to the diffuser, allowing us to perform a 
Young's interference experiment on the light transmitted by the diffuser. 
Our goal is to determine whether the complex degree of coherence r,,(7) of 
the Light transmitted by a moving diffuser can be expressed in product form 

that is, to discover whether the transmitted light is cross-spectrally pure. 
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Figure 5-15. Measurement of the mutual coherence function of light transmitted by a moving 
diffuser. 

The diffuser may be represented in terms of its amplitude transmittance 
t,(x, y). For simplicity we assume that the pinholes are oriented vertically 
along the y axis, and hence the x dependence of t A  is dropped.? Under unit 
intensity normally incident plane wave illumination, the diffuser produces 
an optical field with amplitude distribution 

where ti is the frequency of the incident laser light. 
Considering pinholes located at positions y,  and y,, the mutual coherence 

function of interest is 

Neglecting any small component of absorption by the diffuser, we have 

and hence r(y1, y,; 7 )  = y(yl, YZ;  I ) .  
The statistical fluctuations of the transmitted fields arise from the statisti- 

cal structure of the diffuser. (The detailed spatial structure of the diffuser is 

tImpIicit here is the assumption that the pinholes are much smaller than the finest structure of 
t 4 .  
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unknown a priori.) We make the reasonable assumption that the random 
process t,(y ) is spatially ergodict (and hence stationary) in y and has a 
statistical autocorrelation function 

In terms of t h s  quantity, the complex degree of coherence y ( y,, y,; T)  of 
the transmitted field can now be expressed as 

where Ay = y, - y2 is the pinhole separation. This complex degree of 
coherence is in general not separable into a product of space and time 
factors as required for cross-spectral purity. For example, when the correla- 
tion function y,(Ay) of the diffuser has Gaussian form 

the complex degree of coherence is readily seen to be 

As an interesting exercise, the reader is asked to prove (see Problem 5-8) 
that if the same laser light is passed through two closely spaced diffusers, 
moving in exactly opposite directions with equal speeds, the transmitted 
light is cross-spectrally pure when the correlation function y,(Ay) has 
Gaussian form. 

5.4 PROPAGATION OF MUTUAL COHERENCE 

The detailed structure of an optical wave undergoes changes as the wave 
propagates through space. In a similar fashion, the detailed structure of the 
mutual coherence function undergoes changes, and in this sense the mutual 
coherence function is said to propagate. In both cases the underlying 
physical reason for propagation rests on the wave equation obeyed by the 
light waves themselves. In this section we first derive some basic propaga- 
tion laws obeyed by mutual coherence and later show that the mutual 
coherence function obeys a pair of scalar wave equations. 

By spatially ergodic, we mean that all space averages equal corresponding ensemble averages. 
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5.4.1 Solution Based on the Huygens-Fresnel Principle 

The simplest method for discovering the propagation laws obeyed by 
mutual coherence is to begin with the Huygens-Fresnel principle, as pre- 
sented previously in Section 4.1; knowing that the complex fields satisfy 
such equations, we can easily derive the corresponding relations for mutual 
coherence. 

The general problem of interest is illustrated in Fig. 5-16. A light wave 
with arbitrary coherence properties propagates from left to right. Knowing 
the mutual coherence function r (P , ,  P,; 7) on the surface Z,, we wish to 
find the mutual coherence function r (Ql ,  Q2; T )  on surface Z,. Stated in 
more physical terms, our goal is to predict the results of Young's inter- 
ference experiments with pinholes Q, and Q, when we know the results of 
Young's interference experiments with all possible pinholes P, and P,. 

Our analysis centers on the case of narrowband light, discussed in 
Section 4.1.3. Results for broadband light are also presented later in the 
section. We begin by noting that the mutual coherence function on X, is by 
definition 

The fields on 2, can be related to the fields on Z, with the help of Eq. 
(4.1-12)' valid for narrowband light. In particular, we have 

Figure 5-16. Geometry for propagation of 
mutual coherence, where 8, and 8, represent, 
respectively, the angle between P,Q, and the 
surface normal at P, and the corresponding 

X2 angle for P2Q2. 
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Substituting (5.4-2) in (5.4-1) and interchangng orders of integration and 
averaging, we find 

The time average in the integrand can be expressed in terms of the mutual 
coherence function on XI ,  yielding the basic propagation law for mutual 
coherence (under the narrowband assumption) 

The reader can readily show (see Problem 5-9), starting with Eq. (4.1-9), 
that for broadband light, the corresponding relationship is 

Returning to the case of narrowband light, we now invoke the second 
quasimonochromatic condition, namely, that the maximum difference of 
pathlengths is much smaller than the coherence length of the light. With this 
assumption we can find the corresponding propagation laws for mutual 
intensity. When the quasimonochromatic conditions are satisfied, we find 
the mutual intensity on Z2 by noting that 

Using (5.4-4) with r = 0, and further noting [cf. Eq. (5.2-31)] that 
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we have 
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x l e 2 )  dSldS2, 
Xr, Xr2 

which represents the basic propagation law for mutual intensity. 
The intensity distribution on the surface 2 ,  can readily be found by 

letting Q, -t Q ,  in (5.4-8). Thus 

where the quantities rL r;, B;, and 0; differ from r,, r,, el, and 8, in Fig. 
5-16 because Q, and Q ,  have merged. The new geometry is illustrated in 
Fig. 5-17. 

Thus the basic propagation laws for mutual coherence and mutual 
intensity have been derived. The reader is reminded that, because the results 
were derived from the Huygens-Fresnel principle, the assumptions imposed 
in deriving that principle are also implicit here. In particular, the distances 
r, and r2 (or r; and r;) must be much larger than a wavelength, a condition 
satisfied in all applications of interest to us here. 

Figure 5-17. 
sity on 2,. 

Geometry for calculation of the inten- 
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5.4.2 Wave Equations Governing Propagation of Mutual Coherence 

The basic propagation laws for mutual coherence have been found from the 
Huygens-Fresnel principle; however, it is of some general interest to ex- 
amine the propagation problem on a more fundamental level. In this section 
we begin with the scalar wave equation governing the propagation of fields 
and show that the mutual coherence function obeys a pair of wave 
equations, a fact first discovered by E. Wolf. 

In free space, the real wave disturbance u(')(P, t )  obeys the partial 
differential equation 

where v = a2/8x2 + a2/ay2 + a2/az2 is the Laplacian operator. Now 
if both sides of thls equation are Hilbert transformed, after an interchange 
of orders of operators it follows that 

where u(')(P, t ) is the Hilbert transform of u(')(P, t ). We conclude that 
both the real and imaginary parts of the analytic signal u(P, t )  obey the 
wave equation and thus that 

Now by definition, the mutual coherence function is given by r12( r )  = 

(u1(t + r)u?(t)), where ul(?) A u(Pl, t )  and u2( t )  u(P2, I). Let the oper- 
ator V: be defined by 

a2  " - a2 +-  a2 + -  
ax: ay; a ~ : '  

where P, has coordinates (x,, y,, 2,). We apply the operator D: directly to 
the definition of rl, ( r ), yielding 
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But since 
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The time-averaged quantity is simply the mutual coherence function, and 
hence 

In a similar fashion, the operator v22 = d2/8x: + d2/8 yt + a 2 / a z :  
can be applied to the definition of r1,(7), yielding a second equation 

whch r I2(7)  must also satisfy. Thus rI2(7) propagates in accord with a 
pair of wave equations. The relationships derived in Section 5.4.1 are in fact 
certain specialized solutions of ths pair of equations. For a discussion of 
rigorous general solutions to this pair of equations, the reader may wish to 
consult Ref. 5-10, Section 10-7. 

As an exercise (see Problem 5-10), the reader is asked to verify that the 
mutual intensity J,, propagates in accord with a pair of Helmholtz equa- 
tions, 

v,'J,, + (K)'J,, = 0, (5.4-19) 

where -. 2.ir/x. 

manipulating the right-hand side of this equation, we have used the fact that 

as can readily be proved from the fundamental definition of a derivative. 
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5.4.3 Propagation of Cross-Spectral Density 

Our previous discussion and our treatments to follow rest heavily on the 
laws of propagation of the mutual coherence function and mutual intensity. 
It is also possible to treat these same problems in terms of propagation of 
cross-spectral density, that is, the Fourier transform of the mutual coherence 
function. Here we briefly discuss the relationshp of such solutions to those 
we rely on here. 

From the basic definition of cross-spectral density [cf. Eq. (3.5-5)], the 
mutual coherence function can be expressed as an inverse Fourier transform 
of the cross-spectral density function, 

where it has been noted that Y,, is zero for negative frequencies. Knowing 
the propagation equations obeyed by mutual coherence [Eqs. (5.4- 17) and 
(5.4-18)J, we can apply these laws to Eq. (5.4-20) and deduce the corre- 
sponding laws for cross-spectral density. Interchange of orders of differenti- 
ation and integration allows the new equations to be written 

For these equations to hold for all delays 7 and all cross-spectral densities, 
the integrands of the integrals on the left must vanish. Applying the 7 
derivatives to the exponentials, which contain the only dependence on that 
variable, we obtain a pair of Helmholtz equations that must be satisfied by 
the cross-spectral density, 

The main significance of this result is appreciated by examining Eq. 
(5.4-19), which presents the Helmholtz equations satisfied by the mutual 
intensity J,,. Remembering that k = 2aS/c,  we see that cross-spectral 
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density and mutual intensity obey the same set of Helmholtz equations. The 
only difference is the appearance of frequency v in Eqs. (5.4-22) wherever 
the center frequency ti would appear in (5.4-19). This observation leads us 
to the following general conclusion: 

Cross-spectral densities obey the same propagation laws as do mutual 
intensities. To find the solution for cross-spectral density, the corresponding 
result for mutual intensity can be used, subject only to the requirement that 
the parameter ti must be replaced by v .  

In attacking coherence problems in the frequency domain using cross- 
spectral density, it is sometimes useful to introduce the definition of yet 
another coherence quantity, known as (Ref. 5-27) the complex degree of 
spectral coherence and defined as 

where S,,(v) and g2,(v) are the power spectral densities of the light at 
points P, and 4, respectively. The complex degree of spectral coherence 
can be shown to satisfy the inequality 

The reader interested in studying proofs of these relationships is referred 
to Ref. 5-27. We have chosen to use mutual intensities in our analyses, 
rather than cross-spectral densities, primarily because J,, directly describes 
the amplitude and phase of a spatial fringe, whereas cross-spectral density is 
one step further removed from the physics of the problems of concern. 

5.5 LIMITING FORMS OF THE MUTUAL COHERENCE FUNCTION 

In this section we consider certain limiting conditions of coherence that are 
important idealizations in practical calculations. In particular, the concepts 
of a coherent wavefield and an incoherent wavefield are defined. 

5.5.1 A Coherent Field 

In terms of the definitions of coherence already introduced, we are led 
naturally to say that the optical waveforms observed at points P, and P2, 
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subject to relative time delay r ,  are fully coherent provided 

Although this condition defines perfect coherence for particular points 
(P,, P,) and a particular time delay r, we might inquire whether there is a 
more general definition that will allow the entire wavefield to be referred to 
as fully coherent. 

One possible definition is to call a wavefield fully coherent provided 

I ~ , , ( T ) ~  = 1 for all (P I ,  P,) and all r .  (5.5-2) 

Such a definition is overly restrictive, however, since no real experiment 
involves simultaneously all values of delay 7. Furthermore, it can be shown 
to be satisfied only for monochromatic waves, leading us to seek a weaker 
and more widely applicable definition. 

A less stringent condition was introduced by Mandel and Wolf (Ref. 
5-28). According to this definition, a wavefield is called fully coherent if, for 
every pair of points (PI, P,), there exists a delay r,, [a function of (P,, P2)] 
such that Jy12(r12) 1 = 1. Stated mathematically, we require that 

If the field is cross-spectrally pure, an equivalent definition is easily seen 
to be 

Ipl,l = 1 for every pair (P,, P,). (5 5 4 )  

Some physical insight into the concept of perfect coherence can be 
obtained by expressing the condition ly12(r12)l = 1 in terms of the complex 
envelopes of the two wave disturbances. From the definition of the complex 
degree of coherence we have 

Now using the fact that 

u(P,  t )  = A(P, t ) e - ~ ~ " "  

we can equivalently write 
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It is now useful to apply Schwarz's inequality, which states that 

with equality if and only if 

where k is a complex constant. 
Applying (5.5-8) and (5.5-9) to (5.5-7), we see that y12(r12) = 1 if and 

only if 

where k,, is a complex constant that in general depends on the points P, 
and P,. 

Stating the above result in words, a wavefield is called perfectly coherent 
if and only if, for every pair of points P, and P,, there exists a time delay 
Tl2 such that the complex envelopes of the two waveforms, relatively 
delayed by the required Tl2, differ by only a time-independent complex 
constant. 

When the quasimonochromatic conditions are imposed on the wavefield 
of concern, the situation simplifies somewhat. In any one experiment it is 
likely that a multitude of different pinhole spacings will be involved. If we 
insist that the quasimonochromatic conditions be satisfied, by implication 
we mean they should simultaneously be satisfied for all pinhole pairs 
involved in the experiment, thus implying that for all points (P,, P,) the 
same delay q, should be required to eliminate temporal coherence effects. 
Furthermore, if we let pinhole P, approach pinhole P,, thus including 
negligibly small (or zero) spacings in our experiment, it is clear that the 
unique delay TI2 required to maximize II;,(r)I must in fact be identically 
zero. From Eq. (5.5-lo), the complex envelopes at P, and P2 are now 
related by 

where again k,, depends on the particular points (PI, P,). Thus the complex 
envelopes at all points vary in unison, differing from each other only by 
time-invariant amplitude and phase factors. 

A useful special form for the mutual intensity, valid in the fully coherent, 
quasimonochromatic case, can be found by expressing the complex en- 
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velopes A(P,, t )  and A(P,, t )  in terms of the complex envelope A(Po, t )  at a 
prechosen reference point Po. We define time-invariant phasor amplitudes 
A( P,) and A( P2) in terms of the complex envelope at Po as follows: 

The mutual intensity is now calculated to be 

Alternatively, the complex coherence factor can be expressed in the form 

r12 = e x ~ { j [ + ( ~ , )  - +(p2)1) ,  (5.5-14) 

where 

+(P t )=arg (A(P , ) ) ,  @ ( P , ) = a r g ( A ( ~ , ) ) .  (5.5-15) 

For fully coherent, quasimonochromatic radiation, the fringe pattern gener- 
ated by a Young's interference experiment takes the form 

for every pinhole pair (PI,  P,). When the intensity of the wave is uniform, 
the visibility of the fringes is always unity, but the phase of the fringe 
pattern will change as P, and P, are changed. 

5.5.2 An Incoherent Field 

For a fully coherent field, the fluctuations of the complex envelopes of the 
wave at P, and P, are perfectly correlated, provided the appropriate delay 

2  is introduced. The logical opposite of a fully coherent field is called an 
incoherent field. Thus we might reasonably define a field to be incoherent if 

lr12(r)(= 0 for all P, # P2 and for all T .  (5.5-17) 
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Although such a definition is indeed the logical opposite of a fully 
coherent field, it is not a very useful definition in practice. The reason can 
readily be seen by substituting r ip , ,  P,; r + (r2 - rl)/c] = 0 in Eq. (5.4-4). 
If this is first integrated over the surface El, the integrand is zero every- 
where except when P, = P,, where it has a finite value. The result of the 
integration is thus precisely zero, and we have the result 

Letting T = 0 and (2, = e l ,  we see that (5.5-18) implies that Z(Ql) = I(Q,) 
= 0. Thus if the wavefield on 22, is incoherent in the sense defined above, it 
does not propagate to Z,! 

The physical explanation of the above seemingly nonphysical result lies 
in the evanescent-wave phenomenon. A wavefield incoherent in the sense of 
(5.5-1 7) has infinitesimally fine spatial structure. However, spatial structure 
finer than a wavelength corresponds to nonpropagating evanescent waves 
(see, e.g., Ref. 5-24, pp. 50 and 51). Hence the perfectly incoherent surface 
does not radiate. 

When the evanescen t-wave phenomenon is taken fully in to account, it 
can be shown that for a propagating wave, coherence must exist over a 
linear dimension of at least a wavelength. For quasimonochromatic light, 
the mutual intensity most closely approximating incoherence, yet still corre- 
sponding to a propagating wave, is found to be (Ref. 5-11, pp. 57-60) 

where P, and P2 are assumed to lie in a plane and have coordinates ( x , ,  yl) 
and (x,, y,), respectively; Jl(x) is a Bessel function of the first kind, order 
1; and X = 27r/x. 

In practical computations, the form (5.5-19) is rather cumbersome to use. 
If a wave with such a mutual intensity passes through an optical system that 
has resolution in the (x, y ) plane that is much coarser than X, the exact 
shape of J(Pl, P,) is not of consequence. In this case the mutual intensity 
corresponding to incoherence can be approximated by 

where S( , * )  represents a two-dimensional Dirac delta function. The con- 
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stant K should be chosen to assure that the volume of the function J(P,, P,) 
in (5.5-20) is the same as in (5.5-19). The required value is 

If coherence extends over more than a wavelength, but the optical system 
that follows still cannot resolve a coherence area, the 8-function representa- 
tion for J(Pl,  P,) is still valid, although the appropriate value of K is no 
longer x2/n. Since the constant K ultimately affects the intensity level but 
not spatial structure, it is often replaced by unity for simplicity. Since this 
constant has dimensions of squared length [cf. Eq. (5.5-21)], however, we 
retain it in our future mathematical expressions to assure dimensional 
consistency. 

5.6 THE VAN CImRT-ZERNIKE THEOREM 

In nearly all optical problems involving light that does not originate from a 
laser, the original optical source consists of an extended collection of 
independent radiators. Such a source can reasonably be modeled as incoher- 
ent in the sense defined in the preceding section, provided only that the 
optical elements through which the light passes are incapable of resolving 
the individual radiating elements on the source. Accordingly, it is of some 
special interest to know precisely how mutual intensity propagates away 
from an incoherent source. The character of the mutual intensity function 
produced by an incoherent source is fully described by the Van 
Cittert-Zernike theorem, which is undoubtedly one of the most important 
theorems of modem optics. As the name implies, the theorem was first 
demonstrated in papers by Van Cittert (Ref. 5-4) and Zernike (Ref. 5-5). 

5.6.1 Mathematical Derivation 

Restricting our attention to quasimonochromatic light, we have previously 
shown that mutual intensity propagates according to the law 

regardless of the initial state of coherence represented by J( P,, P,). For the 
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special case of an incoherent source, we further have [Eq. (5.5-20)] that 

Simple substitution and use of the "sifting" or "sampling" property of the S 
function yields a mutual intensity 

where the required geometrical factors are illustrated in Fig. 5-18. 
To simplify this expression further, we make certain assumptions and 

approximations as follows: 

(1) The extents of the source and observation region are much less than 
the distance z separating them. Thus 

(2) Only small angles are involved. Thus 

x(81) E ~ ( 8 ~ )  " 1 .  (5.6-5) 

The mutual intensity in the observation region now takes the form 

Figure 5-18. Geometry for derivation of the Van Cittert-Zernike theorem. 



THE VAN CITTERT-ZERNIKE THEOREM 209 

At this point we specifically adopt the planar geometry shown in Fig. 
5-18; that is, the source and observation regions are assumed to lie in 
parallel planes separated by distance z. Furthermore, in accord with our 
previous assumptions (5.6-4) and (5.6-5), we introduce the " paraxial" 
approximations 

Finally, we adopt the definitions Ax = x, - x,, b y  = y 2 -  y,, and the 
convention that I((, q )  equals zero when (6, q )  lies outside the finite source 
region Z. The final form of the Van Cittert-Zernike theorem then follows: 

In this expression, the phase factor \C, is given by 

where p2 and p, represent, respectively, the distances of the points (x,, y2) 
and (x,, y,) from the optical axis. 

It is often more convenient to express this theorem in normalized form, 
writing the complex coherence factor as 

thus eliminating the awkward scaling factors. In most practical applications 
involving incoherent sources, to a good approximation I(xl, y,)  = I(x,, y,), 
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and hence lp(xl, y,; x,, y2)1 also represents the classical visibility of the 
fringes that would be produced in Young's experiment. 

5.6.2 Discussion 

The Van Cittert-Zernike theorem, stated mathematically in Eq. (5.6-8), can 
be expressed in words as follows: aside from the factor exp(-j4) and 
scaling constants, the mutual intensity J(x,, y,; x,, y,) can be found by a 
two-dimensional Fourier transformation of the intensity distribution I ( ( ,  17) 
across the source. This relationship can be likened to the relationship 
between the field across a coherently illuminated aperture and the field 
observed in the Fraunhofer diffraction pattern of that aperture, althopgh the 
physical quantities involved are entirely different. In this analogy, we regard 
the intensity distribution I ( ( ,  q )  as analogous to the field across the aper- 
ture and J(xl, y,; x,, y,) as analogous to the field in the Fraunhofer 
diffraction pattern. The relationship (5.6-8) is the same as the corresponding 
Fraunhofer diffraction formula. We emphasize again that this analogy is 
only a mathematical one, however, for the physical situations described by 
the same equation are entirely different, as are the physical quantities 
involved. We further note that, as implied by Eq. (5.6-7), the Fourier 
transform relationship between J(xl, y,; x,, y,) and I ( &  7 )  holds over a 
wider range of distances than would the analogous Fraunhofer diffraction 
equation, for the paraxial approximation is valid in regions of both Fresnel 
and Fraunhofer diffraction (see Ref. 5-24, Chapter 4). 

Noting that the modulus of the complex coherence factor Ip) depends 
only on the difference of coordinates (Ax, Ay) in the (x, y) plane, it is 
possible to define the coherence area A ,  of the light in a manner entirely 
analogous to the definition (5.1-28) of coherence time 7,. For our purposes, 
the coherence area is defined by 

The reader may wish to prove, with the help of Problem 5-15, that for a 
uniformly bright incoherent source of area As and any shape, the coherence 
area A, at distance z from the source is 

where Q ,  is the solid angle subtended by the source from the origin of the 
observation region. 
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Returning to the general expression (5.6-10) for p, we consider conditions 
under which the factor exp(-j$) can be dropped in the expression for the 
complex coherence factor. Since 

three different conditions can be identified: 

1. If the distance z is so large that z >> 2[(& - then + n/2 
and exp( - j$ )  = 1. 

2. If the measurement points Q, and Q ,  are intentionally maintained at 
equal distances from the optical axis (although their spacing may be 
changed in both size and direction), J/ is identically zero. 

3. If, rather than lying in a plane, the pinholes lie on a reference sphere of 
radius z, centered on the source, the phase factors vanish. 

In such cases the phase factor + can, of course, be dropped. 
Finally, we remind the reader that the mathematical result relating p,, to 

the source intensity distribution can be understood qualitatively by consid- 
eration of a simple Young's experiment with the extended source. Just as a 
point source will create interference fringes of perfect visibility, each point 
on an incoherent source will create a separate fringe of high visibility. If the 
source size is too large, these elementary fringe patterns add with signifi- 
cantly different spatial phases, and the contrast of the overall fringe pattern 
is reduced. The mathematical statement of the Van Cittert-Zernike theorem 
is simply a precise statement of this relationship between the intensity 
distribution across the source and resulting fringe contrast for given loca- 
tions of the pinholes. 

5.6.3 An Example 

As an example of the use of the Van Cittert-Zernike theorem, the complex 
coherence factor p,, of the light produced by a uniformly bright, incoher- 
ent, quasimonochromatic circular disk of radius a will be calculated. The 
intensity distribution of the source is thus assumed to be 

where 
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To find J(xl, y,; x,, y,), we must Fourier transform this distribution. We 
note first that (Ref. 5-24, pp. 15 and 16) 

where F( . } is a two-dimensional Fourier transform operator, 

and J1(9  is a Bessel function of the first kind, order 1. Furthermore, in 
accord with the scaling factors in the exponent of Eq. (5.6-8), we must 
substitute 

The result is 

for the mutual intensity function, and the corresponding complex coherence 
factor is 

Note that the first factor e-" depends on both ( x , ,  y,) and (x,, y,), 
whereas the second factor depends only on the spacing of the two points, 

s = JM. Thus the modulus lp121 depends only on Ax and A y 
and is shown in Fig. 5-19. The first zero of J1(2?zap) appears at p = 0.610/a, 
and hence the first zero of 1p121 occurs at spacing 
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1 ~ 1 2  I 

Figure 5-19. Modulus Ip,,l of the complex coherence factor versus coordinate differences Ax 
and Ay in the ( x ,  y )  plane. 

Remembering our small-angle approximation, the angular diameter 0 of the 
source, viewed from the origin of the (x, y )  plane, is 8 = 2a/z .  Thus the 
spacing for the first zero of I J L , ~ ]  can also be expressed as 

The coherence area of the light emitted by the source can be found with 
the help of the results of Problem 5-15. For a circular incoherent source of 
radius a, the coherence area at distance z is 

Recognizing that only small angles are involved in our analysis, we note that 
the solid angle subtended by the source, viewed from the origin of the (x, y)  
plane, is 
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Figure 5-20. Fringe patterns produced by a circular incoherent source for various spacings s,, 

s, , s3, sq of pinholes. 
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We see that the coherence area can be expressed as 

as was previously stated in Eq. (5.6-12). 
Suppose that the points (x,, y,) and ( x , ,  y,) correspond to pinholes in 

an opaque screen and that fringes of interference are observed some 
distance behind the screen. Our knowledge of the character of p,, allows us 
to predict the character of the fringes obtained at each possible spacing s of 

Figure 5-21. Photographs of the fringes obtained from a circular incoherent source with 
various spacings of pinholes. The spacing of the pinholes progressively increases in parts a-g. 
(Courtesy of B. J. Thompson and E. Wolf, J. Opt. Soc. Am. ,  vol. 47, pp. 898, 899, 1957.) 
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(c) (d )  
Figure 5-21. Cont. 

the pinholes. Suppose, for simplicity, that (x,, y,) and ( x , ,  y,) are always 
equally distant from the optical axis, thus assuring that rC/ = 0. The predict- 
ed fringe patterns obtained for various spacings are shown in Fig. 5-20. 
Note the increasing spatial frequency of the fringes as s is increased, the 
vanishing of fringe contrast at spacing so, and the reversal of phase of the 
fringes when the spacing s corresponds to the first negative lobe of 
the Bessel function. Photographs of interference patterns obtained at vari- 
ous spacings are shown in Figure 5-21, where the finite size of the fringe 
patterns is due to the finite width of the diffraction patterns of the pinholes 
used. 

Throughout our discussions it has been assumed that the circular source 
is centered on the optical axis. If the source is offset from ths  position by 
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Figure 5-21. Con t. 

displacements A[ and Aq in the (5,q) plane, the shift theorem of Fourier 
analysis (Ref. 5-24, p. 9) implies that the new complex coherence factor pi2 
can be expressed in terms of the old complex coherence factor (source 
centered on axis) p,, by 

Thus the modulus IpI2J of the complex coherence factor is unaffected by a 
translation of the source, but the phase of the fringes is changed in 
proportion to the source translation increments ( A t ,  Aq) and in proportion 
to the pinhole spacings (Ax, A y). 
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(g) 

Figure 5-21. Cont. 

5.6.4 A Generalized Van Cittert-Zernike  heo or ern? 

In deriving the Van Cittert-Zernike theorem, the 8-function form of the 
source mutual intensity function was used to represent an incoherent source. 
We consider now a more general form of the Van Cittert-Zernike theorem 
that applies to a restricted class of partially coherent sources, including an 
incoherent source in the previous sense as a special case. The effect of a 

t~ rudimentary form of the result to be derived here was first demonstrated in Ref. 5-29. A 
more elegant aud more complete result has been derived in Ref. 5-30. For a review of work in 
this area relating coherence theory and radiometry, see Ref. 5-31. 
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small but nonzero coherence area on the source will be evident from these 
results. 

The mutual intensity function of the source is assumed to be of the form 

Implicit in this form is the assumption that the complex coherence factor p 
depends only on coordinate differences ( A t ,  Aq) in the (6, q )  plane. Such is 
often the case in practice (see, e.g., Section 7.2). A radiator having a mutual 
intensity in the form of Eq. (5.6-27) has come to be known as a "quasi- 
homogeneous" source. 

As a further approximation we assume that the source size is much larger 
than a coherence area A, on the source and that any spatial structure 
associated with the source intensity distribution is coarse compared with A,. 
These assumptions allow us to approximate the mutual intensity function of 
the source by 

A6 =I, - I,, = 
51 + 6 2  

2 

This approximate form can now be substituted in the relationship 

which is the general propagation law (5.4-8) for mutual intensity, taken 
under paraxial conditions. Under such conditions, the difference r2 - r, 
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takes the approximate form 

Now we use the previous definitions for g, 1), A t ,  and Ag, and additionally 
define 

Substituting these definitions in expression (5.6-31)' we obtain 

At this point we find it convenient to impose the following assumption 
(which is discussed in more detail shortly): 

FA[ z > 4- and r7Av 
A z > 4- X 

for all A f, Ag, [, and of interest in the experiment. This assumption 
allows us to drop the third and fourth terms of (5.6-33). Now when the 
modified Eqs. (5.6-33) and (5.6-28) are substituted into the integral (5.6-30)' 
taking account of the change of variables of integration, we obtain 
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where $ is given by (2?r/h;z)(~Ax + BAY), which is equivalent to our previ- 
ous definition (5.6-9). 

To afford easy comparison with the previous form of the Van 
Cittert-Zernike theorem, we adopt a special symbol for the-last double 
integral, 

in which case the mutual intensity is expressed by 

Thus the constant K of the previous Van Cittert-Zernike theorem has 
become a function of coordinates (Z, j ) .  As a consequence, the modulus 1 ~ 1  
of the complex coherence factor is no longer a function only of coordinate 
differences (Ax, A y). 

Our physical interpretation of the generalized Van Cittert-Zernike theo- 
rem is as follows. Since p(A(, Aq) is much narrower in the ( A t ,  AT) plane 
than I ( [ ,  Tj) is in the ((, 7j) plane, the factor r(F, J )  will be broad in (P, 7 )  
whereas the integral will be narrow in (Ax, A y ), a consequence of the 
reciprocal width relations of Fourier transform pairs (Ref. 5-17, pp. 
148-163). We interpret the integral factor as representing the correlation of 
the light as a function of the separation of two exploratory points (x,, y,) 
and (x,, y,),  whereas the factor K(Z, J )  represents a coarse variation of 
average intensity in the (x, y )  plane. Exactly as in the case of incoherent 
light, it is the source size that determines the coherence area of the observed 
wave, but in addition the source coherence area influences the distribution of 
average intensity over the (x, y )  plane. 

We close this section with some comments on the conditions (5.6-34) that 
were used to obtain the generalized result. If D represents the maximum 
linear dimension of the source and d, represents the maximum linear 
dimension of a coherence area of the source, the required condition will be 
satisfied provided 
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where it has been noted that I ( ( ,  i j )  drops to zero when dm > D / 2  
p - i i  and p(A& Aq) drops to zero when A + Aq > d,. Equation (5.6-38) 

may be interpreted as requiring that the observation distance z be at least as 
large as the geometric mean of the far-field distances for apertures of 
diameter D and d,. As a particular example, we suppose that D = m, 
d ,  = m, and X = 5 x lo-' m, in which case it is required that z 
satisfy z > 0.4 m. The reader may wish to verify (see Problem 5-16) that, 
when a positive lens with focal length f is placed between the source and 
the observation plane and when the observation plane is the rear focal plane 
of that lens, the restrictions (5.6-34) are no longer necessary, and thus the 
generalized Van Cittert-Zernike theorem holds under a wider set of circum- 
stances than directly treated here, 

5.7 DIFFRACTION OF PARTIALLY COHERENT LIGHT BY AN 
APERTURE 

Suppose that a quasimonochromatic wave is incident on an aperture in an 
opaque screen, as illustrated in Fig. 5-22. In general, this wave may be 
partialIy coherent. We wish to calculate the intensity distribution I ( x ,  y)  
observed across a parallel plane at distance z beyond the aperture. 

5.7.1 Effect of a Thin Transmitting Structure on Mutual Intensity 

The diffracting aperture shown in Fig 5-22 may be represented by an 
amplitude transmittance function 

in 2 
0 otherwise. 

More generally, the aperture may contain absorbing and/or phase shifting 
structures that are characterized by an arbitrary complex-valued amplitude 
transmittance function within the aperture,+ subject only to the constraint 
that 0 2 JtAJ s 1. (For a more complete discussion of amplitude transmit- 
tance, see Section 7.1.1.) 

Knowing that the mutual intensity function of the incident light is 
J,(EI, qI; t2, q2), we inquire as to the form of the mutual intensity function 
Jt(Il ,  ql; t 2 ,  qZ) of the transmitted light. If the complex envelope of the 

We assume that this amplitude transmittance function is independent of wavelength within 
the narrow bandwidth of the incident light. 
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'I Y 

X 

Figure 5-22. Geometry for diffraction calculation. 

incident light is A ,([, q;  t ) and the complex envelope of the transmitted 
light is A t ( &  q;  t ) ,  the two can be related through the amplitude transmit- 
t ance 

where To is the average time delay associated with the structure. The mutual 
intensity of the transmitted light is thus 

Hence the general relationship between incident and transmitted mutual 
intensity is 

5.7.2 Calculation of the Observed Intensity Pattern 

To calculate the observed intensity pattern, we begin with Eq. (5.4-9), whch 
we simplify by assuming that both the diffracting aperture and the observa- 
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tion region are much smaller than z .  The relationship is then given by 

Representing the amplitude transmittance function t, of the aperture by a 
"pupil" function P(6, v), which for generality we allow to be complex-val- 
ued, we substitute (5.7-4) in (5.7-5) to obtain 

For simplicity of analysis, we assume that the mutual intensity function 
can be expressed in the form 

Such is the case in many practical cases of interest.? For example, it is valid 
if the light arrives at the aperture from an incoherent source by way of a 
Kohler condenser system (see Section 7.2.1). In addition, we make the usual 
paraxial approximation, 

where the definitions of Eq. (5.6-29) for and f have been introduced. 

?More generally, we could write 

The factors A(&, q,) and A*((,, q2) may be regarded as being incorporated in P(Il,  q,) and 
P*((29 12). 
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Using this expression and Eq. (5.7-7) for J,, we obtain 

Now for convenience we again make the assumption (5.6-34), or in words, 
we assume that z is at least as large as the geometric mean of the far-field 
distances for the aperture size and the coherence area size. T h s  assumption 
allows us to drop the first exponential factor in (5.7-9), yielding the simpler 
expression 

where 9 is the autocorrelation function of the complex pupil function P,  

Thus the intensity distribution I ( x ,  y)  in the diffraction pattern can be 
found from a two-dimensional Fourier transform of the product of the 
functions 8 and pi .  This result is sometimes referred to as Schell's theorem 
(see Refs. 5-32 and 5-33). We attempt to provide some physical feeling for 
this result in the section that follows, but before doing so, some further 
discussion of condition (5.6-34) in the present context is in order. 

First, it is a straightforward matter to show that the necessity to impose 
this condition vanishes when a positive lens of focal length f = z is placed 
in contact with the aperture plane. Given that such a lens is not present, it 
should be noted that these conditions on z may be more difficult to satisfy 
in the present problem than in the problem presented in Section 5.6.4, for 
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there it was explicitly stated that the coherence area was much smaller than 
the source size, whereas no analogous assumption has been made here. If D 
represents the maximum linear dimension of the aperture and d, the 
maximum linear dimension of a coherence cell on the aperture, the required 
conditions will be met if 

Note that the condition r > 2 ~ ~ / %  is identical with the far-field or 
Fraunhofer condition and must be imposed if the aperture illumination 
approaches full coherence. 

5.7.3 Discussion 

The result we have referred to as Schell's theorem (Eq. 5.7-10) provides a 
general means for calculating the diffraction pattern generated by partially 
coherent illumination of an aperture. The physical implications of this result 
are best understood by considering some limiting cases. 

First, suppose that the aperture is illuminated by a single uniform 
normally incident plane wave (such illumination is, of course, fully coher- 
ent). The complex coherence factor pi is in this case unity for all arguments, 
and the expression for the observed diffraction pattern becomes 

00 

I ( x ,  Y )  s I" / / g ( ~ l , ~ n ) e x p [ j g ( ~ ~ x +  Any) dAtdAn, 
(XZ)' -00  I 

where 9 is the autocorrelation function of the pupil function P. Some 
consideration of the autocorrelation theorem of Fourier analysis (Ref. 5-24, 
p. 10) shows that this result is entirely equivalent to the more usual 
Fraunhofer diffraction formula applied to complex fields, 



Consider next the opposite extreme, namely, illumination with a coherence 
area much smaller than the aperture size. In this case the function B has 
approximately its maximum value A (the area of the aperture) over the 
entire range of (At, Aq) for which pi is nonzero. Hence 

00 

Z(X, Y )  l IoA 11  pi(^[, ~ q ) e x p [ ~ F ( ~ [ x  + Apy) dA[dAq. 
(Xz)' - 0 0  z I 

Thus the shape of the observed intensity pattern is determined primarily by 
the complex coherence factor pi  and is not really influenced by the aperture 
shape, provided D >> d,. 

In intermediate cases, where both B and pi  play a role in determining 
the shape of I ( x ,  y), some insight can be gained by noting that, since 
Z(x, y)  depends on a Fourier transform of the product 974, the shape of 
Z(x, y) will be determined by a convolu~ion of the transforms of B and pi  

A 

Figure 5-23. Diffraction pattern of a circular aperture for various states of transverse 
coherence. The parameter C represents the ratio of the area of the circular aperture to a 
coherence area. A circular incoherent source was assumed. The variable x has been normalized. 
(Ref. 5-34). (Courtesy of B. J. Thompson and the Optical Society of America.) 
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individually. The net result is, in general, a "smoothing" of the diffraction 
pattern as the coherence area is gradually reduced. Figure 5-23 (from Ref. 
5-34) illustrates the gradual smoothing of the [ 2 ( ~ , ( p ) / p  1 pattern (corre- 
sponding to diffraction of coherent light by a circular aperture) as the 
coherence area is gradually reduced. 

In closing, it should be noted that an entirely equivalent result could be 
obtained by an alternate approach to the problem, provided the partially 
coherent illumination at the aperture is produced by an incoherent source. 
Each point on the source may be regarded as generating a fully coherent 
illumination of the aperture and a corresponding diffraction pattern, but the 
center of each diffraction pattern depends on the location of the corre- 
sponding source point. Since the source is incoherent, all diffraction pat- 
terns are added on an intensity basis, yielding a new diffraction pattern that 
has been partially smoothed by the finite source size. 

The second method of calcuIation has the advantage of conceptual 
simplicity but the disadvantage of being not quite as general as the first 
method. In particular, it is possible that the source itself may be partially 
coherent, in which case Schell's theorem can still be used, but the second 
method cannot unless it can be modified by first finding an "equivalent" 
incoherent source that produces the same complex coherence factor as the 
true partially coherent source. 
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PROBLEMS 

5-1 An idealized model of the (normalized) power spectral density of a 
gas laser oscillating in N equal-intensity axial modes is 
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where Av is the mode spacing (equal to velocity of light/;! x cavity 
length for axial modes), Jis the frequency of the central mode, and N 
has been assumed odd for simplicity. 

(a) Show that the corresponding envelope of the complex degree of 
coherence is 

(b) Plot y vs. APT for N = 3 a n d 0  I r I I /Av.  

5-2 The gas mixture in a helium-neon laser (end mirrors removed) emits 
light at 633 nm with a Doppler-broadened spectral width of about 
1.5 x lo9  Hz. Calculate the cohkrence time 7, and the coherence 
length I ,  = cr, (c = velocity of light) for ths  light. Repeat for the 
488 nm line of the argon ion laser, whch has a Doppler-broadened 
line width of about 7.5 x 10' Hz. 

5.3 (Lloyd's mirror.) A point source of light is placed at distance s above 
a perfectly reflecting mirror. At distance d away, interference fringes 
are observed on a screen, as shown in Fig. 5-3p: The complex degree 

Mirror 

I d .  

Figure 5-3p. 

Source 

,\ /, 
1 - ;,I\? 

S 

Y 

of coherence of the light is 

7 

Screen 

////////////////////////////////I//////////// 

Adopting the assumptions s < d and x a: d, and tahng account of 
a sign change of the field on reflection (polarization assumed parallel 
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to the mirror), find: 

(a) The spatial frequency of the fringe. 
(b) The classical visibility of the fringes as a function of x ,  assuming 

equal strength interfering beams. 

5-4 Consider the Young's interference experiment performed with broad- 
band light. 

(a) Show that the field incident on the observing screen can be 
expressed as 

where 

dSi ~ ( 0 i ) A i  i = 1,2, 
ith 

2 vcr, 
pinhole 

where A, is the area of the i th pinhole. 

(b) Using the result of part (a), show that the intensity of the light 
striking the screen can be expressed as 

where 

(c) Show that the preceding expression reduces to that obtained in 
Eq. (5.2-9) when the light is narrowband. 

5-5 As shown in Fig. 5-5p, a positive lens with focal length f is placed in 
contact with the pinhole screen in a Young's interference experiment. 
For quasimonochromatic light, the effect of the lens can be modeled 
by an amplitude transmittance factor 
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Optical axis 
l ncoherent 

source 

screen 

Figure 5-5p. 

under paraxial conditions. Assuming a spatially incoherent source, 
find the relationship between z,, z,, and f that guarantees that the 
spatial phase of the fringe pattern observed depends only on the 
vector separation of the two pinholes and not on their absolute 
locations with respect to the optical axis. 

5-6 Consider a Michelson interferometer that is used in a Fourier spec- 
troscopy experiment. To obtain high resolution in the computed 
spectrum, it is necessary that the interferogram be measured out to 
large pathlength differences, where the interferogram has fallen to 
very small values. 

(a) Show that under such conditions, the spectrum of right falling 
on the detector is sigmficantly different than the spectrum of 
light entering the interferometer. 

(b) If the spectrum of the light entering the interferometer is 

calculate the spectrum of the light falling on the detector. 

5-7 In the Young's interference experiment illustrated in Fig. 5-7p, the 
power spectral density @(v) of the light is measured at point Q by 
means of a grating spectrometer. The wave at the PI ,  P, plane is 
known to be cross-spectrally pure, that is, 

Show that under the condition r, - r , / c  * 7,, when no interference 
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Source C 
Figure 5-7'. 

fringes are observed, p,, can be measured by examining fringes that 
exist across the spectrum gQ(v) of the light at Q. Specify how both 
the modulus and phase of p,, can be determined. 

5-8 A monochromatic plane wave falls normally on a "sandwich" of two 
diffusers. The diffusers are moving in opposite directions with equal 
speeds, as shown in Fig. 5-8p.  The amplitude transmittance tA(x, y)  

CW laser w 
Beam-expanding 

optics 

Figure 5-8p. 

of the diffuser pair is assumed to be expressible as 

where t,  and t, may be assumed to be drawn from statistically 
independent ensembles (since knowledge of one tells nothing about 
the other). Show that, if the diffusers each have a Gaussian-shaped 
au tocorrelation function 

the transmitted light is cross-spectrally pure. 



234 COHERENCE OF OPTICAL WAVES 

5-9 Starting with Eq. (4.1-9), show that for broadband light the mutual 
coherence function r(Q,, Q,; 7) on surface 2 ,  of Fig. 5-16 can be 
expressed as 

5-10 Show that under the quasimonochromatic conditions, mutual inten- 
sity J,, obeys a pair of Helmholtz equations 

2J + (Z),Jl2 = 0, v2 12 

where = 2n/x and 

a2 - a2 + -  d 2  + -  d 2  v: d - + -  d 2  + -  d 2  
ax: ay: a,$ ' ax: ay; a ~ ;  ' 

5-11 A Young's interference experiment is performed in a geometry shown 
in Fig. 5 - l lp .  The pinholes have finite diameter 8 and spacing s. The 
source has bandwidth A v  and mean frequency F, and f is the focal 
length of the lens. Two effects cause the fringes to be attenuated away 

Point 
source < 

Figure 5-1 lp. 
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from the optical axis: 

(a) The finite size of the pinholes. 
(b) The finite bandwidth of the source. 

Given 8,  s and f ,  how small must the fractional bandwidth Av/S be 
to assure that effect (a) dominates over effect (b)? 

5-12 Prove that any monochromatic wave is perfectly coherent (in the time 
average sense). 

5-13 The sun subtends an angle of about 32 minutes of arc (0.0093 
radians) on earth. Assuming a mean wavelength of 550 nm, calculate 
the diameter of the coherence area of sunlight observed on earth 
(assume quasirnonochromatic conditions). 

5-14 A 1 mm pinhole is placed immediately in front of an incoherent 
source. The light passed by the pinhole is to be used in a diffraction 
experiment, for which it is desired to illuminate a distant lmm 
aperture coherently. Given X = 550 nm, calculate the minimum 
distance between the pinhole source and the diffracting aperture. 

5-15 Consider an incoherent source radiating with spatial intensity distri- 
bution I ( &  g). 

(a) Using the Van Cittert-Zernike theorem and Parseval's theorem 
of Fourier analysis, show that the coherence area of the light 
(mean wavelength X) at distance z from the source can be 
expressed as 

00 

(b) Show that if an incoherent source has an intensity distribution 
describable as 

I([, g) = Id'([, v )  

where P ( 6 ,  g) is a function with values 1 or 0, then 

where As is the area of the source. 
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5-16 Representing a positive lens with focal length f by an amplitude 
transmittance function 

and assuming that this lens is placed in contact with a partially 
coherent source, show that for observations in the rear focal plane of 
that lens, the generalized Van Cittert-Zernike theorem holds without 
the restrictions stated in Eq. (5.6-34). 

5-17 'Using a paraxial approximation, find an expression for the complex 
coherence factor p( PI, P,) produced by a quasimonochroma~ic point 
source, with P, and P2 lying in a plane, which is at distance z from 
the source. 



Some Problems Involving 
High-Order Coherence 

In Chapter 5 we dealt exclusively with problems involving second-order 
coherence, that is, the mutual coherence function r1,(7). Such coherence 
functions provide only a limited description of the statistical properties of 
the underlying wavefields. It is quite possible for two fundamentally differ- 
ent types of wavefield to have indistinguishable mutual coherence functions, 
in which case a coherence function of order higher than 2 is required to 
differentiate between the two waves. In addition, we shall see that coherence 
functions of order higher than 2 arise quite naturally in certain physical 
problems. 

By way of introduction, the (n + m)th-order coherence function of a 
wave u(P, t )  is defined by 

or, for an ergodic random process, by a corresponding ensemble average. 
Calculation of averages higher than second order is in general difficult 
mathematically, for it requires knowledge of the (n + m)th-order probabil- 
ity density function, and often the resulting integrals are very difficult to 
perform. Fortunately, an exception to this statement occurs for the very 
important case of thermal light. For such light, the moment theorem for 
circular complex Gaussian random variables [see Eq. (2.8-21)] can be used 
to write 
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where Z, denotes a summation over the n! possible permutations 
(P94, ..., r )  of (1,2,. * ,  n). 

Use of this factorization theorem for thermal light often renders prob- 
lems simple that would otherwise be extremely difficult. Factorization 
theorems of different forms exist for certain non-Gaussian processes as well 
(see, e.g., Ref. 6-1). 

In the sections to follow, we present three examples of problems involv- 
ing coherence of order higher than 2. First we consider some statistical 
properties of the time-integrated intensity of polarized thermal light. These 
results will be of considerable use in our later studies of photon-counting 
statistics (Chapter 9). Then we consider the statistical properties of mutual 
intensity measured with a finite averaging time. Finally, we present a fully 
classical analysis of the intensity interferometer. 

6.1 STATISTICAL PROPERTIES OF THE INTEGRATED 
INTENSITY OF THERMAL OR PSEUDOTHERMAL LIGHT 

In a variety of problems, including the study of photon-counting statistics, 
finite-time integrals of instantaneous intensity occur. In addition, an entirely 
analogous problem arises in considering the statistical properties of a finite 
space average of instantaneous intensity. Here we frame the problem in 
terms of time integrals, but the analysis is nearly identical for integrals over 
space. 

Let I ( t  ) represent the instantaneous intensity of a wave observed at some 
specific point P. Our prime interest here is in the related quantity, 

representing the integrated value of I ( t )  over a finite observation interval 
( t  - T, t ). Note that any estimate of the average intensity of a wave must of 
necessity be based on a finite time average, which is nothing more than the 
measured value of W normalized by the averaging time T. 

Throughout our discussions we shall assume that the light in question is 
thermal or pseudothermal in origin and that it is adequately modeled as an 
ergodic (and hence stationary) random process. As a consequence, the 
statistics of W do not depend on the particular observation time t. For 
mathematical convenience, we choose to let t = T/2 ,  in which case Eq. 
(6.1-1) can be replaced by 
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Our discussion is presented first with the assumption of polarized light, and 
then the cases of partially polarized and unpolarized light are treated. 

The material to follow is divided into three parts, as we (1) derive exact 
expressions for the mean and variance of the integrated intensity W, (2) find 
an approximate expression for the first-order probability density function of 
W, and (3) find an exact solution for t h s  density function. 

6.1.1 Mean and Variance of the Integrated Intensity 

Our initial goal is to find expressions for the mean W and variance o;  of 
the integrated intensity. Also of major interest is the root mean square (rms) 
signal- to-noise ratio, 

associated with the integrated intensity, which provides us with an indica- 
tion of the magnitude of the fluctuations of W relative to the mean value w. 
For discussions of related problems, the reader may wish to consult Refs. 
6-2 and 6-3. 

Calculation of the mean value of W is entirely straightforward. The 
expected value of Eq. (6.1-2) is obtained by interchanging the orders of 
integration and expectation, yielding 

which is quite independent of the state of polarization of the wave. 
Calculation of the variance a& requires a bit more effort. We have 

where r, represents the autocorrelation function of the instantaneous 
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intensity. Since the integrand is an even function of ( 4  - q),  the double 
integral can be reduced to a single integral, exactly as was done in the 
argument leading to Eq. (3.4-9). Thus we have 

where 

h ( l  ; I r /  171 1 1 
otherwise. 

At this point it is necessary to fully utilize the fact that the fields of 
concern arise from a thermal (or pseudothermal) source. The correlation 
function r1(r), which is in fact equivalent to a fourth-order coherence 
function of the underlying fields, 

can be expressed in terms of the second-order coherence function of the 
fields in this case. Using Eq. (6-2), we have for the case of a fully polarized 
wave, 

where y ( r )  is the complex degree of coherence of the light. Substitution of 
this relation in (6.1-6) yields the result 

for a polarized wave. 
For a partially polarized wave, we know that the instantaneous intensity 

can be expressed in terms of two uncorrelated intensities, 

where the mean values of I,(t) and i,(r) are 
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Using these relations in the definition of r,(r), we obtain 

Finally, the variance o& is given by 

for a partially polarized wave with degree of polarization 8. 
A quantity of considerable physical interest is the rms signal-to-noise 

ratio of the measurement [Eq. (6.1-3)]. Using (6.1-4) and (6.1-15), we find 
directly that 

where the parameter A is gven by 

This parameter is sufficiently important, both here and in later considera- 
tions, to warrant some special discussion. 

The physical meaning of the parameter .A can best be understood by 
considering its limiting values. Noting that the width of the function 
A ( T / T )  is 2T whereas the width of the function ly(?)l2 is roughly twice the 
coherence time 2 rc, we can easily show that, for T >> rc, 

In this limiting case the parameter A is thus the number of coherence 
intervals contained within the measurement time T. 

For the opposite extreme of T << rc, the corresponding result becomes 
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This result may be interpreted as meaning that, as the measurement time 
shrinks, the number of coherence intervals influencing the experimental 
resuIt asymptotically approaches unity. Values of 4 less than unity are not 
possible, for the experimental results are always influenced by the state of 
the fields in at least one coherence cell. 

Consistent with the above arguments, in the genera1 case of a measure- 
ment time T related arbitrarily to the coherence time r,, we interpret the 
parameter A as representing the number of coherence cells of the light 
wave that influence the experimental outcome. To specify the value of A in 
this general case, it is first necessary to know l y ( r )12 ,  or equivalently to 
know the spectral distribution of the light. Analytical solutions are possible 
when the light has a Gaussian spectral profile (c.f. Problem 6-5) or a 
Lorentzian spectral profile (see Problem 6-6). The results are 

Gaussian 2 
c - e -  spectrum: JU= ( + e r f ( ~  - ; ~ ( T / T <  1 2 1  1 - l ,  

where erf(x) is a standard error integral, 

and 

2 - 1 Lorentzian 1 7, 
spectrum: A = {' + - (-1 e T T  - 11) . (6.1-21) 

T 2 T  

For the case of a rectangular spectral profile, the corresponding result car 
be obtained by numerical integration (see Ref. 6-4). All three relations arc 
illustrated in Fig. 6-1, which shows the parameter AV plotted against T / T  
(see Ref. 6-5). The dependence of 4 on the exact shape of the spectra 
profile is rather weak and can be ignored outside the range 0.1 < T/T, < 10 

Returning to the question of the rms signal-to-noise ratio associated wit1 
measurement of W, for a polarized source we have 

if) =u. 
rms 

The dependence of ( S / N  ),,, on T/r, is also shown in Fig. 6-1. For 
partially polarized wave, all values should be increased by the factc 
/2 / ( l  + LP2) . 
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Figure 6-1. Plots of A? versus T/T,, exact solutions for Gaussian, Lorentzian, and rectangular 
spectral profiles. 

The results derived in this section can often be of practical use. For 
example, suppose that we wish to estimate the intensity of a polarized 
thermal Light wave with an accuracy of 1%. Since W/T represents a 
finite-time average of intensity, we require measurement of W with an rms 
signal-to-noise ratio of 100. Referring to Fig. 6-1, we see that in this case 

and hence the required accuracy is achieved with T = 10,000 T ~ .  If the mean 
wavelength X of the source is 500 nm - and its wavelength spread is as small 
as 0.1 nm, the coherence time T, = X 2 / c ~ h  is about 10-l1 s. The required 
integration time is thus T = lov7  s, a duration that could easily be achieved 
or exceeded in most experimental situations. On the other hand, if the light 
is pseudothermal in origin, its bandwidth can readily be as small as 10) Hz, 
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and the required integration time becomes 10 s. This condition may or may 
not be easily satisfied in practice, depending on the experimental con- 
straints.? 

6.1.2 Approximate Form for the Probability Density Function of 
Integrated Intensity 

In some applications (e.g., see Refs. 6-4 and 6-6), knowledge of only the 
mean and variance of the integrated intensity is not sufficient. Rather, the 
entire probability density function of this quantity is desired. In this section 
we derive an approximate form for this density function, following the 
approach of Rice (Ref. 6-7) and Mandel (Ref. 6-6). 

Before embarking on a derivation of these approximate results, a few 
remarks concerning the limiting forms of the probability density function 
may be helpful. First, for an integration time T that is much smaller than 
the coherence time I-, of the thermal wave, the integrated intensity is, to an 
excellent approximation, simply the product of the instantaneous intensity 
and the integration time T, 

Within a scaling factor, therefore, the probability density function of W is 
approximately the same as the density function of instantaneous intensity, 
as in Eq. (4.2-9), (4.2-13), or (4.3-42), depending on the state of polarization 
of the wave. 

At the opposite extreme, with an integration time much longer than the 
coherence time, the fact that many independent fluctuations of the instan ta- 
neous intensity occur within the interval T implies, according to the central 
limit theorem, that the statistics of W are asymptotically Gaussian. As in all 
such cases involving the central limit theorem, however, care must be 
exercised to avoid using the "tails" of the Gaussian density function. 

To find an approximate form for the density function p , ( W )  of 
integrated intensity that holds for arbitrary magnitudes of T and rc, we 
invoke a quasiphysical argument as follows. As an approximation, the 
smoothly fluctuating instantaneous intensity curve I(t) may be replaced on 
the interval ( - T/2,  T /2 )  by a " boxcar" function (see Fig. 6-2). The interval 
(- T/2,  T / 2 )  is divided into m equal length subintervals. Withn each 

t ~ s  is shown in Chapter 9, for a true thermal light wave the fluctuations will in practice be 
dominated by shot noise, rather than the noise considered here. For a pseudothermal source, 
however, the noise considered here will often dominate. 
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I( t )  

Figure 6-2. Approximation of the smoothly varying instantaneous intensity I ( t )  by a "boxcar" 
function I'( t ). 

subinterval, the approximation to I ( t )  is constant; at the end of each 
subinterval, the approximate waveform jumps to a new constant value, 
assumed statistically independent of all preceding and following values. The 
probability density function of the boxcar function within any one subinter- 
val is taken to be the same as the probability density function of the 
instantaneous intensity at a single time instant t [i.e., Eq. (4.2-9), (4.2-1 3) or 
(4.3-42), depending on the state of polarization]. 

The integrated in tensity is now approximated in terms of the area under 
the boxcar function as follows: 

where A t  is the width of one subinterval of the boxcar function and I, is the 
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value of the boxcar function in the ith subinterval. By hypothesis, the 
probability density function of each I, is taken to be the same as the density 
function of the instantaneous intensity. Also by hypothesis, the various I, 
are assumed to be statistically independent. 

For the case of a polarized thermal wave, the characteristic function of I, 
is taken (in accord with the result of Problem 4-2) to be 

I t  follows directly from our hypotheses that the characteristic function of W 
is given approximately by 

From the table of one-dimensional Fourier transform pairs presented in 
Appendix A,  we find that the corresponding probability density function is 

0 otherwise, 

where T ( m )  is gamma function of argument m. This particular density 
function is known as a gummu probability density function, and accord- 
ingly the random variable W is said to be (approximately) a gamma variate. 

Continuing with the case of a polarized wave, one problem remains: the 
parameters of the density function (6.1-28) must be chosen in such a way as 
to best match the approximate result to the true density function of W The 
only two adjustable parameters available in (6.1-28) are i and m. The most 
common approach taken (see Refs. 6-7, 6-6, and 6-4) is to choose the 
parameters f and m such that the mean and variance of the approximate 
density function are exactly equal to  rhe true mean and variance of W The 
mean and variance of the gamma density function (6.1-28) can be readily 
shown to be 

- 
w = IT 
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Thus the mean agrees with the true mean given by (6.1-4). For the variance 
of the approximate density function to agree with the true variance (6.1-lo), 
we require that 

Stated in words, the number of subintervals in the boxcar function should 
be chosen equal to the number of coherence cells that influence the 
measurement of integrated intensity. 

It should be noted that, in a certain sense, our quasiphysical reasoning 
that led to the approximate distribution (6.1-28) has broken down, for in 
general the parameter 4 is not an integer, whereas we implicitly assumed 
an integer number of subintervals in the boxcar function. At this point it is 
best to abandon the quasiphysical picture and simply view the gamma 
density function as a general approximation to the true density function, 
with its parameters to be chosen to benefit the accuracy of the approxima- 
tion. We further note that, while choosing the parameters to match the 
mean and variance seems reasonable, there is no reason to assume a priori 
that this choice will result in the closest possible match between the true and 
approximate density functions at every value of W. Nonetheless, this choice 
is a simple one and is accordingly usually made. 

The approximate density function for the integrated intensity of polarized 
thermal light can thus be written in final form as 

W 

W > 0 (6.1-31) 

0 otherwise. 

This function is plotted against W in Fig. 6-3 for various values of A?. With 
the help of Fig. 6-1, the value of A can be related to a value of T/rc if the 
spectral shape of the light is known. 

When the thermal light is partially polarized, a similar approximate 
density function for integrated intensity can be derived. Again the integrated 
intensity is approximated by a boxcar function, but this time the intensity in 
the i th subinterval is taken to have a characteristic function 
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Figure 6-3. Approximate probability density function of the integrated intensity of a polarized 
thermal source for various values of A?. 

in accord with Eq. (4.3-41). The characteristic function of the integrated 
intensity is then given approximately by 

Two approaches to finding the probability density function of integrated 
intensity can be considered. One is an inversion of the characteristic 
function with the help of a partial fraction expansion. The other is a simple 
convolution of the one-dimensional probability density functions of the 
integrated intensities of each polarization component. The latter approach 
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yields a probability density for the total integrated intensity given by 

for W 2 0, where A is again given by Eq. (6.1-30) and I,-,,, is a 
modified Bessel function of the first kind, order - 1/2. 

Figure 6-4. Plot of W p , ( w / W )  versus w/W for various values of J? when the light is 
unpolarized. 
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For the case of totally unpolarized light ( P  = O), the characteristic 
function reduces to 

Detailed consideration shows that Eq. (6.1-34) then reduces to 

0 otherwise, 

as can be verified by a Fourier inversion of Eq. (6.1-35). Figure 6-4 shows 
this probability density function for several values of A. 

6.1.3 Exact Solution for the Probability Density Function of 
Integrated Intensity 

Whereas the approximate forms of the probability density function of 
integrated intensity are useful in many applications, it is also of some 
interest to know the exact forms of these density functions. The exact results 
can in fact be found for certain line shapes using the Karhunen-Loeve 
expansion introduced in Section 3.10. For some related discussions the 
reader may wish to consult Refs. 6-8 through 6-10. We consider here only 
the case of fully polarized thermal light. The initial discussion is quite 
general, but our attention is ultimately limited to the case of light with a 
rectangular spectral profile. 

In the past we have expressed the integrated intensity W in terms of the 
analytic signal u( t ), 

w = JT'* u(t)u*(t) dt; (6.1-37) 
- T/2  

however, it is more convenient here to write W in terms of the complex 
envelope of u(t), 
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obtained by the simple substitution 

in (6.1-37). Whereas u(t) has a bandpass spectrum, A(t) has a low-pass 
spectrum, as is illustrated later, in the discussion of the case of a rectangular 
spectral profile. 

We begin by expanding the complex envelope A(t  ) on ( - T/2, T/2) by 
means of the Karhunen-Lokve expansion of Eq. (3.10-I), 

Substituting this expansion in (6.1-38) and using the orthonormal properties 
of the functions h(t) [see Eq. (3.10-2)], we obtain 

Thus the random variable W has been expressed exactly as an infinite sum 
of random variables ibn12. We turn now to considering the statistical 
properties of these latter random variables. 

Noting from (3.10-3) that 

bn = A(t)+;(t) dt, 
- T/2 

the reader may wish to verify (see Problem 6-10) that, since the complex 
envelope A(t) of a polarized thermal light wave obeys circular complex 
Gaussian statistics, so do the complex coefficients bn. Furthermore, provided 
the functions d(t) are solutions of the integral equation 

the coefficients bn are uncorrelated and, by virtue of their Gaussian statis- 
tics, independent. As for the coefficients JbnJ2, they also must be indepen- 
dent. Since Ibnl2 is the squared modulus of a circular complex Gaussian 
random variable, it must obey negative exponential statistics. Since by Eq. 
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(3.10-5) we have 

E [lbtJ2] = An, (6 .l-44) 

the probability density function and characteristic function of lb,12 are 

We have thus succeeded in expressing the integrated intensity W as the 
sum of an infinite number of statistically independent random variables, 
each with a known characteristic function (assuming that the eigenvalues A n  
are known). The characteristic function of W is accordingly given by 

Inversion of this characteristic function yields an exact probability density 
function of the form 

I otherwise. 

In order to specify numerical values of p,(W) for each W, it is 
necessary to assume a specific spectral profile for the optical wave. Our 
attention here is limited to the case of a rectangular spectrum, although the 
case of a Lorentzian spectrum can also be found in the literature (see Refs. 
6-11 and 6-12). If the original real-valued waveform has a power spectral 
density 

- 
v - v  

= 3 [rect - 9 ( ' p r ) ( v )  + rect- Av 

the analytic signal u ( t )  has a power spectrum 

- 

v - v  
9 ( v )  = 2No rect- . Av 
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It follows that the power spectral density of the complex envelope A(t ) is 

and its correlation function is given by 

sin ~ T A  v r  
r A ( r )  = 2No 

77 7 

Accordingly, the functions +n and the constants A n  must be the eigenfunc- 
tions and eigenvalues of the integral equation 

Fortunately, solutions of the integral equation 

7'/2 s innAv( t ,  - t , )  
+ n ( ' 2 )  " 2  = ' A n  ( 1 1 )  (6.1-54) 

Figure 6 5 .  Plot of X, versus c For various values of n .  (Reprinted with permission from The 
Bell System Technical Journal. Copyright 1964, AT & T.) 
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have been widely studied in the literature (see Refs. 6-13 through 6-16). The 
eigenfunctions +,,( t)  are real valued and are known as the prolate spheroidal 
junc~ions. The eigenvalues in  (also real) have been tabulated and are 
available in both graphical and tabular form (see references cited im- 
mediately above). Both +, , ( t )  and X n  depend not only on n, but also on the 
parameter 

Figure 6-5 shows the values of A, plotted against c for various values of n.  
Noting that W = Z 7 = 0 i n ,  we can now plot numerical values of - 
Wp ,( W /  w) against W /  W  according to the prescription 

Figure 6-6. Exact probability density functions for integrated intensity; c = 0.5,1,2,4,8. 



Figure 6-7. Comparison of exact and approximate probability density functions for integrated 
intensity. Solid lines represent exact results, dotted lines are approximate results. 
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This function is shown in Fig. 6-6 for c = 0.5, 1, 2, 4, and 8. 
It is of some interest to compare the exact and approximate density 

functions for several values of T/rc. To do so conveniently, one first, chooses 
a set of values of c for which tables are available and then converts these 
values of c into equivalent values of T/rc, using Eq. (6.1-55). In the case of 
the values c = 0.5, 1, 2, 4, and 8, we have T/rc = 0.319, 0.637, 1.273, 2.546, 
and 5.093. Next, from Fig. 6-1, with use of the curve for a rectangular 
spectral profile, values of J% corresponding to these values of T/r, are 
found as accurately as possible. In the present example, these values are 
M = 1.05, 1.22, 1.80, 3.07, and 5.65. Finally, with use of Eq. (6.1-31) the 
approximate probability density functions are found and plotted along with 
the exact density functions. Figure 6-7 shows such plots. There is seen to be 
good agreement between the approximate and exact density functions for 
small and large T/rc but some noticeable discrepancies for T/% close to 
unity. 

6.2 STATISTICAL PROPERTIES OF MUTUAL INTENSITY WITH 
FINITE MEASUREMENT TIME 

The complex-valued mutual intensity of a quasimonochromatic wave can 
always be interpreted physically in terms of the amplitude and spatial phase 
of a fringe pattern. A question of both theoretical and practical interest 
concerns the ultimate limits to the accuracy with which the parameters of 
such a fringe can be measured experimentally. Equivalently, we may inquire 
as to the fundamental limits to the accuracy with which the complex-valued 
mutual intensity can be measured. 

Two fundamental limits to this accuracy can be identified. One arises 
from the discrete nature of the interaction of the incident waves and the 
measurement instrument. This limitation dominates any experiment with 
true thermal light and is discussed in detail in Chapter 9. The second 
limitation is introduced by the classical statistical fluctuations of the wave- 
field itself and by the (of necessity) finite duration of the measurement. This 
latter limitation, which is often the dominant source of errors with pseudo- 
thermal light, is the subject of interest in this section. 
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In the analysis to follow, we shall examine the statistical properties of the 
finite-time-averaged mutual intensity, 

and in particular the dependence of those statistical properties on the 
duration T  of the measurement. The term J , , (T)  is, of course, simply an 
estimate of the true mutual intensity, which we represent here by J, , .  
Clearly, as the measurement interval T  increases without bound, by the 
definition of J12 we have 

lim J , , ( T )  = J , , .  
T- ,  oo 

We shall assume throughout our analysis that the underlying wavefields 
are polarized and are of thermal or pseudothermal origin. The fields are 
accordingly modeled as zero-mean, ergodic, circular, complex Gaussian 
processes. 

The statistical fluctuations of the amplitude and phase of J12(T)  are 
generally the quantities of ultimate interest; however, it will be convenient 
to first discuss the statistical properties of the real and imagnary parts of 
J12(T), 

To facilitate the analysis, we express 9 , , ( T )  and & ( T )  in terms of J 1 2 ( T )  
and the underlying fields as fol1ows:f 

  or an alternate method of analysis, see Ref. 6-17 
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Similarly, for 4 , ( T )  we have 

1 = - [ u ( p l ,  ~ ) u * ( P , ,  t )  - u * ( P ~ ,  t ) u ( p 2 ,  t ) ]  dt.  2v -TI2  

Our first task will simply be to find various moments of 9 1 2 ( T )  and 
312(T>. 

6.2.1 Moments of the Real and Imaginary Parts of J,,(T) 

To understand the statistical proper ties of J,, ( T ), it is first necessary to 
know the values of certain simple moments of the real and imaginary parts 
g 1 2 ( T )  and s l 2 ( T ) .  Of particular importance are the following moments: 

(1) The means 9,, ( T )  and ( T ) .  
( 2 )  The variances 

(3) The covariance 

The means can be calculated very quickly and easily. We simply average 
the expressions (6.2-4) and (6.2-5) over the statistical ensemble, yielding 

, t )  + u*(Pl ,  t )u(P2 t ) ]  dt 

912(T)  = L / T / 2  2v - T I 2  [ u ( ~ ~ , t ) u * ( ~ ~ , f ) - u * ( ~ ~ , f ) ~ ( ~ ~ , ~ ) ]  d f .  



PROPERTIES OF MUTUAL INTENSITY 

Noting that 

we see that 

Thus the mean values of the real and imaginary parts of the finite-time-aver- 
aged mutual intensity are equal to the real and imaginary parts of the true 
mutual intensity. 

Calculation of the variances and covariance requires considerably more 
work. We illustrate only the calculation of 0,: and simply state the results 

for 02 and C'. The second moment 9 : , ( ~ )  is first calculated, following 
which the square of the mean [B,, ( T ) ] ~  is subtracted. We begin with 

Taking the average of both sides of the equation, we obtain 

Each of the fourth-order moments can be expanded by means of the 
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complex Gaussian moment theorem, yielding, 

where r l l ( r ) ,  r 2 2 ( ~ ) ,  and r12(7) are the self- and mutual coherence 
functions of u(Pl, t ) and u(P2, t ). 

At this point in the analysis it is helpful to make some specific assump- 
tions about the character of the mutual coherence function r12(7). We first 
assume that the light is cross-spectrally pure, in which case the mutual 
coherence function can be written in the form 

Second, without loss of generality, we can assume that the complex coherence 
factor p,, is entirely real. Ths assumption amounts simply to the choice of 
a phase reference that coincides with the phase of y,,. With substitution of 
(6.2-14) in (6.2-13), the second moment of Wl,(T) becomes 

Noting that y(q - 5) = y*(( - 3) and collecting terms, we obtain 

The mean value of Wl,(T) is simply Jr,l,p12. Hence, subtracting the 
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square of the mean, we obtain the variance 

A final simplification is obtained by noting that ly1 is an even function of 
its argument, allowing the double integral to be reduced to a single integral 
[cf. Eq. (6.1-6)], 

Noting that the quantity in brackets is, from Eq. (6.1-17), simply A!-', we 
obtain the final result, 

Proceeding in an identical fashion to calculate the variance a$ of the 
imaginary part, we find 

Finally, a similar calculation shows that the covariance Cg, of the real and 
imaginary parts is identically zero, 

To conclude this section, we summarize the values of the various mo- 
ments that have been derived here: 

These results can be made more physical by picturing the measured value 
of J , , (T)  as consisting of a fixed phasor of length J12 = JITj;p,2 along the 
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real axis, with its tip surrounded by a "noise cloud." The measured value 
J12(T) falls within the noise cloud, and thus J,,(T) differs from the true 
mutual intensity J,,. When the measurement time T is shorter than the 
coherence time T ~ ,  we know from Fig. 6-1 that = 1. The resulting noise 
clouds are illustrated in Fig. 6-8 for various values of p,,. Note in particular 
the oblong shape of the noise clouds for ptZ near unity, a consequence of 
the different values of u9 and a, in this case. Of particular interest is the 
fact that when pIZ is unity, o, = 0, and the noise cloud collapses onto the 
real axis. Thus for p,, equal to unity, there will be no errors in the phase of 
J,,(T), regardless of the integration time! This mathematical result is simply 
indicative of the fact that when pl, = 1, the two interfering beams are 
perfectly coherent and have a constant phase difference independent of 
time. Thus the phase of the interference fringe they generate is always equal 
to the true phase of the mutual intensity, independent of the integration 
time. 

When the integration time is much longer than the coherence time, the 
parameter A becomes equal to T/T~. The dimensions of the noise clouds 
shown in Fig. 6-8 are accordingly reduced by the factor J-. Figure 6-9 
shows the results when T = lorc. 

Figure 6-8, Probability clouds for JI2 (T) with T < 7, and for various values of pIZ. 
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Figure 6-9. Probability clouds for J,, (T) with T = 107, and various values of P , ~ .  

6.2.2 Statistics of the Modulus and Phase of J,,(T) for 
Long Integration Time and Small h2 

We assume hereafter that the integration time T is much greater than the 
coherence time T=, as is usually the case in practice. We then have 

Furthermore, because T >> T,, the quantity Jl,(T) results from integration 
of the quantity u(Plr)u*(P,, t )  over many independent fluctuation intervals. 
It follows directly from the central limit theorem that, for such integration 
times, J1,(T) is approximately a complex Gaussian random variable. How- 
ever, the complex Gaussian statistics are not circular in general (for a, # a,) 
and the mean is not zero. Because of the lack of correlation (and thus, under 
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the Gaussian assumption, the statistical independence) of W12(T) and 
4 , ( T ) ,  we can write the approximate form of their joint probability density 
function as 

The resemblance of the statistical properties of Jl,(T) to the statistical 
properties of the sum of a constant phasor plus a random phasor sum 
(discussed in Section 2.9.4) may perhaps be evident to the reader. However, 
there is one important difference between the present case and that dis- 
cussed in Section 2.9.4. In the case under consideration here, the variances 
of the real and imaginary parts are not equal, whereas in the previous case 
they were equal. Thus in general the statistics of the magnitude and phase of 
J12(T) will not be the same as the statistics of the random variables A and 0 
in Section 2.9.4. 

The statistical properties of the length of the sum of a constant phasor 
plus a random phasor sum with different variances along the real and 
imaginary axes have indeed been studied previously in the literature (see 
Ref. 6-18). The resulting probability density function is found to depend on 
two key parameters, an "asymmetry factor" 

and a " signal-to-noise ratio" 

In this section we examine only the case of an asymmetry factor that is 
approximately unity, a condition satisfied for p12 < 0.3. In the section to 
follow we allow the asymmetry factor to have any value but require that the 
signal-to-noise ratio K be much greater than unity. These two special cases 
are relatively easy to analyze and lend themselves to considerable physical 
reasoning. 
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Under the assumption that p12 is less than 0.3 ( d 2  - I), we have 
2 a, = 03, and the joint density function of the real and imaginary parts of 

J12 ( T ) becomes 

where 

Making the identifications, a - JJ12(T)I, s - , 8 - arg{J,,(T)}, 
and k 2  - 2 ~ ~  for the symbols a ,  s ,  8, and k  in Section 2.9.4, we see that 
the probability density function of 1 Jl,(T)I is given by Eq. (2.9-20) and the 
probability density function of arg{J12(T)) is given by Eq. (2.9-25). 

From the probability density functions of 1 Jl,(T)I and arg{J12(T)), 
which are now known for p12 < 0.3, it is possible to extract some informa- 
tion that is pertinent to the experimentalist. Our first important observation 
is that the mean value of (Jl2(T)1 is not the same as the modulus of the true 
mutual intensity I J12J when the measurement interval T is finite. There exists a 
deterministic bias in any finite-time estimate I J12(T)I, which arises as a 
consequence of the geometric fact that the sum of a constant-length phasor 
and a random phasor has a length that is more likely to be longer than the 
constant phasor than to be shorter. This fact is illustrated in Fig. 6-10. Thus, 
if the value of I J12(T)I is measured repeatedly by determining the ampli- 
tude of a fringe in a finite-time interference experiment, the arithmetic mean 
of those measurements will not precisely equal the fringe amplitude that 
would be obtained with infinite integration time, even if the finite-time 
measurement is repeated an infinite number of times! 

The magnitude of the deterministic bias can be found quantitatively by 
considering the mean value I J1,(T) I. The difference between 1 J12(T) ( and 
I J1,I is precisely the same as the difference between B and s in the context of 
Section 2.9.4. If we define the "fractional bias" A of our estimate by 



Figure 6-10. Sum of a constant phasor plus a circular complex Gaussian phasor. The volumes 
shown to the right and left of the dotted line are the probabilities that the resultant is longer or 
shorter than s, respectively. 

Figure 6-11. Fractional bias A plotted 
against K ~ .  (Reprinted with the permis- 
sion of Springer-Verlag, Heidelberg.) 
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we obtain from Eq. (2.9-23) (with k 2  = 2K2)  

which is plotted against K 2  in Fig. 6-11. Noting that 

we see that, as the integration time T grows larger and larger, the value of 
the fractional bias decreases monotonically. 

In addition to the deterministic error represented by the bias of Fig. 6-11, 
there also exist random errors that result from the finite integration time T. 
In this case it is convenient to define an rms signal-to-noise ratio associated 
with the measurement of IJ,,(T)I by 

- 
Using Eqs. (2.9-23) and (2.9-24) for ii and a2, and again substituting 
k 2  = 2K2, we find 

This result is shown plotted in Fig. 6-12. It represents the rms signal-to-noise 
ratio accurately, provided p12 < 0.3. Note that for K 2  > 5, the rms signal- 
to-noise ratio increases as &K and, therefore, in direct proportion the 
square root of the integration time. 

Finally, we turn attention to the statistical properties of the phase of 
J12(T). We can readily see from the fact that there are equal volumes under 
the probability contours above and below the real axis in Fig. 6-10 that the 
phase of J,,(T) is an unbiased estimate of the phase of J,,. That is, 
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Figure 6-12. Root-mean-square signal- to-noise ratio associated with the measurement of 
IJl2 (T)!. The asymptote 1.913 on the left represents the ratio of mean to standard deviation for 
a Rayleigh distribution. (Reprinted with the permission of Springer-Verlag, Heidelberg.) 

This fact is also borne out by the symmetrical shapes of the probability 
density functions for phase shown in Fig. 2-15. 

A parameter that is indicative of the experimental errors anticipated in 
the measurement of phase is the standard deviation of that phase o,. To find 
o, mathematically, we must find the second moment of the rather com- 
plicated probability density function for phase given by Eq. (2.9-25). The 
standard deviation can be found by numerical integration for each value of 
K 2  and is shown plotted in Fig. 6-13. For small K *, uo approaches the 
value 1.814 radians, the standard deviation associated with a phase uni- 

0.1 1 .o 10 100 1000 10,000 

K~ 
Figure 6- 13. Standard deviation o, of the phase of J,, ( T) as a function of K *. The asymptote 
1.814 radians represents the standard deviation of a phase uniformly distributed on ( -  T, n). 

(Reprin ted with the permission of Springer-Verlag, Heidelberg). 
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formly distributed on (-n, n). For large values of K ~ ,  o, falls as (fi~)-'. 
Again the results are accurate only for plz < 0.3. 

The reader is reminded that all the conclusions presented in this section 
are valid only when the integration time T is much longer than the 
coherence time rc of the light (e.g., T > 1 0 ~ ~ ) .  For shorter integration times 
the use of complex Gaussian statistics for J,,(T) is generally not justified. 

6.2.3 Statistics of the Modulus and Phase of J,,(T) 
Under the Condition of High Signal-to-Noise Ratio 

Although the general problem of finding the statistics of h , ( T ) (  and 
arg{J,,(T)} for arbitrary p12 is not treated here, even for T >> rc, we can 
specify the statistics in one special case of interest. We again assume that 
T >> T ~ ,  allowing the use of Gaussian statistics for 9,,(T) and 912(T). 
However, this time we allow the asymmetry factor d2 to have any value 
between 1 and oo (or, equivalently, y,, may have any value between 0 and 
1). We require only the condition of high signal-to-noise K~ >> 1, or 

where in practice a factor of 10 will suffice. 
When K~ % 1, the value of J,,(T) is always rather close to the ideal 

value J12, for the noise cloud has dimensions that are small by comparison 
with the length of the fixed phasor. As a consequence, consistent with the 
arguments presented in Section 2.9.5, with good accuracy we can regard the 
fluctuations of EJ12(T)1 as arising primarily from the real part of the noise 
phasor and the fluctuations of arg(Jl,(T)} as arising primarily from the 
imaginary part of the noise phasor. Following the reasoning that led to Eq. 
(2.9-27), we know from the Gaussian statistics of 9 , , (T)  that IJ,,(T)I is 
approximately Gaussian, with probability density function 

where again 

The rms signal-to-noise ratio associated with (J,,(T ) I is accordingly 
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given by 

We further note from the symmetry of the Gaussian density function 
(6.2-36) about its mean &,I that the deterministic bias associated with 
(J1,(T)I is negligible under the high signal-to-noise ratio condition. 

As for the phase associated with J12(T), we assume that its fluctuations 
arise primarily from Yl2(T), which has variance 

Since J12(T) is Gaussian with zero mean, the tangent of the angle 
arg{J12(T)) is also Gaussian. Further, under the high signal-to-noise ratio 
approximation, the tangent and the angle are approximately equal. Hence, if 
B = arg(J12(T)), we have 

10 100 1000 10,000 

K* 
Figure 6-14. Standard deviation oo of the phase of J12(T) for various values of p12 and as a 
function of K 2.  (Reprinted with the permission of Springer-Verlag, Heidelberg.) 
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where 

The approximations involved in this argument are very well satisfied for 
a, < 0.2 radians and for any value of K 2  greater than 10. Figure 6-14 shows 
u, plotted against K for various values of p12. From these curves we can 
deduce the accuracy achievable in any measurement of arg(J,,(T)} for 
K~ > 10. 

The reader's attention is again called to the fact that as the complex 
coherence factor p , ,  approaches unity, the errors in 6 grow vanishingly 
small. As pointed out earlier, this result is simply evidence of the fact that 
the phase difference between two highly coherent beams remains almost 
constant. 

6.3 CLASSICAL ANALYSIS OF THE INTENSITY 
INTERFEROMETER 

The concepts of spatial and temporal coherence of light waves have been 
seen to arise quite naturally in the consideration of experiments that involve 
the interference of two light beams. Coherence effects can also be observed 
in a less direct (but in some respects more convenient) interferometric 
instrument known as the intensity interferometer. Such an instrument, first 
conceived of and demonstrated by R. Hanbury Brown and R. Q. Twiss 
(Refs. 6-19 through 6-23) requires the use of coherence of order hlgher than 
2 for an understanding of its operation. A book by R. Hanbury Brown (Ref. 
6-24) describes both the fascinating history of the ideas behind this inter- 
ferometer and the technical developments that led to the construction of a 
large astronomical instrument of this kind at Narrabri, Australia. 

In the material to follow, we first discuss intensity interferometry in 
rather qualitative terms, concentrating primarily on the basic form of the 
interferometer. Attention is then turned to an analysis that demonstrates 
how the intensity interferometer can extract information about the modulus 
of the complex coherence factor. Finally, a brief discussion of one compo- 
nent of noise associated with the interferometer output is presented. All 
discussion of the intensity interferometer in this chapter is presented in 
purely classical terms. Such an analysis is directly applicable in the radio 
region of the spectrum. However, the reader should bear in mind that to 
fully understand the capabilities and limitations of thls interferometer at 
optical frequencies, it is essential that a detailed model be available for the 
process by which a light beam is converted into a photocurrent by a 
detector. Such considerations, which concern the discrete interaction of light 
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and matter, are deferred to Chapter 9, where the subject of intensity 
interferometry is taken up again. 

6.3.1 Amplitude versus Intensity Interferometry 

We have seen previously (Section 5.2) that, for quasimonochromatic light, 
the complex coherence factor p12 of the light incident at two points P, and 
P, in space can be measured by means of Young's interference experiment. 
The light waves striking P, and P2 are isolated by insertion of a pair of 
pinholes; after passage through the pinholes these light contributions ex- 
pand as spherical waves, ultimately overlapping on an observation screen or 
on a continuous photodetector such as photographic film. The two waves 
are added on an amplitude basis and then subjected to the square-law 
action of the intensity-sensitive detector. Associated with the detection 
process is a long time constant that introduces an averaging operation. The 
spatial distribution of time-averaged intensity was found to be a sinusoidal 
fringe, the visibility of which yielded information concerning the modulus of 
the complex coherence factor 1p,,1 and the spatial position of which yielded 
information about the phase of p,,. 

The question now quite naturally arises as to whether it might be possible 
to interchange the order of some of the operations inherent in Young's 
interference experiment. In particular, could information about p12 still be 
retrieved if the light waves incident at points P,  and P, were directly 
detected at those points, the two fluctuating photocurrents brought together 
and forced to interact through a nonlinear electronic device, and the result 
of that interaction subjected to a time averaging operation? As we see in 
detail in the sections to follow, the answer to this question is affirmative, 
although it must be qualified by the statement that in general the informa- 
tion retrievable is not complete. 

Figure 6-15 illustrates the general form of an intensity interferometer. 
Highly sensitive and wideband photodetectors (usually photomultiplier 
tubes) directly detect the light incident on points P,  and P2. A simple 
classical model of the detection process, which neglects the discrete nature 
of the interaction of light with the photosensitive elements (as well as other 
possible sources of noise), suggests that the photocurrents generated by the 
two photosensitive surfaces are proportional to the instantaneous light 
intensities incident on them. These currents are subjected to temporal 
smoothing by the finite response times (or limited bandwidth) of the 
photomultiplier structure and the electronic circuitry that follows. These 
unavoidable smoothing operations are represented by linear filters with 
impulse responses h ( t ) ,  assumed for simplicity to be identical in the two 
electrical arms of the interferometer. 
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Since only the fluctuations of the two photocurrents about their direct 
current (DC) or average values carry information regarding the correlation 
or coherence of the two light beams, the DC components are removed prior 
to bringing the two currents together. By means of filters with impulse 
responses a ( t )  that average over long integration times [i.e., a ( t )  has a 
much narrower bandwidth than h(t)], estimates of the DC photocurrents 
are formed and are subtracted from the two electrical signals, as shown in 
Fig. 6-15. These DC components will be needed later for normalization 
purposes, so they are presented at the output of the electrical circuitry. 

The remaining fluctuating components, A i ,( t ) and A i  ,( t ), are brought 
together and applied to a multiplier achieved by means of a nonlinear 
electrical device. The product of the two photocurrents, Ail(  t ) A i l (  t ), is 
then subjected to a long time average, again by an electrical filter with 
impulse response a(t). Thus the interferometer has three outputs, two 
representing estimates of the average photocurrents, and the third an 
estimate of the covariance between the two photocurrents. 

A detailed discussion of the advantages and disadvantages of intensity 
interferometry, in comparison with more direct amplitude interferometry, is 
deferred to Chapter 9. We simply mention here that the intensity inter- 
ferometer is far more tolerant of imperfect optical elements, imperfect path 
length equalization, and atmospheric "seeing" effects (cf. Chapter 8) than is 
the amplitude interferometer. The chief disadvantage of intensity inter- 
ferometry will be found to be its comparatively poor signal-to-noise perfor- 
mance, which generally dictates long measurement times. 

u 
Figure 6- 15. Intensity interferometer (PM - photomultiplier). 
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6.3.2 Ideal Output of the Intensity Interferometer 

In this section our goal is to find a mathematical expression for the ideal 
output of the intensity interferometer. Our result will be ideal in the sense 
that all sources of noise are neglected. The averaging time of the filters with 
impulse responses a ( t )  will be assumed to be infinitely long. 

In accord with the structure illustrated in Fig. 6-15 and with the 
completely classical nature of our analysis, the fluctuating currents Ail( t  ) 
and P i  ,( t  ) are represented by 

where a, and a ,  are constants associated with the two detectors, I 1 ( t )  and 
Z , ( t )  are the instantaneous intensities incident at P1 and P,, and the 
impulse response h ( t )  has been defined previously. We assume that the 
random processes i,( t ) and i 2 (  t ) are ergodic, in whlch case the infinite time 
averages can be replaced by ensemble averages. Our goal is to find the 
expected value of the current at the output of the electronic multiplier, for it 
is this quantity that will yield information about the complex coherence 
factor. 

The averaged product of A i , ( t )  and A i , ( t )  can be written in the form 

where the orders of averaging and integration have been interchanged. To 
make further progress, we must adopt some form for the second moment of 
the instantaneous intensities. 

We make the major assumption at this point that the light incident on the 
detectors is polarized thermal light. In this case, the complex Gaussian 
moment theorem can be utilized to demonstrate that 

where r11(7), r Z 2 ( 7 ) ,  and rI2(7) are self and mutual coherence functions of 
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the incident fields. Substitution of (6.3-3) in (6.3-2) and recognition that 

yield the result 

A further simplification follows if we assume that the incident light is 
cross-spectrally pure, in which case 

At this point we have already demonstrated that the average or DC output 
of the multiplier is proportional to the squared modulus of the complex 
coherence factor. The task remains to fully evaluate the proportionality 
constant. 

To evaluate the double integral in Eq. (6.3-6), we first make a change of 
variables [ = [ - 17, yielding (cf. Problem 3-14) 

where 

Further progress is aided by some rather specific assumptions concerning 
the power spectral density of the light and the transfer function #(v) of 
the filters. For simplicity we assume that the normalized power spectral 
density of the light is rectangular with center frequency 3 and bandwidth 
A v: 

The electrical filters we assume have transfer functions that are rectangular, 
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centered on zero frequency, and extending to cutoff frequencies f B Hz: 

v 
9 ( h ( t ) )  = Z ( V )  = rect- 

2 B '  

For true thermal light, the optical bandwidth A v  is typically of the order of 
loL3 Hz or more, whereas the electrical bandwidth of the detectors and 
circuitry would seldom exceed about lo8 Hz. Hence we are well justified in 
assuming that AV >> B. 

To evaluate the integral of Eq. (6.3-7), we use Parseval's theorem of 
Fourier analysis, evaluating instead the area under the product of the 
Fourier transforms of H ( T )  and ( y ( ~ ) ( ~ .  Use of the autocorrelation theorem 
of Fourier analysis shows that 

Y 
4F{H(r))  = ( S ( v ) 1 2  = rect- 

2 B  

where A ( x )  = 1 - 1x1 for 1x1 s 1, zero otherwise. Thus the integral of 
interest can be rewritten 

where the approximation is valid for B << Av. 
The results of our analysis can now be summarized as follows. Subject to 

the assumptions we have made, the average or DC value of the multiplier 
output is given by 

The final averaging filter passes this component of output unchanged. We 
also have available at the output separate measurements of ;, and i2, which 
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(under the assumptions we have made) can be expressed as [cf., Eq. (6.3-4)] 

Normalization of the correlator output by these two quantities yields the 
result 

Knowing the values B and Av, we can deduce the value of Ip,, 1. Note in 
particular that the phase of p,, is simply not available at the interferometer 
output. We shall consider the implications of the loss of phase information 
in Chapter 7, when methods for image formation from interferometric data 
are discussed. 

6.3.3 "Classical" or "Self" Noise at the Interferometer Output 

There exist various sources of noise that limit the performance of the 
intensity interferometer. For true thermal sources in the optical region of 
the spectrum, the dominant source of noise is nearly always shot noise 
associated with the photodetector outputs. This type of noise is treated in 
detail in Chapter 9. A second type of noise, which can be dominant at radio 
frequencies and generally cannot be neglected for pseudothermal optical 
sources, is "classical" or "self" noise that arises due to the finite bandwidth 
of the averaging filters. The origin of this noise lies in the random fluctua- 
tions of optical waves themselves. 

A complete analysis of the effects of finite averaging time should include 
the uncertainties associated with the estimates of all three average quanti- 
ties, (i,), (i,), and (Ai,Ai,). For the purpose of simplicity, we neglect the 
uncertainties associated with (i,) and (i ,). An assumption that these latter 
two quantities are known much more accurately than (Ai,Ai,) is often 
justified, for usually several or many different pinhole spacings must be 
explored, and (i,) and (i,) are thus observed over many more averaging 
intervals than is (Ai,Ai,) for any one spacing. 

The general approach to calculating the output signal-to-noise ratio of 
the interferometer will be as follows. First we calculate the autocorrelation 
function rz(r)  of the signal at the output of the multiplier. We then Fourier 
transform this quantity to yield the power spectral density of z ,  following 
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which we pass this spectrum through the averaging filter to find the output 
signal and self-noise powers. The ratio of these quantities yields the desired 
signal-to-noise ratio. 

The autocorrelation function of the multiplier output is given by 

Since Aik(r) = i,(r) - i k ( r )  (k  = 1,2), an evaluation of & ( T )  requires 
determination of the fourth-, third-, and second-order joint moments of the 
i, ( t ). Furthermore, since 

evaluation of rz (7) will ultimately require use of the eighth-, sixth-, fourth-, 
and second-order joint moments of the fields. Such moments can be found 
for thermal sources by using the complex Gaussian moment theorem; 
however, the algebra involved in such a calculation is extremely tedious, and 
thus we adopt a somewhat simpler approximate approach here. 

The key to simplifying the calculation lies in the assumption that the 
optical bandwidth A v  of the incident waves far exceeds the bandwidth B of 
the electrical currents reaching the multiplier. Such an assumption was 
already made in the previous section for a different reason; it is well 
satisfied for true thermal sources but must be examined carefully in the case 
of pseudothermal sources. If indeed Av >> B, then from Eq. (6.3-17) we see 
that the electrical current ik(t) at any particular instant of time is the 
integral over many correlation intervals of the incident fields. Since the 
fields incident have been assumed to be complex circular Gaussian random 
processes (thermal light), lack of correlation implies statistical indepen- 
dence; each current is, in effect, the sum of a large number of statistically 
independent contributions, and hence by the central limit theorem, the 
currents i,(t) are, to a good approximation (real-valued), Gaussian random 
processes. 

Once the ik(t)  have been recognized as being approximately Gaussian, 
the moment theorem for real-valued Gaussian random variables [Eq. (2.7-13)J 
can be used to simplify the expression for I',(T). With use of the definition 

for the covariance function of the j th and k th currents ( j = 1,2; k = 1,2), 
the autocorrelation function of interest becomes 
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where we have used the fact that C21(7) = C12( - 7) = C12(7) since the 
currents are real valued. 

Calculation of the q k ( r )  follows along lines parallel to those used earlier 
in the calculation of I. Since P = C1,(0), we need only repeat that calcu- 
lation with a r inserted in the appropriate places. We obtain 

where H is again given by Eq. (6.3-8). Substituting Cik(r) into the expres- 
sion for rz(r) ,  we find 

The first term in this expression for r,(r) represents the square of the 
mean of z ;  since it is independent of 7, it contributes a S-function 
component to the power spectral density gZ(v). The area under this S 
function is the power associated with the "signal" or ideal component of the 
output. Using the same assumptions and approximations employed in the 
previous section, we express the output signal power as [cf. Eq. (6.3-13)] 

To find the noise power at the output of the averaging filter, we must 
Fourier transform the last two terms of Eq. (6.3-21) and multiply the 
resulting spectral distribution by the squared modulus of the transfer 
function of the averaging filter. First we note that, for the spectrum of Eq. 
(6.3-9) and the transfer function of Eq. (6.3-lo), Parseval's theorem allows 
us to write [cf. Eq. (6.3-12)] 

00 l o o  v 
H(< + r ) ~ ~ ( < ) l ~ d S .  = -/ Av -, r e c t g ~ ( & ) e - ~ 2 " v r  dv. 
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Clearly a Fourier transform of this quantity (with respect to r )  yields 

According to the autocorrelation theorem, the Fourier transform of the 
square of the integral must be given by 

Hence, from Eq. (6.3-21), the power spectral density of the noise component 
of the multiplier output is given by 

This noise spectrum now passes through the averaging filter with transfer 
function assumed to be of the form 

v 
d(v) = rect- (b  I B). 

2b 
(6.3-27) 

The noise power transmitted by the filter is found by evaluating 

which, with the help of the integral identity 

(valid for b I B), yields 
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The ratio of signal and noise powers is thus 

under the assumptions used, namely, that 6 s B << Av. The rms signal-to- 
noise ratio at the output is the square root of this quantity, 

Clearly, the wider the premultiplication bandwidth B and the narrower 
the postmultiplication bandwidth b, the better the final signal-to-noise ratio. 
We see further that, under the assumption B << Av, the optical bandwidth 
has no effect on the signal-to-noise ratio. When the modulus of the complex 
coherence factor is less than about 0.4, the first ratio in Eq. (6.3-32) is equal 
to ip,,12 within 1% accuracy. As ip,,l approaches unity, this factor ap- 
proaches I/ fi. 

Finally, the reader is reminded that the preceding expression for signal- 
to-noise ratio includes only the classical or self-noise. The signal-to-noise 
ratio at optical frequencies is usually dominated by photon-induced fluctua- 
tions, which are discussed in Chapter 9. Further discussion of intensity 
interferometry is deferred until that chapter. 
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PROBLEMS 

6-1 Show that for quasimonochromatic, stationary thermal light, the 
four t h-order coherence function 

can be expressed as 

where 

6-2 The output of a single-mode, well-stabilized laser is passed through a 
spatially distributed phase modulator (e.g., a transparent acoustic 
cell). The field observed at point P, at the output of the modulator is 
of the form 
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where v, is the laser frequency, I ,  is the intensity at P,, and +(P,, t )  
is the phase modulation imparted to the wave at point P,. The phase 
modulation is chosen to be a stationary, zero-mean Gaussian random 
process. Noting that AQ = +(PI, t )  - 9(P2, t )  is also a zero mean, 
stationary Gaussian process, show that the second order coherence 
function of the modulated wave is 

where 0: is the variance of Q(P, t )  (assumed independent of P )  and 
y, is the normalized cross-correlation function of + ( PI, t ) and 
+(P*, 

6-3 For the same light described in Problem 6-2, show that the 
fourth-order coherence function obeys the factorization theorem 

6-4 The correlation time 7, of a certain pseudothermal source is 
seconds. A Young's interference experiment is performed under 
quasimonochromatic conditions with pI2 z 0.01. The amplitude and 
phase of the resulting fringe pattern are measured with a finite 
integration time T. 

(a) How long must the integration time T be to assure that the 
fractional bias A is less than 0.01? 

(b) How long must T be to assure that the fringe amplitude is 
measured with an rms signal-to-noise ratio of loo? 

(c) How long must T be to assure that the fringe phase 0 is 
measured with a standard deviation o, less than 2r/100? 

6-5 Show that for a Gaussian spectral profile, the parameter A of Eq. 
(6.1-17) is given exactly by 
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6-6 Show that for a Lorentzian spectral profile, the parameter A? is 
given by 

6-7 Examination of Fig. 6-5 shows that a relatively abrupt threshold in 
the values of j\, occurs as n is varied. In particular, as a rough 
approximation, 

where n,, = 2c/n. Show that this approximate distribution of X, 
leads to a gamma probability density function for W. Compare the 
number n,,, with the parameter A. 

6-8 For the intensity interferometer presented in Section 6.3, suppose 
that the postdetection filters have impulse responses 

whereas the averawng filter has impulse response 

Using assumptions similar to those introduced in sections 6.3-2 and 
6.3-3, calculate 

6-9 Find what modification of Eq. (6.3-32) occurs if the light incident on 
the detectors is partially polarized. 

6-10 Consider the statistical properties of the coefficients bn defined by Eq. 
(6.1-42), 

where A(t) is a stationary, circularly complex Gaussian random 
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process, whereas +n ( t ) is an arbitrary complex-valued weighting 
function. 

(a) On what grounds can we argue that the real and imaginary parts 
of bn are Gaussian random variables? 

(b) Using the circularity of A(t ), prove that 

(c) Using the circularity of A(t ), prove that 

(d) Using the circularity of A(?), prove that 

Hint: See Eq. (2.8-20). 



Effects of Partial Coherence 
Imaging Systems 

A common function of an imaging system is to provide an observer with 
visual information that is more detailed and/or more accurate than could 
be obtained with the unaided eye. In other cases, the function of the system 
may be simply to provide a semipermanent record (e.g., a photograph) of an 
object of interest. In both cases the fidelity with which the image renders 
information about the object is an issue of great importance. 

To fully understand the quantitative relationship between an object and 
its image, it is not sufficient to know only the light transmitting, reflecting, 
or emitting properties of the object and the laws that govern the passage of 
light waves through the optical instrument. Rather, it is essential to know in 
addition the coherence properties of the light illuminating or being radiated 
by the object, for these properties have a profound influence on the 
character of the image that is ultimately observed. 

The primary goal of this chapter is to develop in a logical way the 
relationship that exists between an object and its image, talung full account 
of the coherence properties of the light that illuminates or leaves the object. 
The second goal is to arrive at an understanding as to when an imaging 
system can be expected to behave as an incoherent system (linear in 
intensity), when it behaves as a coherent system (linear in complex ampli- 
tude), and when some intermediate form of behavior can be expected. 
Third, we wish to develop an understanding of certain interferometric types 
of imaging systems, which effectively measure the coherence of the radiation 
impinging on them, and from this information derive an image. (Such 
imaging systems are used routinely in radio astronomy.) Finally, we intro- 
duce the reader to the concept of "speckle" in coherent imaging systems 
and explore the means by which ensemble-average coherence can be useful 
in describing its properties. 

An excellent review of the subject of image formation with partially 
coherent light has been published by Thompson (Ref. 7-1). The subject is 
also treated in various books that deal with coherence theory (Refs. 7-2 
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through 7-4). The reader may wish to consult the pioneering papers of H. H. 
Hopkins (Refs. 7-5 and 7-6) on this subject. 

7.1 SOME PRELIMINARY CONSIDERATIONS 

Before embarking on detailed analyses relating the object and image, we 
first present several basic coherence relationships that will be useful in 
future discussions. These relations concern the effects on partial coherence 
when light propagates through transmitting objects and through certain 
simple optical systems. 

7.1.1 Effects of a Thin Transmitting Object on Mutual Coherence 

In many optical imaging systems, the objects are transilluminated and the 
images are formed from the transmitted light. Here we investigate the effects 
of " thin" transmitting objects on mutual coherence. 

With reference to Fig. 7-10, we define a transmitting object to be " thn" 
if a ray of light entering the object at point (x, y) exits from the object at 
essentially the same transverse coordinates. Clearly, no true object can be 
perfectly thin in the sense used here, for a ray entering at some angle to the 
z axis will invariably exit at slightly different transverse coordinates. Fur- 
thermore, if the thickness of the object is not perfectIy uniform, or if the 

Figure 7-1. Transmitting object. 
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refractive index varies from point to point, refraction within the object will 
modify the position at which a given ray exits. Nonetheless, many objects 
are approximately thin in the sense used here, and the concept serves as a 
useful idealization. 

To analyze the effects of such an object on mutual coherence, we first 
develop a relationship between the incident and transmitted fields. As 
shown in Fig. 7-lb, the object is assumed to be imbedded in a uniform 
nonabsorbing medium with (real-valued) refractive index n,. The object 
itself is taken to have variable thickness d(x, y), a variable real component 
of refractive index n2(x, y) (which accounts for a variable velocity of 
propagation in the object, through v = c/n,) and a variable component of 
absorption that is accounted for by a real-valued multiplicative component 
B(x, y )  that reduces the amplitude of the transmitted field. For simplicity, 
both n 2  and B are assumed to be independent of wavelength. 

We construct two planes normal to the z axis, separated by constant 
distance do, and between which lies the object of interest (Fig. 7-16). Our 
goal is to specify the relationship between the field u,(x, y; t )  incident at the 
left-hand plane and the transmitted field u,(x, y; t )  at the right-hand plane. 
The delay suffered by the wave at coordinates (x, y) is given by 

where a constant term don& that is independent of the object has been 
dropped in the second equation. Taking account of the reduction of light 
amplitude by the factor B(x, y), we see that the incident and transmitted 
fields are related by 

where 6 ( x ,  y) is given by Eq. (7.1-2). 
To find the effect of the transmitting object on the mutual coherence 

function of the light, we substitute relationship (7.1-3) into the definition of 
the mutual coherence function, 
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where P, - (x,, y,), P2 - (x,, y,). Expressing the time average in terms of 
the mutual coherence function of the incident light, we find the following 
fundamental relationship between the incident and transmitted mutual 
coherence functions: 

When the light is narrowband, it is convenient to express the analytic 
signal representation of the fields in terms of a time-varying phasor, 

where F is the nominal center frequency of the disturbance. Using this 
representation for the fields, we express the mutual coherence function r, of 
the incident fields in the form 

j2nPr I',(P,, P,; T )  = (Ai(Pl, t + 7)A:(P2, t ) ) e -  . (7.1-7) 

Using this form in (7.1-5), we obtain 

Now if 

for all PI, P,, the time average will be independent of 6(P1) and S(P,). 
Under such a condition we find 

where t(P) is the amplitude transmittance of the object at P,  as defined by 

The relationship (7.1-10) between the incident and transmitted mutual 
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coherence functions is widely used in the literature, but as the preceding 
argument shows, it is strictly valid only if all the delay differences induced 
by the object are much less than the coherence time of the light [cf. the 
quasimonochromatic conditions given in Eq. (5.2-30)) 

One further simplification will be useful to us in the future. If the delay T 

of importance in a given physical experiment is always much smaller than 
the coherence time T ~ ,  Eq. (7.1-10) then -implies that the incident and 
transmitted mutual intensities are related by 

This relationship is used whenever the quasimonochromatic assumptions are 
valid. 

7.1.2 Time Delays Introduced by a Thin Lens 

With reference to Fig. 7-2, consider a lens composed of spherical surfaces 
and which may be regarded as being "thin" in the sense defined in the 
previous section. We wish to calculate the time delay 6(x, y)  suffered by the 
light that strikes the lens at transverse coordinates (x, y ). To obtain results 
that are applicable to a variety of different types of lenses, we adopt the sign 
convention that, as light travels from left to right, each convex surface 
encountered is taken to have a positive radius of curvature, whereas each 
concave surface is taken to have a negative radius of curvature. For the lens 
shown in Fig. 7-2, radius R ,  is positive, whereas radius R ,  is negative. 

Figure 7-2. Tlun lens. 
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The lens is assumed to be composed of a material that has refractive 
index n ,  and to be embedded in a medium with refractive index n, ;  both 
refractive indices are taken to be independent of frequency over the 
frequency band of interest. The total time delay suffered by a ray passing 
between the two parallel planes represented by dotted lines in Fig. 7-2 is 
given (within the " thin" lens approximation) by 

Some simple trigonometric calculations (Ref. 7-7, pp. 78, 79) show that 
the thickness of the lens at coordinates ( x ,  y) is given by 

At this point it is convenient to introduce the paraxial approximation, 
representing the square roots of Eq. (7.1-14) by the first two terms of their 
binomial expansions. With these approximations the thckness function 
d ( x ,  y)  becomes 

Incorporating this result in Eq. (7.1-13), we obtain for the delay 

Defining the focal length f of the lens by 

we find our final expression for the delay suffered by the ray at (x, y): 
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Often it is convenient to have an expression for the amplitude transmit- 
tance function that describes a thin lens. W i t h  the approximations used 
above, a suitable expression is 

where a factor independent of (x, y )  has been dropped from the final form. 
According to the discussion of the previous section, this representation is 
strictly valid only if the bandwidth Av of the light satisfies 

for all (x,, y,) and (x,, y,) of interest. For problems involving propagation 
of light up to the lens, passage through the lens, and further propagation 
beyond the lens, however, it is the difference of total propagation time 
delays that must satisfy a condition analogous to (7.1-20). When such a 
" total time delay" condition is satisfied, use of the amplitude transmittance 
expression (7.1-19) will yield a correct relationship between initial and final 
mutual intensities even though the time delay restriction (7.1-20) may not be 
valid for the lens alone. 

7.1.3 Focal-Plane-to-Focal-Plane Coherence Relationships 

In this section we derive the relationship that exists between the mutual 
intensities in the front and back focal planes of a thin positive lens. As 
illustrated in Fig. 7-3, these particular planes are defined as being per- 

Figure 7-3. Geometry for calculation of focal-plane-to-focal-plane coherence relationships. 



SOME PRELIMINARY CONSIDERATIONS 293 

pendicular to a line passing through the centers of curvature of the two lens 
surfaces (i.e., the optical axis) and at distances f in front of and behmd the 
lens. 

The light leaving the front focal plane is assumed to be quasimonochro- 
matic and to have a mutual intensity JO'(tl, q,; t2, q,). Using Eq. (5.4-8), 
whlch describes the effect of propagation on mutual intensity, we can 
calculate the mutual intensity Jl(x,, y,; x2, y,) incident on the lens. To 
simplify the calculation as much as possible, we make the paraxial or 
small-angle assumption, in which case the following approximations may be 
used in Eq. (5.4-8): 

Thus incident on the lens we find the mutual intensity to be 

Passage of the light through the lens is accounted for by means of the 
lens amplitude transmittance function of Eq. (7.1-19). The mutual intensity 
of the light leaving the lens is thus 
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Finally, the mutual intensity leaving the lens must propagate an ad- 
ditional distance f to the rear focal plane. Again using the propagation law 
in Eq. (5.4-8) under paraxial conditions, we obtain a mutual intensity in the 
rear focal plane given by 

At this point the relationship between the mutual intensities in the two 
focal planes involves eight integrals. Fortunately, four of these integraIs can 
be eliminated, leaving a comparatively simple relationship between the two 
quantities of interest. To achieve this simplification, we perform the integra- 
tions with respect to x,, y,,  x , ,  and y, first. Collecting all terms that 
depend on these variables, we find the integration of interest to be 

With the help of the Fourier transform relationship (see Appendix A, table 
A-1) 

the four integrals can be evaluated, with the result 
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Substitution of ths  expression into the remaining quadruple integral yields 

The preceding relationship between J, and Jd represents the final result 
of our analysis. Although this may appear to be a complicated expression at 
first glance, it can be stated in words quite simply: the mutual intensities in 
the front and back focal planes of a thin positive lens are (up to proportional- 
ity and scaling constants) a four-dimensional Fourier transform pair. The 
spatial frequencies of the Fourier transform operator are given explicitly by 

Also of interest is the intensity of the light incident on the rear focal 
plane and its relationship to the mutual intensity in the front focal plane. 
Setting u1 = u2  = u and v, = v, = v in Eq. (7.1-28), we find 

Finally, we examine the severity of the quasirnonochromatic condition 
that must be satisfied if the result (7.1-28) is to hold. We require that the 
difference of total delays from (El, ql) to (u,, v,) and (f,, 7,) to ( u , ,  0,) be 
much less than the coherence time of the light. This difference of delays is 
given explicitly by 
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where r, and r,  refer to distances traveled by rays from the front focal 
plane to the lens, r,' and r; are distances traveled by these same rays from 
the lens to the rear focal plane, and 6, and 8 ,  are the time delays 
introduced by the lens. Note that a ray through point (t, q )  in the front 
focal plane will reach the point (u, v )  in the rear focal plane only if it has a 
unique angle with respect to the optical axis. Taking these geometric factors 
into account, using paraxial approximations throughout, and dropping 
constant factors, we see that the requirement becomes 

If the regions of concern in the (t, 9 )  and (u,  v )  planes are of dimensions 
Lo x Lo and L, x L,, respectively, the required condition will be satisfied 
for all points of interest provided 

*here I ,  = crC is the coherence length of the light. If, for example, Lo = Lf 
= 5 centimeters and f = 1 meter, the coherence length of the light must be 
considerably greater than 2.5 millimeters, a rather stringent condition. 

We note in closing that the four-dimensional Fourier transform relation- 
ship between mutual intensities in the front and back focal planes is directly 
analogous to the two-dimensional Fourier transform relationship between 
the complex fields in the focal planes of a fully coherent optical system (Ref. 
7-7, Section 5.2). The four-dimensional relation is more general, however, 
since it holds for partially coherent systems. 

7.1.4 Object-Image Coherence Relations for a Single Thin Lens 

In thls section we find the relationship between the mutual intensities in the 
object and image planes of a simple thin lens. The geometry of interest is 
illustrated in Fig. 7-4. The procedure used for calculating the mutual 
intensity in the image plane will be analogous to that used in the previous 
section. The mutual intensity will be propagated to the lens, the amplitude 
transmittance function of the lens will be applied, and the transmitted 
mutual intensity will be propagated to the image plane. In t h s  case the 
finite aperture of the lens will be taken into account explicitly by using a 
lens amplitude transmittance function of the form 
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Object Image 
plane 

I I+---- zo 0 . 1  ------4 
Figure 7-4. Imaging geometry. 

where P = 0 outside the lens aperture, the phase of P accounts for any lens 
aberrations that may exist, and [PI may vary within the aperture to account 
for apodizations. Most commonly, we shall assume that IPI = 1 and arg{PJ 
= 0 within the aperture. Paraxial approximations are again used throughout. 
Since a reasonably detailed analysis was carried out in the previous section, 
many of the details are omitted this time. 

If J,' again represents the mutual intensity leaving the object plane, and if 
z ,  represents the distance from the object plane to the lens, the mutual 
intensity J,' leaving the lens is found to be 

Propagating an additional distance z, to the image plane, we find the 
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formidable result 

The task remains to simplify this result to a more usable form. 
As an initial simplification, we note that, if the final plane is indeed at a 

proper distance to yield an image, the lens law must be satisfied, 

and the quadratic phase exponential in x:, Y:, x i ,  and yt becomes equal 
to unity. A further simplification results if we define the amplitude spread 
function of the system to be 

in which case the expression for the mutual intensity in the image plane can 
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be reduced to 

The intensity distribution in the image plane is found by setting u, = u2 = u 
and u1 = u2 = u in the preceding result, yielding 

We now determine the restriction that must be imposed in order to 
assure that the quasimonochromatic conditions are satisfied for the mutual 
intensity calculation given above. We are aided in this task by the fact that, 
for an aberration-free system, the optical pathlengths traveled by all rays 
from a given object point to its Gaussian image point are equal (Ref. 7-8, p. 
130). Therefore, it suffices for us to consider the pathlengths traveled by the 
central rays shown in Fig. 7-4. Withln the accuracy of the thin lens 
approximation, the distances traveled within the lens are the same for all 
central rays. Hence the total pathlength difference for the rays illustrated is 
simply r2 + r,' - r, - r;. Using paraxial approximations for all four of the 
quantities involved, we find that the quasirnonochromatic condition will be 
satisfied provided 

for all points of interest, where I, is again the coherence length of the light. 
If the object field is Lo x Lo in size and the image field is Li x L,, the 
worst-case requirement becomes 

If Lo = Li = 2 centimeters and z, = z i  = 20 centimeters, the coherence 
length must be considerably greater than 1 millimeter. 
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Finally, we note that, although we have found the relationship between 
mutual intensities in the object and image planes, we are not yet in a 
position to totally specify the image intensity that results from a specific 
object. To do so requires that we take account of the coherence properties of 
the object illumination, or equivalentIy the character of the source that 
illuminates the object. Such calculations are the subject of Section 7.2. 

7.1.5 Relationship Between Mutual Intensities in the Exit Pupil and the 
Image 

As the final fundamental imaging coherence relationship to be examined, we 
consider the dependence of the mutual intensity in the image plane on the 
mutual intensity in the exit pupil of a rather general imaging system. 

All imagng systems, regardless of their detailed structure, contain some- 
where an aperture that limits the angular extent of the pencil of rays 
converging toward an ideal image point. The image of this aperture stop 
formed by the optical elements that follow it is called the exit pupil of the 
imaging system. Similarly, the image of this aperture stop formed by the 
optical elements that precede it is called the entrance pupil of the imaging 
system. These concepts are illustrated in Fig. 7-5. In part (a) the limiting 
aperture is the lens itself, in whch case the physical aperture, entrance 
pupil, and exit pupil all coincide. In part (b)  the aperture stop occurs before 
the lens, in which case the entrance pupil coincides with the physical 
aperture, but the exit pupil is the image of that aperture, as shown by the 
dotted lines. Finally, in part (c), the exit pupil coincides with the physical 
stop while the entrance pupil is its image, represented by a dotted line. 
These definitions apply to systems of arbitrary complexity. 

Our goal is to find the relationship between the mutual intensity distribu- 
tion in the exit pupil and the mutual intensity distribution in the image. The 
results will be in simplest form if we express the pupil mutual intensity 
function on a sphere of radius z ,  (the distance from the exit pupil to the 
image plane) centered on the origin in the image plane. Figure 7-6 illustrates 
the geometry. The relationship between the two mutual intensities of 
interest can be found if we begin with the basic relationship of Eq. (5.4-8), 
which we restate here as 

21.r ~ ( 0 , )  ~ ( 0 2 )  
~ e x ~ ( - ~ - ( r ~  X - rl)} - Xr, - hr2 dxldyldx2dy2. 
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Figure 7-5. Entrance and exit pupils. 
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Here Jd is the mutual intensity transmitted by the exit pupil and 2,  
represents the limiting aperture of that pupil. With the usual small-angle 
assump tion, 

x ( e , )  x ( 4 )  1 

In addition, as indicated by the geometry shown in Fig. 7-6, a general 
distance r from point ( x ,  y )  on the exit sphere to point (u, v )  in the image 
plane is given by 

Thus the relationship between the two mutual intensities takes the form 

where we have incorporated the finite limits posed by Z1 into the definition 
of J ' .  Note that when it is the image intensity (rather than mutual intensity) 
that is of prime concern, Eq. (7.1-46) reduces to 
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Figure 7-6. Geometry for calculation of image mutual intensity. 

We shall make good use of this relationship between image plane 
intensity and pupil mutual intensity in our discussion of image formation 
from an interferometric point of view (Section 7.4). For the moment, the 
results (7.1-46) and (7.1-47) simply remain basic relationships that we can 
call upon in the future as they are needed. 

7.2 METHODS FOR CALCULATING IMAGE INTENSITY 

The purpose of developing a theory of image formation in partially coherent 
light is to allow us to calculate the intensity distribution expected in the 
image plane in any given experimental situation, and in so doing to develop 
an understanding of the individual effects of the illumination, the object, 
and the imaging optics. Hopefully an improved ability to interpret the 
results of experiments will follow from such a theoretical understanding. 
Accordingly, in the sections that follow, we describe several different 
methods of analysis, all of which can be used to predict the image intensity 
that will be obtained in a given experiment. 

7.2.1 Integration over the Source 

When the illumination of the object is derived from a quasimonochromatic, 
spatially incoherent source, as is often the case, there exists a method for 
calculating image intensity that has the special appeal of conceptual simplic- 
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ity. Each point on the source is considered individually, the image intensity 
produced by the light from that single point is calculated, and the image 
intensity contributions from all such points are added, with a weighting 
proportional to the source in tensity distribution. Simple addition of the 
image intensity distributions is possible as a result of the assumed in- 
coherence of the original source. 

To examine this approach in more detail, consider the geometry il- 
lustrated in Fig. 7-7. The object is located in the ( 5 , ~ )  plane and is 
illuminated by means of an optical system to the left of that plane. An 
image is formed in the ( u ,  v) plane by the optical system on the right. We 
assume that, under the quasimonochromatic conditions, each optical system 
can be represented by an amplitude spread function (impulse response). The 
symbols F(6,q; a ,  P )  and K(u, v; [, 17) are used to represent such spread 
functions of the illuminating and imaging systems, respectively. 

A single point at coordinates (a, P )  on the source emits light represent- 
able by a time-varying phasor AS(a, P; t). The illumination from t h s  point 
reaches the object and passes through it, producing a time-varying phasor 
amplitude Ato([, q; a, 8; t)  (to the right of the object) given by 

where 6, is a time delay that depends on (5, q) and (a,  P )  and to((, 1) is the 
amplitude transmittance of the object, which has been assumed to be 
independent of the particular source point providing the illumination. 
Finally, the time varying phasor amplitude of the light reaching coordinates 

Source 
Illumination 

optrcs 
l maging 
optics 

Object 
plane 

Image 
plane 

Figure 7-7. Illumination and imaging systems. 
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(u, v) on the image plane from source point (a,  P )  is gven by 

where 8, is a time delay that depends on ( u ,  v) and ( E ,  q). 
The intensity of the light reaching image coordinates (u, v) from the 

source point at (a,  j3) can now be calculated to be 

Under the quasimonochromatic assumption, the delay differences satisfy 

with the result that the time-averaged quantity in Eq. (7.2-3) reduces to 
I&, p), the intensity of the source at (a,  p). Finally we integrate the partial 
intensity I,( u, v; a ,  p )  over the source coordinates (a, p), giving the result 

With knowledge of I,, F, K and to,  it is now possible to calculate the image 
intensity distribution. 

Two different object illumination systems are often encountered in 
practice. First, as illustrated in Fig. 7-8a, if the incoherent source is 
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Source tsz 
Figure 7-8. Two common illumination systems: ( a )  critical illumination; ( b )  Kohler's il- 
lumination. 

relatively uniform, the illumination optics may simply image the source onto 
the object, perhaps with some magnification or demagnification. For the 
simple single-lens imaging system shown in the figure, the amplitude spread 
function F is then of the form [cf. Eq. (7.1-38)J 

where PC is the pupil function of the lens L,  (perhaps as determined by an 
aperture stop rather than by the size of the lens itself), M = z,/zl is the 
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magnification of the illumination system, and (8 ,  j )  are coordinates in the 
plane of the lens L,. When used to provide illumination in a microscope, 
the optical system between the source and the object is called the condenser 
system; the system illustrated in Fig. 7-8a is said to provide critical 
illumination (Ref. 7-2, Section 10.5.2). 

An alternative class of illumination systems is illustrated in simple form 
in Fig. 7-86. In this case the source is effectively imaged at infinite distance 
from the object. As a consequence, nonuniformities of the source brightness 
distribution are not imaged onto the object, and a highly uniform field of 
illumination is provided. When used in a microscope, this general class of 
illumination system is said to provide Kohler's illumination (Ref. 7-2, 
Section 10.5.2; Ref. 7-9). From the Fourier transforming properties of a thin 
positive lens, the amplitude spread function for the simple system shown in 
Fig. 7-8b is given by 

when the finite extent of the lens aperture is neglected. 
We conclude this section by noting that, whereas integration over the 

source is a method of calculation which has conceptual simplicity, it is not 
necessarily the simplest method to use in practice. For any given problem, 
the various possible approaches should be considered, for one approach 
may be distinctly easier than another, depending on the problem at hand. 
We now turn to considering a second method of calculation. 

7.2.2 Representation of the Source by an Incident Mutual 
Intensity Function 

A somewhat more common approach to the calculation of image intensity 
distributions is arrived at if the explicit integration over the source is 
suppressed and the effects of the source are represented by a mutual 
intensity function describing the illumination incident on the object. We 
suppose that, under the quasimonochromatic assumption, the time-varying 
phasor amplitude A i(u, v; t ) of the light arriving at image coordinates (u, v )  
can be represented in terms of the time-varying phasor amplitude A ,((, q; t )  
of the light incident on the object at coordinates ( 5 , ~ )  by 
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where K is the amplitude spread function of the imaging system, t o  is again 
the amplitude transmittance of the object, and 6 is a time delay that 
depends on (E, q )  and ( u ,  u ) .  The intensity at ( u ,  u )  is thus given by 

Under the quasimonochromatic assumption, 16, - 6,I << T ~ ,  and hence 

where Jo is the mutual intensity distribution incident on the object. The final 
expression for image intensity is now given by 

Knowledge of K, to,  and Jo allows calculation of I,. 
Now it could be argued that, whereas the expression (7.2-5) for I ,  

requires six integrations and (7.2-11) requires only four, the latter is not 
really simpler than the former, for four integrations are in general required 
to determine Jo. This observation is strictly true; however, an incoherent 
source was assumed in arriving at Eq. (7.2-5), and when a similar assump- 
tion is made here, the calculation of Jo requires only two integrations, 
yielding again a total of six, as we now illustrate. 

Suppose that, as illustrated in Fig. 7-9, an incoherent source is placed at 
an arbitrary distance z, in front of a simple thin positive lens, and that the 
object under illumination lies at distance z, behind the lens. The source is 
assumed to subtend a sufficiently large angle at the lens so that, as 
determined by the Van Cittert-Zernike theorem, the coherence area of the 
Light incident on the lens is extremely small in comparison with the area of 
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Figure 7-9. Illumination optics. 

Condenser 
lens 

Object 

the lens. With reference to Eqs. (5.6-24) and (5.6-25), t h s  requirement can 
be stated as 

where A ,  and As are the areas of the lens and the source, respectively. We 
argue in what follows that, under suitable conditions including (7.2-12), the 
lens aperture itself may be regarded as a source of approximately incoherent 
illumination, and that the illuminating mutual intensity J, may be calcu- 
lated rather simply by applying the Van Cittert-Zernike theorem to the lens 
pupil as a source. 

To examine this argument critically, we first note that, by applying the 
Van Cittert-Zernike theorem to the incoherent source with intensity distri- 
butior I,(a, p), the mutual intensity incident on the lens is given by [cf. Eq. 
(5.6-8)J 

9 

i 

Source 

where A f  = 2,  - 2,  and Ay = 7, - j , .  The mutual intensity transmitted 

(Try) ---+ ,-q 

< 
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by the lens takes the form 

where Pc(Z1, 9,) = Pc(2, jj)exp[ - j W(Z, J)] represents the complex pupil 
function of the condenser lens and W(x,  y) represents a slowly varying 
aberration phase describing departures of the wavefront from a perfect 
Gaussian reference sphere. 

Now because of the very narrow width of the coherence area incident on 
the lens, as determined by the narrow width of the Fourier transform in Eq. 
(7.2-13), the transmitted mutual intensity is nonzero only for very small A R  
and AJ. Accordingly, we make the following assumptions, valid for suffi- 
ciently small A2 and A j  (cf. Problem 7-1): 

e x p ( - ( -  [ ( R  7 )  ( I  . 1, (7.2-15a) ) 

with the result that the transmitted mutual intensity is of the form 

where df"(vx, v,) is the two-dimensional Fourier transform of the source 
intensity distribution I,(a, P ) .  

By our assumption (7.2-12), the function . ~ " ( A z / ~ z , ,  ~$/rXz,) is an 
exceedingly narrow function of (AR, Aj).  Accordingly, we regard Eq. 
(7.2-16) as describing the mutual intensity of a new source (the lens pupil) 
that is for all practical purposes spatially incoherent and with intensity 
distribution proportional to P C  J )  Now we apply the Van 
Cittert-Zernlke theorem to this new source, allowing us to specify the 
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mutual intensity incident on the object as 

Note in particular that, subject to the approximation (7.2-15b), the 
mutual intensity incident on the object is independent of any aberrations that 
may exist in the illumination system, a fact first noted by Zernike (Ref. 7-10). 
The calculation of the mutual intensity incident on the object has been 
reduced to the problem of Fourier transforming the squared modulus of the 
lens pupil function. When the lens is not apodized (i.e., IPc( = 0 or I), then 
lpCl2 = IPcI and it suffices to Fourier transform the aperture function itself. 
In addition we note that, provided the assumptions used in arriving at Eq. 
(7.2-17) remain valid, the mutual intensity J, incident on the object is 
independent of the distance 2, of the source in front of the lens. 

Of course, the function 4 of Eq. (7.2-16) is never infinitely narrow. An 
application of the generalized Van Cittert-Zernike theorem to Eq. (7.2-16) 
demonstrates that our conclusion remains valid for an Ys of finite width 
provided that (see Problem 7-2) 

where A, is the area of the object. 
Finally, we close this section with a discussion of one other circumstance 

under which it is relatively easy to calculate J,. Suppose that the incoherent 
source and the object of Fig. 7-9 are each one focal length from the lens 
( e .  z, = 2, = f ). In addition, suppose that the lens is substantially larger 
than the source and the object, so that the finite size of the lens pupil can be 
neglected. Representing the mutual intensity of the source by 

~ ~ ( a ~ ~  8,; a,, p,) = K I ~ ( ~ , ,  p l )6(al  - a,, P I  - a,),  (7.2-191 

we use the four-dimensional Fourier transform of Eq. (7.1-28) (with 3,' 
replaced by Js, and J, replaced by J,) to calculate the mutual intensity 
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incident on the object. The result of this simple calculation is 

where A t  = 6, - I ,  and Aq = q2 - q,. Thus the mutual intensity incident 
on the object is a function only of the differences of coordinates in the 
object plane and can easily be found by Fourier transforming the source 
intensity distribution. In many applications both (7.2-20) and (7.2-17) are 
relatively easy operations to perform, leaving the bulk of the problem of 
image intensity calculation in the evaluation of the four integrals of Eq. 
(7.2-11). Examples are deferred to Section 7.3. 

7.2.3 The Four-Dimensional Linear Systems Approach 

We saw in Section 7.1.4 [in particular, Eq. (7.1-39)j that, if an imaging 
system is described by an amplitude spread function K(u, v; E ,  q), repre- 
senting the amplitude of the field at image coordinates (u, v) that results 
from an object consisting of a 6-function amplitude at ( E ,  q), the object and 
image mutual intensities are related by 

Such an equation may be called a four-dimensional superposition integral 
and is characteristic of a linear system. Thus it is possible to view an 
imaging operation as a four-dimensional linear system, with the mutual 
intensity transmitted by the object as the input, and the mutual intensity 
appearing in the image plane as the output. The quantity 
K(u,, v,; 6,, q,)K*(u2, v2; t2 ,  q2) may be regarded as the impulse response 
of this system, that is, the mutual intensity observed at image coordinates 
(ul, v,, u2 ,  v2) in response to an object mutual intensity consisting of an 
impulse at (61, t2, ~ 2 ) .  

Under certain circumstances it is possible to reduce the general super- 
position integral (7.2-21) to a somewhat simpler convolution integral of the 
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form 

in which the impulse response K(ul - t,, v1 - ql)K*(u2 - E , ,  u, - q2) de- 
pends only on the coordinate differences (u, - [,), (ul - q,), (u, - t 2 ) ,  
and (u2 - q,). When such is the case, the system is said to be space 
invariant or isoplanatic. Clearly, if the amplitude spread function K is space 
invariant in two dimensions, the impulse response of the four-dimensional 
system of concern here will likewise be space invariant. 

The conditions under which space invariance of the amplitude spread 
function K can be assumed are nontrivial and are by no means always 
satisfied. For example, the spread function K in Eq. (7.1-38) is far from 
space invariant in the form presented there. In general, the following 
conditions must be satisfied in order to make space invariance a reasonable 
assump tion: 

(1) The object coordinates (5,q) must have been normalized in such a way 
that the magnification between the ( t ,  q)  and (u, v) coordinate systems 
is unity. 

(2) The object coordinate axes must be directed in such a way that the 
effects of image inversion are removed from the mathematics. 

(3) The amplitude spread function K must be free from space-variant 
phase factors, such as the terms exp( j ( l r / h z , ) ( t 2  + q2)) and 
exp( j(a/xz,)(u2 + v2)) in Eq. (7.1-38). 

Conditions 1 and 2 are easily satisfied by proper scaling and direction of 
the object coordinates. Condition 3 is more difficult to satisfy. It has been 
shown that these phase factors do not appear in the amplitude spread 
function of a two-lens telecentric imaging system (Ref. 7-11). In addition, 
the phase factor depending on t2 + q2 can be eliminated by proper choice 
of the illuminating optics (Ref. 7-12). Both phase factors can be removed by 
placement of positive lenses with proper focal lengths against the object and 
the image planes. Alternatively, coherence may exist over such small areas 
in the object and image planes that the phase factors associated with K and 
K* may cancel each other within the range of separations of interest. 

If indeed conditions 1 through 3 above are satisfied, then the four-dimen- 
sional convolution of Eq. (7.2-22) may be used to represent the mapping of 
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Jd into Ji. In such a case we should quite naturally investigate the form of 
this relationship in the Fourier domain, where convolutions are represented 
by simple multiplications of transforms (Ref. 7-7, pp. 19 and 20). Accord- 
ingly, we define the four-dimensional Fourier spectra of the object and 
image mutual intensities by 

where the operator F{ } is defined by 

and (x,, x2,  x,, x4)  are dummy variables of integration representing the 
four arguments of the mutual intensity functions taken in the order in which 
they are written. 

In a similar fashion we define the four-dimensional transfer function of 
the space-invariant, linear system by 

where we have noted that in the space-invariant case, each amplitude spread 
function depends on only two independent variables. Due to the separabil- 
ity of the four-dimensional spread function into two factors, S' likewise 
separates into two factors, with the result 

where X represents the two-dimensional Fourier transform of the am- 
plitude spread function 

Thus the effect of the imaging system is represented in the four-dimensional 
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frequency domain by 

Now since X is the two-dimensional Fourier transform of K, and since 
from Eq. (7.1-38) K is, in turn, related to the two-dimensional Fourier 
transform of the pupil function P, we can expect some rather 
direct relationship to exist between X and P. In fact, when conditions 1 
through 3 for space invariance are satisfied, the amplitude spread function 
K(u - 4, v - q )  takes the form [cf. Eq. (7.1-38)] 

where C is a constant. A two-dimensional Fourier transform of this 
equation yields, up to an unimportant scaling constant C, 

and the relation between the spectra of the mutual intensities [Eq. (7.2-28)] 
becomes 

Clearly, the transfer function will drop to zero when v,, v2, v,, or v, exceed 
certain limits imposed by the pupil functions. 

Unfortunately, the Fourier relationship (7.2-31) is not very useful in thls 
form, for the spectrum #: depends on the properties of both the object and 
the illumination. Some further investigation of the character of 8; is thus 
required in order to understand the role that each of these separate physical 
quantities plays. 

We assume, as we have in the past, that the object is illuminated from 
behind (i.e., transilluminated), and that it has amplitude transmittance to. In 
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addition, we assume that the mutual intensity J, of the light illuminating the 
object depends only on the coordinate differences A t  = t 2  - El ,  Aq = -q2 - 
q l ,  as is often the case in practice. Thus the transmitted mutual intensity is 
of the form 

The four-dimensional Fourier transform of Jo' takes the form 

With a change of variables 6 ,  = A t  + I,, -q2 = A7 + q,, this transform can 
be written 

The last double integral is recognized as the Fourier transform of the 
product of two functions and as such may be evaluated as the convolution 
of their individual transforms. With appropriate manipulations we find that 
the second integral can be expressed as 

where Yo is the two-dimensional Fourier transform of to. Substitution of 
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this result in Eq. (7.2-34) yields the final result 

Although it is difficult to visualize the meaning of the expression above, 
some help is possible from examination of Fig. 7-10. Suppose that the 
amplitude transmittance t o  of the object is a bandlimited function, that is, 
its frequency spectrum is nonzero only within a circle of radius po in the 
two-dimensional frequency domain. In addition, when the illumination 
arises from a large incoherent source, the arguments leading to Eq. (7.2-17) 
imply that the function ,fo(p, q) is simply a scaled version of the squared 
modulus of the pupil function of the condenser (or illumination) optics, 

where C is a constant and 2, is the distance from the condenser lens to the 
object. Thus yo is also nonzero over only a finite range of its arguments. As 
illustrated in Fig. 7-10, the spectrum #: of the transmitted mutual intensity 
is found by integrating the product of the three partially overlapping 
functions / , ( p ,  q), F 0 ( p  + v,, q + v2), and .To*(p - v,, q - v,). Clearly, 

Figure 7-10. Region of overlap. 
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as the frequencies v,, v,, v,, and v4 grow larger, the degree of overlap 
decreases, and the four-dimensional spectrum 8; drops in value. 

By combining our previous results, in particular Eqs. (7.2-28) and (7.2-36), 
it is now possible to express the four-dimensional spectrum $, of the image 
mutual intensity in terms of two-dimensional spectra of the various other 
quantities involved. The relationship is given by 

The reader is reminded that S can be expressed in terms of the pupil 
function of the imaging lens, and, under usual circumstances (large incoher- 
ent source), 8, can be expressed in terms of the pupil function of the 
condenser lens. 

The theory developed in the preceding parts of this section has estab- 
lished a framework within which it is possible to calculate the four-dimen- 
sional spectrum of the image mutual intensity. More commonly it is of 
interest to know the image intensity I,(u, o) or, alternatively, its two-dimen- 
sional Fourier spectrum 3,(v,, v,). Therefore, we now explore the applica- 
tion of this theory to the problem finding these two quantities. 

The mutual intensity J, can, of course, be found by taking an inverse 
Fourier transform of the spectrumji, which in turn we can calculate by the 
formalism developed above. It is a straightforward exercise to show that, if 
we set u, = u, = u and u, = v, = v in this inverse transform relationship, 
we obtain an expression for I,(u, u) in terms of f,(vl, v,, v,, v4) as follows 
(see Problem 7-3): 

Having found fi by the methods described earlier, we can then calculate 
the image intensity using Eq. (7.2-39). 
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In some cases we may prefer to know the two-dimensional Fourier 
spectrum of the image intensity, a quantity defined by 

We could, of course, simply apply this transform to I,  (which we know how 
to calculate from the earlier discussion). It is possible to relate 9, directly to 
#,, however, thus eliminating several steps of integral transforms. Again, a 
straightforward exercise in manipulating Fourier integrals leads one from 
Eq. (7.2-39) to the relationship (see Problem 7-4) 

Now using Eq. (7.2-38) in (7.2-41), and changing variables of integration to 
2, = p + v,, 2, = q + v,, we obtain the following expression for the spec- 
trum of the image intensity: 

Note that the quantity in square brackets is totally independent of the 
object and is a complete description of the effects of the optical system from 
source to image plane. This quantity is often referred to as the transmission 
cross-coeficient (Ref. 7-2, p. 530; Ref. 7-1, p. 190). Its evaluation requires 
integration over three partially overlapping functions, much analogous to 
the evaluation illustrated in Fig. 7-10. 

In closing this section, it must be said that the "linear systems" treatment 
of partially coherent imaging is not a simple theory, at least by comparison 
with the more common linear systems approaches to fully coherent and 
incoherent imaging. Nonetheless, for those who are highly familiar with 
two-dimensional Fourier transform theory, and can extrapolate this experi- 
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ence to the case of four-dimensional systems, the formalism does provide a 
viable approach to the analysis of partially coherent imaging systems. 

7.2.4 The Incoherent and Coherent Limits 

In this section we investigate the properties of the image, as predicted by the 
previous theories, in the limiting cases of perfect incoherence and perfect 
coherence of the object illumination. We find the form of I, in these two 
cases using the method presented in Section 7.2.2. In addition, for illustra- 
tive purposes, we find corresponding expressions for the two-dimensional 
spectrum 4 of the image intensity using the results given in Section 7.2.3. 
Finally, we discuss physical criteria for determining whether a given system 
may be regarded as being fully incoherent or fully coherent from a practical 
point of view. 

The case of total incoherence of the object illumination may be repre- 
sented mathematically by a mutual intensity incident on the object of the 
form 

Jo(At, As) = K I , ~ ( A ~ ,  As), (7.2-43) 

where K is a constant, I, is a constant intensity, and S is a two-dimensional 
Dirac 6 function. Substituting this expression in Eq. (7.2-ll), we find that, 
under the assumption of a space-invariant system, 

Thus the image intensity is found to be (up to a constant multiplier) the 
convolution of the object intensity transmittance ito 1 with an intensity 
spread function 1KI2. Clearly, an incoherent system is linear in intensity. 

To find the Fourier spectrum of image intensity, we could simply Fourier 
transform the result above. For illustrative purposes, however, we prefer to 
find #, with the help of Eq. (7.2-42). Fourier transformation of the mutual 
intensity Jo in Eq. (7.2-43) yields 

in which case the spectrum 3, becomes 
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where the changes of variable p' = z, - p, q'  = z, - q have been made in 
the second integral. The first bracketed integral represents the Fourier 
transform of the object intensity transmittance. The second bracketed 
integral represents the Fourier transform of the intensity spread function. 

The transfer of frequency components of object intensity to image 
intensity is governed by the second bracketed expression in Eq. (7.2-46). By 
convention, we represent this transfer factor in normalized form, 

// x ( ~ ' , q ' ) x * ( P '  - V U , ~  ' - v,) dp'dq' 
A -00  

#(v,, v,) = 00 7 

which is known as the optical transfer function, or for brevity, the OTF. This 
quantity, originally introduced by Duffieux (Ref. 7-13), represents the 
complex factor applied by the imaging system to the complex exponential 
component of object intensity with frequency (v,, v,), relative to the factor 
applied to the zero-frequency component. As indicated by Eq. (7.2-30), the 
function X is proportional to the complex pupil function P of the imaging 
optics. Thus the OTF may also be expressed as a normalized autocorrelation 
of the complex pupil function, 

a well-known and important result. 
Turning next to the case of fully coherent illumination, we take the 

mutual intensity of the object illumination to be 

thereby assurning plane wave illumination normal to the object. Substituting 
this form in Eq. (7.2-ll), and again assuming a space-invariant system, we 
obtain 
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If we now define the time-invariant phasclr image distribution by 

we see that the amplitude distribution Ai is proportional to a convolution of 
the amplitude spread function K with the amplitude transmittance to  of the 
object. Clearly, the fully coherent system is linear in complex amplitude. See 
Problem 7-9 for a generalization of this result. 

To find the Fourier spectrum of image intensity, we first note that a 
Fourier transform of Eq. (7.2-49) yields 

Substitution of this form in (7.2-42) yields a spectrum of image intensity 
gven by 

Consistent with the autocorrelation theorem of Fourier analysis, we regard 
(7.2-53) as the autocorrelation function of the spectrum 

Comparison with Eq. (7.2-51) demonstrates that d,  is the Fourier trans- 
form of the image amplitude distribution A,. 

Aside from a multiplicative constant, the transfer function of the coher- 
ent imaging system is clearly given by 

This transfer function is referred to as the amplitude transfer furrctiorr or the 
coherent transfer function. 

Finally, we turn to the question of when it is valid, from a practical point 
of view, to assume that an imaging system behaves essentially as predicted 
by the idealized incoherent or coherent theories presented previously. Clues 
to the answers are provided by Eq. (7.2-ll), which we rewrite here for the 
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case of a space-invariant system and an incoherent source, 

For the case of coherent illumination, we require that Jo(At, Aq) be 
essentially constant over the entire range of (At, Aq) for which the in- 
tegrand of Eq. (7.2-56) has value significantly greater than zero. Clearly, the 
integrand will vanish if A t  or Aq is greater than the width of the object, for 
then 

In virtually all cases of interest, however, the amplitude spread function K 
has a width, referred to the (6, q) plane, that is much narrower than the 
width of the object. Hence when A( or Aq exceeds the width of K, the 
integrand becomes very small, as a result of 

K(u - t ,  u - q)K*(u - 6 - A t ,  v - 11 - Aq) 0. (7.2-58) 

We conclude that the system will behave approximately as a fully coherent 
system provided the incoherent source of illumination is so small as to 
produce a coherence area on the object that considerably exceeds the area 
covered by the amplitude spread function, that area being referred to the 
object plane. Alternatively, but equivalently, we require that the angular 
subtence of the source, as seen from the object, must be considerably 
smaller than the angular subtense of the entrance pupil of the imaging 
optics. 

For the incoherent case, we require that Jo(At, Aq) be nonzero only 
when (At, Aq) are so small that 

Clearly, a necessary condition is that the coherence area of the object 
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illumination be smaller than both the area covered by the amplitude spread 
function and the area of the smallest structure in the object amplitude 
transmittance t ,. Stated in alternate but equivalent terms, the angular 
subtense 0, of the incoherent source, as viewed from the object, must be 
considerably larger than both the angular subtense tip of the entrance pupil 
of the imaging optics and the angular subtense 8, of the cone of angles that 
would be generated by the object under normally incident plane wave 
illumination (i.e., the subtense of the angular spectrum of the object). Thus 
we require 

e, > S P and > eo. (7 -2-60) 

A1 though the preceding argument provides necessary conditions for 
incoherent imaging, a sufficient condition requires a bit more discussion. 
Since the terms involving K and t o  are multiplied together in Eq. (7.2-59), 
the angular spectra of K and t o  must actually be convolved together in order 
to determine sufficient conditions on the angular subtenses involved. When 
this is done, a single necessary and sufficient condition is arrived at: 

e, 2 e, + 8,. (7.2-61) 

Stated in physical terms, it is necessary that the angular subtense of the 
source, when centered about the highest diffraction angle introduced by the 
object, at least fill the angular subtense of the imaging optics. See Problem 
7-10 for a consideration of this idea in a specific case. 

In closing t h s  section, we mention that a particularly important problem, 
and one that has been much treated in the literature, is the question of when 
a rnicrodensitometer (an instrument used for measuring the fine-scale den- 
sity structure of photographic transparencies) can be treated as an incoher- 
ent imaging system. The reader is referred to Refs. 7-14 and 7-15 for 
detailed discussions of this question. 

7.3 SOME EXAMPLES 

Several theoretical approaches to the evaluation of image intensity were 
outlined in Section 7.2. We turn now to the application of these methods to 
some specific examples. 

7.3.1 The Image of Two Closely Spaced Points 

Consider an object consisting of two small pinholes. We suppose the object 
to be transilluminated and to have an amplitude transmittance well ap- 
proximated by 
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Source Object P U ~ I I  l mage 

Figure 7-11. Telecentric imaging system. All lenses have the same focal length /. 

where a is a constant and S represents the separation of the two transmit- 
ting points. 

T h s  object is assumed to be illuminated with partially coherent light 
having mutual intensity Jo(A[, AT) and to be imaged by the space-invariant 
system illustrated in Fig. 7-11. Substituting (7.3-1) in (7.2-56), we obtain 
(after some manipulation) 

where 

In arriving at t h s  result we have used the fact that the source intensity 
distribution is real valued; therefore, its Fourier transform satisfies 

The amplitude spread function K is related to the complex pupil function 
P by 
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If the pupil function P has hermitian symmetry [i.e., P( - x, - y ) = P*(x, y )], 
such as it does for an aberration-free, circular pupil, then K(u, v )  is entirely 
real (K = K). The image intensity then takes the form 

where p = Ipl and + = arg{p). In the specific case of a circular pupil, the 
amplitude spread function takes the form 

where p = and r, is the radius of the exit pupil. 
Grimes and ~ h o m ~ s o n ' ( ~ e f .  7-16) have calculated the distributions of 

image intensity for various separations of the two points and various 
complex coherence factors. In Fig. 7-12 such distributions are shown for the 
case of an aberration-free circular pupil, a complex coherence factor ranging 
from 1.0 to - 1.0 in steps of 0.2, and a separation of the two points given by 

- 

which is just slightly greater than the so-called Rayleigh Iirnit of resolution 
( S  = 0.6098X f/rp). 

Note that if p = - 1.0, the two points are illuminated coherently but 
with a 180" phase difference, and the intensity at the midpoint between 
them always falls to zero, regardless of their separation. If the illumination 
of the object is provided by an incoherent source through a condenser 
system, then there is a particular effective source size that yields the most 
negative possible value of p and hence the greatest possible dip of intensity 
in the image plane. The optimum effective source size depends on the 
separation of the two points and the intensity distribution associated with 
the effective source. (Some source distributions are incapable of producing 
negative values of p.) These points are pursued further in Problems 7-5 and 
7-6. 

We note in closing that the question of when two closely spaced point 
sources are barely resolved is a complex one and lends itsklf to a variety of 
rather subjective answers. According to the so-called Rayleigh resolution 
criterion, two equally bright points are barely resolved when the first zero of 
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Figure 7-12. One side of the intensity distribution in the image of two point sources, with the 
complex degree of coherence as a parameter. The intensity distribution is symmetrical about 
x = 0, and I is normalized. The separation S of the two point sources is 0.6366 X f/r- The 
normalization is such that K(0,O) = 1 
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the Airy pattern of the image of one point exactly coincides with the central 
maximum of the Airy pattern of the image of the second point. Under such 
a condition the intensity at the midpoint of the image intensity distribution 
is 26.5% smaller than the intensity at either peak. An alternative definition is 
the so-called Sparrow criterion, whlch states that two point sources are just 
resolved if the second derivative of the image intensity pattern vanishes at 
the point midway between the Gaussian image points. In fact, the ability to 
resolve two point sources depends fundamentally on the signal-to-noise 
ratio associated with the detected image intensity pattern, and for this 
reason criteria that do not take account of noise are subjective. Nonetheless, 
such criteria may yield useful rules of thumb for engineering practice. For 
further discussion of these questions, the reader may wish to consult Ref. 
7-1. 

7.3.2 The Image of a Sinusoidal Amplitude Object 

Consider next an object that has an amplitude transmittance of the form 

Such an object is often referred to as a sinusoidal amplitude grating. Note 
that the intensity transmittance associated with such an object is 

= $ + f cos 2mv0[ + $cos4nvo[. (7.3-10) 

We wish to compare the intensity distribution that appears in the image of 
such an object with the intensity transmittance above, talung into account 
the partial coherence of the object illumination (cf. Ref. 7-17). 

For this particular problem, the frequency-domain method of analysis is 
the most convenient approach. We begin with the inverse Fourier transform 
of Eq. (7.2-42), writing the image intensity as 

z , (u ,  o )  = dv,dv,exp{-j2n(uvu + ov,)) 

// dpdqX(z1  - P ,  2 2  - q)JY*(z, - p - v,, z, - q - v,)yo(p,  q) .  
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For the object of Eq. (7.3-9), we have 

as the spectrum of the amplitude transmittance. The &function expressions 
for Y0(z1, 2,) and Y 3 z 1  - v,, z, - v,) are substituted in Eq. (7.3-11), 
and the orders of integration are interchanged. Integrating first with respect 
to (v,, v,), then with respect to (z,, z,), and finally with respect to ( p ,  q), 
after much use of the sifting property of 6 functions, we obtain 

where for real-valued X = X and z0 =A, 

Although the partially coherent imaging system is nonlinear, it is some- 
times useful to consider an apparent transfer function, defined by 

modulation of frequency component 

(v,, v,) at output 
J G ( v " 9  v v )  = modulation of frequency component 

(v,, v ,,) at input 

For the particular object of concern here, the input modulation at v, is 
[from Eq. (7.3-lo)] m,  = 4/3, whereas the output modulation is m, = B / A .  
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For the frequency component at 2v,, the corresponding result is 

These quantities have been calculated by Becherer and Parrent (Ref. 7-17), 

Figure 7-13. Apparent transfer functions for frequency components at ( a )  v, and (b )  2v0, 
plotted against the frequency v, of the amplitude grating, with the coherence of the illumina- 
tion as a parameter; v, represents the cutoff fequency of the amplitude transfer function 
v, = B,/X.  (Courtesy of R. I. Becherer and the Optical Society of America, Ref. 7-17.) 
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as a function of v,, for the case of a slit incoherent source and a slit pupil 
function. If 8, represents the angle subtended by the source, and 0, the 
angle subtended by the imaging pupil, both as viewed from the object, then 
xA(v0) and xA(2vO) are found to be functions of 8,/8, (as well as v,). This 
dependence is an indication of the dependence of system performance on 
the coherence of the object illumination. Figures 7-13a and 7-1 3b show the 
apparent transfer functions for frequencies v, and 2vo for various values of 
Bp/Bs. It should be noted that BP/Bs -+ 0 implies the illumination is ap- 
proaching total incoherence, whereas Bp/Bs -+ m implies the approach is to 
perfect coherence. 

7.4 IMAGE FORMATION AS AN INTERFEROMETRIC PROCESS 

Considerable insight into the character of images formed under various 
conditions of illumination can be gained by adopting the point of view that 
image formation is an interferometric process. Such an approach also 
suggests various novel means for gathering image data. The interferometric 
approach has been used by radio astronomers for many years, since the 
hghest resolution images of radio sources must in most cases be gathered 
with interferometers rather than with continuous reflecting antennas (Refs. 
7-18 and 7-19). The value of the interferometric viewpoint in optics was 
pointed out at an early date by G. L. Rogers (Ref. 7-20) for the case of a 
fully incoherent object. 

7.4.1 An Imaging System as an Interferometer 

We are familiar with the idea that, in Young's interference experiment, the 
light passing through two small pinholes can ultimately interfere to produce 
a sinusoidal fringe with a spatial frequency that is dependent on the 
separation of the pinholes. Now the exit pupil of an imaging system may be 
regarded as consisting of a multitude of (fictitious) pinholes, side by side, 
and the observed image intensity distribution as being built up of a 
multitude of sinusoidal fringes generated by all possible pairs of such 
pinholes. 

A frequency component of image intensity with spatial frequencies 
(v,, vv) must arise from at least one pair of pinholes in the exit pupil with 
separations 

Ax = Xz,vu 

The amplitude and phase of the sinusoidal fringe contributed by a pair with 
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coordinates (x,, y,) and (x,, y 2 )  are determined by the amplitude and 
phase of the mutual intensity J;(x,, y,; x,, y,) transmitted by the exit 
pupil. Since many pinhole pairs with the separations (Ax, Ay) exist in the 
exit pupil, the total amplitude and phase of the spectral component 
j i (vU,  Y v) of image intensity must be calculated by adding all fringes with 
frequencies (v,, v ,), taking proper account of both their amplitudes and 
their spatial phases. 

A mathematical version of this conclusion can be found by beginning 
with Eq. (7.1-47) relating image intensity with the mutual intensity in the 
exit pupil. Since our main interest is in the Fourier spectrum j i ( v , ,  v ,) of 
the image intensity, we Fourier transform (7.1-47) with respect to the 
variables (u ,  u). Interchanging orders of integration, we find 

The last double integral is simply equal to 6(v, + [(x, - x,)/xz,], v, + 
[(y, - Y1)/~zi]) .  Integrating next with respect to ( x , ,  y,), and using the 
sifting property of the 6 function, we find 

Thus to find the complex value of the image spectrum at (v,, v,), we 
integrate (or add) - all possible values of the mutual intensity, with fixed 
separation (Xziv,, hz,vv), as the free variables (x,, y,) run over the pupil 
plane. This result is entirely equivalent to the idea of adding all Young's - 
fringe - patterns generated by pinhole pairs with spacings (Ax = hzivu, 
Ay = XzivV). 

Of course, in practice the exit pupil has finite physical extent. The mutual 
intensity J; leaving the exit pupil can be expressed in terms of the mutual 
intensity Jp incident on the exit pupil by 
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where the complex pupil function P is determined by the bounds of the exit 
pupil, any apodization that might exist, and phase errors or aberrations 
associated with the system. The finite extent of the exit pupil limits the area - 
over which (x, ,  y,) can run for any fixed (XZ,~,,  XZ,~,). a fact that 
becomes more evident if (7.4-4) is substituted in (7.4-3), yielding 

For the case of an unobstructed, circular exit pupil of radius r,, the 
region of integration in (x,, y,) is the shaded area in Fig. 7-14. Thus the 
fixed separation shown in Fig. 7-14 may be regarded as being slid within 
the shaded area to all possible locations that fully contain it, but with the 
relative orientation of the two pinholes (i.e., their uector spacing) remaining 
unchanged. 

Figure 7-14. Region of integration for calculating the spectrum of image intensity [frequency 
( u U '  yv)J. 
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When the original object is illuminated incoherently, the calculation of 
ji ( v ,, v ") becomes especially simple. By the Van Cittert-Zernike theorem, 
the mutual intensity distribution incident on a reference sphere of radius z ,  
in the entrance pupil (see Fig. 7-15) is a function only of the separations Ax 
and Ay in that pupil. (The quadratic phase factors associated with the Van 
Cittert-Zernike theorem vanish due to the use of this reference sphere.) The 
exit pupil is simply the image of the entrance pupil. Hence within the 
confines of the pupil, the mutual intensity J, incident on the sphere of 
radius z ,  in the exit pupil is identical (up to a possible magnification) with 
the mutual intensity incident on the reference sphere in the entrance pupil; 
therefore, J, is a function only of the coordinates differences (Ax, A y )  and 
is independent of (x,, y,). In this case Eq. (7.4-5) for Yi(v,, vv) becomes 

This result implies that, for an incoherent object and an optical system 
that is free from aberrations (i,e., for a pupil function that is real and 
nonnegative), as a pinhole pair with a fixed separation is slid around the exit 
pupil, the phases of Young's fringe contributions will be identical for all 
locations. Hence these "elementary fringes" add constructively, producing a 
fringe with increased amplitude. The weighting factor applied by the optical 
system to the frequency component at (v,, vv) is simply the autocorrelation 

Entrance 
pupil 

Exit 
pupil 

Figure 7-15. Entrance and exit pupils. 
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integral in Eq. (7.4-6), which (when there is no apodization) - reduces to the 
area of overlap of two exit pupils displaced by (Xz,v,, hz,v,), as shown 
previously in Fig. 7-14. The optical transfer function of the system is this 
area of overlap normalized by the area of overlap when v, = v, = 0 (i.e., 
the area of the exit pupil). 

If the object is again incoherent but the system has aberrations, then as 
the pinhole pair is slid around the exit pupil, the elementary fringes 
contributed by a single vector spacing will in general have different spatial 
phases for different locations of the pinhole pair. Since such fringes will not 
add constructively, the weighting factor applied by the optical system for 
that frequency is reduced in accord with the autocorrelation integral in Eq. 
(7.4-6). The optical transfer function in this case becomes 

Finally, if the object ilIumination is partially coherent, the situation 
becomes more complicated. The mutual intensity J, is now a function of 
both the location and the separation of the pinholes, and thus it no longer 
factors outside the integral of Eq. (7.4-5). In this case the amplitudes and 
phases of the elementary fringes can change as the pinhole pair is moved 
around the exit pupil, even if the system is free from aberrations. Hence it is 
not possible to identify a weighting factor associated with the system alone 
for any given spatial frequency (v,, v,). Nonetheless, Eq. (7.4-5) remains a 
very revealing result, for it does tell us explicitly how the frequency 
component at (v,, v ,) is built up from elementary fringes, even if the 
amplitudes and phases of these fringes do depend in a rather complicated 
way on which parts of the pupil we are considering. The reader may wish to 
consult Ref. 7-21 for further discussion of the partially coherent case. 

7.4.2 Gathering Image Information with Interferometers 

For the discussions of this section, attention is restricted to fully incoherent 
objects. We have previously seen that for such objects and for an aberra- 
tion-free optical system, a single pair of pinholes placed in the exit pupil 



336 EFFECTS OF PARTIAL COHERENCE ON IMAGING SYSTEMS 
- 

and having vector separation (Xz,v,, hz iv , )  will yield an image fringe 
having amplitude proportional to the modulus of the pupil mutual intensity 
function J, and a spatial phase identical with the phase of J,. In turn, 
according to the Van Cittert-Zernike theorem, J, is a scaled version of the 
two-dimensi~nal Fourier transform of the object intensity distribution. Thus 
measurement of the parameters of this single fringe yields knowledge (up to 
a real proportionality constant) of the object spectrum at frequency (v,, v ,). 
Different pinhole pairs with the same vector spacing yield identical fringes. 
Therefore, the redundancy of the optical system (i.e., the multitude of ways a 
single vector spacing is embraced by the pupil) serves to increase the 
signal-to-noise ratio of the measurement but does not in any other way 
contribute new information. 

When the optical system contains aberrations, or when it is situated in an 
inhomogeneous medium that generates aberrations, the presence of re- 
dundancy can in fact sometimes be harmful. In t h s  case Young's fringes 
with identical spatial frequency add with different spatial phases, reducing 
the contrast and also the accuracy with which fringe amplitude can be 
measured (Ref. 7-22). 

In some cases it may be desired to extend the range of vector spacings 
observed by the system, but without building an optical system having a 
lens or a mirror with correspondingly large aperture. As we shall discuss in 
more detail, such concepts lead us into the realm of aperture synthesis and 
the use of interferometers to gather object information. 

In some cases we may be satisfied to extract object information less 
complete than a detailed image. For an object that is known to be a uniform 
circular radiator, it may suffice for our purposes to determine its angular 
diameter. For an object known to consist of two point sources, we may be 
concerned primarily with their angular separation and relative intensities. In 
such cases, sufficient information may be provided by the modulus of the 
object spectrum, allowing us to ignore phase information. 

The simplest kind of interferometer for use in spatial information extrac- 
tion is the Fizeuu stellar interferometer (Ref. 7-23) shown in Fig. 7-16. In 
astronomical measurement problems, for which this interferometer was 
introduced, the object lies at extremely large distances from the observer, 
and the image plane thus coincides with the rear focal plane of the reflecting 
or refracting telescope. To construct a Fizeau interferometer, a mask is 
placed in an image of the pupil of the telescope, effectively allowing only 
two small pencil beams, separated by an average spacing of (Ax, A y )  on the 
primary collector, to interfere in the focal plane. The contrast or visibility of 
the fringes observed in the focal plane is determined by the modulus of the 
complex coherence factor of the light incident on the two effective pupil 



IMAGE FORMATION AS AN INTERFEROMETRIC PROCESS 

Primary 
collector 

Puprl l mage 
stop plane 

Figure 7- 16. Fizeau stellar interferometer 

openings, 

where J p  is the mutual intensity of the light incident on the aperture of the 
primary collector. 

For a uniformly bright circular source of radius r, at distance z ,  the 
complex coherence factor of the light incident on the telescope pupil is of 
the form 

Equivalently, thls expression can be written in terms of the angular diameter 
8, = 2rs/z  of the source, 

Note that the fringes entirely vanish ( l p p l  = 0) when the spacing s 

= 4- is such that a zero of the Bessel function J ,  occurs. The 
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smallest spacing yielding thls condition is 

Thus it is possible to measure the angular diameter of the source by 
gradually increasing the spacing of the two openings until the fringes first 
vanish. The diameter of the source is then given by 

The reader may well wonder why the Fizeau stellar interferometer, which 
uses only a portion of the telescope aperture, is in any way preferred to the 
full telescope aperture in this task of measuring the angular diameter of a 
distant object. The answer lies in the effects of the random spatial and 
temporal fluctuations of the earth's atmosphere ("atmospheric seeing"), 
which are discussed in more detail in Chapter 8. For the present it suffices to 
say that it is easier to detect the vanishing of the contrast of a fringe in the 
presence of atmospheric fluctuations than it is to determine the diameter of 
an object from its highly blurred image. 

The chief shortcoming of the Fizeau stellar interferometer lies in the fact 
that it can be used only to measure the diameters of relatively large sources. 
The maximum spacings that can be explored are limited by the physical 
diameter of the telescope used, and the number of stellar sources with 
diameters suitable for measurement by even the largest optical telescopes is 
extremely limited. 

The limited range of spacings afforded by unaided telescopes was vastly 
extended by an interferometer invented by Michelson (Ref. 7-24), known as 
the Michelson stellar interferometer. As illustrated in Fig. 7-17 for the most 
common case of a reflecting telescope, two movable mirrors are mounted on 
a long rigid cross-arm. Light is directed from these two mirrors into the 
primary collector of the telescope, and the two pencil beams are merged in 
the focal plane, just as in the case of the Fizeau interferometer. Now, 
however, the range of spacings that can be explored is not limited by the 
physical extent of the telescope aperture, and diameters of much smaller 
sources can be measured. A 20-foot interferometer of this kind was con- 
structed and successfully used by Michelson (Ref. 7-25) and Michelson and 
Pease (Ref. 7-26). A 50-ft interferometer was also built but never worked as 
well as had been hoped. 

The problems encountered in attempting to operate a Michelson stellar 
interferometer are far from trivial. The entire instrument must be carefully 
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Figure 7-17. Michelson steller interferometer. 

aligned, and the pathlength differences in the two arms must be maintained 
equal within a fraction of the coherence length of the light. In order to 
collect as much light as possible, the broadest possible bandwidth of light is 
used, which, in turn, means that the coherence length of the light is 
extremely short. In addition to these difficulties, the random spatial varia- 
tions of the refractive index of the earth's atmosphere introduce aberrations, 
which in turn limit the maximum usable size of the interferometer mirrors to 
no more than about 10 centimeters in diameter. The random temporal 
variations of the atmospheric effects introduce a time-varying phase 
difference between the two paths, with the result that the fringe phase varies 
rapidly with time. It was a fortunate event that the integration time of the 
human eye was sufficiently short that Michelson could still detect the 
presence or absence of fringes, even though those fringes were moving 
rapidly. 

More modern versions of optical stellar interferometers have been pro- 
posed and used in recent years (Refs. 7-27 through 7-31), including the 
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intensity interferometer discussed in Chapters 6 and 9 and the stellar 
speckle interferometer discussed in Chapter 8. 

7.4.3 The Importance of Phase Information 

The simplest possible use of a Michelson stellar interferometer is for 
determination of the particular spacing so where the fringes first vanish, and 
thereby determining the angular diameter of a distant source. A more 
ambitious undertaking would be to measure the modulus of the complex 
coherence factor (ppl for an entire range of two-dimensional spacings and 
hopefully to recover from this data image information more detailed than 
just an angular diameter. The most ambitious undertaking would be to 
attempt to measure both the modulus and the phase of p, for an entire 
range of two-dimensional spacings and to use these more complete data for 
image formation. 

Clearly, if both the modulus and phase of p, were measured, we would 
then know the Fourier spectrum of the object, at least out to a limiting 
spatial frequency corresponding to the maximum spacing explored. An 
inverse Fourier transform of the measured data p,(Ax, Ay) would then 
yield the desired image, with a resolution limited by the maximum achiev- 
able spacing. 

Unfortunately, in practice it is impossible to extract the true phase 
information from the interferometer. Although the position of a fixed fringe 
relative to a reference could in principle be measured, the phase of the 
fringe fluctuates randomly with time, as a result of both the random 
fluctuations of the atmosphere and the mechanical instabilities of the 
interferometer itself. 

A more realistic task would be to attempt to measure only the modulus 
of pp on a two-dimensional array of spacings, either by a sequence of 
measurements or with a multielement array. The question then naturally 
arises as to exactly what information about the object can be derived from 
measurements of the modulus of its Fourier spectrum. (For a view of some 
early work in optics pertinent to t h s  question, see Refs. 7-32 and 7-33.) 
What price do we pay for loss of phase information? 

That phase information is in general extremely important for image 
formation is demonstrated by a simple example. With reference to Fig. 7-18, 
consider a one-dimensional object with a rectangular intensity profile. The 
corresponding complex coherence factor is a simple sinc function. Note that 
the negative lobes of the sinc function correspond to 180" phase reversals of 
the fringes produced by the interferometer, and such phase changes canqot 
be detected for the reasons explained earlier. Our measured data thus 
correspond to the modulus of the sinc function. If we treat this modulus 
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Figure 7-18. Example of consequences of losing phase information. 

information as if it were the true spectrum of the object, subjecting it to an 
inverse Fourier transform, we obtain the "image" shown in part (6) of Fig. 
7-1 8. Clearly, it bears little resemblance to the original object! 

There do exist some cases in which the absence of phase information is of 
no consequence. For example, if the Fourier transform of the object is 
en tirely real and nonnegative, the spectrum contains no phase information. 
An example of such an object is one with a Gaussian intensity distribution 
(and hence a Gaussian spectrum), 

In Problem 7-7 the reader is asked to prove that any symmetrical one- 
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dimensional in tensity distribution can be recovered from knowledge of only 
the modulus of its spectrum, if proper processing of the data is performed. 

A better feeling for exactly what information about the object is carried 
by the modulus information in the spectrum is obtained if we consider the 
inverse Fourier transform of i~,(Ax, Ay)i2, rather than just . In this 
case the autocorrelation theorem of Fourier analysis implies that the re- 
coverable "image" is of the form 

that is, the recovered data are the autocorrelation function of the intensity 
distribution of the object. Such information can be useful, for example, in 

f b) 
Figure 7-19. Determining the separation of two small sources from the autocorrelation 
function of the object: (a)  object distribution; (6)  autocorrelation function. 
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Figure 7-20. Special class of objects for which full image recovery is possible from the 
autocorrelation function of object intensity: ( a )  object; ( b )  autocorrelation function. 

measuring the separation of two small stars, as illustrated in Fig. 7-19. The 
separation A can clearly be determined from the autocorrelation function. 

There exists one special condition under which full image information 
can be extracted from the autocorrelation function, regardless of the sym- 
metries of the object (Refs. 7-34 and 7-35). This condition occurs when the 
object of interest happens to have a point source of light near it but 
separated at a proper distance from it. As illustrated in Fig. 7-20, the 
autocorrelation function in this case contains twin images of the object, as 
well as unwanted information, in a form entirely analogous to that of 
holographic images. 

7.4.4 Phase Retrieval 

A tantalizing possible solution to the loss of phase information was sug- 
gested by Wolf (Ref. 7-36) in 1962. Although the context in which the 
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suggestion was made was Fourier spectroscopy, the ideas apply equally well 
in the present context of spatial interferometry. For simplicity we discuss 
the problem using functions of one variable, but generalization to functions 
of two variables is possible. For discussion of the one-dimensional problem 
in greater detail, see Refs. 7-37 and 7-38. 

We begin by assuming that the incoherent object of concern is known a 
priori to be spatially bounded; that is, the intensity distribution I,(E) 
describing the object is nonzero over only a finite interval on the 5 axis. 
Without loss of generality, we can assume that the origin has been chosen to 
assure that 

( )  all [ S O .  (7.4-1 5) 

[The corresponding restriction in the two-dimensional case is to confine 
nonzero values of I, to the upper right-hand quadrant of the ( 6 , ~ )  plane.) 
Now the complex coherence factor 

is the normalized Fourier transform of I,. From our knowledge of analytic 
signals, we know that the real and imaginary parts of the Fourier transform 
of a function satisfying (7.4-15) must be a Hilbert transform pair+ 

Now consider the complex coherence factor expressed as a function of a 
complex argument z = A x  + jq. The function p(z) is then related to I , ([ )  
by a one-sided Laplace transform 

where s = - j2?rz is the usual Laplace transform variable and b is a 
constant. A bit of reflection shows that p(z) must of necessity be analytic 
(have no poles) in the upper half of the complex z plane, because of the 
single-sided nature of I,. Hence the name "analytic signal" for such a 
function. * 
When comparing (3.8-20) and (7.4-19), remember that the former deals with a function having 

a single-sided spectrum, while the latter deals with the spectrum of a single-sided function. 
*Note that if I o ( t )  is also zero for 5 larger than a certain upper bound, p(z) also has no poles 
in the lower half of the complex z plane. 
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Clearly, we can use relationship (7.4-17) to find the real part of p given 
the imaginary part. Alternatively, we can find the imaginary part from the 
real part by the inverse Hilbert transform relationship 

However, neither of these relations helps us with the task at hand, namely, 
determining the phase of p from knowledge of its modulus. 

As a step toward solving this problem, consider the result of taking the 
complex logarithm of the function p(Ax). If 

then 

Now if it can be proved that if ln[p(Ax)] is an analytic signal, the phase will 
be recoverable from the modulus by the Hilbert transform relationship 

Unfortunately, analyticity of p(z) in the upper half plane of the complex 
z plane is not a sufficient condition to assure analyticity of ln[p(z)] in that 
same region. The most obvious reason for lack of analyticity is the possible 
existence of zeros of p(z) in the upper half plane, which lead to singularities 
of In[ p(z)I. 

A careful examination of the mathematics of this problem (Ref. 7-39) 
demonstrates that, provided p (Ax) is square integrable 

and further provided it satisfies the " Paley-Wiener condition" 
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the phase a( Ax) is given by 

where the z, are the locations of the zeros of p (z) in the upper half of the z 
plane. 

In some cases the function p(z) may have no zeros in the upper half 
plane, in which case the so-called minimum phase solution of (7.4-22) is 
valid (see Ref. 7-40). However, in general zeros will be present, and their 
locations will be unknown a priori. There has been considerable effort to use 
further physical constraints on lo(() (e.g., positivity) to remove some of the 
uncertainties regarding the locations of the zeros, but even with such 
constraints, ambiguities remain in the general case. 

Our discussion of this subject would be incomplete if we did not mention 
some important progress that has been made on the two-dimensional 
version of this "phase retrieval" problem in recent years. Fienup (Refs. 7-41 
and 7-42) has applied an iterative technique to this problem and has found 
it to converge to correct solutions in the majority of cases involving 
functions lo([, q) of considerable complexity. His results suggest that the 
ambiguities inherent in the solution set are less severe in two dimensions 
than in one. There exists some analytical work in support of this contention 
(Ref. 7-43). Nonetheless, it is possible to find two-dimensional cases in 
which ambiguities exist (Ref. 7-44). 

The simplest version of the iterative method in question is implemented 
digitally and begins with the following assumptions: 

(1) The modulus (p(Ax, Ay)( of the complex function p has been mea- 
sured and hence is known. 

(2) The object intensity I,((, q) is identically zero outside a known region 
in the ( 5 ,  q )  plane. 

(3) The object intensity I , ( [ ,  q) is a nonnegative function ( I , ( [ ,  q) 2 0). 

As a first guess at the phase of the function p(Ax, Ay) a set of random 
phases may be used [it is assumed that Ip(Ax, Ay)J is known on a discrete 
set of samples in the (Ax, Ay) plane]. An inverse Fourier transform of this 
initial guess, denoted p(')(Ax, Ay), yields a spectrum I:')((, g )  that will in 
general be nonzero outside the region of support of the true I, and will also 
have some negative values. If the negative values are removed (e.g., by 
setting them equal to zero) and the nonzero values of I:') lying outside the 
known region of support are replaced by zero, a Fourier transform of this 
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Figure 7-21. Illustration of the results of an iterative phase-retrieval algorithm ( u )  original 
object (a simulated spacecraft); ( b )  modulus of the Fourier spectrum of the object; (c )  image 
recovered by use of an iterative algorithm. (Courtesy of J. R. Fienup and the Optical Society of 
America. See Ref. 7-45.) 

modified intensity distribution yields a function p(2) (A~,  A y ) that has a new 
phase distribution as well as a modified modulus distribution. If we replace 
the modulus distribution with the original modulus information-whlch we 
know to be correct-but retain the new phase information, we have a 
second guess, p(*)(Ax, Ay), for the complex function p. The process is 
repeated in hopes that limn , ,ZJn)(C, q) = Z,(E, q). Indeed, the process 
almost always converges, and the question then reduces to whether it has 
converged to the correct solution. As mentioned earlier, a correct solution is 
obtained in a remarkably large number of cases. 

Figure 7-21 (from Ref. 7-45) shows an example of the application of an 
algorithm similar to the one described above. Part (a )  of Fig. 7-21 shows the 
original object, a simulated image of a spacecraft. Part (b )  shows the 
Fourier modulus of that image. Part (c) shows the image reconstructed by 
use of an iterative algorithm. The differences between parts ( a )  and (c) are 
difficult to discern in these reproductions and are indeed rather small. 

7.5 THE SPECKLE EFFECT IN COHERENT IMAGING 

When images of complex objects are formed by use of the highly coherent 
light produced by a laser, a very important kind of image defect soon 
becomes apparent. If the object is composed of surfaces that are rough on 
the scale of an optical wavelength (as most objects are), the image is found 
to have a granular appearance, with a multitude of bright and dark spots 
that bear no apparent relationship to the macroscopic scattering properties 
of the object. These chaotic and unordered patterns have come to be known 
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Figure 7-22. Speckle pattern in the image of a uniformly bright object. (Courtesy of J.  C. 
Dainty and Springer-Verlag. Reprinted with the permission of Springer-Verlag, Heidelberg.) 

as "speckle." Such patterns are also found in the images of transparent 
objects that have been illuminated by coherent light through a stationary 
diffuser. A typical speckle pattern appearing in the image of a uniformly 
reflecting surface is shown in Fig. 7-22. 

Detailed analysis of the properties of speckle patterns produced by laser 
light began in the early 1960s; however, far earlier studies of speckle-like 
phenomena are found in the physics and engineering literature. Special 
mention should be made of the studies of "coronas" or Fraunhofer rings by 
Verdet (Ref. 7-46) and Lord Rayleigh (Ref. 7-47). Later, in a series of 
papers dealing with the scattering of light from a large number of particles, 
von Laue (Refs. 7-48 through 7-50) derived many of the basic properties of 
speckle-like phenomena. 

A number of rather extensive modern references on speckle exist (Refs. 
7-51 through 7-53). Ultimately, a completely rigorous understanding of 
speckle requires a detailed examination of the properties of electromagnetic 
waves after they have been reflected from or scattered by rough surfaces 
(Ref. 7-54). However, a good intuitive feeling for the properties of speckle 
can be obtained from a less rigorous consideration of the problem. 

7.5.1 The Origin and First-Order Statistics of Speckle 

The origin of speckle was quickly recognized by early workers in the laser 
field (Refs. 7-55 and 7-56). The vast majority of surfaces, whether natural or 
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man-made, are extremely rough on the scale of an optical wavelength. 
Under illumination by monochromatic light, the wave reflected from such a 
surface consists of contributions from many different scattering points or 
areas. As illustrated in Fig. 7-23, the image formed at a given point in the 
observation plane consists of a superposition of a multitude of amplitude 
spread functions, each arising from a different scattering point on the 
surface of the object. As a consequence of the roughness of the surface, the 
various spread functions add with markedly different phases, resulting in a 
highly complex pattern of interference. 

The preceding argument can also be applied to transmission objects 
illuminated through a diffuser. Because of the presence of the diffuser, the 
wavefront leaving the object has a hghly corrugated and extremely complex 
structure. In the image of such an object we again find large fluctuations of 
intensity caused by the overlapping of a multitude of dephased amplitude 
spread functions. 

Because of our lack of knowledge of the detailed microscopic structure of 
the complex wavefront leaving the object, it is necessary to discuss the 
properties of speckle in statistical terms. The statistics of concern are 
defined over an ensemble of objects, all with the same macroscopic proper- 
ties, but differing in microscopic detail. Thus if we place a detector at a 
particular location in the image plane, the measured intensity cannot be 
predicted exactly in advance, even if the macroscopic properties of the 
object are known exactly. Rather, we can only predict the statistical 
properties of that intensity over an ensemble of rough surfaces. 

Perhaps the most important statistical property of a speckle pattern is the 
probability density function of the intensity I observed at a point in the 
image. How likely are we to observe a bright peak or a dark null in 
the intensity? This question can be answered by noting the similarity of the 
problem at hand to the classical problem of the random walk (Refs. 7-57 
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Figure 7-23. Speckle formation in the image of a rough object. 
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through 7-59), which was discussed in some detail in Section 2.9. The 
problem is also entirely analogous to that of determining the first-order 
statistics of the intensity of thermal Light, as discussed in Section 4.2. 
Recalling our discussion of that section, if the phases of the individual 
scattered contributions from the object are approximately uniformly distrib- 
uted over (-n, n )  (i.e., if the object is truly rough on the scale of a 
wavelength), the field associated with any single linear polarization compo- 
nent of the image must be a circular complex Gaussian random variable, 
and its intensity must obey negative exponential statistics 

where is the mean intensity associated with that polarization component. 
If the scattered wave is partially depolarized, methods quite analogous to 
those used in Section 4.3.4 can be used to show that the density function for 
I consists of the difference of two negative exponential functions [cf. Eq. 
(4.3-42)) However, we concentrate on the properties of fully polarized 
speckle here. 

The fact that the probability density function of intensity is negative 
exponential implies that the fluctuations about the mean are rather pro- 
nounced. If we define the contrast C of a speckle pattern as the ratio of its 
standard deviation to its mean, for the polarized case we find 

Because of this high contrast, speckle is extremely disturbing to the human 
observer, particularly if fine image detail is of interest, and consequently a 
significant loss of effective resolution results from its presence. 

In closing this discussion of first-order statistics, the point should be 
made that the distribution of mean intensity j ( x ,  y) in the image of a 
coherently illuminated rough object is identical with the image intensity that 
would be observed if the object were illuminated with spatially incoherent 
light with the same power spectral density. Incoherent illumination may be 
regarded as being equivalent to a rapid time sequence of spatially coherent 
wavefronts, with the effective phase structure of each member of the 
sequence being extremely complex and quite independent of the phase 
structure of each other member. Thus the time-integrated image intensity 
observed under spatially incoherent illumination is identical with the ensem- 
ble average intensity j ( x ,  y )  (assuming identical bandwidths are involved). 
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Hence any of the methods for analyzing the image intensity distribution for 
an incoherent imaging system may be used to predict the mean speckle 
intensity distribution in the image of a coherently illuminated rough object. 

7.5.2 Ensemble Average Coherence 

The light waves studied in previous sections and chapters were modeled as 
ergodic random processes. That is, it was assumed that time averages were 
identically equal to ensemble averages, and thus that the two types of 
averaging process could be freely interchanged. It is an important fact that 
when an optically rough object is illuminated by monochromatic light, the 
reflected waves no longer can be modeled as ergodic random processes, for 
time and ensemble averages are no longer equal. 

The lack of ergodicity in this case is easily demonstrated by consideration 
of two different Young's interference experiments. First, let the light scattered 
from a stationary rough surface fall on a mask containing two pinholes, and 
observe the fringe formed on a distant observing screen. Because the light is 
monochromatic, it is also spatially coherent (cf. Problem 5-12), and the 
fringe will be found to have visibility 

where I ,  and I, are the intensities of the light incident on the pinholes. We 
conclude that the modulus of the complex coherence factor Jp,,I must be 
unity, at least for the usual time-averaged definition of coherence. The 
extremely complex amplitude and phase distribution imparted to the wave 
by the rough surface has not reduced the coherence of the light, since this 
distribution does not change with time. 

Now consider a second Young's interference experiment. In this case we 
shall perform ensemble averaging by successively placing objects with the 
same macrostructure but different microstructure (surface profile) in the 
illuminating beam, and time integrating on one photographc plate all 
the fringes generated by the succession of objects. Although any one of 
these component fringes has a visibility corresponding to 1p,,1 = 1, the 
superposition of the succession of fringes in general will not, because the 
phases of the component fringes will change from realization to realization. 
Thus the ensemble-averaged fringe will in general yield a lplzl that is quite 
different from unity. 

Since there is a difference between ensemble averages and time averages 
for this type of wave, we must be careful to distinguish between time- 
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averaged coherence and ensemble-averaged coherence. Accordingly, we 
shall use the ordinary symbols for coherence quantities defined by time 
averages and identical symbols with overbars to represent ensemble-aver- 
aged quantities. Thus we distinguish between the two mutual coherence 
functions I'(Pl, P2; T) and T(P,, P2; T), the two mutual intensities J(Pl ,  4) 
and & P,, P,), and so on. 

The wave equation governing the propagation of light is, of course, the 
same, whether we are ultimately interested in time-average or ensemble- 
average properties of the light. From t h s  fact follows an important conclu- 
sion: the laws governing the propagation of coherence functions are identical 
for time-aueraged and ensemble-aueraged quantities. In other words, whereas 
the functional form of a mutual coherence or mutual intensity may depend 
on whether the average is with respect to time or with respect to the 
ensemble, the mathematical relationship between two coherence functions 
of the same type is independent of which kind of averaging is used. Thls fact 
allows us to apply all our previously acquired knowledge of the propagation 
of ordinary coherence functions to problems involving the propagation of 
ensemble-averaged coherence. 

From an ensemble-averaging point of view, the mutual intensity of the 
light reflected or scattered from a rough surface, and observed very close to 
that surface, is essentially the same as the mutual intensity of an incoherent 
source. Over an ensemble of ideally rough surfaces, there is little relation- 
ship between the phases of the light scattered from two closely spaced 
surface elements, at least until the spacing becomes close to a wavelength. 
We state this fact mathematically by representing the mutual intensity 
function at the surface by 

where K is a constant and f is an ensemble-averaged intensity distribution. 
The mutual intensity observed on a surface some distance from the 

source can be calculated using the Van Cittert-Zernike theorem. By analogy 
with Eq. (5.6-8), therefore, the ensemble-averaged mutual intensity across a 
plane at distance z from the source is given by 

where 
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and 1(1 ,9)  is the ensemble averaged intensity distribution across the 
scattering spot on the rough object. 

If we are dealing with an imaging geometry as shown in Fig. 7-23, 
arguments similar to those used in reaching Eq. (7.2-17) can be used to 
predict the mutual intensity in the image. We regard the exit pupil of the 
imaging optics to be equivalent to a new incoherent source and apply the 
Van Cittert-Zernike theorem to t h s  source. For a region of the image that 
has constant mean intensity, the mutual intensity takes the form 

where P is the complex pupil function of the imaging lens, K is a constant 
defined earlier, and Au = u2 - u,, Av = u, = u,. 

We are now prepared to inquire as to a second basic property of a 
speckle pattern, namely, the distribution of scale sizes in its random spatial 
fluctuations. To concentrate on the speckle fluctuations as distinct from the 
information bearing variations of mean intensity, we suppose that the object 
of interest is uniformly bright. A suitable description of the speckle scale-size 
distribution is the spatial power spectral density of the speckle pattern, 
which we represent by q(v,, v.). We calculate by Fourier transforming 
the au tocorrelation function of speckle pattern 

00 

@,(vU, v y )  = // ~ , ( A u ,  ~ u ) e x ~ (  j 2 n ( ~ u v ,  + Avv, ) )  dAu dAu, 
- 00  

where 

and it remains to be demonstrated that T, depends only on the coordinate 
differences (Au, Av). 

According to our earlier random walk arguments, the complex fields 
underlying the speckle pattern are circular complex Gaussian random 
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variables. It follows from the complex Gaussian moment theorem that 

where IF,( is given from (7.5-7) by 

This result demonstrates that Fi does, indeed, depend only on the coordi- 
nate differences (Au, Au) and provides us with sufficient information to 
allow us to calculate the power spectral density of the speckle pattern. Using 
the definition 

and substituting (7.5-lo), (7.5-ll), and (7.5-12) into (7.5-8), we find 

00 

J/ If'(x, y)12exp( j n ( ~ u x  + Auy) 
-00 A 2 2  

where F{*) is a two-dimensional Fourier transform with respect to 
( Au,  Av). Use of the autocorrelation theorem of Fourier analysis and the 
symmetry properties of the autocorrelation of a real and nonnegative 
function allow us to write 
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Aside from the uninteresting S function at zero spatial frequency, we see 
that the power spectral density of a speckle pattern has the shape of the 
autocorrelation function of the squared modulus of a normalized pupil 
function. The power spectral density is independent of any aberrations that 
may exist in the imaging system, and in the important case of a clear, 
unapodized pupil (P = 1 or O), the autocorrelation function of 1 ~ 1 ~  is 
(within a normalizing constant) equivalent to the autocorrelation function 
of the pupil itself. 

For an imaging system with a square ( L  x L )  unapodized exit pupil, the 
power spectral density takes the form 

where A(x) = 1 - 1x1 for 1x1 I 1, zero otherwise. A cross section of this 
distribution is shown in Fig. 7-24. For a circular lens with an unobstructed 
pupil of diameter D, the corresponding result is 

for v I D/% r2,  zero otherwise, where v / v i  + v t. 
Area 
(TJ2 

Figure 7-24. Cross section of the power spectral density of a speckle pattern resulting from an 
imaging system with a square exit pupil. 



3 56 EFFECTS OF PARTIAL COHERENCE ON IMAGING SYSTEMS 

We conclude that in any speckle pattern, large-scale (low-frequency) 
fluctuations are the most populous, and no scale sizes smaller than a certain 
cutoff are present. The exact distribution depends on the character of the 
pupil function of the imagng system. 

Methods for suppressing the effects of speckle in coherent imaging 
systems have been studied, but no general solution that eliminates speckle 
while maintaining perfect coherence and preserving image detail down to 
the diffraction limit of the imaging system has been found. Speckle suppres- 
sion remains one of the most important unsolved problems of coherent 
imaging. 
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PROBLEMS 

7-1. Given that condenser lens in Fig. 7-9 has diameter D, specify the size 
required of a circular source to assure that the approximation of Eq. 
(7.2-15a) is valid. 

7-2. Use the generalized Van Cittert-Zernike theorem to prove Eq. 
(7.2-1 8). 

7-3. Prove Eq. (7.2-39). 

7-4. Demonstrate the correctness of Eq. (7.2-41). 

7-5. In the optical system in Fig. 7-5p, a square incoherent source (L 
meters x L meters) lies in the source plane. The object consists of 
two pinholes spaced in the 6 direction by distance 

Figure 7-5p. 
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where i 
and D is 
intensity i 

.s the mean wavelength, f is the focal length of all lenses, 
the width of the square pupil plane aperture. The image 

.s observed in the (u, v) plane. 

(a) What source dimension L produces the largest dip of intensity 
at the center of the image? 

(b) For the source size found in part (a), what is the ratio of the 
intensity at the location (u = X / 2 ,  u = 0) to the intensity at 
(u = 0,v = O)? 

(c) Compare the result of part (b )  to the ratio that would be 
obtained if the two pinholes were illuminated with complete 
incoherence. 

(d) Calculate the ratio of I,(X/2,0) to Ii(O, 0) when the pinholes 
are illuminated with perfect coherence ( p = 1). 

7-6. In the diagram for problem 7-5, replace the source by a thin 
incoherent annulus or ring, with mean radius p and radial width W. 
In addition, replace the pupil of the imaging system by a circular 
aperture of diameter D. The two pinholes are now separated by 
distance X = 1.22X f / ~ ,  the " Rayleigh" separation. 

(a) Find the smallest radius p of the annular source for which the 
two pinholes are illuminated incoherently. 

(b) Find the radius p of the annular source for which the central 
value of the intensity in the image drops to its smallest possible 
value relative to the peak value. 

Hint: The Fourier transform of a thin uniform annulus of mean 
radius p and width W is given approximately by 

G(v,, v,) 2np~~,(2np\lv: + v:), 

where J, is a Bessel function of the first kind, zero order. 

7-7. Prove that any symmetric one-dimensional object intensity distribu- 
tion can be recovered from knowledge of only the modulus of its 
spectrum. 
Hint: Knowledge of the modulus of the spectrum allows one to 
deduce the autocorrelation function of the object. Assume a space- 
limited object represented by a finite set of discrete samples. 

7-8 It is desired to use a Michelson stellar interferometer to determine 
the brightness of the two components of a twin star. The individual 
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components are known to be uniformly bright circular disks. Their 
angular diameters a and /3 and angular separation y are all known. 
We also know that y a, y >> p. How could we determine their 
relative brightness Ia / Ib  from measurements of JpI2(s)1 with the 
interferometer? 

7-9 Modify equations (7.2-49) and (7.2-51) to apply to a coherent 
imaging system in whlch the object is illuminated by a wave having 
phasor amplitude distribution A ,(5,71) and thus being more general 
than the plane-wave illumination assumed in the text. 

7-10 Consider the partially coherent imaging system shown in Fig. 7-11. 
Note that in the absence of any object structure, the source is imaged 
in the pupil plane. 

(a) Show that a component of object transmittance (for simplicity 
of infinite extent) 

generates two images of the source in the pupil plane, centered 
at positions 

(b) Show that, in order for these images of the source to individu- 
ally fully cover the pupil, we must have 

Note that when thls is the case, the source is indistinguishable from a 
source of infinite extent, and thus the imaging system is incoherent. 
You may assume the source spectrum to be so narrow that wave- 
length dispersion effects can be ignored. 



Imaging in the Presence of Randomly 
Inhomogeneous Media 

Under ideal circumstances, the resolution achievable in an imaging experi- 
ment is limited only by our imperfect ability to make increasingly large 
optical elements that are free from inherent aberrations and have reasonable 
cost. However, these ideal conditions are seldom met in practice. Frequently 
the medium through whch the waves must propagate while passing from 
the object to the imaging system is itself optically imperfect, with the result 
that even aberration-free optical systems may achieve actual resolutions that 
are far poorer than the theoretical diffraction limit. 

The most important example of an imperfect optical medium in this 
context is the atmosphere of the Earth itself, that is, the air around us. As a 
consequence of the nonuniform heating of the Earth's surface by the sun, 
temperature-induced inhomogeneities of the refractive index of the air are 
ever present and can have devastating effects on the resolution achieved by 
large optical systems operating within such an environment. 

Another common example occurs when an optical system must form 
images through an optical window that, because of circumstances beyond 
control, may be highly nonuniform in its thickness and/or refractive index. 

In both of the examples just cited, the detailed structure of the optical 
imperfections is unknown a priori. As a consequence, it is necessary and 
appropriate to treat the optical distortions as random processes and to 
specify certain measures of the average performance of an optical system 
under such circumstances. 

Two important limitations are imposed throughout this chapter. First, it 
is assumed throughout that the objects of interest radiate incoherently. 
While treatments of the problem for partially coherent objects are possible, 
they are generally more cumbersome than the treatment used for incoherent 
objects (which in many cases is already rather complicated). Furthermore, in 
the vast majority of problems of practical interest (e.g., in astronomy), it is 
hlghly accurate to assume that the object radiates incoherently. 
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A second important limitation concerns the scale size (i.e., correlation 
length) of the inhomogeneities present. We shall always assume that the 
scale sizes are much larger than the wavelength of the radiation being used. 
This assumption eliminates from consideration problems involving imaging 
through clouds or aerosols, for which the scale sizes of the inhomogeneities 
are comparable with or smaller than an optical wavelength and for which 
the refractive index changes are sharp and abrupt. This latter class of 
problems may be referred to as "imaging through turbid media," whereas 
we are concerned here with "imaging through turbulent media," for which 
the refractive index changes are smoother and coarser. The clear atmosphere 
of the Earth is the prime example of a " turbulent" medium. 

The material treated in this chapter may be divided into two major 
topics. The first (Sections 8.1 through 8.3) concerns the effects of thin 
random "screens" (i.e., thin distorting structures) on the performance of 
optical systems. The second (Sections 8.4 through 8.9) concerns the effects 
of a thck inhomogeneous medium (the Earth's atmosphere) on imaging 
sys terns. 

8.1 EFFECTS OF THIN RANDOM SCREENS ON IMAGE QUALITY 

The effects of thin distorting layers on propagating electromagnetic waves 
have been treated in various places in the literature (see, e.g., Refs. 8-1 and 
8-2). However, the effects of such distortions on image quality are less 
frequently discussed (as one exception, see Ref. 8-3). The importance of a 
theory that treats this subject lies not only in the understanding it yields for 
problems that require imaging through thin structures, but also in the 
physical insight it imparts to the much more complicated problem of 
imaging through the Earth's atmosphere. 

8.1.1 Assumptions and Simplifications 

In discussing the effects of thin random screens on image quality, we shall 
adopt the simple imaging geometry of Fig. 8-1. The object is assumed to 
radiate in a spatially incoherent fashion and to be describable by an 
intensity distribution &([, 1)). Lenses L, and L, have focal lengths f. The 
thin random screen is placed in the rear focal plane of L,, which is assumed 
to coincide with the front focal plane of L,. A blurred or distorted image of 
the object appears in the (u, u )  plane and is described by the intensity 
distribution I , (u ,  v). 
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Object Screen Image 

Figure 8-1. Optical system considered in random screen analysis. 

We assume that the particular random screen present in the pupil of thls 
system can be represented mathematically by a multiplicative amplitude 
transmittance t,(x, y). Implicit in this representation are two underlying 
assumptions. First, we are assuming that the screen is sufficiently thin that 
rays entering at coordinates ( x ,  y) also leave at essentially the same coordi- 
nates. As a corollary, light waves emanating from all object points (4, q )  
experience the same amplitude transmittance t ,(x, y ). Second, we are 
assuming that the light is sufficiently narrowband to assure that the ampli- 
tude transmittance t, is the same for all frequency components of the light. 

It is not difficult to identify situations in which one or both of the 
preceding assumptions are violated, However, the simple theory that follows 
is more general than might appear at first glance. Once the results for a 
narrowband optical signal with center frequency F are known, results for 
broadband light can be obtained by integration, with F varying over the 
spectrum and with any frequency dependence of t,(x, y )  explicitly in- 
cluded. In addition, regarding the " thin screen" assumption, whereas t,(x, y )  
may in fact depend on which object point ( l ,  q )  we consider, we shall see 
that it is the statistical autocorrelation function of t , that determines image 
quality, and this autocorrelation function may be quite independent of 
( 6 ,  q) ,  even though t, is not (see Problem 8-1). 

Finally, it should be mentioned that the very specific geometry assumed 
in Fig. 8-1 can yield results that apply to more general geometries. For 
example, if the screen is moved out of the common focal plane of lenses L,  
and L,, the results of the analysis will not change. The underlying reason 
for this generality arises from the fact (yet to be shown) that it is the spatial 
autocorrelation function of the wave perturbations in the pupil that de- 
termines the average performance of the system. When the perturbing 
screen is moved away from the position shown in Fig. 8-1, the detailed 
structure of the field perturbations in the pupil changes, but their autocorre- 
lation function does not (see Problem 8-2). Thus the results to be derived 
here apply to a broad class of imaging problems. 
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8.1.2 The Average Optical Transfer Function 

It is customary to describe the spatial frequency response of an incoherent 
optical system in terms of an optical transfer function (OTF), as described 
in Section 7.2.4. Ths transfer function is represented here by &',(v,, P,), 

where v u  and v, are spatial frequency variables, and is given explicitly by 

- - /'/ ~ ( x ,  y ) ~ * ( x  - ~ f v ~ .  Y - X f v v )  dxdy 

where P is the complex pupil function and f is again the focal length of the 
lenses in Fig. 8-1. 

If a screen with amplitude transmittance t,(x, y)  is placed in the pupil of 
this imaging system, the pupil function is modified, yielding a new pupil 
function P'(x, y)  given by 

With a particular screen in place, therefore, the OTF becomes 

At this point, further progress with a purely deterministic analysis is 
impossible, because of our lack of knowledge of the specific values of 
t,(x, y) at each ( x ,  y). The best we can hope to accomplish is to use 
knowledge of the statistics of t, to calculate some measure of the average 
frequency response of the system, with the average being taken over an 
ensemble of screens. Of course, the average performance of the imaging 
system will in general not coincide with the actual performance with a 
particular screen in place. Nonetheless, lacking knowledge of the structure 
of the particular screen, we must resort to specifying average performance. 
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What might be a reasonable way to define an "average OTF' in a 
situation such as this? The most straightforward definition would be simply 
to take the expected value of JP(v,, v ,), using an appropriate statistical 
model for t,. Unfortunately, this straightforward definition often leads to 
complications. As examination of Eq. (8.1-3) shows, it requires that we take 
the expected value of the ratio of two correlated random variables, a task 
that is not easy to carry out. 

Fortunately, an alternative definition exists that leads to more tractable 
results. We define the average OTF (which we represent by 3) as 

E [numerator of the OTF] 
~ ( v u , ~ , )  = (8.1-4) E [denominator of the OTF] ' 

where E [*I  is, as usual, an expectation operator. 
It is possible to argue that the two definitions given above are nearly the 

same in most cases of interest. For example, in the most important case of a 
random phase screen (see Section 8.3), (t,12 = 1, and the two defmitions are 
identical. In more general cases, it can be argued that, if the pupil function 
is much wider than the correlation width of the screen, the substantial 
amount of spatial averaging of the nonnegative integrand taking place in the 
denominator of .#' yields a normalizing factor that is nearly constant and 
known, and as a consequence the two definitions are essentially the same. 

In any case, it is quite arbitrary what we choose as a normalizing factor 
for the average optical transfer function, provided only that a value of unity 
results at the origin of the frequency plane. Again, both definitions satisfy 
this requirement. By adopting the second definition, we are choosing to 
specify system performance by describing the average weighting applied by 
the system to frequency component (v,, v,), normalized by the average 
weighting given to the zero- frequency component of intensity. 

If the numerator and denominator of Eq. (8.1-3) are substituted in Eq. 
(8.1-4), interchanges of orders of integration and averaging yield 

If we assume that the spatial statistics of the screen are wide-sense sta- 
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tionary, the expected values are independent of x and y and can be 
factored outside the integrals. The result is an average optical transfer 
function gven by 

where X, is the OTF of the system in the absence of the screen [Eq. 
(8.1-I)], whereas s s ( v u ,  v ,) can be regarded as the average OTF of the 
screen and is given by 

where r, is the spatial autocorrelation function of the screen, 

Equations (8.1-6) and (8.1-7) represent the important results of this 
section. We have proved that the average optical transfer function of an 
incoherent imaging system with a spatially stationary random screen in the 
pupil factors into the product of the OTF of the system without the screen, 
times an average OTF associated with the screen. The average OTF associ- 
ated with the screen is simply the normalized spatial autocorrelation func- 
tion of the amplitude transmittance of the screen. 

8.1.3 The Average Point-Spread Function 

Often it is convenient to refer to an "average point-spread function (PSF)" 
of a system under discussion. For simplicity we define this PSF as 

where F1{ ) signifies an inverse Fourier transform. The average PSF so 
defined is always nonnegative and real. Furthermore, since has been 
normalized to unity at the origin, S(u, v )  defined in Eq. (8.1-9) will always 
have unit volume. 

Since the average OTF is a product of the system OTF (without the 
screen) and an OTF associated with the screen, the average PSF must be 
expressible as a convolution of the PSF of the system with a PSF associated 
with the screen. Thus 
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where 

SO(% 0) = F - 1 ( . I p O ( ~ " 9  Y")) 

represents the spread function of the system without the screen, whereas 

represents an average spread function associated with the screen. 

8.2 RANDOM ABSORBING SCREENS 

Suppose that the random screen placed in the system illustrated in Fig. 8-1 
is a purely absorbing structure; that is, it introduces no appreciable phase 
shifts. The amplitude transmittance ts(x, y) of such a screen is purely real 
and nonnegative and must have values lying between zero and unity. We 
may regard this screen as introducing a random apodization of the optical 
system, and we consider the effects of such an apodization on average image 
quality. 

8.2.1 General Forms of the Average OTF and the Average PSF 

The amplitude transmittance of a random absorbing screen may be written 
in the form 

t,(x, Y )  = 20 + r (x ,  Y),  (8.2-1) 

where to is a real and nonnegative bias lying between zero and unity, 
whereas r(x, y )  is taken to be a spatially stationary, zero mean, real-valued 
random process, with values confined to the range 

As stated previously in Eq. (8.1-6), the average OTF of the system with 
the screen in place is given by the product of the OTF without the screen 
and the normahzed autocorrelation function of the screen. The autocorrela- 
tion function of the screen is easily seen to be 

where is the autocorrelation function of r(x, y). The normalizing con- 
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stant needed is 

With the normalized autocorrelation function of the random process r(x, y ) 
defined by 

the average OTF associated with the random screen takes the form 

The average OTF of the overall system is found by multiplying the above 
average OTF times the OTF of the system in the absence of the screen, 
yielding 

Several important properties of the average OTF of the screen s,(v, ,  v,) 
should be noted. First it is always nonnegative and real, because of the 
nonnegative and real character of the amplitude transmittance t,. Second, 
for very high spatial frequencies (v,, vv), Y,(X f v,,X f v,) + 0, and the 
average OTF of the screen approaches the asymptote 

If a,? 4: t t ,  this asymptotic value is close to unity, and the screen has little 
effect on image quality. If 0: > ti ,  the asymptotic value is very small, and 
high spatial frequencies are strongly suppressed by the screen. For a screen 
with isotropic statistics (i.e., a circularly symmetrical autocorrelation func- 
tion), the average OTF of the screen begins to approach its asymptotic value 
when 



Figure 8-2. Effects of a random absorbing screen. (a )  OTF of the system without screen; ( b )  
normalized autocorrelation function of the screen; (c) average OTF of the screen; ( d )  average 
OTF of the system. 
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where PI is the correlation length of the screen, defined for convenience by 

As an interesting exercise (see Problem 8-3), the reader may wish to 
prove that the minimum possible value of the asymptote ri/(ri + 0:) for 
any random absorbing screen is identically equal to to ,  the average transmit- 
tance of the screen, a consequence of the fact that t, is bounded between 0 
and 1. Figure 8-2 illustrates the general character of the various transfer 
functions of concern for the case of a random absorbing screen. 

The general character of the average PSF of the system can be under- 
stood by the following reasoning. To find the average PSF of the system 
with the screen present, we must convolve the PSF so of the system without 
the screen and the average PSF is of the screen itself [cf. Eq. (8.1-lo)]. To 
find the average PSF I, of the screen, we must inverse Fourier transform the 
average OTF of the screen [Eq. (8.2-6)]. This latter operation yields 

where - 
i,(u, 0) = s-'(y,(Xfv", A f v ~ ) ) .  (8.2-12) 

The average PSF of the system thus becomes 

Central core 

Diffuse halo 

Figure 8-3. General character of the average PSF of a system with a random absorbing 
screen. 
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The first term of this expression is often referred to as the "central core" of 
the average PSF. In most cases of interest, the second term is much wider 
than the first; this component is referred to as the "diffuse halo" in the 
average PSF. Figure 8-3 illustrates the general character of the average PSF. 

8.2.2 A Specific Example 

As a specific example of a random absorbing screen, we consider the 
"checkerboard" screen illustrated in Fig. 8-4. This structure consists of a 
multitude of contiguous I x I square cells, with randomly and indepen- 
dently chosen transmittance in each cell. 

The screen itself may be regarded as being infinite in extent, although 
only a finite portion Lies within the pupil of the optical system. To assure a 
model that is at least wide-sense stationary over space, the location of the 
screen with respect to the optical axis is taken to be random, with a uniform 
distribution of probability over an I x I square. This assumption simply 
implies a lack of knowledge of the exact location of the screen on the scale 
of a single cell. The transmittance t, is assumed random and independent 
from cell to cell. For the moment we do not specify its exact probability 
distribution. The mean - transmittance is represented by is or t o  and the 
second moment by tf or t i  + a:. 

We need to know the autocorrelation function of the screen 

Figure 8-4. Random checkerboard absorbing screen. 
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in order to specify the average OTF of the system with the screen in place. 
Since different cells have statistically independent values of transmittance, 
the autocorrelation function can be written 

- 
rt(x1, y,; x2, Y2) = 2: *Prob ( ~ 1 9  Y1) and (x2, Y2) are 

in the same cell 

+ (iJ2 ~ o b ( ( ~ l '  different ) and (x,, cells y,) arein 

Some reflection on the matter shows that, because of the uniform 
distribution of the absolute location of the screen, 

Prob((x19 ~ 1 )  and ( ~ 2 ,  ~ 2 ) )  = ( y)  ( $ ), (8.2-16) 
are in the same cell 

where Ax = x ,  - x,, Ay = y, - y2, and A ( x )  = 1 - 1x1 for 1x1 5 1, zero 
otherwise. It follows that 

I'~(Ax, AY) = O,?A ( ? ) A ( ~ )  AY + t i .  

From this result we see that the normalized autocorrelation of the random 
portion of the screen amplitude transmittance is 
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The average OTF of an optical system with a screen such as this in place 
is now easily found by substituting (8.2-19) into (8.2-7), with the result 

Noting that 

we see that the average PSF of the system is 

~ ( u ,  v) = 
2: 

s o b ,  v )  + 0, ' ( l / i f  )2 so(u, v )*s inc2 (k ) s inc2 (k )  
to' + 0; to' + 0,' X f  X f  ' 

The relative magnitudes of the terms in the average OTF and the average 
PSF can be assessed only if some specific assumptions are made regarding 
the statistics of the amplitude transmittance t , .  A case of some interest is 
that of a "black-and-white" checkerboard, for which t ,  = 1 with probability 
p and t ,  = 0 with probability 1 - p. In this case 

- 

ts = to = p 
- 

2 2 t : = 1 , +  or = p  

0; = p ( l  - p). 

The coefficients in Eq. (8.2-22) thus become 

t i  
2 

Or 
= P,  = 1 - p .  

to' + 0,' to' + 0,' 
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Thus the average OTF is 

and the average PSF is given by 

Clearly the more probable a clear cell (i.e., the larger p), the less effect the 
screen has on the performance of the system. 

For consideration of a different distribution of the amplitude transmit- 
tance t,, see Problem 8-4. 

8.3 RANDOM-PHASE SCREENS 

A second class of random screens, more important in practice than random 
absorbing screens, is the class of random-phase screens. A screen is called a 
random-phase screen if it changes the phase of the light transmitted in an 
unpredictable fashion but does not appreciably absorb light. The amplitude 
transmittance of such a screen takes the form 

where + ( x ,  y ) is the (random) phase shift introduced at point (x, y ). 
As discussed in Section 7.1.1, the phase change + can arise physically 

from changes of either the refractive index or the thickness of the screen (or 
both). Regardless of the physical origin of these phase changes, they are 
wavelength dependent, even in the absence of material dispersion, for they 
are proportional to the number of wavelengths of optical pathlength traveled 
by the wave as it passes through the screen. For a "thin" screen, therefore, 
the phase shift + is taken to be 

where L(x ,  y) is the total optical path length (i.e., the product of refractive 
index and thickness) through the screen at ( x ,  y), and L, is the mean 
pathlength associated with the screen. 
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In the analysis to follow, we replace the general wavelength X by the 
mean wavelength X, thus neglecting the wavelength dependence of phase 
shift, in effect by assuming that the spectrum is sufficiently narrow to justify 
this approximation. As shown in Section 7.1.1 [in particular, in the develop- 
ment leading to Eq. (7.1-ll)], this approximation is valid provided the 
pathlength differences through the screen do not exceed the coherence 
length of the illumination. 

8.3.1 General Formulation 

To understand the effects of a random phase screen on the performance of 
an incoherent imaging system, we must first find the spatial autocorrelation 
function of the amplitude transmittance t,. Thus we must find the form of 

Substituting (8.3-1) in (8.3-3), we see that 

Two different interpretations of Eq. (8.3-4) are helpful in carrying the 
analysis further. First, the right-hand side of this equation can be recognized 
as being closely related to the second-order characteristic function of the 
joint random variables +, = +(x,, yl) and +, = +(x,, y,). With reference 
to Eq. (2.4-22), we see that 

where 

is the characteristic function in question. Alternatively, (8.3-4) can be 
regarded as expressing l?, in terms of the first-order characteristic function 
of the phase difference A+ = 9, - $9, 

The two points of view are entirely equivalent, by virtue of the general fact 
that MA+(w) = M,(w, -w), proof of which is left as an exercise for the 
reader. 

The general results (8.3-5) and (8.3-7) are as far as we can go without 
specific assumptions concerning the statistics of the phase $(x, y). Accord- 
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ingly, we turn to consideration of the most important special type of 
random-phase screen, namely, one with Gaussian statistics for the phase. 

8.3.2 The Gaussian Random-Phase Screen 

Let the random phase +(x, y)  be modeled as a zero mean Gaussian random 
process. Since both ~$9 and t$, are Gaussian, so is the phase difference A+; 
further statistical properties include 

where D0 is the structure function of the random process +(x, y ) [cf. Eq. 
(3.4-1 7) 1. Since the first-order characteristic function of the Gaussian ran- 
dom variable A+ is 

appropriate substitutions yield 

for the autocorrelation function of the amplitude transmittance of the 
screen. 

If the random process +(x, y) is stationary in jrst  increments, the 
structure function of + depends only on the coordinate differences Ax = 

x, - x, and Ay = y, - y,. Thus 

rt(Ax, Ay) = exp( - f ~ , ( A x ,  ~ y ) ]  . (8 -3-11) 

The average OTF of the screen is thus given by 

In the more restrictive case of a phase that is wide-sense stationary, the 
structure function can be expressed in terms of the normalized autocorrela- 
tion function y,( Ax, A y ) of the phase [cf. Eq. (3.4-19)J 

D,(Ax, by)  = 20; [1 - y , ( k  AY ) I .  (8.3-13) 
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The average OTF of the screen then takes the form 

To understand the predicted behavior of the average OTF of an imaging 
system containing a random phase screen, it is first necessary to understand 
the behavior of the structure function D,. For a wide-sense stationary 
phase, we may consider the structure function of Eq. (8.3-13). Two im- 
portant properties of this structure function are obvious: 

The latter property follows from the fact that the autocorrelation function 
y, is expected to fall to zero as the separation between the two points 
becomes arbitrarily large. A typical behavior of the structure function is 
shown in Fig. 8-5 for three different variances 0:. 

The typical behavior of the average OTF can now be sketched for the 
case under consideration. Figure 8-6 shows representative curves corre- 
sponding to So, z , ,  and 3 = .#02s for four values of phase variance. 
Note that for large v, or v,, the average OTF of the screen 3, approaches 

0 3 3 )  > 0 32) > 0 $1 

Ax 

Figure 8-5. Typical behavior of the structure function of phase- wide-sense stationary case. 



(4 
Figure 8-6. Typical OTF's for a system with a random phase screen: (a) diffraction-limited 
OTF; ( b) average OTF of the screen; ( c) average OTF of the system [ u: (1) < ui(2) < 2(3)]. 
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an asymptote 

For even modestly large a:, this asymptote is extremely small. 
The width of s S ( v u ,  v,) will in general be considerably smaller than the 

width of the function ?,(A f vu, X f v ,). This fact is perhaps most easily 
illustrated by considering a specific form for the autocorrelation function of 
the phase. For the purposes of illustration, therefore, consider a random- 
phase process with a circularly symmetric autocorrelation function 

( r )  = e x -  ( )  r = [(Ax)' + I". (8.3-17) 

The average OTF of the screen thus becomes 

2 v = /v:+ v,. (8.3-18) 

For large phase variance, this OTF can be shown (see Problem 8-5) to fall to 
value l /e  when 

Thus the width of the average OTF of the screen varies directly with the 
width W of the phase autocorrelation function and inversely with the 
standard deviation o, of the phase. 

Returning to the case of a general phase autocorrelation function yo, we 
now wish to find a useful approximate expression for the average OTF, 
which is valid when the OTF JP, of the original optical system is much 
wider than the average OTF of the screen. This approximation is found by 
rewriting the expression for zs as follows: 

The first term in this expression represents the asymptote to whch the 
average OTF falls, whereas the second represents the rise above that 
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asymptote. Now assuming that the OTF flo of the original optical system 
is much wider than the second term in Eq. (8.3-20), we write 

where we have replaced the factor So multiplying the second term by 
unity, its value at the origin. 

Approximation (8.3-21) is particularly useful when we consider the 
average point-spread function of the overall system. With so(#, v) again 
representing the PSF of the original system (without the screen), an inverse 
Fourier transformation of Eq. (8.3-21) yields an average PSF of the form 

~ ( u ,  v) z so(#, v)e-~: + sh(u, v), (8.3-22) 

where 

We interpret the term s,(u, v) e - "2 to represent a diffraction-limited "core" 
of the PSF and the term sh(u, v) to represent a much broader "halo." 
Figure 8-7 illustrates this approximate form of the average PSF for three 

Figure 8-7. Average point-spread function for various phase variances [a:(l) < a , ( 2 ) ] .  
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values of phase variance. It should be noted that the diffraction-limited 
"core" in the average PSF will very rapidly vanish with increasing phase 
variance and in many practical applications may be neghgibly weak. 

Finally, we note that, although the discussion of this section has been 
limited largely to the case of a wide-sense stationary screen, we can also 
draw some conclusions for the case of a screen that is stationary only in first 
increments. In this case, there may be no well-defined variance a: of the 
phase fluctuations, whereas the phase difference A+ does have a well-defined 
variance for any separation. In general, the variance of A+ will not approach 
an asymptote for large separations, but rather will increase indefinitely for 
increasing Ax or A y. The structure function D, is again zero at the origin, 
but it need not approach an asymptotic value for large separations. Corre- 
sponding modifications of Figs. 8-6b and 8-6c should thus be made. In 
particular, the average OTF of the screen need not contain a finite "plateau" 
at high frequencies, but rather will generally drop toward zero as the spatial 
frequencies increase. This, in turn, implies that the diffraction-limited "core" 
of the average PSF will be missing in this case. 

8.3.3 Limiting Forms for Average OTF and 
Average PSF for Large Phase Variance 

Certain limiting forms for the average OTF and the average PSF can be 
found when the phase fluctuations of a random-phase screen have a large 
variance. These limiting forms can provide useful approximations when the 
conditions for their validity are met. 

Our attention is limited to phase screens that have the property that the 
first partial derivatives of the phase, 

are jointly stationary (in the strict sense) random processes. We begin the 
analysis with a slightly modified version of Eq. (8.3-4) for the autocorrela- 
tion function of the screen, 

Now if the phase variance is large, we expect the value of the autocorrela- 
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tion function I', to drop toward zero in intervals Ax or Ay that are small 
compared with the correlation width of the phase +(x, y). Accordingly, we 
can approximate the phase difference +(x,, y , )  - +(x, - Ax, y, - A y) as 
having a linear dependence on Ax and Ay; thus 

where we have dropped all higher-order terms in (Ax, Ay). 
With this approximation, the autocorrelation function of the screen 

becomes 

where M+x,+y represents the joint characteristic function of the two partial 
derivatives of the phase. The assumption that these partial derivatives are 
jointly stationary implies that the joint characteristic function is not a 
function of the coordinates ( x , ,  y,). 

The average OTF of the screen can now be expressed as a properly scaled 
version of the correlation function I',(Ax, Ay), 

The average PSF associated with the screen is simply the inverse Fourier 
transform of this expression, 

where P + ~ : , ~ ( ~ ,  a) signifies the joint probability density function of the 
partial denvatives #, and +,. 

Equation (8.3-29) has an interesting physical interpretation. In the h u t  
of large phase variance, it is the slopes of the random-phase function that 
determine the distribution of energy in the average PSF. In effect, as the 
phase variance increases, the fluctuations of the slopes of the wavefront 
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become so large that strictly geometric bending of the incident rays 
dominates over any diffraction effects that may be present. 

In the special case of a zero-mean Gaussian random-phase screen, both 
partial derivatives are likewise Gaussian, and 

where a: and o$ represent the variances of 9, and 9 ,, respectively, and p 
represents their correlation coefficient. The form of the average OTF of the 
screen thus becomes [with use of (8.3-28)] 

Similarly, the average PSF of the screen takes a Gaussian form 

With further specialization to the case of uncorrelated and identically 
distributed partial derivatives, the average PSF takes on the form of a 
circularly symmetrical Gaussian function, 

2 1/2 w i t h r = [ u 2 + v ]  . 
To summarize, we have found a limiting form for the average OTF of a 

phase screen when the phase variance is large. The result shows that the 
average OTF is given by a properly scaled version of the second-order 
characteristic function of the partial derivatives 9, and 9, of the phase. 
When it is possible to hypothesize or derive a model for the joint statistics 
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of +w and @,, this limiting result can be useful. It also provides a 
demonstration that, for a Gaussian phase screen with large phase variance, 
the average OTF and average PSF are approximately Gaussian in shape. 

8.4 EFFECTS OF AN EXTENDED RANDOMLY INHOMOGENEOUS 
MEDIUM ON WAVE PROPAGATION 

In the previous sections of this chapter we considered the effects of thin 
random screens on the average performance of optical imaging systems. We 
now focus on the more important and more difficult case of an extended 
randomly inhomogeneous medium. As indicated in Fig. 8-8, the \object of 
interest is an incoherent source. Between the imaging element and the object 
there exists an extended randomly inhomogeneous medium (e.g., the Earth's 
atmosphere). The image formed by such a system will be degraded by the 
presence of the inhomogeneous medium, and we seek a mathematical means 
for predicting these degradations. 

As alluded to previously, the most important example of an extended 
randomly inhomogeneous medium is the Earth's atmosphere, which for 
centuries has limited the resolution of Man's images of the heavens above. 
Our analysis is directed toward this particular example from the start. As 
emphasized earlier in this chapter, our concern will be with the smooth and 
weak fluctuations of the refractive index of the clear air about us. We 
exclude from consideration the effects of particulate matter and aerosols on 

Imaging 

incoherent 
object 

In homogeneous 
medium l mage 

Figure 8-8. Imaging geometry. 
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optical propagation, these effects requiring the study of multiple scattering 
phenomena (see, e.g., Ref. 8-4, Vol. 2). We also limit our attention to optical 
propagation in a suitable spectral "window" of the atmosphere (such as the 
visible region of the spectrum), where atmospheric absorption is neghgibly 
small. (For a detailed discussion of atmospheric absorption, see Ref. 8-5, 
Chapter 5.) 

The literature on the subject of line-of-sight optical propagation through 
turbulence is vast. The reader may wish to consult any of a number of 
review articles and books on the subject (see, e.g., Refs. 8-4, 8-5 (Chapter 6), 
and 8-6 through 8-11).   ow ever, without doubt the most important and 
influential work on the subject is that of V. I. Tatarski, whose two books 
(Refs. 8-12 and 8-13) on the subject have been the foundation for most work 
that followed (see also Ref. 8-14). 

Tatarski's work has had such an all-pervasive effect on this field that his 
riotation is used in most work on this subject. To help the reader gain an 
ability to read the literature in this field, we abandon some of our earlier 
notation and adopt some of Tatarski's for the remainder of this chapter. To 
aid the reader in a transition to this new framework, we devote the 
subsection to follow to questions of definition and notation. 

8.4.1 Notation and Definitions 

The refractive index of the Earth's atmosphere varies over space, time, and 
wavelength. For our purposes, it  is most convenient to express these 
dependences in the form 

n(T, t, A) = no(?, t,  A )  + n,(r', t, A), 

where no is the deterministic (nonrandom) portion of n ,  whereas n, 
represents random fluctuations of n about a mean value Ti = n o  1. 

The deterministic changes in n are generally very slowly varying and 
macroscopic in spatial dimension. For example, n o  contains the dependence 
of n on height above ground. Because of the comparatively long time scales 
associated with no, the time dependence of this term can be ignored in our 
discussions. 

The random fluctuations n, arise in the presence of turbulence in the 
atmosphere. The turbulent eddies in the air have a range of scale sizes, 
varying from tens of meters or more to a few millimeters. The wavelength 
dependence of these random fluctuations can generally be ignored, with the 
result that we can rewrite Eq. (8.4-1) as 

n ( 7 ,  t, A )  = no(?, A )  + nl(?, t). 
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We further note that typical values of n ,  are several orders of magnitude 
smaller than unity (Ref. 8-15). 

The time required for light to propagate through the atmosphere is only a 
small fraction of the "fluctuation time" of the random refractive index 
component n,. For this reason, the time dependence of n, is often sup- 
pressed, with attention focused instead on the spatial properties. If temporal 
properties are of interest in a given problem, they can be introduced by 
invoking the "frozen turbulence" hypothesis (also known as Taylor's hy- 
pothesis), which assumes that a given realization of the random structure n ,  
drifts across the measurement aperture with constant velocity (determined 
by the local wind conditions) but without any other change. 

One of the most important statistical properties of the random process 
n ,(?) is its spatial autocorrelation function 

When n, is spatially stationary in three-dimensional space, we say that it is 
statistically homogeneous, and its autocorrelation function takes the simpler 
form 

where r' = - 5 = (Ax, A y, Az). 
The power spectral density of n ,  is defined as the three-dimensional 

Fourier transform of rn(r') and in the notation to be used in the remainder 
of this chapter is written 

where 3 = ( K  X, K y, K ~ )  is called the wavenumber vector and may be regarded 
as a vector spatial frequency, with each component having units of radians 
per meter. Similarly, it is possible to express the autocorrelation function in 
terms of the power spectral density through 

If the refractive index fluctuations are further assumed to have an 
autocorrelation function with spherical symmetry, we say that n ,  is statisti- 
cally isotropic, and the preceding three-dimensional Fourier transforms can 
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be expressed in terms of single integrals through (see Ref. 8-16, pp. 
251-253): 

47T 00 

rn(r)  = %(c)~s in (n r )  d r ,  

2 1/2 where K = [K: + K $  + and r =  A AX)^ + ( A Y ) ~  + (Az) ] . 
Occasionally it will be necessary to consider a two-dimensional autocor- 

relation function and a two-dimensional power spectral density of nl(r') 
across a plane with fixed axial z coordinate. This two-dimensional power 
spectral density is represented by F , ( K ~ ,  K ~ ;  Z)  and is related to the three- 
dimensional power spectral density through (see Problem 8-10) 

The two-dimensional autocorrelation function Bn(p'; z) is related to the 
two-dimensional power spectral density through 

00 

where now Z = (K*, K ~ )  and = (Ax, Ay). Note that by definition 

If the fluctuations of n, are statistically isotropic in the plane of constant 
I, then Bn( p'; z ) and Fn(17; z) have circular symmetry, and Eqs. (8.4-9) can 
be reduced to 
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With the establishment of the various notations above, we are now ready 
to consider the optical properties of the turbulent atmosphere in more 
detail. 

8.4.2 Atmospheric Model 

At optical frequencies the refractive index of air is given by (Ref. 8-15) 

where X is the wavelength of light in micrometers, P is the atmospheric 
pressure in millibars, and T is the temperature in Kelvins. The pressure 
variations of n are comparatively small and can be neglected, leaving 
temperature fluctuations as the dominant cause of fluctuations. For X = 0.5 
pm, the change dn of refractive index induced by an incremental change dT 
of temperature is 

again with P in millibars and T in Kelvins. For propagation near sea level, 
Idn/dT( is on the order of 

The random fluctuations n, of the refractive index are caused predomi- 
nantly by random microstructure in the spatial distribution of temperature. 
The origin of this microstructure lies in extremely large scale temperature 
inhomogeneities caused by differential heating of different portions of the 
Earth's surface by the sun. These large-scale temperature inhomogeneities, 
in turn, cause large-scale refractive index inhomogeneities, which are even- 
tually broken up by turbulent wind flow and convection, spreading the scale 
of the inhomogeneities to smaller and smaller sizes. 

It is common to refer to the refractive index inhomogeneities as turbulent 
"eddies," which may be envisioned as packets of air, each with a character- 
istic refractive index. The power spectral density @,,(K')  of homogeneous 
turbulence may be regarded as a measure of the relative abundance of 
eddies with dimensions Lx = 2.rr/~,, L, = ~ T / K , ,  and L,  = ~ T / K , .  In 
the case of isotropic turbulence, is a function of only one wavenum- 
ber K, which may be considered as related to eddy size L through L = 2 n / ~ .  

On the basis of classic work by Kolmogorov (Ref. 8-17) on the theory of 
turbulence, the power spectral density @JK) is believed to contain three 
separate regions. For very small K (very large scale sizes), we are concerned 
with the region in which most inhomogeneities originally arise. The 
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mathematical form for On in this region is not predicted by the theory, for it 
depends on largescale geographic and meteorological conditions. Further- 
more, it is unlikely that the turbulence would be either isotropic or homoge- 
neous at such scale sizes. 

For K larger than some critical wavenumber K,, the shape of OJK) is 
determined by the physical laws that govern the breakup of large turbulent 
eddies into smaller ones. The scale size Lo = 2a/x0 is called the outer scale 
of the turbulence. Near the ground, Lo = h/2, where h is the height above 
ground. Typical numbers quoted for Lo vary between 1 and 100 m, 
depending on atmospheric conditions and the geometry of the experiment in 
question. 

For K greater than K,, we enter the inertial subrange of the spectrum, 
where the form of an can be predicted from well-established physical laws 
governing turbulent flow. On the basis of Kolrnogorov's work cited earlier, 
the form of an in the inertial subrange is given by 

where C: is called the structure constant of the refractive index fluctuations 
and serves as a measure of the strength of the fluctuations. 

When K reaches another critical value K,, the form of an again changes. 
Turbulent eddies smaller than a certain scale size dissipate their energy as a 
result of viscous forces, resulting in a rapid drop in R(r) for K > r,. The 
scale size 1, z 27r/~, is referred to as the inner scale of the turbulence. A 
typical value for 1, near the ground is a few mibneters. Tatarski includes 
the rapid decay of Qn for K >. K, by use of the model 

This equation is a reasonable approximation provided K ,  is chosen to equal 
5.92/1,, and K > K,. 

Spectra (8.4-14) and (8.4-15) both have nonintegrable poles at the origin. 
In fact, since there is a finite amount of air associated with the Earth's 
atmosphere, the spectrum can not become arbitrarily large as K -, 0. To 
overcome this defect in the model, a form known as the uon Kdrmcin 
spectrum is often adopted. The spectrum is then expressed approximately as 
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Note that for thls spectrum, 

0.033~: 
lim @JK) = 
K'O Kb1/3 ' 

It should be emphasized, however, that little is known about the actual 
shape of the spectrum in the very low wavenumber range, and Eq. (8.4-16) 
is only an artificial means for avoiding the pole at K = 0. Furthermore, as 
we shall see, few optical experiments are significantly affected by eddies 
with scale sizes larger than the outer scale, so it is not really necessary to 
express a form for the spectrum in this range. 

Figure 8-9 shows plots of @,(K) for the models (8.4-15) and', (8.4-16), 
including indications of the locations of the wavenumbers K, and K,, 

between which the K - " / ~  behavior holds. 
In studying the effects of atmospheric turbulence on imaging systems, we 

shall find that it is the structure function of the refractive index fluctuations 

1 o4 1 
von ~drmhn 

/ spectrum 
L 

Kolmogorov 
spectrum 

K (meter-') 

Figure 8-9. Power spectral densities of refractive indcx fluctuations. 
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that influences the performance of such systems. By definition, thls structure 
function is given by 

We wish to relate this structure function to the power spectral density Qn of 
the refractive index fluctuations. 

If the turbulence is homogeneous and if rn(0)  exists, it follows that [cf. 
Eq. (3.4-1 9)] 

Substituting (8.4-6) in (8.4-19), and taking account of the symmetry On( - 2) 
= @ , ( Z )  of any power spectral density, we find 

When the statistics of n, are isotropic, substitution of Eq. (8.4-7b) into 
(8.4-19) yields 

sin Kr 
D n ( r )  = 8 n i m @ . ( x ) x 2  [ I  - _ ]  d ~ .  

[To arrive at this expression, some care must be used in letting r -+ 0 when 
expressing I?, ( O ) . ]  

A special advantage of using structure functions now becomes evident; 
namely, D,(r ) is relatively insensitive to the behavior of @ , ( K )  at very low 
wavenumbers. If we let K become very small, the integrand of (8.4-21) is 
approximately K 4 @ , , ( ~ ) r  2/3!. Even though &(O) may be infinite by virtue 
of behavior of @ , ( K )  as K - "  (1 I n I 4 )  as K + 0 ,  nonetheless D,(r)  will 
still be perfectly well defined. This indicates a certain insensitivity of D,,(r)  
to the low-wavenumber portion of the spectrum. Furthermore, even if the 
very low wavenumber components of the refractive index power spectrum 
are nonhomogeneous and nonisotropic, n ,  may possess a homogeneous and 
isotropic structure function. 

For the special case of interest here, the power spectral density behaves 
as 0 . 0 3 3 ~ : ~ - ' ~ ' ~ .  Substitution of this form into Eq. (8.4-21) yields the 
integral 

sin Kr 
D , ( r )  = 877 X 0.033Cn K - ~ / ~  1 - - 4 [ Kr ] d~ . (8.4-22) 
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lo = 1 millimeter 
meters 

Figure 8-10, Refractive index structure function for Kolmogorov turbulence. 

Now the integral identity (Ref. 8-18) 

sin ax 
ax 

can be used, where r(v)  represents the gamma function with argument v. 
Noting that r (  - 5/3) = 2.4110, we obtain a structure function 

corresponding to the Kolmogorov spectrum of Eq. (8.4-14). The occurrence 
of a numerical coefficient of unity in this equation is no coincidence. C; is, 
in fact, defined in just such a way that this happens. 

We should mention at this point that the value of the structure constant 
C,? depends on both local atmospheric conditions and height above ground. 
Typical values near ground vary from lo-" meter-""or strong turbu- 
lence to 10-l7 meter-2/3 for weak turbulence, with lo-" meter-"' often 
quoted as a typical "average" value. 
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In closing this subsection, we note that the form of the structure function 
in Eq. (8.4-24) is valid only for lo < r < Lo, since the spectral density used 
in obtaining this result is valid only for K, < K < K,. 

Figure 8-10 shows a plot of the structure function D,(r)  expressed in Eq. 
(8.4-24). 

8.4.3 Electromagnetic Wave Propagation Through 
the Inhomogeneous Atmosphere 

Having characterized the statistical properties of the refractive index 
inhomogeneities in the atmosphere, we now consider the effects of these 
inhomogeneities on electromagnetic wave propagation. We consider a 
monochromatic electromagnetic wave, having time dependence exp( -jut ), 
propagating through the Earth's atmosphere. We have previously repre- 
sented the refractive index of the atmosphere as 

where the time dependence has been suppressed. We suppose that the 
deterministic dependence n ,( 7) is essentially constant (independent of 7) 
over the region of our propagation experiment and thus represent the 
refractive index as 

We assume that the atmosphere has constant magnetic permeability p ,  
but space-variant dielectric constant E. Maxwell's equations then take the 
form 

where & is the electric field, H is the magnetic field, and v has vector 
components (8/8x, 8/8y, 8/82). 

Applying a v x operation to the second equation above, and substitut- 
ing the third into the second, we obtain 
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and from the last of Maxwell's equations, 

Hence 

which, when substituted in Eqs. (8.4-29) and (8.4-28), yields 

Here, In represents a natural (base e)  logarithm. 
The local velocity of propagation of the wave is (p&)-lI2, which is also 

equal to c/n, where c is the free-space velocity and n is the local refractive 
index. Hence 

and by the constancy of p and c, 

v In& = 2~ Inn. 

Substituting these two equations into (8.4-32), we obtain 

valid in any source-free region. 
The last term in this equation introduces a coupling between the three 

components of E and thus corresponds to a depolarization term. It has been 
well established by past work that in the visible regon of the spectrum, this 
term is completely neghgible and can be replaced by zero (Ref. 8-19). 
Physically, depolarization effects are negligible because the inner scale of the 
turbulence I, is much larger than the wavelength A. Thus the wave equation 
becomes 
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This equation differs from the conventional wave equation only through the 
fact that n 2  in the coefficient of the second term is a function of position 7. 

Since all three components of the electric field obey the same wave 
equation, we can replace the vector equation by a scalar equation, 

where U can represent Ex, E,, or Ez. 
Solution of this equation is accomplished by use of the method of small 

perturbations. Since In,l B: no, it is reasonable to express the field U as the 
sum of a term U, that would be obtained if the atmosphere had uniform 
refractive index n o ,  plus a small correction term U, that accounts for the 
effects of the index perturbations n , .  With t h s  approximation, the wave 
equation becomes 

Since Uo represents the unperturbed solution, it must satisfy 

2 2 where k i  = w no/c2. Retention of only those terms that are first order in U, 
and n ,  implies that U, must satisfy 

At this point and hereafter we assume that the mean refractive index n o  is 
unity, an excellent approximation for the case of optical propagation. 

Equation (8.4-40) is an inhomogeneous wave equation for U,, with a 
source term given by - 2 k i n  ,u,. Its solution can readily be expressed in 
terms of a convolution of the free-space Green's function (impulse response) 
exp( jko)7))/)31 with the source term. The result is 

where V is the scattering volume. 
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This expression for U, states that field perturbation U, can be found by 
summing a multitude of spherical waves generated at various points r" 
within the scattering volume V. The strength of the spherical wave generated 
at 7' is proportional to the product of the incident unperturbed radiation 
and the refractive index perturbation at that point. 

A further helpful approximation is obtained by use of the fact that the 
scattering angles involved in the propagation of visible light through the 
atmosphere are rather small. Since the smallest turbulent eddies are of 
the order of lo - 2 millimeters in size, whereas the wavelength is typically 
0.5 micrometer, the scattering angles are no larger than X / l o  - 2.5 x loa4 
radians. Therefore, the maximum lateral displacement of a scatterer that 
contributes light to a given receiving point is much smaller than t,he axial 
distance of the scatterer from the receiver. As a result, the so-called Fresnel 
approximation (Ref. 8-20) can be applied to the integrand of Eq. (8.4-41), 
yielding 

2 ( z  - z ' )  
U,(7) - - nl(?')U0(7') d )7', z - zf  

where p' and @' represent the transverse displacement of 7 and 7' from the z 
axis. 

At this point we introduce a transformation used extensively by Tatarski 
(Refs. 8-12 and 8-13); namely, we define the complex quantity J, as the 
natural logarithm of the field U: 

The reader may well wonder why such a transformation is useful; therefore 
we digress temporarily to address this question. 

Our solution for the field was obtained by regarding the total field U as a 
sum of ever smaller contributions 

and by dropping those terms beyond the first perturbation U,. This method 
of solution is referred to as the Born approximation, and it effectively 
neglects multiple scattering. There is, of course, a certain limited set of 
experimental conditions under which this solution can be expected to be 
accurate. 
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Tatarski introduced the transformation (8.4-43), called the Rytoo trans- 
formation, at the very beginning of his analysis, rather than near the end, as 
we shall do. Such a substitution immediately transforms the wave equation 
(8.4-37) into the Riccati equation 

Now the Riccati equation can be solved by assuming that 

and dropping all terms lugher than 4,. This method of solution yields 
exactly the same result that we shall obtain for h, but it is thought to be 
valid under a wider range of conditions than apply for the Born approxima- 
tion (see Ref. 8-4, Vol. 2, p. 349). The superiority of the Rytov method is 
borne out experimentally by the fact that, in the region of weak fluctuations, 
the statistics of the fluctuations of amplitude have been found to obey 
log-normal statistics. As we shall see, the solution for + implies that 
amplitude fluctuations obey log-normal statistics, whereas the solution for U 
does not imply statistics of this kind (Ref. 8-21) (see further discussion at 
the end of this subsection). 

Returning to the transformation (8.4-43), we write 

In effect, we are representing U as a multiplicatively perturbed version of the 
free-space solution, rather than an additive& perturbed version. [Note that 
U, + exp(+,).] We then have 

and 

The last approximation is valid because IUIJ << IUoJ. Substituting Eq. (8.4-42) 
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for U, in (8.4-49), we obtain 

This result is, in fact, identical with the result obtained by introducing the 
Rytov transformation at the very start. 

With appropriate definitions, it is now possible to find expressions for the 
log-amplitude and phase of the wave perturbations. Let the amplitude and 
phase of the actual wave U be represented by A  and S, whlle the amplitude 
and phase of the free-space solution are A ,  and So: 

U, = A,exp( jS,). 

Then 

and defining 

A A x =  In- (the log-amplitude fluctuation) 
A 0  

A S, = S - So (the phase fluctuation), (8.4-53) 

we have 

+1 = x +is,. 
Using (8.4-50), we conclude that 

r 

This equation represents the main result of the current subsection. 
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As mentioned earlier, the solutions obtained from the Born approxima- 
tion and the Rytov approximation predict different probability density 
functions for amplitude A of the perturbed wave. In both cases the only 
random quantity present in the solution is the refractive index perturbation 
n, .  Equation (8.4-42) expresses the field perturbation U, as a superposition 
of a vast number of independent contributions from different parts of the 
turbulent medium. According to the central limit theorem, we would expect 
the real and imaginary parts of U, to obey Gaussian or normal statistics. 
The statistics predicted for the intensity of the total wave depend on the 
variances of the real and imaginary parts of U, and on their correlation. 
When these variances are equal and the correlation is zero, the sum of U, 
and U, would be equivalent to the sum of a constant (nonrandom) phasor 
and a circular complex Gaussian phasor. The results in Section 2.9.4 imply 
that under these conditions A = IUI should obey Rician statistics. In gen- 
eral, however, the assumption of equal variances and zero correlation is not 
justified, and a more complicated solution for the intensity statistics would 
be expected. 

On the other hand, Eq. (8.4-55) expresses the log-ampli tude fluctuations 
x as a superposition of a multitude of independent contributions. Again 
invoking the central limit theorem, the form of thls solution leads us to 
predict Gaussian statistics for X, which, in turn, implies that the amplitude 
A should be a log-normal variate. 

The preponderance of experimental evidence favors the log-normal distri- 
bution under conditions of weak fluctuations, and it is generally dgreed that 
under such conditions this statistical model is sufficiently accurate to justify 
its use in theoretical calculations. 

8.4.4 The Log-Normal Distribution 

Because the log-normal distribution plays an especially important role in the 
theory of propagation through turbulence, we now devote a short discussion 
to some of its properties. 

The log amplitude x is taken to be a Gaussian random variable with 
mean ji and standard deviation ox. Hence 

To find the form of the probability density function for the amplitude 
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we must introduce a probability transformation. Noting that 

and that dx/dA = l / A ,  we find 

In a similar fashion, the probability density function for the intensity 
I = is found to be 

Equations (8.4-59) and (8.4-60) are both examples of the log-normal prob- 
ability dens] ty function. 

As they stand, these density functions have three independent parame- 
ters, Ti, ox, and I,. However, if we fix the mean value of the log-normal 
variate, requiring, for example, that f = I,, we find that ji and ux can no 
longer be chosen independently. 

To prove this assertion, let 

Now we use the following relationship, valid for any real-valued Gaussian 
random variable z and any complex constant a: 

1 2 2  E [e"]  = exp(a7 + ~a a, ) .  (8.4-62) 



EFFECTS OF AN INHOMOGENEOUS MEDIUM ON WAVE PROPAGATION 40 1 

With z = x and a = 2, we find 

= roe 2 j i +  2 0 2  
x = I,, 

or equivalently, 

There are still two independent parameters here, but if we choose I, as one 
of them, jj and cr; cannot be chosen independently. 

The preceding relationship is relevant to the propagation problem when 
we make the assumption that the waves propagate without any significant 
attenuation. Thus a unit intensity plane wave entering the atmosphere at 
z = 0 must, by energy conservation, still have unity average intensity when 
i t  reaches z = L. 

The probability density function p , ( I )  is plotted in Fig. 8-11 for various 
values of the parameter a, and subject to the energy conservation con- 
straint. As can be seen, a wide variety of different shapes occur, even for a 
fixed mean I,. 

I/I, 

Figure 8- 11. Log-normal probability density function for intensity when the mean intensity is 
unity. 
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The log-normal distribution has other properties that are rather unusual 
among distributions that describe real physical phenomena. First, it is 
known to violate the conditions necessary for a probability density function 
to be completely determined by its moments (Ref. 8-22). Second, it has been 
found to have a certain permanence in the sense that sums of independent 
log-normal variates tend toward Gaussian statistics very slowly (Ref. 8-23). 
However, these subjects take us a bit too far away from our prime goal, 
namely, determining the effects of turbulence on the performance of imag- 
ing systems. 

8.5 THE LONG-EXPOSURE OTF 

The inhomogeneities of the atmosphere are in constant turbulent motion, 
with the result that the instantaneous wavefront degradations fluctuate 
rapidly with time. To "freeze" the atmospheric degradations, thus eliminat- 
ing any time averaging effects, it is necessary to use an exposure time from 
0.01 to 0.001 second or shorter, depending on the effective wind velocity. 
Figure 8-12 shows examples of both long-exposure (T sp &j second) and 
short-exposure (T << & second) photographs of a star. 

As might be expected from the appearance of the images in Fig. 8-12, 
there are distinct differences between the OTFs achieved with long and 
short exposures. In this section we consider only the long-exposure case, as 
appropriate, for e;ample, in the imaging of faint astronomical objects, 
which may require seconds, minutes, or even hours of integration time. 
Underlying our analysis will be the assumption of temporal ergodicity, 
namely, that the long-time-average OTF-which is affected by many inde- 
pendent realizations of the atmospheric inhomogenei ties-is identical with 
the ensemble-averaged OTF. 

Recently there has arisen new interest in the short-exposure OTF, due 
partly to advances in adaptive optics (Ref. 8-24) and stellar speckle inter- 
ferometry (Ref. 8-25). We discuss these subjects in later sections, but for the 
moment we limit our attention to the long-exposure case. 

8.5.1 Long-Exposure OTF in Terms of the Wave 
Structure Function 

With reference to Fig. 8-1 3, consider an extremely distant quasimonochro- 
matic point source located on the optical axis of a simple imaging system. In 
the absence of atmospheric turbulence, this source would generate a plane 
wave normally incident on the lens. In the presence of the atmosphere, the 
plane wave incident on the inhomogeneous medium propagates into the 



Figure 8-12. ( a )  Long- and ( b )  short-exposure photographs of the star hmbda  Cratis 
(Courtesy of Gerd Weigelt and Gerhard Baier, University of Erlangen.) 
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Distant source Atmosphere Lens l mage 

Figure 8-13. Imaging of a distant point source through the atmosphere. 

medium, and ultimately a perturbed wave falls on the lens. The field 
distribution incident on the lens can be expressed as 

where I, is the intensity of the incident plane wave, and, as predicted by the 
Rytov solution, x and S are Gaussian random variables. 

Following the reasoning that led to Eq. (8.1-3), the instantaneous OTF of 
the system can be expressed as 

where P(x ,  y)  is the complex pupil function of the system in the absence of 
atmospheric turbulence, whereas 

Note that x,, x,, S, ,  and S2 are functions of time, but this time depen- 
dence has been suppressed in writing the instantaneous OTF. 
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Under our assumption of ergodicity, the ensemble average OTF will be 
identical with the long-exposure OTF in the limit of infinitely long integra- 
tion time. Thus we wish to take ensemble averages of the numerator and the 
denominator of Eq. (8.5-2). The result can be expressed as 

where JP, is the OTF of the optical system in the absence of turbulence, 
whereas z, may be regarded as the long-exposure OTF of the atmosphere, 
and is given by 

with 

In writing f as a function of Ax and Ay, we have assumed that the 
wavefront perturbutions obey homogeneous statistics. Our ability to calcu- 
late the atmospheric OTF thus depends heavily on our knowledge of the 
statistical properties of x and S. The fact that both x and S obey Gaussian 
statistics is the key to success. 

In general, we have no reason to suppose that x and S are independent 
random processes, for their fluctuations both arise from the fluctuations of 
the refractive index. However, consider the following average: 

If the refractive index fluctuations obey homogeneous statistics, x and S 
must be jointly homogeneous, in which case 

If in addition n obeys isotropic statistics, x and S will be jointly isotropic, 
with the result 

It follows that 

and we see that the random variables (x, + x,) and (S, - S2) are uncorre- 
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lated. Finally, as a result of the Gaussian statistics of x and S, (x, + x ,) 
and (S, - S2)  are Gaussian, and their lack of correlation implies statistical 
independence. As a consequence, we see that 

From our earlier discussions of Gaussian phase screens, we know that 

where r =  A AX)^ + ( A y ) 2 ] 1 / 2  and Ds(r )  is the phase structure function, 

Ds = (S, - s , ) ~ .  (8.5-13) 

We must now calculate the average of e x p ( ~ ,  + x , ) .  
To aid in this calculation, we use the relation presented in Eq. (8.4-62), 

which is valid for any Gaussian random variable z: 

Choosing z = X ,  + X, and a = 1, we obtain 

E [ e  X I  + ~ 2 ]  = e : t ~ ~  + X ~ - ' " ~ ~ ' X .  

Noting that 

where Cx is the autocovariance of X,  we see that 

At this point we invoke conservation of energy to conclude that the mean 
intensity of an infinite plane wave propagating through a randomly inhomo- 
geneous and lossless medium must remain constant. It follows [cf. Eq. 
(8.4-64)] that 
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Incorporating this fact in Eq. (8.5-17), we find 

E [ e X 1 + ~ 2 ]  = exp( - ~ ~ ( 0 )  + ~ , ( r ) )  

= exp{ - $ ~ ~ ( r ) ) ,  

where Dx is the log-amplitude structure function, 

We conclude that 

where D = Dx + Ds is called the wave structure function. The total average 
OTF thus takes the form 

where v  = [ v i  + v : ] ' / ~  and a circularly symmetric OTF of the unperturbed 
optical system has been assumed for simplicity. 

8.5.2 Near-Field Calculation of the Wave Structure Function 

We now consider the problem of calculating a detailed expression for the 
wave structure function. Such a result will allow us to specify the form of 
the long-exposure atmospheric OTF in more detail. 

In this first analysis of the problem, we adopt some rather severe 
simplifying assumptions that are only occasionally met in practice. Follow- 
ing this simplified analysis, however, we show how the validity of the results 
can be extended to a far wider range of conditions than might have been 
thought at the start (see Section 8.6). 

The major assumptions adopted are listed below: 

(1) The object of interest is at a very large distance from the lens, and its 
angular extent is so small that all parts of the object are affected 
identically by the atmosphere, at least over a long time average. 

(2) The turbulence exists over a finite distance z in front of the imaging 
lens, and is homogeneous and isotropic in that region. 
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(3) The imaging system lies deep withln the near field of the most 
important turbulent eddies, with the result that, to a good approxima- 
tion, each ray incident on the inhomogeneous medium is simply 
delayed by that medium, with no significant bending of the rays. 
(This assumption is strictly valid only if z << I;/%.) 

Assumption 1 may be referred to as an "isopIanatic" assumption and is 
not a very restrictive one for long-time-average imaging. Assumption 2 is 
not valid for vertical viewing through the atmosphere, but it will be removed 
in Section 8.5.4. Assumption 3 is primarily a statement that the turbulence 
is so weak that no significant amplitude scintillation effects are present. 
Such a condition is generally not valid in practice; however, a possible 
exception is vertical viewing from a mountain-top observatory under condi- 
tions of good atmospheric "seeing." This assumption is removed in Section 
8.6.1. 

Figure 8-14 illustrates the geometry on which the calculation will be 
based. Assumption 1 allows us to consider only a single point source on the 
optical axis, producing a plane wave at the entrance to the region of 
turbulence. Assumption 3 is now used to express the phase delays S ,  and 
S,, suffered by the two parallel rays shown, as 

where k = 27r/X. 

Figure 8-14. Geometry for phase structure function calculation. 



THE LONG-EXPOSURE OTF 409 

In addition, this same assumption implies that amplitude fluctuations are 
negligible, in which case X, = X, and D,(r) = 0. Since the log-amplitude 
structure function is zero, the wave structure function equals the phase 
structure function, and the average atmospheric OTF is given by 

In calculating the phase structure function, we choose the origin of our 
coordinate system to Lie at the position where the lower ray in Fig. 8-14 
enters the turbulent region. Then 

The phase structure function will be known if we can calculate the average 

(8.5-26) 

This quantity can be equivalently expressed as 

- n, (z t ,  r ) n l ( z U ,  0) - nl(z ' ,  O)n1(zu, r ) ]  . 

(8 5 2 7 )  

The averages can be expressed in terms of covariance functions 

(8.5-28) 

The difference of covariance functions can be expressed as a difference of 
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structure functions, 

Combining (8.5-28) and (8.5-29), we find the phase structure function to be 
given by 

This expression can be simplified further by noting that the integrand is 
an even function of z' - z"; this fact allows us to reduce the double integral 
to a single integral, as we now demonstrate. Let g(a) be any even function 
of its argument. Letting Az = z' - z", we may write 

z  z - z "  

dz " dzfrg(z'  - 2") = & / - z , ,  dAz g(Az) ,  (8.5-31) 

where the area of integration is shown in Fig. 8-15. Since g depends only on 

Figure 8-15. Region of integration. 
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A Z  and because it is an even function of Az, the value of the integral can be 
obtained by doubling the integral over the doubly lined region, that is, the 
right-hand triangle. We conclude that 

dzUg(z' - z") = 2 / z d ( ~ r ) g ( ~ z ) ~ z - A z d z "  
0 0 

Using this relationship, we obtain the following form for the phase structure 
function: 

At this point we must adopt a specific form for the structure function of 
the refractive index fluctuations. According to the widely accepted 
Kolmogorov theory, this structure function is given by 

Substitution of this form in the expression for the phase structure function 
yields 

Note that, because of the restrictions on Eq. (8.5-34), this expression for 
Ds(r) is strictly valid only for Ar -c Lo, where Lo is the outer scale of the 
turbulence. Thus it might be thought that the expression is valid only for 
pathlengths z shorter than the outer scale. Fortunately, when the path 
separation r is much less than Lo (as it nearly always is, since the maximum 
separation of interest equals the diameter of the receiving optics), the 
integrand vanishes for large Az, and the exact form of the structure function 
for r > Lo is immaterial. In particular, for large Az, the bracketed factor in 
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the integrand of Eq. (8.5-35) behaves as 

Hence for At larger than Lo and r much smaller than Lo, the integrand is 
small enough to make a negligible contribution to the integral, and our 
expression for D , ( r )  can be used accurately for all pathlengths that do not 
violate our earlier, more basic assumptions. 

The expression (8.5-35) may be regarded as involving a difference of two 
terms in the integrand, z[(Az2 + r 2)1/3 - Ar '1'1 and Az[(Az + r ')I/' - 
Az2/)]. Figure 8-16 shows both of these terms. The area under the first term 
(upper curve) is much greater than the area under the second term (lower 
curve). As a consequence, we shall entirely neglect the second term. Further- 
more, the first term has dropped to essentially zero long before Az reaches 
z, SO we make little error in extending the upper limit of the integral to 
infinity. Thus 

z 
-3r - 

Figure 8-16. Two terms in the integrand of Eq. - (8.5-35). 
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With a change of variables Az = ru, dAz = rdu, the expression becomes 

The integral can be evaluated by numerical integration and is found to be 
equal to 2.91. Thus 

Having evaluated the phase structure function, we can now write expres- 
sions for the long-exposure atmospheric OTF [8-261. Substituting (8.5-39) in 
(8.5-24), we obtain 

A somewhat more convenient form that is independent of the optical system 
parameters is obtained if we express the OTF as a function of frequency Q 
measured in cycles per radian of arc, rather than cycles per meter. The 
relationship between Sl and v is Sl = f v, with the result that 

This equation represents the main result of our near-field analysis. Of 
course, to find the total OTF, the OTF given in (8.5-41) must be multiplied 
by the OTF of the optical system in the absence of atmospheric turbulence. 

Special attention is called to the fact that the angular spatial frequency 
where sL has dropped to value l /e  is given by 

Thus the bandwidth of the OTF, defined in this particular way, depends on 
only the one-fifth power of wavelength, a very weak dependence. 
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Figure 8-17. Long-exposure atmospheric OTF (A = 0.5 micrometers, z = 100 meters). Dotted 
curves represent the diffraction-limited OTFs of circular apertures. 

Plots of the long-exposure atmospheric OTF are shown as solid lines in 
Fig. 8-17 for X = 0.5 micrometer, z = 100 meters, and various values of c:. 
Shown dotted are the OTFs for diffraction-limited circular optics that have 
diameters 5 centimeters, 50 centimeters, and 5 meters. By comparing the 
solid and dotted curves, some feeling can be obtained for the effective 
reduction in aperture size that is comparable with the resolution-limiting 
effects of the turbulence. 

8.6 GENERALIZATIONS OF THE THEORY 

The mathematical expressions for the long-exposure OTF derived in Section 
8.5 were obtained using a number of serious restrictions. In the sections to 
follow, we remove some of these restrictions. 

First, we generalize our previous purely geometric derivation of the 
long-exposure OTF to include the effects of both bending of the rays and 
diffraction. Remarkably, the expression for the long-exposure OTF is found 
to be unchanged from that found with the more limited theory. 
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Second, we generalize our results to include the effects of slow changes of 
the structure constant C: along the propagation path. Such variations are 
particularly important for vertical imaging through the atmosphere (e.g., 
astronomical imaging), for the strength of the turbulence is a strong 
function of height above ground. Variations of C: along horizontal paths 
also occur frequently in practice. 

Third, we introduce the concept of the atmospheric coherence diameter, 
represented by the symbol r,, whlch is useful in understanding the limited 
resolution achievable in imagery gathered through the atmosphere, as well 
as in simplifying the mathematical form of the expressions for transfer 
functions. 

Fourth and finally, we deal with the geometry of the imaging problem 
when the object lies at a finite distance from the imaging optics, rather than 
at infinite distance. Such considerations are important for imaging over 
horizontal paths, as well as for nonastronomical vertical viewing. In these 
cases, our attention must shift from plane wave propagation to spherical 
wave propagation. 

8.6.1 Extension to Longer Propagation Paths-Amplitude and Phase 
Filter Functions 

The calculation of the long-exposure atmospheric optical transfer function 
presented in Section 8.5 was based on the very restrictive assumption that, 
even for the smallest turbulent eddies, the effect of the refractive index 
perturbations is limited to a delay of the light rays passing through them. 
Thus, both geometric bending of rays and diffraction effects were ignored. 
The pathlengths for which this assumption is strictly valid are so short as to 
be of limited practical interest. 

Here we generalize the analysis, taking more complete account of the 
effects of the inhomogeneous medium on waves propagating through it. The 
analysis is a modified version of that presented by Tatarski (Refs. 8-12 and 
8-13). Surprisingly, we will find that the results of the more general theory 
are identical with those of the far simpler analysis done previously. 

The geometry assumed for this calculation is illustrated in Fig. 8-18. The 
refractive index perturbations exist within a finite region lying between 
z' = 0 and z' = z in the propagation path. Within ths  region, the fluctua- 
tions of n,(x', y ', z') are assumed to be homogeneous. A plane wave enters 
the region of refractive index fluctuations at z' = 0, and the collecting 
aperture of the imaging system is assumed to lie in the plane z' = z. 

The starting point for the analysis is Eq. (8.4-55), which relates the 
log-amplitude x and the phase S, across the plane of the collecting aperture 
to the refractive index fluctuations n, of the inhomogeneous medium. For a 
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lnhomogeneous medium 

Figure 8-18. Propagation geometry. 

unit intensity plane wave incident at z' = 0, the unperturbed solution 
within the medium takes the form 

Substitution of this expression into Eq. (8.4-55) yields the following expres- 
sions for x and s,: 

x 2  z 

x (x ,  Y .  2) = 2R 1 dz'/-: dy ' / *  dx rn1 (x ' ,  y ' ,  1') 
- 00 

- 
k [ ( x  - x ' ) ~  + ( y  - y ' )2 ]  

2 (2  - 2 ' )  

- 

sin { k [ ( x  - x ' ) ~  + ( y  - v')2] 

2 ( z  - 2 ' )  
X 

z  - 2' 
(8.6-2) 
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For purposes of later analysis, it is convenient to rewrite (8.6-2) in the form 

where 

- 

cos( k [ ( x  - x ' ) *  + ( y  - y')21 z2  00 
2 ( z  - 2') 

q ( x ,  Y ,  z ,  2') = T;; j" n , ( x ' ,  y ' ,  2 ' )  dx'dy' 
- 00 

Z - 2' 

Our goal in this analysis is to first calculate the two-dimensional power- 
spectral densities FX(uX, K y;  Z )  and FS(uX, K Y ;  z )  of the log amplitude and 
phase in the plane z' = 2 .  From these and related results we will be able to 
find the corresponding structure functions, and finally the long-exposure 
OTF will be calculated. The analysis is aided by recognizing that Eqs. 
(8.6-4) express q and p as two-dimensional convolution integrals in (x', y'). 
The integrations over z' in Eqs. (8.6-3) simply add the results of these 
convolutions for all distances z' along the propagation path. In all cases the 
pathlength z should be viewed as a fixed constant. 

Since convolutions have been found to arise in the analysis, it is perhaps 
not unexpected that simplifications will occur if the analysis is performed in 
the frequency domain. The impulse responses in Eqs. (8.6-4) can be seen to 
be given by 

k ( x 2  + y 2 )  

z 2  sin ( - ) 
2 ( z  - 2' )  

h s ( x ,  y ;  z ,  z f )  = - 27r z  - z f  
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Defining corresponding two-dimensional transfer functions by 

we use the Fourier transform relationship 

together with the substitution a = k/[2(z - z')], to find the following 
expressions for the transfer functions of interest: 

We can now use the fundamental relationship of Eq. (3.3-12) governing 
the passage of random processes through linear, invariant systems to relate 
the two-dimensional power spectra of q and p to the two-dimensional 
power spectrum Fn of the refractive index fluctuations. The result is 

where K *  = ( K + u +)'I2 represents a radial wavenumber in the (K  X, K y )  

plane. 
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K t 2  
--J (2 - 2') 

Figure 8-19. Filter functions for a single turbulent layer. 

In Fig. 8-19 we show plots of 1H,l2 and 1Hs1 * vs. normalized distance 
( ( z  - 2') between the turbulent layer at z' and the collecting 
aperture at z. These curves may be interpreted physically as specifying how 
ffuctuations of n, having wavenumber K ,  and lying in the plane z' are 
transferred into fluctuations of the log amplitude and phase of the wave 
incident on the collecting aperture of the imaging system. Note that fluctua- 
tions of n, with wavenumber K~ make maximum contributions to fluctua- 
tions of the log amplitude x when the distance z - z' satisfies 

while maximum contributions to the fluctuations of the phase occur when 

There is a very close connection between results illustrated in Fig. 8-19 and 
the so-called TaIbot effect, or the self-imaging properties of periodic grat- 
ings (Ref. 8-27). 

Although we have found the influence of a particular turbulent layer 
located at z' on the log-amplitude and phase fluctuations of interest, we 
have not yet addressed the problem of adding the contributions from 
turbulent layers at all possible distances z - z Simple integration of F, 
and F, with respect to z' would yield correct results only if the correlation 
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length of the turbulence in the z' direction were zero. Such is not the case, 
and a more careful analysis is necessary. 

If we consider two random processes x and q (or S, and p) related as in 
Eq. (8.6-3), it is a straightforward exercise to demonstrate that the autocor- 
relation functions of x and S, are given by 

T,(Ax, Ay; z )  = J T , ( A ~ ,  ~ y ;  z, z', z") dz'dz" 

Ts(Ax, hy ;  z )  =  AX, Ay; z, z', z") dz'dr", (8.6-12) 

where r, and r, represent cross-correlation functions of q ( x ,  y, z ,  z') with 
q(x, y, z, z") in the first case and p(x,  y,z, z') with p(x,  y, z, z") in the 
latter case. Fourier transforming both sides of Eq. (8.6-12) with respect to 
Ax and A y, we obtain the relationships 

where Fq and Fp represent cross-spectral densities of q ( x ,  y, z ,  z') with 
q(x, y, z, z") on the one hand, and p(x,  y, z, 2') with p(x,  y, z, z") on the 
other. 

At this point we use the fundamental relationship of Eq. (3.5-8) govern- 
ing the passage of cross-spectral densities through linear invariant filters. 
coupled with the explicit expressions (8.6-8) for the transfer functions 
involved, to write 

] [ii (Z - zf')] ,Zr  - z") d.Z'd,Zf' F , (K, ;  z )  = /jk2sin[$(z - z t )  sin --= 

0 

where 6, represents the cross-spectral density of the refractive index fluctua- 
tions in planes z' and z" and isotropy in the transverse dimension has been 
assumed for simplicity. 
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Further progress requires use of the trigonometric iden ti ties 

and 

These relationships are now substituted into Eqs. (8.6-14), and a change of 
variables 5 = z' - z" and 277 = z' + z" is made. The new region of integra- 
tion in the (6, q )  plane is illustrated in Fig. 8-20. Exploiting the symmetry of 
the integrand with respect to the variable 6, our expressions for F, and Fs 

(4 

Figure 8-20. Region of integration. 
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become 

(8.6-17) 

The integrals can be performed and yield 

At this point it is necessary to make some approximations. The first uses 
the fact that the cross-spectral density F R ( x t ;  6) falls rapidly toward zero for 
z separations 6 larger than 1 / ~ , .  T h s  property rests on the assumed 
statistical isotropy of the refractive index fluctuations, whch suggests that 
there is little correlation between sinusoidal transverse components of 
identical wavenumbers in two planes separated axially by more than the 
reciprocal of the wavenumber in question. Since the important values of 4 
are those no greater than l / x t ,  we see that over the significant range of 
integration we have 

where the last inequality follows from the fact that the inner scale I ,  is 
much greater than the wavelength A. Furthermore, we are interested in the 
structure functions only for arguments that are small compared with the 
total pathlength L. Therefore, I / K ,  << L. In addition, from the previous 
discussion, the important range of 6 satisfies 6 1 1 / ~ * .  It follows that 
6 5 l / x t  << L and hence that L - (V2) = L. In view of these facts, the 
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following additional approximations can be made: 

:t cos ---- = 1 . .:t .:t sin -- E 
2k 2 k  2k  

K ; ( ~ Z  - () . K:Z 
sin - 

2E 
= sin-. 

k 

We also note that, as a result of the rapid drop of F n ( ~ , ;  5) with $, the limits 
of integration in Eq. (8.6-18) can be extended to infinity. With these 
simplifications we find 

Finally, the relationship between the two-dimensional cross-spectral den- 
sity Fn( K ~ ;  t )  and the three-dimensional spectrum @,(K ,, K ,, K , )  is intro- 
duced. From basic definitions we have (see Problem 8-10) 

It follows that 

For isotropic turbulence, 

and hence an(.,, K y ,  0) = @ , ( K ~ ) .  Thus we arrive at the final expressions 
for the power spectra of the log amplitude and phase: 
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Equations (8.6-25) represent a major result of our analysis. They provide 
us with knowledge of the relative magnitudes of the fluctuations of x and S, 
as a function of pathlength z and wavenumber K,. The functions 

I Z ~ ( K ( ;  z)12 = nk2z sin 

are generally referred to as the "filter functions" for log amplitude and 
phase. They differ from the earlier filter functions of Eqs. (8.6-8) in that they 
apply for the entire integrated propagation path, whereas the earlier filter 
functions applied only for a single turbulent layer at distance z - z' from 
the optical system. 

The shapes of the log-amplitude and phase filter functions are illustrated 
in Fig. 8-21. Also shown in the same plot is the general form of the 
refractive index power spectrum 8,. In these plots z may be regarded as a 
fixed parameter and K, the variable of interest. Note that log-amplitude 
fluctuations are quite insensitive to the refractive index fluctuations at small 
wavenumbers (large scale sizes), whereas the phase fluctuations have their 
maximum sensitivity there. 

Figure 8-21. Log-amplitude and phase filter functions for an extended turbulent region- 
dependence on wavenumber. 
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Figure 8-22. Log-amplitude and phase filter functions for an extended turbulent region- 
dependence on distance. 

An alternative point of view is illustrated in Fig. 8-22. Here, K ,  should be 
regarded as a fixed parameter, whereas z is the variable of interest. The 
curves may be regarded as indicating the relative importance of log ampli- 
tude and phase fluctuations as a function of pathlength z .  For very short 
paths ( z  << &/K:), the log-amplitude fluctuations are negligible, and es- 
sentially all fluctuations of the wave reside in the phase. For long paths 
( z  >> &/K:), the fluctuations residing in log amplitude and phase are 
essentially of equal importance. Note that for the particular distance z = 
T~/K:, phase gratings at the far end of the path (z '  = 0) are producing a 
pure amplitude effect in the observation plane, whereas phase gratings at the 
nearest end of the path (z' = z )  are producing a pure phase effect in that 
plane. Hence an equal mixture of amplitude and phase effects is produced 
along the propagation path for thls particuIar wavenumber. 

Our ultimate interest in thls treatment lies with the predictions of the 
general theory regarding the form of the long-time-average OTF. From Eq. 
(8.5-22), the form of this OTF depends entirely on the form of the wave 
structure function D ( r )  = D x ( r )  + Ds(r) .  The structure functions Dx and 
Ds are related to the respective power spectra Fx and Fs through 
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Thus the total wave structure function is 

With substitution of the Kolmogorov spectrum of Eq. (8.4-14), the wave 
structure function is seen to be given by 

Use of the integral identity (Ref. 8-12, p. 269) 

yields a final result 

which is exactly the same result obtained by the simpler analysis given in 
the previous subsection. Thus the forms of the OTF represented by (8.5-40) 
and (8.5-41) remain correct in this more general analysis. 

The fundamental reason for the generality of the results of the simplified 
analysis can be deduced from the expressions for the amplitude and phase 
filter functions [Eqs. (8.6-26)]. For very short pathlengths, for which the 
simplified analysis is valid, we have 

It was in this regime that we neglected amplitude effects and retained only 
phase effects. From the more general results, however, we can see that at 
any pathlength (subject only to the restriction that it is not so long as to 
invalidate the perturbation analysis), the wave structure function depends 
on the sum of the two filter functions, and this sum is equal to 2z, exactly 
the same value ascribed to the phase filter function in the short-path regime. 
Hence the corrections to the amplitude and phase filter functions necessary 
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in the long-path regime exactly cancel when the two transfer functions are 
added! 

We conclude that the expressions for the atmospheric long-exposure OTF 
derived in Section 8.5.2 are valid under more general conditions than the 
initial analysis implied. 

8.6.2 Effects of Smooth Variations of the Structure Constant Ci  

Our goal in thls section is to find an expression for the long-time-average 
OTF, analogous to Eq. (8.5-41), but valid when the strength of the turbu- 
lence varies slowly along the propagation path. Such variations are often 
encountered in atmospheric propagation and are particularly pronounced in 
vertical viewing through the atmosphere. The analysis presented here is an 
approximate one. Fortunately, it  yields the same end result as a more 
careful examination of the problem. After the main result is derived, we 
point out the primary defect of the analysis and then discuss why this defect 
is unimportant in the calculation of the OTF of interest here. For a 
more complete study of the problem, the reader is referred to Ref. 8-12, 
Chapter 8. 

The slow and smooth character of the variations of the strength of the 
turbulence suggests the use of a "quasihomogeneous" model for the struc- 
tare function of the refractive index fluctuations, 

when lo < ITl - T21 < Lo. Implicit in this representation is the assumption 
that the significant changes of C: can occur only over distances comparable 
with L,, or greater. 

Our approximate model assumes that the atmosphere can be divided up 
into a series of layers or slabs of thickness Az along the propagation path, 
and that A z  is chosen large enough so that, to a good approximation, the 
fluctuations of the log amplitude and phase introduced by different layers 
are uncorrelated. Such a model allows us to express the wave structure 
function after passage through N layers as the sum of the N wave structure 
functions associated with the individual layers, 

If z ,  represents the z coordinate at the middle of the i th layer, we can then 
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use Eq. (8.6-31) for the individual layers to write 

If we now further assume the variations of C,: are slow by comparison with 
the length Az,  the finite sum can be replaced by an integral along the 
propagation path, yielding 

where z is the total pathlength. Finally, the form of the long-exposure OTF 
becomes [cf. Eq. (8.5-41)] 

The defect of the method of analysis used to obtain t h s  result arises from 
our neglect of turbulent scale sizes larger than the outer scale Lo. The 
spectrum of the turbulence has maximum values at small wavenumbers 
(large scale sizes), yet in assuming that the refractive index fluctuations 
introduced by all slabs are uncorrelated, we have neglected the presence of 
these large-scale inhomogeneities. Nonetheless, the result we have derived 
agrees exactly with that obtained by the more thorough analysis referenced 
earlier. The reason for the success of the simplified and approximate 
analysis lies in the insensitivity of the particular quantity we calculated (i.e.. 
the wave structure function) to large-scale turbulent structures. Such struc- 
tures introduce neither significant amplitude variations nor significant 
phase-difference variations at the imaging aperture and hence have little 
influence on the wave structure function. 

Having found the form of the wave structure function when the structure 
constant varies along the propagation path, we might naturally inquire as to 
what form these variations have. For horizontal imaging there is no analyti- 
cal form that can be specified, since the variations are very much a function 
of the local terrain and wind conditions. For vertical viewing, the variations 
of C: are still subject to atmospheric conditions at the time of the 
experiment, but analytical approximations to C? have been proposed. One 
such analytical form is (Ref. 8-28) 
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kilometers 

Figure 8-23. Structure constant C: versus height. Solid line, nighttime conditions. Dotted 
line, daytime conditions. (Courtesy of R. E. Hufnagel.) 

with 6, = 3200 meters. Figure 8-23 shows a typical dependence of C: on 
height above ground. The strength of the turbulence is seen to decrease with 
increasing height, a consequence of decreasing temperature fluctuations at 
higher altitudes. An increase of C: is observed in the region of the 
tropopause, shown in this figure in the vicinity of h = 10 kilometers. 

8.6.3 The Atmospheric Coherence Diameter r,. 

A useful description of the image-degrading effects of the atmosphere is a 
parameter first introduced by Fried (Ref. 8-29) and represented by the 
symbol r,. To introduce this parameter and to explain its significance, it is 
necessary to first consider a particular measure of resolution achieved by an 
imaging system. 
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Suppose that a transfer function #(Q) describes the performance of a 
particular imaging system. Further suppose that #(Q) is entirely real and 
circularly symmetric, as will be the case in all examples of interest to us 
here. Since JID(0) = 1, one possible measure of the resolution achieved by 
the system is the volume lying under the transfer function, 

a = 2 1 1 J m ~ ~ ( ~ )  d a .  (8 .6 -38)  
0 

We are interested here in the particular case of a long-exposure image 
through the atmosphere gathered by an otherwise perfect system that has a 
circular pupil with diameter Do. The total average OTF in this case takes the 
form 

where S o ( Q )  is the OTF of the system in the absence of the atmosphere, 

\ 0 otherwise, 

and Q0 - D,/X is the cutoff frequency (in cycles per radian of arc) of the 
optics. Our task now is to evaluate the expression (8.6-38) for the resolution 
9 using the preceding transfer function. - 

With the change of variables u = Q/Q, = hQ/D,, the required integral 
takes the form 

At this point we introduce the parameter r,, which we shall call the 
atmospheric coherence diameter. For reasons that become apparent shortly, 
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ro is defined as 

When this expression is ultilized in Eq. (8.6-41), the resulting integral 
becomes 

Thls integral has been evaluated numerically by Fried (Ref. 8-29) for 
various values of Do/ro, with the results shown in Fig. 8-24. Note that for 
Do/ro c 1, the resolution 9 increases as the square of Do/ro, whereas for 
Do/% >> 1, it approaches a constant asymptote, with value represented by 

W~, . The intersection of these two asymptotes occurs at Do = r,, which is 
indeed the basis on whlch ro was defined. 

The parameter ro is thus seen to provide a useful measure of the 
coherence diameter of the atmosphere. The resolution of a diffraction-limited 
system using a long exposure increases with aperture size until that size 

Figure 8-24. Dependence of normalized resolution 9/9,, on the normalized diameter 
Do/ro of the imaging optics for long-exposure imaging. (Courtesy of D. L. Fried and the 
Optical Society of America. From D. L. Fried, J .  Opt. Soc. Am ., Vol. 56, p. 1378, 1966.) 
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reaches approximately ro, beyond which the resolution stays roughly con- 
stant. The use of the parameter q, in expressions for atmospheric transfer 
functions makes them simpler in form and thereby aids in understanding 
their behavior. 

Typical values of ro at a good mountain-top astronomical observatory 
might range from 5 centimeters under conditions of moderately poor seeing 
to 20 cm under conditions of exceptionally good seeing. An average value 
for good seeing might be 10 centimeters. Considerably smaller values can be 
expected over horizontal imaging paths. 

8.6.4 Structure Function for a Spherical Wave 

For astronomical objects viewed from the Earth, it is accurate to assume 
that any single object point generates a plane wave incident on the atmo- 
sphere. Hence the plane wave propagation results of earlier sections are 
directly applicable in such a situation. However, in most other applications 
such an assumption may be questionable. For systems gathering images of 
objects that lie within the Earth's atmosphere (e.g., for horizontal imaging or 
downward vertical imaging), the spherical nature of the ideal wavefronts 
generated by a single object point can not be neglected. Figure 8-25 
illustrates the geometry of interest in such cases. 

Expressions for the variance of the log amplitude and phase of a 
spherical wave propagating through a randomly inhomogeneous medium 
were derived by Tatarski (Ref. 8-12, Chapter 9). The wave structure 
function for this case was first derived by Fried (Ref. 8-28), based on results 

t- 
Figure 8-25. Geometry for spherical wave propagation. 
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of Schmeltzer (Ref. 8-30). We do not duplicate the analysis here, but the 
results are worth stating. 

In the case of spherical wave propagation, the wave structure function is 
found to be given by 

When the structure constant C: does not depend on distance along the 
path, this result becomes 

whch differs from the plane wave result only by a constant factor of a .  As 
before, the long-exposure OTF of the atmosphere is related to the structure 
function through 

S L ( ~ )  = exp( - # D ( X Q ) ) .  (8.6-46) 

8.7 THE SHORT-EXPOSURE OTF 

Our analysis of the atmospheric OTF has concentrated exclusively on 
images collected with integration times much longer than the characteristic 
fluctuation time of the atmospherically induced wavefront deformations. 
The continuous evolution of independent realizations of atmospheric per- 
turbations during the exposure time allowed the use of ensemble averaging 
to predict the time-averaged OTF. Our attention is now turned to the effects 
of atmospheric inhomogenei ties on images obtained with integration times 
that are short compared with the characteristic fluctuation time of the 
atmosphere. 

8.7.1 Long versus Short Exposures 

The duration of the exposure time necessary to assure that an image has 
been gathered in the long-time-average regime is difficult to specify pre- 
cisely. The first source of difficulty lies with the dependence of the required 
integration time on the particular atmospheric conditions present at the 
time the image is collected. A second source of difficulty lies in the 
dependence of the required time on the particular spatial frequencies of 
interest. If we adopt the "frozen turbulence" (i.e., Taylor's) hypothesis, we 
can assume that image degradations are caused by fixed patterns of refrac- 
tive index perturbations drifting across the imaging path under the influence 
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Imaging 

/ aperture 

Figure 8-26. Areas on exit pupil that influence the spatial frequency I; = ;/A f of intensity. 

of local wind conditions. - If we consider a spatial frequency F corresponding 
to a fixed spacing s' = A f v' on the imaging aperture, we know that contribu- 
tions to that particular spatial frequency come from only a limited area on 
the aperture, namely, the shaded area in Fig. 8-26. For high spatial 
frequencies, the regions on the aperture are small, and only a comparatively 
short time is required for a given set of wavefront deformations to drift out 
of these regions and to be replaced by new deformations. At lower spatial 
frequencies, the regions of importance on the aperture are larger, and hence 
longer times are required for replacement of the deformations. 

To fully specify the time required to assure accuracy of the long-exposure 
model, it is necessary to specify the temporal power spectral densities 
associated with all frequency components of interest in an image. As a 
general rule of thumb, by no means universally applicable, it is often stated 
that exposure times substantially in excess of 0.01 second are required for 
accuracy of the long-exposure assumption. 

In practice there arise many situations in which the long-exposure model 
is not accurate. For example, a motion picture camera mounted on an 
astronomical telescope can be run with frame exposure times less than 0.01 s, 
provided the brightness of the object under study is sufficiently great. 

The PSFs and OTFs encountered for short-exposure images are markedly 
different from their long-exposure counterparts. As illustrated in Fig. 8-27 
(cf. Fig. 8-12), the PSF of a long-exposure image is a smooth and broad 
function, and the corresponding OTF is narrow and smooth. On the other 
hand, the PSF for a short-exposure image is a jagged and narrower function, 
whereas the corresponding OTF has significant fluctuations of both magni- 
tude and phase as a function of spatial frequency. 

One of the most important facts about short-exposure images is that their 
quality is unaffected by the tilt component of the wavefront distortions. A 
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PSF OTF 

?SF MTF 

(b) 
Figure 8-27. Typical point-spread functions and transfer functions for long- and short-expo- 
sure images: ( a )  long exposure; ( b )  short exposure. 

tilt of the incident wavefront simply shifts the center of the image and 
affects the image in no other way. Provided the goal of the imaging 
experiment is to determine the structure of the object brightness distribu- 
tion, but not its absolute position, tilt is of no consequence. On the other 
hand, for long-exposure images, changing tilt of the incident wavefront 
serves to broaden the PSF and narrow the OTF. 

Since the structure of the OTF is statistical in nature for the short- 
exposure case, the best we can hope to do in mathematically describing it is 
to calculate some of its average properties. In Section 8.7.2 we find the 
expected or average OTF for short-exposure imagery, with the average over 
an ensemble of realizations of the atmospheric inhomogeneities. 
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8.7.2 Calculation of the Average Short-Exposure OTF 

Our calculation closely follows that of Fried (Ref. 8-29). The optical transfer 
function of a single short-exposure image can be written as in Eq. (8.5-2), 
which we repeat here: 

Averages of the numerator and denominator of this expression individually 
yielded our earlier expression for the long-exposure OTF. In t h s  case we 
wish to take into account the fact that wavefront tilt has no effect on image 
quality in the short-exposure case. Thus our goal is to remove wavefront tilt 
from the phases S ,  and S, of Eq. (8.7-1) and then perform averaging. 

The phase at point (x ,  y )  within the collecting aperture of the imaging 
optics is represented by S(x,  y). Our goal is to find the least-squares fit of a 
planar wavefront to S(x,  y )  and to subtract the phase associated with that 
planar wavefront, leaving a residual phase distribution that is free from tilt. 

The linear component of S(x,  y )  is taken to be of the form a,x + a,y. 
We shall choose a, and a,  for any gven S(x,  y )  in such a way as to 
minimize the squared error, 

where the optical system has been assumed to be aberration-free and 
unapodized. Before undertaking the minimization, we simplify the expres- 
sion for A somewhat. We have 
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For a system with a circular, clear aperture of diameter Do, we can easily 
show that the last term can be reduced to n ~ t ( a i  + a:)/64. Now we find 
the partial derivatives aA/aa, and aA/aa, and set them to zero. Inter- 
changing orders of integration and differentiation, and solving for a, and 
a ,, we obtain 

00 

as the least-squares solution for a, and a ,. The fact that a x  and a, are 
linear functionals of S(x, y)  implies that, for Gaussian-distributed phase S, 
both tilt coefficients are also Gaussian random variables. 

If we subtract the wavefront tilt from the phase distribution across the 
imaging aperture, the numerator of expression (8.7-1) for the OTF can be 
written 

- 
where (x,, y , ) = ( x , y ) , ( x , , y , ) = ( x - X f v , , y  - hfv,). We must now 
average this expression over an ensemble of independent realizations of the 
atmospheric perturbations. In performing the required averages, it is helpful 
to note that, since S, a,, and a, are all Gaussian random variables, so are 
( S ,  - axx, - ~YY,)  and (S2 - axx2 - ~YY,). 

The following assumptions are now adopted in order to simplify the 
evaluation of the averages involved: 

(1) At any point (x, y ), S(x, y ) - a ,x - a, y is assumed to be uncor- 
related with (and, therefore, by virtue of the Gaussian statistics in- 
volved, independent of) a, and a ,. Equivalently, we are assuming that 
excursions of S about the tilt plane are not influenced by what tilt may 
be present. Detailed analysis shows (Ref. 8-31) that this is approxi- 
mately, but not exactly, true. 

(2) The difference of the residual phases after tilt removal (S, - a,x, - 
QYY,) - (S, - axx2 - ayy2) is independent of the sum of the log 
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amplitudes (x ,  + x 2 ) .  Since we previously established [see Eq. (8.5-lo)] 
that (xl + x, )  and (S,  - S,) are independent, here we are effectively 
assuming that E [(a ,X f v, + a f v ,)(x, + x,)] = 0. Again, thrs must 
be regarded as an approximation. 

If we now take the expected value of the numerator of the OTF, the 
orders of expectation and integration can be interchanged, leaving us with 
the evaluation of the average of the exponential in Eq. (8.7-5). Using 
assumption 2, above, we find with the help of Eqs. (8.5-19) and (8.5-14) that 

Further simplification of t h s  expression can be accomplished by use of the 
identity 

Assumption 1 above, plus the reasonable assumption that excursions of 
phase about the tilt plane obey a symmetric probability density function. 
imply that the average of the last term is zero, leaving us with the result 

where D = D, + Ds is again the wave structure function. 
At this point, to simplify the results, we explicitly invoke an assumption of 

isotropic turbulence (such an assumption is already implicit in our previous 
assumption 2, above). In addition, we assume that the imaging optics have a 
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circular pupil, allowing us to express the results as a function of radial 
frequency v = ( v i  + v;)'''. The expression for the expected short-exposure 

2 - OTF of the atmosphere takes the form (with 2 = a, = a:) 

The value of the quanity 2 has been calculated by Fried (Ref. 8-32). The 
analysis is rather involved and is not repeated here. Fried finds that 

' X f v  X f v  1/3 
( x f i ) ' Z  - 6 . 8 8 0 ( ~ )  (%) , (8.7-10) 

where a takes on the value unity for "near-field" propagation (valid when 
only phase effects are important), and value i for "far field" propagation 
(valid when amplitude and phase effects are equally important). The symbol 
ro again represents the atmospheric coherence diameter, defined in Section 
8.6.3, and Do is again the diameter of the entrance pupil of the imaging 
optics. 

When the preceding expressions are incorporated in Eq. (8.7-9), together 
with the expression found in earlier sections for the wave structure function, 
the following form is obtained for the short-exposure OTF: 

Note that when the parameter a is set equal to zero, we obtain an 
expression equal to the long-exposure OTF, 

If the expression for zs is rewritten in terms of frequency measured 
in cycles per radian of arc, the corresponding result becomes 

which is perhaps the most convenient form for expressing the results of our 
analysis. 
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Several comments about the preceding result are in order. First, we note 
that in the short exposure case the average OTF associated with the 
atmosphere depends on the diameter Do of the imaging optics, whereas in 
the long-exposure case the corresponding result is independent of the 
parameters of the imaging optics. The reason for the dependence on Q0 in 
the short-exposure case lies with the dependence of the mean-squared tilt 
on the reciprocal of D;/', as seen in Eq. (8.7-10). Thus the larger the 
aperture, the smaller the tilt component of wavefront distortion. 

The difference between the long- and short-exposure results lies in the 
effect of the term [l - a(Q/Q,)1/3]. In the long-exposure case a = 0, and 
t h s  term reduces to unity. In the short-exposure case, a nonzero value for a 
results in a boost of the OTF, particularly as approaches a,. The different 
values for a in the near-field and far-field cases are simply a reflection of the 
fact that it is the tilt component of phase that has no effect on the OTF, and 
phase plays a less important role in the far-field case than in the near-field 
case. In the near-field case, all of the blur comes from phase effects, whereas 
in the far-field case, only half of the blur arises from phase perturbations, 
with the other half arising from amplitude effects. 

Figure 8-28 shows plots of the combined system-atmosphere average 
OTFs for a telescope having a 1-m circular mirror and for an ro of 10 

" 
-2 -1 0 

R log- no 
Figure 8-28. Combined system-atmosphere average optical transfer functions. 
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Figure 8-29. Normalized resolution 9/9,, versus normalized diameter of the imaging 
optics for both short- and long-exposure images. (Courtesy of D. L. Fried and the Optical 
Society of America. From D. L. Fried, J. Opt. Soc. Am. ,  Vol. 56, p. 1383, 1966.) 

centimeters. The wavelength assumed is 0.5 pm. The curve labeled a = 0 is 
the long-exposure OTF, whereas those labeled a = 1/2 and 1 are for the 
short-exposure case. Also shown on the same graph is the diffraction-limited 
OTF of a system that has circular optics with a diameter of 1 meter. 

Following the development of Section 8.6.3, we can again define the 
resolution of the system as the volume under the average OTF [Eq. (8.6-38)], 
this time using the short-exposure atmospheric OTF. Fried (Ref. 8-29) has 
numerically integrated the necessary equations, obtaining the results shown 
in Fig. 8-29. The limiting resolution for Do >> ro is seen to be the same for 
all cases, because the tilt component of the wavefront distortions across the 
aperture diminishes as Do grows. Substantially higher resolution can be 
achieved in the short-exposure case when Do is nearly equal to r,, particu- 
larly in the case of near-field propagation conditions. 

8.8 STELLAR SPECKLE INTERFEROMETRY 

In previous sections we studied the limitations to image quality caused by 
the presence of atmospheric inhomogeneities when long- and short-exposure 
images are gathered by an optical system. The effect of the atmosphere has 
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been described by transfer functions that reduce the spatial frequency 
response at high frequencies, often limiting resolution to far smaller values 
than might be achieved by the same system operating in the absence of the 
atmosphere. Our attention is now turned to a novel and important data 
gathering and processing technique that allows information to be extracted 
from a series of short-exposure images at spatial frequencies far hgher than 
would be passed by the average long- and short-exposure transfer functions 
studied earlier. The imaging t e c h q u e  of interest was invented by A. 
Labeyrie (Ref. 8-33) and was first demonstrated in astronomical observa- 
tions by Gezari et al. (8-34). 

In the section to follow, we discuss the basic principle of the method and 
the data processing operations involved. In Section 8.8.2 we present a 
heuristic analysis of the method. A more complete and rigorous analysis is 
outlined in Section 8.8.3, where the results of such an analysis are also 
presented. Finally, Section 8.8.4 discusses several extensions and alternate 
approaches. 

8.8.1 Principle of the Method 

We once more consider the different characters of the long- and short- 
exposure PSFs illustrated in Figs. 8-12 and 8-27. The short-exposure image 
of a point source is found to have a great deal of hgh-frequency structure, 
often referred to as "speckle," whereas the long-exposure image of a point is 
relatively smooth and regular. This fact suggests that the short-exposure 
OTF has greater hgh frequency response than the long-exposure OTF, as 
indeed is the case illustrated in that same figure. 

An important distinction should be made between the OTF associated 
with a single short-exposure image and the expected or average OTF 
calculated in Section 8.7. The ensemble-averaging operation that leads to 
the latter OTF is itself an operation that suppresses high-frequency re- 
sponse, for at high frequencies the complex values of the OTF may vary 
wildly in both amplitude and phase from picture to picture. If we were to 
gather a large set of short-exposure photographs and center them all in such 
a way as to remove the effects of pure image shift from frame to frame, a 
sum of these aligned images would yield an image that closely agrees with 
the predictions of our average short-exposure OTF theory given in the 
previous section. 

Given a set of short-exposure images, the procedure described earlier for 
combining them is not the only procedure that one can imagine. In fact, the 
method invented by Labeyrie rests on an alternate approach to extraction of 
information from such images. This alternate approach is motivated by the 
observation that, whereas the ensemble average of the short-exposure OTF 
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falls off comparatively rapidly, the ensemble average of the squared mod- 
ulus of the OTF has significant value out to much higher frequencies. The 
origin of this property is explained shortly, but first we describe Labeyrie's 
procedure in detail. 

Assume that an astronomical telescope is used to collect a large number 
K of short-exposure photographs of an object of interest. A narrowband 
filter should be used in order to prevent blurring of the fine speckle-like 
image structure due to loss of temporal coherence of the light. This 
collection of images is now subjected to processing (by either digital or 
coherent optical means) of the following kind. Let the squared magnitude of 
the Fourier transform be calculated for each image. Thus if I/')(u, u) 
represents the intensity associated with the k th image, we calculate its 
two-dimensional Fourier transform, given by 

This image spectrum is, of course, related to the spectrum of the object 
(which does not change from frame to frame) and the OTF (which does 
change from frame to frame) through the usual product 

where 3, is the Fourier transform of the object, whereas Z(k)  is the OTF 
associated with the kth image. Now let the spectrum of each image be 
subjected to the squared modulus operation, generating a series of what we 
have called "energy spectra" in Chapter 3, 

Finally we average these energy spectra by adding them together and 
dividing by the total number of images K. We assume that the number of 
images is sufficiently large that the finite average thus calculated is essen- 
tially the same as the ensemble average of the same quantity. Thus the 
procedure described has produced an estimate of the average energy spec- 
trum of the image, which, in turn, depends on the average squared modulus 
of the short exposure OTF, or the average squared modulation transfer 
function (MTF), 
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The procedure just described has been carried out by Labeyrie and others 
using a coherent optical system of the type illustrated in Fig. 8-30. The 
images reside on a film strip and are illuminated by coherent light from a 
laser. The film strip is drawn through the optical system, which produces at 
the output plane (the focal plane of the lens) a time-integrated intensity 
distribution that is the average of the energy spectra of the individual 
photographs. The fact that the energy spectra are averaged implies that the 
positions of the images within their frames is unimportant, for shifts of the 
images result in linear phase shifts in the Fourier domain, and the processing 
system is insensitive to spectral phase distributions. Digital systems can also 
be used to perform the same operation, although the computational burden 
generally restricts their use to situations in whch photon-counting detectors 
are used and the arrival rate of photons is rather small. 

From Eq. (8.8-4) it is clear that if we were able to predict or measure the 
average squared MTF of the imaging system, and if that averaged quantity 
retained significant value out to frequencies hlgher than those present in the 
average short-exposure OTF, speckle interferometry would offer the possi- 
bility of extracting object information not retrievable from a single image or 

F~lm strip 

lntegrattng - J detector 

- 
Laser 

U 

-f- 

Figure 8-30. Coherent optical processing system used for averaging energy spectra of a set of 
short-exposure photographs. 
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from an image obtained by simply combining a number of centered 
short-exposure images. 

However, it is also clear that the retrievable information about the object 
will in general not be complete, for it is the squared modulus of the object 
spectrum that can be obtained, not the complex spectrum itself. As in the 
case of the Michelson stellar interferometer working in the presence of 
atmospheric turbulence, as well as the intensity interferometer described in 
Section 6.3, no spectral phase information is available, and complete images 
of the object cannot be obtained in general. 

Nonetheless, the less complete information can be exceedingly useful in 
many cases. The application to which Labeyrie first applied his technique 
was the measurement of the separation of binary stars. Of particular interest 
are those pairs of stars whose components are too dose together to be 
resolved by a telescope in the presence of atmospheric degradations but are 
potentially resolvable by the diffraction-limited telescope aperture. If for 
convenience we consider the stars themselves to be ideal point sources, we 
can represent their brightness distribution by the in tensity function 

where x and y are to be interpreted as angular variables, Ax represents the 
angular separation of the components, and the possibility of different 
brightnesses for the two components has been retained. The squared mod- 
ulus of the Fourier transform of this intensity distribution takes the form 

Note in particular the sinusoidal "fringe" in this distribution, which will 
appear as a true optical fringe in the average intensity distribution at the 
output of the optical processing system shown in Fig, 8-30. The spatial 
frequency of this fringe identifies uniquely the separation Ax of the two 
components. To obtain an accurate measurement of the period of this 
fringe, we require that the average squared MTF of the imaging system have 
a component that has significant value out to frequencies much greater than 
a fringe period. Of course, our ability to recover this information depends 
entirely on the signal-to-noise ratio associated with the fringe, a subject we 
defer to Chapter 9. Figure 8-31 shows an experimentally recorded fringe 
pattern obtained in the manner described above. 

We have asserted in several places that the average of the squared MTF 
will have significant value out to frequencies far higher than do the average 
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Figure 8-31. Average energy spectrum produced from 120 short-exposure images of the 
double star 9 Puppis, after compensation for the speckle interferometry transfer function. 
Photograph supplied courtesy of Gerd Weigelt and Gerhard Baier, University of Erlangen. 

long- or short-exposure OTFs. We turn now to a rather intuitive proof that 
this assertion is correct, following which we outline a more exact analysis. 

8.8.2 Heuristic Analysis of the Method 

The reason why the average of the squared short-exposure MTF of an 
optical system working within the Earth's atmosphere retains significant 
values out to relatively high frequencies can be understood with the help of 
intuitive reasoning and a minimum of mathematics. We wish to develop 
some understanding of the second-order statistics of the MTF. In accom- 
plishing this goal, the interferometric view of the image-forming process is 
quite helpful. 

Recall that, for a single short-exposure image, a particular spatial 
frequency component, having vector frequency Si, arises in the image plane 
by interference - of light from points on the exit pupil separated by vector 
spacing s' = h fZ. As we slide such a vector spacing around the pupil, we 
gather a multitude of "elementary" contributions to this fringe, and the 
resulting contrast of this frequency component depends on the relative 
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phases with which these contributions add, as well as on the amplitudes of 
the component fringes. See Section 7.4 for a more detailed discussion of this 
particular point of view. 

The effects of the atmospheric distortions are to change the intensity and 
phase of the light incident on various parts of the pupil and thereby to 
change both the contrasts and the phases of the elementary fringes that 
compose any single frequency component of intensity. At low spatial 
frequencies, we are dealing with spacings that are very small; if the spacing 
of concern is smaller than the coherence diameter ro of the atmosphere, the 
log amplitudes and phase differences of the light incident at points a 
distance s apart are very small, with the result that such a frequency 
component is not affected by the presence of the atmospheric distortions. 
Such spatial frequencies lie within the low-frequency, high-response portion 
of the average short-exposure OTF. 

If we now consider a spatial frequency sufficiently high that the corre- 
sponding spacing on the pupil is greater than r, but still considerably lower 
than the maximum spacing embraced by the pupil, the various elementary 
fringes will suffer both phase and contrast perturbations and will not 
perfectly reinforce one another when they are added together in the image 
plane. In fact, if we represent each sinusoidal fringe by a complex phasor, 
the addition of the various elementary fringes can be viewed as a form of 
random walk in the complex plane (see Fig. 2-10). The resultant phasor for 
any particular frequency has, after proper normalization, a complex value 
equal to the value of the OTF of the single short-exposure image under 
consideration at the particular frequency of interest. 

Having built a random walk model for the "midrange" spatial frequency 
components, we can draw some conclusions about the statistical properties 
of the short-exposure OTF. As an approximation, let the exit pupil of the 
imaging system be imagined to consist of a multitude of independent 
correlation cells, each of diameter r,. The number of such cells present in a 
pupiI of diameter Do is simply 

However, a particular spatial frequency F does not receive elementary fringe 
contributions from .the entire exit pupil. Rather, contributions come only 
from the shaded regions of the exit pupil shown in Fig. 8-26. We represent 
the area of one of these shaded regions by the symbol a(3). Now we recall 
that a(3) is precisely equal to the numerator of the mathematical expression 
[Eq. (7.2-48)] for the diffraction-limited OTF at this particular spatial 
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frequency. Hence the number of independent correlation cells contributing 
to this particular spatial frequency of the OTF is 

where So is the diffraction-limited OTF of the optical system and the pupil 
has again been assumed circular with diameter Do. 

Knowing the number of independent phasors contributing to each spatial 
frequency component, we can now use our knowledge of the properties of 
random walks to draw some conclusions regarding the statistical properties 
of the OTF. First we note that, in the midfrequency range, where the 
number of contributing independent phasors is large, according to the 
arguments given in Section 2.9.2, the OTF must (to a good approximation) 
obey complex circular Gaussian statistics. As a corollary, the MTF must 
obey Rayleigh statistics and the square of the MTF must obey negative 
exponential statistics. These are powerful conclusions, but we emphasize 
that they are strictly true only in the midfrequency range, where the OTF 
has many independent randomly phased contributions. 

Here we are particularly concerned about the mean-squared value of the 
MTF, for it is this quantity that plays a critical role in speckle interferome- 
try [see Eq. (8.8-4)j. For the purpose of this simple argument, we suppose 
that the lengths of all phasors contributing to the random walk are identical 
and equal to /?, which, in turn, we assume to be proportional to r:, 

From Section 2.9, with the removal of the normalizing factor fi in the 
definitions of the real and imaginary parts of the resultant, we see that 
the second moments of the real and imaginary parts of the numerator of the 
MTF are 

Using Eq. (8.8-9), we express the expected value of the square of the 
numerator of the MTF by 
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In accord with the assumptions used in the earlier calculations of the long- 
and short-exposure cases, we treat the denominator of the OTF as ap- 
proximately constant. Note that when the vector spacing on the aperture 
approaches zero, all phasors in the sum are fully correlated; that is, all have 
zero phase. As a consequence, the squared length of the resultant is just the 
square of the sum of the lengths of the individual phasors. Following the 
assumption of Eq. (8.8-9), we write 

It follows that in the rnidfrequency region under consideration, the second 
moment of the MTF is equal to 

Note in particular that in this midfrequency region, the second moment of 
interest is directly proportional to the MTF of the diflraction-limited optical 
system, and the proportionality constant is the ratio of the squares of ro and 
Do. Since the diffraction-limited MTF does have significant value in this 
midfrequency region, so can the second moment of the MTF, provided the 
ratio of ro to Do is not too small. 

At frequencies near the upper limit of the diffraction limited OTF, the 
overlap area on the pupil becomes comparatively small, implying that the 
number of independent phasors contributing to the OTF at such frequencies 
is small. Nonetheless, an examination of the arguments in Section 2.9.2 that 
led to the preceding expressions for the mean-square MTF shows that all 
the results we have used in arriving at Eq. (8.8-13) are valid for finite 
numbers of phasors. Although we cannot conclude that the squared MTF 
obeys negative-exponential statistics at such frequencies, we can nonetheless 
use the same expressions used previously for the second moment of the 
MTF. 

Figure 8-32 illustrates the results of our approximate analysis. The 
second moment of the MTF behaves essentially the same as the average 
short-exposure OTF at low frequencies but falls to a value approximately 
equal to ( r , / ~ , ) ~  rather than to zero. At this point the behavior changes, 
and the function falls in proportion to the MTF of the diffraction-limited 
optical system, but with a scaling factor of ( r , / ~ , ) ~ .  

This concludes our heuristic discussion of stellar speckle interferometry. 
We turn next to the outline of a more complete and more accurate analysis. 
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Figure 8-32. General behavior predicted for the mean-squared MTF of the combined optics 
and atmosphere. 

8.8.3 A More Complete Analysis of Stellar Speckle Interferometry 

A more complete analysis of the method described in Section 8.8.2 has been 
performed by Korff (Ref. 8-35). We outline his analysis here, omitting some 
details, which can be found in the reference cited. 

As indicated in the previous section, the performance of the speckle 
interferometry method rests critically on the character of the second mo- 
ment of the MTF of the optical system operating within the Earth's 
atmosphere. The starting point in this more complete analysis is thus an 
evaluation of the second moment I&'($) 1 2. In evaluating this quantity, we 
wish to employ our detailed statistical knowledge concerning the amplitude 
and phase fluctuations introduced by the atmosphere. 

Since the denominator of the MTF has been argued to be approximately 
constant, we can concentrate our attention on the properties of the numera- 
tor, which for the case at hand implies that we wish to find the second 
moment of 

00 - - 
Num = //P(x, y ) ~ * ( x  - h f v ~ ,  Y - hfvv) 

- - 
XU(X, y ) ~ * ( x  - h fv,, y - hfvv) dxdy. (8.8-14) 

The moment in question can be written directly as 
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where the vectors are defined by r' - ( x ,  y ) ,  7 - (x', y'), s' - (X f v,, f v,) 
and the orders of averaging and integration have been interchanged. Expres- 
sion of the field U in terms of a log amplitude x and a phase S, [cf. Eq. 
(8.5-I)] yields an equivalent expression 

where 

The reasoning underlying Eq. (8.5-10) can be extended to the case 
involving eight variables, rather than four, leading to the conclusion that the 
averages over the amplitude and phase terms can be computed individually 
(i.e., the sum of the log-amplitude terms is statistically independent of the 
sum of the phase terms). Recall that to arrive at this conclusion it was 
necessary to assume homogeneous and isotropic turbulence. Recognizing 
that both the sum of the log-amplitude terms and the sum of the phase 
terms obey Gaussian statistics, we can show [with the help of Eq. (8.5-14) 
and some algebra] that 

The product of A, and As can then be written in terms of the wave 



452 IMAGING THROUGH RANDOMLY INHOMOGENEOUS MEDIA 

structure function as 

where 

yielding the following expression for the numerator of the mean-squared 
MTF: 

x exp[4~,(0)] ~ ( 7 ,  7 ,  S) dx dy dx'dy'. (8.8-21) 

The mean-squared denominator of the OTF is simply equal to the mean- 
squared numerator evaluated at zero spatial frequency. Thus we have 

~ e n o r n ~  = /~~IP(~)~~~P(J')J~~X~[~C~(O)] Q(7,r", 0) dxdydx'dy'.  
- 00 

The mean-squared MTF can now be written as 

It remains to evaluate the preceding expression when the turbulence is 
assumed to obey Kolmogorov statistics. In this case the wave structure 
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function takes the form 

The phase structure function D s ( r )  depends on whether the propagation 
conditions are of the near-field or the far-field type, 

D ( r ) (near field) 
= ( to(.) (far field). 

Assuming near-field conditions, the expression for Q(v', ?', s') reduces to 

Changing variables of integration to 

A i =  7 -  7 - ( A x ,  A Y )  

we obtain the following expression for the mean-squared MTF: 

where L(A3, s') represents the overlap integral 

- 
2 i ) p (  6 ; A F )  dp p y .  (8.8-29) 
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Korff (Ref. 8-35) has evaluated the overlap integral L (AT, ?) for the case 
of a diffraction-limited system with a circular aperture and has evaluated the 
remaining integrals by numerical integration. His results are plotted in Fig. 
8-33. A value of ro equal to 13 cm is assumed in this figure, and results are 
shown for telescope optics with diameters Do equal to 15 centimeters, 1.5 
meters, and 5 meters, corresponding to ratios Do/ro equal to 1.17, 11.7, and 
38.4. Also shown on the same curve are the average long-exposure and 
average short-exposure OTFs for the same cases. 

A comparison of Fig. 8-32 resulting from our approximate analysis and 
Fig. 8-33 shows that the conclusions of the earlier analysis are borne out by 

Figure 8-33. Theoretical prediction of the behavior of the mean-squared MTF for the 
- - 

- )&'12. (Courtesy of D. combined optics and atmosphere. --- = 1 JfL12, --- = 1 sSl2, - - 
Korff and the Optical Society of America. From Ref. 8-35.) 
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the more exact calculation. At low frequencies the mean-squared MTF 
follows closely the shape of the average short-exposure OTF. There occurs a 
change of behavior when the mean-square MTF has fallen to a value of 
approximately ( ~ , / r , ) * ,  at which time the shapes of the curves begin to 
follow an attenuated version of the diffraction-limited OTF of the optical 
system. It is precisely in this midfrequency region that the most useful 
information is derived from the speckle interferometry process. 

8.8.4 Extensions 

Our discussion of speckle interferometry would be incomplete if we did not 
refer the reader to some additional related developments. We broaden the 
discussion to include a number of related methods for extracting informa- 
tion from a series of short-exposure photographs taken in the presence of 
atmospheric distortions. 

In 1971 McGlamery (Ref. 8-36) attempted to extract an image from a 
series of turbulence-degraded pictures using a certain averagng technique. 
His reasoning was that, if the pictures in the series of photographs were 
Fourier transformed (in this case by digital means) and the statistics of each 
frequency component were considered across the ensemble of pictures, the 
mean amplitudes and mean phases on a component-by-component basis 
ought to yield information about the amplitudes and phases of the undis- 
torted object spectrum. Although the technique was sound in principle, its 
performance did not meet the expectations, as a result of the practical 
difficulties associated with the tracking of phases through multiples of 277 
radians. That is, when the average phase of a given frequency component is 
calculated, it is necessary to perform the averaging on the "unwrapped" 
phase, with modulo 27r jumps removed. This proved extremely difficult, 
especially in the presence of typical amounts of noise. 

There has been interest for some years in using the interferometric aspect 
of image formation to extract images from short-exposure recordings. 
Rhodes and Goodman (Ref. 8-37), following earlier leads by Jennison (Ref. 
8-38) and Rogstad (Ref. 8-39), devised a scheme for breaking the telescope 
pupil up in such a way as to realize a series of triple interferometers 
simultaneously. The information extracted from the triple interferometers 
allows in principle the formation of images that are free from the effects of 
atmospherically induced phase distortions. This idea was tested in simula- 
tions by Brown (Ref. 8-40) for possible application to solar astronomy. 

An important development occurred in 1974, when Knox and Thompson 
proposed a modification of Labeyrie's speckle interferometry technique that 
would allow full images (rather than simply autocorrelations of the object 
brightness distribution) to be recovered from a series of short-exposure 
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images (Refs. 8-41 and 8-42). Their technique utilizes the fact that, over the 
image ensemble, correlations exist in the atmospherically induced phase 
perturbations of the Fourier components at closely spaced frequencies. Two 
Fourier components spaced by a distance smaller than r,/X f in the Fourier 
plane will have hghly correlated atmosphericalIy induced phase errors, 
whereas their phase components arising from the object may be quite 
different. If the phases of such components are subtracted, the atmospheri- 
cally induced errors cancel, leaving a relatively error-free measurement of 
the phase difference between adjacent object frequency components. From a 
set of phase differences measured across the entire image spectrum, it is 
possible to determine a corresponding set of phases. With appropriate 
averaging of the modulus information and removal of its effects, that 
portion of the complex spectrum of the object lying within the OTF of the 
optics can be extracted, yielding a relatively distortion free image. This 
method has been applied by Stachnik et al. (Ref. 8-43) to obtain images of 
solar features. 

We should also mention work of Worden et al. (Ref. 8-44), who made a 
somewhat different use of atmospherically induced speckle to extract images 
of astronomical objects. The speckle pattern observed in the presence of a 
single short-exposure image of a point source is equivalently the PSF of the 
imaging system at the particular instant when the picture was recorded. i f  
this speckle pattern has one or a few widely separated peaks that are 
substantially higher than the surrounding intensity levels, convolution of 
that PSF with an intensity distribution associated with an object of small 
angular extent can yield a number of separated images of that object, one 
from each speckle peak, superimposed on a background. By shifting the 
image to line these subimages up, an image of the original object, blurred by 
an " average" speckle, is obtained. If the same procedure is performed on an 
image of a point source, a distribution of intensity associated with the 
average speckle is obtained. A deconvolution procedure is then used to 
remove the effect of the average speckle, leaving an improved image of the 
more extended object. 

Finally it should be pointed out that in recent years an enormous amount 
of work has gone into the theory and practice of "adaptive optics" for 
obtaining diffraction-limited images in the presence of atmospheric turbu- 
lence. The block diagram of such a system is shown in Fig. 8-34. The 
wavefront sensor is an instrument that extracts from the arriving wave 
information regarding the atmospherically induced wavefront deformations 
suffered during propagation to the optical system. The wavefront computer 
combines these measurements in such a way as to yield an estimate of 
atmospherically induced wavefront errors across the pupil of the imaging 
optics. Finally, the deformable mirror is driven in real time to compensate 
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Figure 8-34. Block diagram of adaptive optic imaging system. 

Telescope 

for the estimated distortions, yielding a diffraction-limited image at the 
image sensor. For an excellent review of this field, the reader can consult 
Ref. 8-24. In addition, a feature issue of the Journal of the Optical Society of 
America was devoted entirely to this subject area (Ref. 8-45). 

8.9 GENERALITY OF THE THEORETICAL RESULTS 

Tc 

The vast majority of the theoretical results derived and presented here have 
been arrived at with the help of the Rytov approximation. It is natural to 
inquire as to their generality, since the Rytov solution is known to be 
limited to the case of weak fluctuations. It would be a mistake, however, to 
jump to the conclusion that results derived on the basis of a weak-fluctua- 
tion approximation must necessarily be invalid in the strong-fluctuation 
regime, as we discuss in what follows. 

There have been numerous debates in the literature regarding the range 
of validity of the Rytov solution, based primarily on examinations of the 
magnitude of the terms that have been neglected (see, e.g., Refs. 8-46 and 
8-47). Such a criterion leads one to the conclusion that the situations in 
which the Rytov solution is accurate are extremely Limited. The assumptions 
of the weak-fluctuation theory are generally agreed to hold only in situa- 
tions for which the log-amplitude variance is smaller than about 0.5. For a 
Kolmogorov spectrum of the turbulence, this criterion becomes (Ref. 8-4, 
Vol. 2, p. 445) 
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When this condition is violated, the propagation is said to be occurring in 
the strong fluctuation regime. Nonetheless, there exist experimental results 
(e.g., Refs. 8-48 and 8-49) indicating that at least some of the predictions of 
the Rytov theory are correct in situations where it might have been argued 
that they should be substantially in error. 

The understanding of this difficult problem was gradually enhanced after 
the discovery of a saturation phenomenon observed to occur during optical 
propagation over long paths (Ref. 8-50). Measurements of the variance of 
the intensity as a function of pathlength were observed to initially increase 
in accord with the weak-fluctuation theory but eventually to saturate at a 
value of unity for the ratio of the variance to the squared mean of the 
intensity. 

A variety of theoretical methods have been developed to deal with 
propagation in the strong-fluctuation regime. These include the so-called 
"diagram method" (Ref. 8-51), the integral equation method (Ref. 8-52), the 
extended Huygens-Fresnel principle (Ref. 8-53), and the parabolic equation 
or moment equation method (Ref. 8-54). These various approaches are 
summarized in a review article by Strohbehn (Ref. 8-21). 

The results of these mathematical analyses yield a remarkable and 
important result. The predictions of all methods for finding the mutual 
coherence function of a propagating wave yield identically the same result, 
namely, the result we obtained from the Rytov approximation. Thus our 
predictions for the optical transfer functions of imaging systems operating 
within the Earth's atmosphere can be used with confidence for both weak 
and strong fluctuations. 

The predictions of the strong-fluctuation theories do differ markedly 
from those of the weak-fluctuation theory when higher-order coherence 
functions are calculated. Note in particular that the variance of the intensity 
involves fourth-order moments of the wave amplitude, and strong-fluctua- 
tion analysis is needed in order to explain the saturation phenomenon 
referred to above. In addition, it should be noted that the mean-squared 
MTF, which is of importance in stellar speckle interferometry (Section 8.9, 
involves fourth-order moments as well, and the range of validity of the 
solutions presented there is not well established. It seems likely, however, 
that the reasoning that led to the approximate solution in Section 8.8.2 will 
remain valid as long as the phase fluctuations are of the order of 277 radians 
or larger; therefore, the predictions of that theory in the midfrequency range 
should remain valid in the strong-fluctuation regime. 

In conclusion, for the great majority of imaging problems, the predic- 
tions of weak-fluctuation and strong-fluctuation theories agree. Although 
the Rytov solution is strictly limited to small perturbations for the mathe- 
natics to be entirely correct, it is more physically oriented than the 
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strong-fluctuation approaches and fortunately yields correct results in virtu- 
ally all cases of interest to us here. 
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ADDITIONAL READING 

F. Roddier, "The Effects of Atmospheric Turbulence in Optical Astronomy," Progress in 
Optics, Vol. XIX (E. Wolf, editor), North-Holland Publishing Company, Amsterdam 
(1981). 

PROBLEMS 

8-1 Consider a random screen placed in the geometry of Fig. 8-1, but 
with an amplitude transmittance t , ( x ,  y ;  c ,  q )  that depends on which 
object point (t ,  77) is considered. Assuming that the statistical auto- 
correlation function E [ t , ( x ,  y ;  [, q) t : (x  - x,, y  - yo; [ ,  q ) ]  is inde- 
pendent of ( 5 ,  Q), find the average OTF of the system. 

8-2 A random screen with amplitude transmittance t,(x, y) is il- 
luminated in the geometry shown in Fig. 8-2p. The amplitude trans- 
mittance of the screen is t , ( x ,  y ) ,  and its spatial autocorrelation 
function (assumed spatially stationary) is r , ( A x ,  A y  ). Assuming unit 
amplitude quasimonochromatic illumination of the screen and ne- 
glecting the finite extent of the screen, find the autocorrelation 
function of the fields in a plane at distance 2, from the screen. 
Hint: The spatial transfer function for fields propagating through free 
space is (Ref. 5-24, p. 54) 

1 
- A  - A ~ ]  for 4 

J P ( v , ,  v.) = 

0  otherwise. 

b-f - - - L t . C - z 1 - 4 - z 2  4 
Figure 8-2p .  

8-3 Prove that for a random absorbing screen, and for frequencies 
corresponding to spacings sufficiently large that y, = 0 ,  the value of 
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the average OTF of the screen can never be less than t o ,  the average 
value of the amplitude transmittance of the screen. 
Hint: Remember that 0 I t ,  s 1. 

8-4 Find the average OTF and the average PSF of a random checker- 
board absorbing screen when the amplitude transmittance t ,  is 
uniformly distributed between zero and unity. 

8-5 Show that, for a stationary Gaussian phase screen, with the phase 
having a circularly symmetric, Gaussian-shaped autocorrelation func- 
tion [Eq. (8.3-17)], in the limit of large phase variance the l / e  
frequency of the average OTF is given by Eq. (8.3-19); thus, 

8-6 For Problem 8-5, show that the l / e  frequency of the average OTF is 
in fact independent of the average wavelength X. 

8-7 Consider a random-phase screen in which the phase +(x, y )  is given 
by 

where 0 is a random variable, uniformly distributed on (-n,  n). 
Find the average OTF associated with such a screen. 

8-8 The intensity I = Ioexp(2x) of a plane wave after propagation through 
the turbulent atmosphere has mean f and standard deviation a,. 
Assuming that there is no loss of energy during propagation, find an 
expression for a,/f in terms of a;. What is the possible range of a,// 
as a: ranges from 0 to oo? 

8-9 A set of experimental measurements performed with the use of an 
astronomical telescope shows that the long-exposure OTF drops to 
value l /e  at an angular frequency of 80 cycles per milliradian under 
typical conditions. The measurements were made with light of mean 
wavelength 0.550 pm. 

(a) Find the value of /FC:(~) d l  looking up through the atmo- 
sphere. 
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(b) Imagine the atmosphere to be a uniformly turbulent medium 
with C: = m - 1  independent of height. What is the 
effective thickness of the atmosphere? 

8-10 Consider a refractive index fluctuation n , ( r )  that may be regarded as 
statistically homogeneous. 

(a) Show that the two-dimensional power spectral density F, of n ,  
in a plane of fixed z is related to the three-dimensional spectral 
density @, through 

(b) Show that the two-dimensional cross-spectral density 
Fn( K X, K y; Az) of the fluctuations of n, in two transverse planes 
separated by Az is related to the three-dimensional power 
spectral density by 

8-11 Two monochromatic, equal-intensity point sources are separated by 
distance s in a plane P,. At distance z ,  from this plane there exists a 
thin, statistically homogeneous, Gaussian phase screen having phase 
variance 4 and normalized autocorrelation function y,. The struc- 
ture of the screen is changing with time, but its statistics are ergodic. 
At a distance 2, behind the screen we place an observing screen on 
which fringes can be seen. Find the long-time-average fringe visibility 
on the observing screen using the following assumptions: 

(a) Spherical waves can be represented by their paraxial approxima- 
tions. 

(b) The rays are delayed but not appreciably bent by passage 
through the screen, and diffraction effects can be ignored. 

(c) The finite size of the screen can be ignored. 

(d) Temporal coherence effects cannot be neglected. 
Express the observed fringe visibility as a function of all rele- 
vant parameters. 

Comment: You are examining the possibility of recording holograms 
through a time-varying distorting medium. 
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8-12 Find the filter function that relates the two-dimensional cross-spectral 
density of S and x to the three-dimensional spectral density a, of 
the refractive index fluctuations. 

8-13 The purpose of this problem is to gain some insight into the relation- 
ship between the Born approximation and the Rytov approximation. 

(a) Show that for the case of plane wave propagation, the Born 
approximation yields exactly the same expression for the ad- 
ditive field perturbation Ul as the Rytov approximation yields 
for the exponent of the multiplicative field perturbation, 
aside from a constant multiplier. 

(b) On the basis of the above observation, find filter functions that 
relate the two-dimensional power spectral densities of compo- 
nents of U, that are in phase and in quadrature with U, to the 
three-dimensional power spectral density Qn of the refractive 
index fluctuations. 

(c) Assess the validity of the assertion often made in the literature 
that the Born approximation yields a prediction of Rician 
statistics for the amplitude IU, + U,I of the total field. 



Fundamental Limits in Photoelectric 
Detection of Light 

Light interacts with matter in a fundamentally random or stochastic way. 
As a consequence, any measurement of light will be accompanied by certain 
unavoidable fluctuations. We attribute these fluctuations to quantum effects; 
that is, light can be absorbed only in small discrete energy "packets," or 
quanta (Ref. 9-1). The goal of this chapter is to develop a statistical model 
for such fluctuations and to explore the associated limitations on the 
extraction of in forma tion from optical waves. 

The most fundamental approach to understanding such phenomena 
would be through the theory of quantum electrodynamics (QED). Thus the 
electromagnetic fields would be quantized, and the implications of the basic 
postulates of quantum mechanics would be explored in the context of the 
detection problem. Such an approach is most fundamentaI but is also 
comparatively difficult, for it requires a thorough knowledge of the mathe- 
matics of quantum mechanics and rests very little on physical intuition. 

As a consequence of the obstacles associated with the rigorous approach, 
an alternative formalism has been chosen for this chapter. We shall deal 
with the so-called semiclassical theory of photodetection. Such an approach 
has the benefit of being comparatively simple in terms of the mathematical 
background required, as well as allowing a greater use of physical intuition. 
Fortunately it has been shown (Refs. 9-2, 9-3) that the predictions of the 
semiclassical theory are in complete agreement with the predictions of the 
more rigorous quantum mechanical approach for all detection problems 
involving the photoelectric eflect. Since the vast majority of optical detection 
problems do indeed rest on the photoelectric effect, there is relatively little 
loss of generality by making this assumption at the start. 

There are a number of excellent general references to the semiclassical 
theory of detection that the reader may wish to consult, either for alterna- 
tive explanations or in some cases for more detailed discussions. We 
mention in particular Refs. 9-4 through 9-6. For a discussion of the relative 
merits of the semiclassical and QED treatments, see Ref. 9-7. Those 
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particularly interested in the rigorous QED approach should consult the 
work of R. Glauber (Ref. 9-8). 

9.1 THE SEMICLASSICAL MODEL FOR PHOTOELECTRIC 
DETECTION 

The semiclassical approach provides a highly physical means for describing 
the interaction of light and matter. The distinguishing characteristic of this 
formalism is the fact that electromagnetic fields are treated in a completely 
classical manner until they interact with the atoms of the photosensitive 
material on which they are incident. Thus there is no necessity to deal with 
quantization of the electromagnetic field; only the interaction of the classi- 
cal field and matter is quantized. 

When electromagnetic fields are incident on a photosurface, a complex 
set of events can transpire. The major steps in this process can be identified 
as (1) absorption of a quantum of light energy (i.e., a photon) and the 
transfer of that energy to an excited electron, (2) transport of the excited 
electron to the surface, and finally (3) release of the electron from the 
surface. We shall refer to the release of such an electron from the photo- 
surface as a photoevent. The number K such events occurring in a given 
time interval is referred to as the number of photocounts. 

The semiclassical theory is based on the following three fundamental 
assumptions concerning the statistical properties of photoevents. First, it is 
assumed that the probability of occurrence of a single photoevent from an 
area of the photosurface that is small compared with the coherence area of 
the incident light, in a time period shorter than the coherence time of the 
light (but much longer than the period of the optical vibration), is propor- 
tional to the intensity of the incident wave, the length of the time interval 
itself, and the size of the area in question on the photosurface. Stated 
mathematically, the probability of observing one photoevent in time A t  
from area AA is taken to be 

P ( 1 ;  A t ,  AA)  = a At AA ~ ( x ,  y ;  t ) ,  (9.1-1) 

where a is a proportionality constant and I(x, y; t )  represents the intensity 
of the wave at time t and at coordinates (x, y ) on the photosurface. Second, 
it is assumed that the probability of more than one photoevent occurring in 
such a short time interval and in such a small area is vanishingly small 
compared with the probability of one or zero photoevents. (Thus no 
multiple events are allowed.) Finally, it is assumed that the numbers of 
photoevents occurring in any two nonoverlapping time intervals are statisti- 
cally independent. (The photoemission process has no memory.) 
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The alert reader may recall that these three assumptions are identical to 
those used in Section 3.7.2 in the discussion of Poisson impulse processes 
and were seen there to lead directly to Poisson statistics for the number of 
pulses occurring in a fixed time interval. If each photoevent is represented 
by a unit area Dirac S function in time and space, the resulting random 
process is a space-time Poisson impulse process, with rate equal to the 
intensity of the light times the proportionality constant a. In accord with 
Eq. (3.7-8), therefore, the probability of observing K photoevents in the 
time interval (t, t + r ) can be expressed as 

where, if d represents the illuminated area of the photosurface, the mean 
number of photoevents a is given by 

It is generally convenient to express this result in terms of a quantity we 
refer to as integrated intensity W having the dimensions of energy and 
defined by 

Note that simpler forms for the integrated intensity are possible when the 
intensity incident on the photosurface is constant in time and/or over 
space. Thus when the intensity has constant value I ,  (independent of both 
time and space), the expression for W simplifies to 

whereas when only time variations are allowed, the expression becomes 

When expressed in terms of integrated intensity, the probability of observ- 
ing K photoevents is given as 
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It is possible, and indeed useful, to express the constant a in terms of 
other, better known, physical constants. Since the integrated intensity W is 
in fact the energy incident on the photosurface during the measurement 
time of interest, and since each photon of light carries energy hF, the mean 
number of photoevents in time r can be expressed as 

where h is Planck's constant (6.626196 x joule-s); F is the mean 
optical frequency of the radiation; and q,  called the quantum eficiency, 
represents the average number of photoevents produced by each incident 
photon (q 5 1). We conclude that the proportionality constant a is equiv- 
alently given by 

At this point the initial introduction to the semiclassical theory is 
complete. However, the discussion has implicitly used an important assump- 
tion, namely, that the space-time variations of intensity are entirely de- 
terministic, or equivalently known a priori. Attention is now turned to more 
realistic cases that involve random fluctuations of the classical intensity. 

9.2 EFFECTS OF STOCHASTIC FLUCTUATIONS OF THE 
CLASSICAL INTENSITY 

When light having a deterministic variation of intensity over space and time 
is incident on a photodetector, we have seen that the fluctuations of the 
photocounts obey Poisson statistics. In most problems of real interest, 
however, the light wave incident on the photosurface has stochastic attri- 
butes; that is, it is not possible to predict exactly what the fluctuations of 
the light wave will be. As we shall see, any stochastic fluctuations of the 
classical intensity can influence the statistical properties of the photoevents 
that are observed. For this reason, it is necessary to regard the Poisson 
distribution of Eq. (9.1-7) as a conditional probability distribution; the 
conditioning is based on knowledge of the exact value of the integrated 
intensity W. 

In practice, it is the unconditional probability distribution of the phcto- 
events that is of interest. To obtain t h s  distribution, it is necessary to 
average the conditional statistics of Eq. (9.1-7) over the statistics of the 
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integrated intensity. It is helpful to explicitly represent the fact that the 
Poisson distribution (9.1-7) is a conditional distribution, by expressing it in 
the form P ( K ( W ) .  Here, as usual, the vertical bar indicates that the 
distribution is conditioned on knowledge of the quantity that follows it. The 
unconditional probability of observing K photoevents can now be ex- 
pressed as 

where p ,( W) is the probability density function of the integrated intensity. 
This equation will serve as the basis for all future calculations of photoevent 
statistics. It is called MandeI's formula after the individual who first derived 
it (Ref. 9-10). It is also common to refer to a function P ( K )  defined by this 
formula as the Poisson transform of the probability density p,( W). 

It should be evident from Eq. (9.2-1) that, in spite of the underlying 
conditional Poisson nature of the photoevents, the statistics are in general 
not Poisson when the classical intensity has random fluctuations of its own. 
In effect, we see photocount fluctuations that are the compounded conse- 
quence of both the fundamental uncertainties associated with the interac- 
tion of light and matter and the classical fluctuations of the light incident on 
the photosurface. Thus the photoevents form a doubly stochastic Poisson 
process (see Section 3.7.5). 

Before turning to calculations of photoevent statistics in some specific 
cases, it is worthwhile stating some general relationships that follow directly 
from Mandel's formula. In particular, we wish to calculate the nth factorial 
moment of the distribution P( K ), 

Interchanging the orders of summation and integration, we can now recog- 
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nize the inner sum as the nth factorial moment of a Poisson random variate 
with mean aW. According to Eq. (3.7-3), the value of the sum is simply 
(aW)". Thus evaluation of the unconditioned moment in question is accom- 
plished as 

From this result, the mean and variance of K are easily found to be 
- 

2 2 u: = aW + a  a,. 

Note in particular that the variance a: of K consists of two distinct terms, 
each of which has a physical interpretation. The first, which is proportional 
to the total energy incident during the measurement, can be interpreted as 
representing the effects of pure Poisson noise introduced by the random 
interaction of light and matter. The second, because it is proportional to the 
variance of the fluctuations of the incident intensity, is the classically 
expected result in the absence of any noise associated with the interaction of 
light and matter. 

The reader is encouraged to consider the relationship between the char- 
acteris tic functions of the photocounts and the integrated intensity in 
Problem 9-1. 

9.2.1 Photocount Statistics for Well-Stabilized, Single-Mode Laser 
Radiation 

Consider a single-mode laser operating well above threshold. The light from 
this source falls on a photosurface, and we wish to determine the statistical 
distribution of the number of photoevents observed in any r-second inter- 
val. Assume that to an excellent approximation the intensity of the incident 
light may be considered constant over both space and time and represent 
that intensity by the symbol I,. The integrated intensity can then be seen to 
be given in this simple case by 

W = IoAr, (9.2-5) 

and as a consequence, the probability density function of the integrated 
in tensity takes the form 

p w ( w )  = S ( W  - I ,A~).  (9.2-6) 

With substitution of this equation into Mandel's formula [Eq. (9.2-I)], the 
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integration is trivially performed, yielding the following result: 

Finally, noting that the mean number of photoevents is = aIoAr, we can 
equivalently write the probability of obtaining K photoevents, 

Following warnings that the statistics of the photocounts will in general 
not be Poisson, we have discovered a case in which they are exactly so. This 
should not be surprising, however, for the particular case examined here has 
been one in which there are absolutely no classical fluctuations of the 
intensity. Thus there are no "excess fluctuations" of the photocounts above 
and beyond the basic Poisson statistics associated with the interaction of 
light and matter. 

As a reminder, recall that the factorial moments of the Poisson distribu- 
tion are given by [cf. Eq. (3.7-3)] 

Figure 9-1. Probability masses associated with the Poisson distribution ( K = 5 ) .  
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Similarly, the variance can be expressed in terms of the mean as 

It is worth noting that the signal-to-noise ratio associated with this distribu- 
tion, as defined by the ratio of mean to standard deviation, is given by 

and is seen to increase in proportion to the square root of the mean number 
of photocounts. 

The model used for light from a single-mode, amplitude-stabilized laser is 
clearly an idealization. However, with sufficient care ths  idealization can be 
closely approached in practice, and it is important to understand the 
character of the count fluctuations in t h s  limiting case. Figure 9-1 illustrates 
the probability masses associated with various values of K when the count 
statistics are Poisson. 

9.2.2 Photocount Statistics for Polarized Thermal Radiation with a 
Counting Time Much Shorter Than the Coherence Time 

We now consider the case of thermal radiation and the associated photo- 
count distribution. For the present, consideration is restricted to the sim- 
plest case from the analytical point of view, namely, completely polarized 
radiation and a counting interval that is short compared with the coherence 
time of the light. In practice, a counting time this short would be extremely 
difficult to achieve with true thermal light, for a 1 nm bandwidth at a 
wavelength of 500 nrn would require a counting time much smaller than 
about one picosecond (10 - l2 second)! However, with pseudothermal light 
the condition can be met easily. 

For such a short counting time, the value of the incident intensity I(t ) is 
approximately constant over the entire counting interval. As a consequence, 
the integrated intensity is simply equal to the product of the intensity, the 
counting time, and the detector area, 

However, the value of the intensity within that interval is random and obeys 
negative exponential statistics; from (9.2-12) it follows that the same is true 
of the integrated intensity, 
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The photocount statistics can now be found by substituting Eq. (9.2-13) 
in Mandel's formula and performing the required integration. The steps are 
outlined in the following equation, and the result is shown: 

With the substitution = aw, the equivalent expression 

is obtained. This probability distribution is called the Bose-Einstein distri- 
bution (or, in statistics, the geometric distribution), and it plays an ex- 
tremely important role in the statistical physics of indistinguishable particles 
(bosons). For our purposes, it suffices to note that the factorial moments of 
this distribution are given by 

It follows that the variance can be expressed in terms of the mean as 

Note that of the two terms composing the variance, the first again represents 
the Poisson noise associated with the basic interaction of light and matter, 
whereas the second represents the classical fluctuations of the integrated 
intensity, which will be very significant in this case if K >> 1. The signal-to- 
noise ratio associated with Bose-Einstein counts is readily seen to be 

This expression asymptotically approaches unity as the mean number of 
counts increases, indicating that the count fluctuations are always very 
substantial indeed. 
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When the mean number of counts becomes much smaller than unity, 
it can readily be shown that the differences between the Poisson distribution 
and the Bose-Einstein distribution become small. For such small means, 
only one event and zero events have significant probability. The following 
equations indicate how these respective probabilities are asymptotically the 
same for the two distributions: 

- 
~ ( 0 )  = e-'z 1  - K 

Poisson 
~ ( 1 )  = Ze-' I K 

Bose- Eins tein - 
K - 

P ( 1 )  = = K .  
( 1  + 

Finally, in Fig. 9-2 the probability masses associated with the Bose- 
Einstein distribution are shown for the same value of mean used in Fig. 9-1. 
Comparison of these two figures shows that when the mean number of 
counts is greater than unity, the spread of the Bose-Einstein distribution is 
far greater than that of the Poisson distribution, and as a consequence far 
greater fluctuations of the photocounts are expected for the distribution of 
Fig. 9-2 than for that of Fig. 9-1. 

Figure 9-2. Probability masses associated with the Bose-Einstein distribution (z = 5). 
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The discussion of the count statistics for polarized thermal light with a 
short counting interval is now complete. The next section deals with the 
more general case of an unrestricted counting interval. 

9.2.3 Photocount Statistics for Polarized Thermal Light and an Arbitrary 
Counting Interval 

As pointed out earlier, it is extremely difficult to realize an experiment with 
true thermal light in which the counting interval is much shorter than the 
coherence time of the incident light. For thls reason it is important to 
investigate the count statistics for counting times that are comparable with 
or longer than that coherence time. The assumption that the incident light is 
fully polarized is retained for the time being. The procedure for finding the 
photocount statistics is similar to that used before. First we must find the 
probability density function p ,(W) for the integrated intensity, then 
substitute that density function in Mandel's formula, and finally perform 
the required integration. 

Determination of the statistics of the integrated intensity is a nontrivial 
problem. However, we have met this problem before, and solutions have 
already been found. The reader is referred to Section 6.1 (in Chapter 6), 
where the statistics of the time-integrated intensity were considered. There 
an approximate solution for p ,(W) was obtained (Section 6.1.2) and an 
exact solution was also outlined (Section 6.1.3). Here we concentrate on the 
use of the approximate expression for p ,( W) and the resulting predictions 
for photocount statistics. For a discussion of the exact solution, the reader 
may consult Ref. 9-1 1. 

Assume for the time being that the wave incident on the photosurface has 
a coherence area that far exceeds the area of the detector. With this 
assump tion, at ten tion can be concentrated completely on temporal coherence 
effects. It is then possible to directly utilize the approximate solution for 
pw(W) presented in Eq. (6.1-31) (i.e., the gamma probability density 
function) and repeated below: 

I 0 otherwise. 

Here the parameter 4 represents the number of "degrees of freedom" of 
the intensity included within the measurement interval and when purely 
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temporal degrees of freedom are involved, is given by [cf. Eq. (6.1-30)] 

where y(s) is the complex degree of coherence of the incident wave. 
Two limiting cases are worth attention, namely, the cases of an integra- 

tion time very long and very short compared with the coherence time of the 
light. These cases have been dealt with in Chapter 6, specifically in Eqs. 
(6.1-18) and (6.1-19), to whlch the reader is referred. Note that, no matter 
how short the time, the number of degrees of freedom can never be less than 
1, and in this limiting case the gamma density of Eq. (9.2-21) reduces to the 
negative exponential distribution. When the integration time is much longer 
than the coherence time, the number of degrees of freedom is equal to the 
number of correlation intervals embraced by the measurement interval. In 
addition, it is not difficult to show that as the number of degrees of freedom 
grows large, the gamma density function asymptotically approaches a 
Gaussian density function (see Problem 9-2). 

When the approximate form of the probability density function for 
integrated intensity is known, the problem remains to calculate the probabil- 
ity distribution function of the number of photocounts occurring in a time 
interval of arbitrary length. T h s  calculation is carried out with the help of 
Mandel's formula, whch in t h s  case is given by 

The integration can be performed without great difficulty and yields the 
following probability distribution for the number of counts K observed in a 
 second interval: 

where = am. This distribution is known as the negative binomial distribu- 
tion and has been found to be a rather good approximation to the 
photocount distribution of interest. Note that the number of degrees of 
freedom A is a parameter of the distribution, as indeed we might have 
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anticipated. When the integration time r is very small, the number of 
degrees of freedom is essentially unity, and the negative binomial distribu- 
tion can readily be shown to reduce to the Bose-Einstein distribution (see 
Problem 9-3). 

Having found an approximate expression for-the photocount distribution 
for polarized thermal light with an arbitrary counting time and with perfect 
spatial coherence, we now very briefly discuss the modifications of the 
results that are needed when the wave is not perfectly polarized. 

9.2.4 Polarization Effects 

The preceding discussion assumed that the light incident on the photo- 
surface is perfectly polarized. The case of thermal light with an arbitrary 
degree of polarization is also of interest. To derive the probability distribu- 
tion of the photocounts in this general case, we first note that, when the 
light is partially polarized, the total integrated intensity may be regarded as 
the sum of two statistically independent integrated intensity components, 
one for each of the polarization components of the wave after passage 
through a polarization instrument that diagonalizes the coherency matrix 
[cf. Eq. (4.3-38)]. Thus 

where 

Since W, and W2 are statistically independent for thermal light, it follows 
that 

where p1 and p, are the probability density functions of W l  and W,, 
respectively. 

To make further progress we must call on a result that holds for all 
photoelectric counting distributions. In words, this result states that, when 
the probability density function of the integrated intensity can be expressed 
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as the (continuous) convolution of two probability density functions, the 
corresponding probability distribution of the counts can be expressed as a 
(discrete) convolution of two count probability distributions, one arising 
from each of the individual continuous density functions. Thus if p,(W) 
and p2( W) are density functions as in Eq. (9.2-27), and if Pl(n) and P2(n )  
are the associated discrete counting probability distribution functions (de- 
rivable from Mandel's formula applied to each of the continuous densities), 
then 

K 

P ( K )  = C P , ( ~ ) P , ( K  - k).  
k - 0  

The reader is asked to prove this general, result in Problem 9-5. 
Applying the preceding result in the present case and taking account of 

the negative binomial distributions associated with the counts generated by 
each of the independent polarization components, we obtain an expression 
for the probability distribution of the counts for partially polarized thermal 
light, 

This discrete convolution can be carried out numerically to determine the 
count probability distribution for any given degree of polarization. When 
one of the polarization components has zero intensity, the discrete convolu- 
tion reduces to the negative binomial distribution associated with the counts 
generated by the single remaining component. As should be expected, when 
the light is completely unpolarized, the convolution reduces to a single 
negative binomial distribution with 2 A degrees of freedom. 

In closing this section, it should be reemphasized that the solutions 
presented here for the cases involving thermal light have been approximate 
ones, with the approximations arising from the approximate forms used for 
p ,( W). More exact treatments are possible, based on the exact formulation 
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for the statistics for W presented in Section 6.1.3. For discussions of such 
an approach and comparisons with the approximate results derived here, the 
reader may consult, for example, Refs. 9-6 and 9-11. 

9.2.5 Effects of Incomplete Spatial Coherence 

Our previous discussion assumed that the thermal light striking the photo- 
surface was completely coherent in a spatial sense. In such a case the 
number of degrees of freedom is determined strictly by temporal effects. 
When the wave is not spatially coherent, its spatial structure can affect the 
number of degrees of freedom; at any given time, different parts of the 
photosensitive surface may experience different levels of incident intensity. 
In such cases a modification of the concept of degrees of freedom is required 
so as to include the possibility of both temporal and spatial degrees of 
freedom, as we outline in the following paragraphs. 

To make the analysis tractable, we make a number of assumptions about 
the nature of the light falling on the photosensitive surface. We assume the 
light to be of thermal origin and to be completely polarized. In addition, the 
light is assumed to be cross-spectrally pure, in which case the complex 
degree of coherence can be factored into temporal and spatial components. 
Finally, both the temporal and spatial fluctuations of the intensity are 
assumed to be at least wide-sense stationary,t in which case 

With reference to Fig. 6-2, just as we divided time up into approximately 
independent temporal correlation cells, so we must divide the detector area 
up into approximately independent spatial correlation cells. The total 
integrated intensity is then regarded as the sum of many independent 
exponentially distributed random variables, one from each of the time-space 
correlation cells. 

If the mean and variance of the gamma distribution approximating the 
statistics of the temporally and spatially integrated intensity are to match 
the true mean and variance of W, the parameter A of the gamma 
distribution must be properly chosen. In view of the factorization evident in 
Eq. (9.2-30), the number of degrees of freedom required to match the true 
mean and variance will be expressible as a product of a number of temporal 

+strictly speaking, we require only that the modulus of the complex degree of coherence 
depend only on differences of spatial and temporal coordinates. This requirement is weaker 
than wide-sense stationarity and is satisfied, for example, by spatial coherence effects predicted 
by the Van Cittert-Zernike theorem. 
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degrees of freedom AV, times a number of spatial degrees of freedom MA/,,  

As demonstrated in Section 6.1.1, when only time variations are im- 
portant, the number of temporal degrees of freedom can be expressed (after 
suitable manipulation) in terms of a single integral, 

It is also possible to reduce the expression for the number of spatial degrees 
of freedom to a double integral, 

where the function 9 represents the normalized autocorrelation function of 
an effective "pupil function" P ( x ,  y) associated with the photosensitive 
area and A is the area of the photosensitive surface; that is, if 

1 (x,y)withinphotosensitivearea (9.2-34) 
0 otherwise, 

then 

Ax Ax 

W(Ax, Ay) = -00  oo 

When the photosensitive area A is much smaller than the coherence area 
A, of the incident radiation, it is easy to show that the number of spatial 
degrees of freedom As reduces to unity. When the photosensitive area is 
much larger than the coherence area, it can be shown (see Problem 9-4) that 
the number of spatial degrees of freedom reduces to the ratio of the detector 
area to the coherence area (or equivalently to the number of spatial 
coherence areas of the light embraced by the photosensitive surface), 
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This expression can be further modified when the incident wave arises from 
a spatially incoherent source. In this case the Van Cit ter t-Zermke theorem 
and Eq. (5.6-12) lead us to the following equivalent expression for the 
number of spatial degrees of freedom, valid when A A,:  

Here, as in Eq. (5.6-12), Qs represents the angular size of the source, when 
viewed from the detector. 

The discussion of the spatial aspects of the problem is now complete, and 
attention will be turned to an introduction to the concept of the degeneracy 
parameter of the light and the role it plays in determining the photocount 
statistics for thermal light. 

9.3 THE DEGENERACY PARAMETER 

At this point the reader should be convinced that there is a fundamental 
difference between the statistical properties of photocounts generated by 
highly stable, single-mode laser light and the more chaotic light associated 
with thermal sources. Indeed, this difference shows itself particularly clearly 
when one examines in more detail the fluctuations of the photocounts 
generated by both types of radiation, as we do in the section to follow. 
However, the situation is more complicated than might be imagined at first 
glance. The differences between the statistics of the photocounts for the two 
types of light are not always great. In fact, in the visible region of the 
electromagnetic spectrum, under most circumstances it is very difficult to 
distinguish which kind of radiation is present, based on measurements of 
the photocount statistics. The key parameter that determines the dis- 
tinguishability of these two types of radiation will be shown to be the 
degeneracy parameter, whlch we soon define. 

In the section to follow we consider the fluctuations of photocounts when 
different kinds of light are incident on a photosurface. Such considerations 
lead us to the definition of the degeneracy parameter. In Section 9.3.2 this 
parameter is considered for the particular case of blackbody radiation. The 
importance of the degeneracy parameter is further emphasized when we 
consider applications in the final sections of this chapter. 

9.3.1 Fluctuations of Photocounts 

Our purpose in this section is to examine the variance of the photocounts 
produced by thermal light and to consider when this variance is significantly 
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different from that produced by stabilized single-mode laser light. We first 
re-emphasize the direct link between the variance of the counts and the 
variance of the classical fluctuations of intensity incident on the photo- 
surface. 

To calculate the variance of - the count fluctuations, we must first find the 
second moment of the counts K ~ .  A simple approach to this problem is to 
first note that, when conditioned by knowledge of the integrated intensity 
W, the number of counts K is a Poisson variate with mean aW [see Eq. 
(9.1-7)]. Therefore, the conditional second moment of K is given by 

To determine the unconditioned second moment of K, we must simply 
average Eq. (9.3-1) with respect to W. The result is 

To find the variance of K, we need only subtract the square of the mean of 
K, or equivalently subtract ( a @ )  2. The result is the following expression for 
the variance of the counts [cf. Eq. (9.2-4)]: 

Note that it has not been necessary to make any assumptions about the 
statistics of the classical fluctuations of integrated intensity in arriving at 
Eq. (9.3-3). The result is completely general; that is, it applies for any type 
of radiation falling on the surface of the photodetector. Furthermore, each 
term of t h s  equation has a physical interpretation. The first term, 1% is 
simply the variance of the counts that would be observed if the classical 
intensity were constant and the photocounts were purely Poisson. We refer 
to this contribution to the count fluctuations as "shot noise," by analogy 
with the Poisson-distributed shot noise observed, for example, in an elec- 

2 2 tronic vacuum diode (Ref. 9-12). The second term, a a,, is clearly zero if 
there are no fluctuations of the classical intensity. Therefore, it is the 
component of count variance caused by fluctuations of the classical inten- 
sity. In the case of stabilized single-mode laser light, this component would 
be identically zero, and the count variance would be simply that arising 
from Poisson-distributed counts. When thermal light is incident on the 
photosurface, the classical fluctuations are nonzero, and the variance of the 
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photocounts is larger than that expected for a Poisson distribution by an 
amount that is proportional to the variance of the integrated intensity. This 
extra component of variance of the counts is often referred to as "excess 
noise," meaning that it is above and beyond that expected for pure Poisson 
fluctuations. 

At this point we introduce the assumption that the light incident on the 
photosurface is polarized thermal light. For such light, a combination of 
Eqs. (6.1-10) and (6.1-17) shows that 

Hence 

Note in particular that the ratio of classically induced fluctuations to shot 
noise fluctuations is simply X/M.  The important role of this parameter is 
emphasized by giving it a name of its own. Therefore, vre define the count 
degeneracy parameter as follows: 

Physically speaking, the count degeneracy parameter can be interpreted as 
the average number of counts that occur in a single coherence interval of the 
incident radiation. It can also be described as the average number of counts 
per "degree of freedom" or per "mode" of the incident wave. When 8, << 1, 
it is highly probable that there will be no more than one count per 
coherence interval of the wave, with the result that shot noise predominates 
over classically induced noise. On the other hand, when 6, >> 1, there are 
many photoevents present in each coherence interval of the wave. The result 
is a "bunching" of the photoevents by the classical intensity fluctuations, 
and an increase of the variance of the counts to the point where the 
classically induced fluctuations are far stronger than the shot noise varia- 
tions. 
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Because the count degeneracy parameter is proportional to K, it is also 
proportional to the quantum efficiency of the photosurface. Sometimes it is 
useful to remove this dependence on the characteristics of the particular 
detector that may be present, and to deal with a degeneracy parameter that 
is a property of the incident wave itself. We thus define the wave degeneracy 
parameter as 

This new degeneracy parameter may be considered to be the count degener- 
acy parameter that would be obtained with an ideal detector having a 
quantum efficiency of unity. 

The distribution of photocounts obtained with polarized thermal light is 
determined by the combination of the parameters and a,, as can be seen 
by rewriting the negative binomial distribution of Eq. (9.2-24) in the form 

We now prove a very important fact - when the count degeneracy parame- 
ter approaches zero, the photocount distribution P ( K ) ,  which is given by a 
negative binomial distribution, becomes indistinguishable from a Poisson 
distribution. For proof of this assertion, several approximations are neces- 
sary. First, when the degeneracy parameter is much less than 1, the gamma 
functions in Eq. (9.3-9) can be replaced using Stirling's approximation (Ref. 
9-13): 

Second, for 6, much less than 1, the following approximations are valid: 
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Combining the above approximations, we find that the probability of 
observing K counts in time 7 is given approximately by 

where we have noted explicitly that K/6, is identically A, the number of 
degrees of freedom. For a final approximation we note that if the average 
number of photoevents per coherence interval, S,, is small, there is a high 
degree of probability that the actual number of photoevents occurring in 
one coherence interval, K / A ,  is likewise small. It follows that 

and that the quantity in brackets in Eq. (9.3-12) has a value very close to 
unity. Thus the probability of obtaining K counts is, to a good approxima- 
tion, given by the Poisson distribution. Note that the approximations used 
in arriving at this final result are more and more accurate as the degeneracy 
parameter becomes smaller and smaller. Therefore, we might more properly 
state this result in the form of a limit, 

lim P ( K )  = 
(K)" - K  

K !  
e .  

8, - 0 
To emphasize the important result we have just obtained, we restate it 

once more in words: 

For polarized thermal radiation, when the count degeneracy parameter 
approaches zero, the probability distribution of the photocounts approaches 
a Poisson distribution. 

A physical understanding of this result can be gained from the following 
considerations. If the count degeneracy parameter is much less than 1, it is 
highly probable that there will be either zero or one counts in each separate 
coherence interval of the incident classical wave. In such a case the classical 
intensity fluctuations have a negligible " bunching" effect on the photo- 
events, for (with high probability) the light is simply too weak to generate 
multiple events in a single coherence cell. If negligible bunching of the 
events takes place, the count statistics will be indistinguishable from those 
produced by stabilized single-mode laser radiation, for whlch no bunching 
occurs. 
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Note that whereas we have specifically assumed that the incident light 
is polarized, a similar result holds for partially polarized thermal light, 
provided the independent intensities of the polarization components, ob- 
tainable by passage of the light through a polarization instrument that 
diagonalizes the coherency matrix, each have small degeneracy parameters. 

The significance of the result we have obtained cannot be fully appreci- 
ated until we determine typical values of the degeneracy parameter that can 
be expected in practice. Such values are dramatically different in the 
microwave and visible regions of the electromagnetic spectrum, as discussed 
in the section that follows. 

9.3.2 The Degeneracy Parameter for Blackbody Radiation 

In statistical physics and thermodynamics it is common to introduce the 
idealized concept of a blackbody. A blackbody is defined as an object that 
perfectly absorbs all the radiant energy incident on it. If that body is in 
thermal equilibrium with its surroundings, then in addition to being a 
perfect absorber, it must also be a perfect radiator, in the sense that it must 
reradiate as much energy as it absorbs; otherwise, it could not remain in 
thermal equilibrium. The ideal nature of a blackbody facilitates the calcu- 
lation of a (temperature-dependent) spectral distribution that is characteris- 
tic of such radiation. Many radiation emitters encountered in practice can 
be regarded as blackbodies or approximations to blackbodies. For example, 
the gross features of the spectrum of the sun are approximately those of a 
blackbody at a temperature of 6000 K. 

Calculation of the spectral distribution of energy radiated by a blackbody 
is a problem that occupied the attention of many physicists in the nine- 
teenth century. Among the most famous of these studies were those by Lord 
Rayleigh and Sir James Jeans, who derived an expression for the spectral 
distribution of blackbody radiation with the help of the classical law of 
equipartition of energy. They discovered that the predictions thus derived 
agreed with experiment only in the long wavelength limit, and that in the 
short-wavelength limit, the results lead to the famous " ultraviolet 
catastrophe," a spectral distribution that increased without bound as wave- 
length approached zero. 

The dilemmas associated with blackbody radiation were resolved only by 
the introduction of a hypothesis that departed markedly from the precepts 
of classical physics. In 1900 Max Planck published a new derivation of the 
blackbody radiation law that incorporated the radical assumption that 
energy could be radiated and absorbed only in discrete packets or quanta. 
The law predicted by this theory was in agreement with all the experimental 
results known at that time. With this work, the quantum theory of radiation 
was born. 



THE DEGENERACY PARAMETER 487 

Planck's theory of blackbody radiation is relevant to us in that it 
provides a very specific prediction as to the magnitudes of the degeneracy 
parameter expected for thermal light in various parts of the electromagnetic 
spectrum. To apply Planck's results, we must regard each degree of freedom 
of the incident radiation as being analogous to a harmonic oscillator. Such a 
picture can be arrived at explicitly by applying the frequency-domain 
sampling theorem to the finite-time waveform that is incident on the 
photodetector in the problem of interest to us. The number of degrees of 
freedom of the waveform is the same regardless of whether time or frequency 
samples are considered. Indeed, the energy falling on the photosurface can 
be regarded as the sum of the energies carried by either the temporal 
samples or the frequency samples; both sums yield the same result. 

The energies associated with each such harmonic oscillator are assumed 
to be quantized, with allowable discrete energy states gven by 

En = nhv, (9.3-15) 

where n is an integer, the constant h is now known as Planck's constant 
(h  = 6.6261 96 X 10 -34 joule-second), and v is the frequency of the oscilla- 
tor. In an experiment involving a large number of such oscillators, the 
numbers of oscillators in each of the possible energy states is assumed to 
follow a Maxwell-Boltzmann distribution. That is, the number N ,  of 
oscillators with energy E, is assumed to be given by 

En nhv 
N,, = ~ e x p (  - @) =   ex^{- -} kT ' 

where No is a constant, E, is the nth allowable energy level, k is 
Boltzmann's constant ( k  = 1.38 x lo-'' joule/Kelvin), and T is the tem- 
perature in Kelvin. To obtain the probability that a given oscillator is in the 
nth energy state (or equivalently has "occupation number" n), we must 
normalize Eq. (9.3-16) to yield a set of numbers that sum over n to yield 
unity. Such a normalization can be performed (see Problem 9-7). The result 
is 

Comparison of (9.3-17) with (9.2-15) shows that energy states obey a 
Bose-Einstein distribution, with mean occupation number per mode 
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or equivalently, mean energy per mode 

The wave degeneracy parameter is simply the average number of photons 
per mode. This is precisely the quantity represented by Eq. (9.3-18). If the 
radiation of concern is narrowband, the frequency v in that equation can be 
replaced by the frequency F at the center of the spectrum. Hence the 
degeneracy parameter for blackbody radiation from a narrowband source in 
thermal equilibrium is given by 

Thls equation forms the basis for our understanding of the differences 
between radiation in the optical region of the spectrum and radiation at 
lower frequencies. 

Consider first the case of radiation with a sufficiently low frequency that 
hC kT. Under such a condition, the degeneracy parameter of Eq. (9.3-20) 
is well approximated by 

In this regime, the degeneracy parameter is inversely proportional to 
frequency and is a very large number. At the opposite extreme h6 kT, 
however, the degeneracy parameter decreases exponentially with increasing 
frequency and is a very small number. Figure 9.3 shows contours of 
constant wave degeneracy parameter in a plane with mean wavelength as 
one coordinate and source temperature as the other coordinate. From Fig. 
9-3 it is quite clear that in the microwave region of the spectrum (A z 1 0 - I  
meters) any source temperature greater than a fraction of a degree produces 
a wave degeneracy parameter that is much greater than unity. Hence in this 
region of the spectrum we expect classically induced fluctuations of photo- 
counts to have a far stronger effect than pure shot noise fluctuations. On the 
other hand, in the visible region of the spectrum (X e 5 x l o w 7  meters), 
source temperatures in excess of 20,000 K are required to produce a wave 
degeneracy parameter greater than unity. Since the sun has an effective 
blackbody temperature of only 6000 K, we can conclude that in the visible 
region of the spectrum, the vast majority of sources encountered produce 
radiation with a wave degeneracy parameter that is small, and hence noise 
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produced by the quantized nature of the radiation is far greater than the 
noise produced by classical fluctuations of the intensity. 

A few additional comments are needed in closing this section. First, we 
have concentrated our attention on the wave degeneracy parameter, which is 
a property of the radiation falling on the photodetector. That detector 
invariably has a quantum efficiency that is less than unity. Hence the count 
degeneracy parameter will be even smaller than the wave degeneracy 
parameter, and in the visible region of the spectrum the likelihood of 
encountering true thermal radiation for which classical fluctuations of the 
intensity will dominate the count statistics is made even more remote. 
(However, it should be noted that pseudothermal sources can produce 
radiation with very high degeneracy parameter, and in such cases the 
classical fluctuations of the intensity can be the dominant source of fluctua- 
tions of the photocounts.) In addition, it is possible that the photodetector 
or collecting optics may intercept only a fraction of one spatial mode from 
the source. (In practice, a great many temporal modes will be captured 
during a measurement interval of any reasonable duration.) In such a case 
the count degeneracy parameter may again be smaller than the wave 
degeneracy parameter, as a result of the incomplete capture of a spatial 
mode. Although the minimum value of A is unity, the reduction of the 
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energy striking the photosurface must be taken into account. In such a case, 
the count degeneracy parameter must be reduced from its normal value by a 
factor of the ratio of the effective measurement area to the coherence area of 
the incident light. For the case of an extended incoherent source, this 
possibility is covered by expressing the count degeneracy parameter in the 
form that follows: 

where we have used the fact that the coherence area of the light incident 
from an incoherent source is given by the ratio of the square of the 
wavelength to the solid angle subtended by the source at the detector (cf. 
Problem 5-15). 

Finally, for the reader interested in studying the problem of blackbody 
radiation further, we mention specifically Refs. 9-14 through 9-16. 

9.4 NOISE LIMITATIONS OF THE AMPLITUDE 
INTERFEROMETER AT LOW LIGHT LEVELS 

Here and in the following sections we discuss applications of the photoelec- 
tron counting theory developed in previous sections of this chapter. There 
are, in fact, many applications that could be discussed, for virtually any 
optical experiment is limited in its accuracy most fundamentally by the 
finite amount of light that is utilized in the measurements involved. We have 
chosen for emphasis here experiments aimed at measuring the parameters of 
simple fringe patterns. The reasons for this emphasis are several. First, 
fringe parameter measurement provides a relatively well defined and tract- 
able example of application of the theory. The desired parameters are easily 
defined, and methods for their measurement are readily devised based on 
common sense. Second, we have seen throughout this book that fringe 
parameter measurement is central to all problems involving coherence. The 
fundamental descriptors of light waves utilized in coherence theory are in 
fact measurable parameters of fringes. By examining the limitations to 
fringe parameter measurement, we are actually examining the limitations to 
the measurability of coherence itself. 

We shall deal with two different approaches to the measurement of fringe 
parameters. In this section we consider what can reasonably be called an 
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"amplitude interferometry" or a "predetection correlation" method. Such 
methods are used, for example, in the Michelson stellar interferometer. 
More generally, we noted in Chapter 7 that any system that forms images 
by directly focusing light onto a detector can be viewed as an interferomet- 
ric imaging system; each Fourier component of the image can be regarded 
as the superposition of a multitude of fringes of the same spatial frequency 
arising from a fixed spacing embraced in many ways by the exit pupil of the 
system. In Section 9.5 we consider a different approach to fringe parameter 
measurement, namely, the use of "intensity interferometry" or equivalently 
a "postdetection correlation" method. This type of measurement was dis- 
cussed from a purely classical point of view in Chapter 6. Finally, in Section 
9.6, we discuss the noise limitations of the stellar speckle interferometer 
introduced earlier in Section 8.8. Our goal in all cases is to discover the 
limiting sensitivity of the measurement techniques considered. More specifi- 
cally, how does the accuracy of the measurement depend on the number of 
photoevents participating in that measurement? 

9.4.1 The Measurement System and the Quantities to Be Measured 

The amplitude interferometry method will be assumed to utilize a measure- 
ment system of the kind illustrated in Fig. 9-4. A sinusoidal distribution of 
intensity, representing an ideal fringe, falls on a detector consisting of N 
discrete elements arranged in a closely packed linear array. This fringe may 
have originated, for example, from a Michelson stellar interferometer, which 
is attempting to determine the diameter of a distant stellar source. Each 
element of the detector is assumed to be followed by a separate counter.+ 
The counter associated with the nth detector produces at the end of a 
T-second counting period a number K ( n )  representing the number of 
photoevents produced by that detector element during the measurement 
interval. All counters in the array are gated simultaneously, so that at the 
end of the common counting period there is produced a "count vector" R of 
length N, where each component of that vector is the number of counts 
generated by a different element of the array. 

Several assumptions are made about the character of the fringe pattern. 
First, the spatial frequency of the fringe pattern is assumed to be known a 
priori. In practice, this is a good assumption. For example, if the fringe is 
generated by a Michelson stellar interferometer, the fringe period is de- 

+We are rather casually avoiding some complicated electronics issues here. To  count the 
discrete photoeven ts produced by the array, subs tan tial amplification of the detected signals 
will be required, and a suitable electronic threshold mechanism must be introduced. In practice, 
not every count will be detected, and some false counts will register. We are not considering 
such details because our interest is in the fundamental aspects of the problem. 
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Figure 9-4. Detection and estimation system assumed for the amplitude interferometer. 

terrnined by the subaperture spacing, the wavelength, and the focal length, 
all of which are presumed to be known. Second, the amplitude of the fringe 
is assumed to be constant across the detector array. In effect, we are 
assuming that the light involved is quasimonochromatic and that the 
time-averaged intensities of the two beams are constant across the array. 
Third, the spatial period of the fringe is assumed to be large compared to 
the size of a single detector in the array. This assumption allows us to 
approximate the intensity across any one detector element as constant. 
Finally, we make the somewhat artificial assumption that an integer number 
of periods of the fringe exist across the array. This latter assumption allows 
us to simplify the problem (in a way that will be made clearer later), yet still 
allows us to find the fundamental limits to the accuracy of the measurement 
of interest. 

The intensity distribution of the fringe incident on the detector array is 
represented mathematicalIy as 

~ ( x ,  y )  = ( I ,  + I,) 1 + vcos  - + + , [ ( 11 
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where I ,  and I ,  are the (constant) time-average intensities of the two 
interfering beams at the detector array, Y is the visibility of the fringe, 
whereas L and + are the spatial period and spatial phase of the fringe 
pattern, respectively. 

The purpose of the measurement is presumably to determine V and 6. 
In some experiments, such as one in which a Michelson stellar interferome- 
ter is being used to gather information in the presence of time-varying 
atmospheric inhomogenei ties, the phase of the fringe may be fluctuating 
rapidly as a function of time. We assume that the counting interval used in 
the measurement is sufficiently short to assure that the fringe is "frozen" in 
time on the detector array, in which case no reduction of fringe visibility 
will be expected as a result of fringe motion. Our goal is to find how 
accurately Y and 9 can be determined as a function of the number of 
photoevents detected by the array. 

9.4.2 Statistical Properties of the Count Vector 

It will be helpful in our analysis to have at our disposal certain information 
regarding the statistical properties of the counts K ( n ) .  The statistics of 
concern are a function of the particular kind of light that is talung part in 
the interference experiments. For example, if the light is single-mode 
amplitude-stabilized laser light, each component of the count vector will be 
a Poisson variate. On the other hand, if the two light beams are polarized 
and thermal in origin, the counts obey negative-binomial statistics. We shall 
assume that thermal light is involved, since this is the case in virtually all 
experiments aimed at forming images from interferometric data. We further 
assume that the light is polarized. The first statistical quantity of interest is 
the mean count vector. Of course, the expected value of the count from the 
nth detector is simply proportional to the intensity of the portion of the 
fringe incident on that detector. Thus 

where a is given by Eq. (9.1-9), p, is the number of periods of the fringe 
embraced by the detector array, T is the integration time, and A is the area 
of a single detector element. Also of interest is the second moment of the 
nth count, K2(n) .  From Eqs. (9.3-2) and (9.3-5) we can easily show that 
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where A is the number of temporal degrees of freedom in the measurement 
interval. In a similar fashion (see Problem 9-8) it is possible to show that the 
correlation between the counts registered by the mth and nth detectors 
( m  # n)  is given by 

With these results at our disposal we can now evaluate a specific method for 
measuring the fringe parameters of interest. 

9.4.3 The Discrete Fourier Transform as an Estimation Tool 

For estimation of the parameters of the fringe, some specific estimation 
procedure must be adopted. We choose here the discrete Fourier transform 
(DFT) (Ref. 9-17, Chapter 6) of the count vector as the primary tool for this 
task. By the DFT of the count vector, we mean explicitly the complex 
sequence JP( p )  given by 

If we evaluate the component of the DFT with index p, (where p, is again 
the number of periods of the fringe across the array), the amplitude and the 
phase of that component will be seen to yield information regarding the 
amplitude and phase of the fringe pattern of interest. This method of 
estimating fringe parameters under photon-limited conditions has been 
investigated in detail in Ref. 9-18, where it is shown to be an optimum 
procedure, in the maximum likelihood sense, when the fringe visibility is 
small. When the fringe visibility is large, the method is not strictly optimum, 
but it is extremely practical and yields respectable performance. 

Before proceeding further, a short comment on our assumption that an 
integer number of fringe periods exist across the array is in order. The 
statement that the DFT coefficient with index p, has an amplitude and 
phase that provide estimates of the amplitude and phase of the incident 
fringe is true only if the above condition is satisfied. When a noninteger 
number of periods are Fourier transformed, the phenomenon known as 
"leakage" (Ref. 9-17, Section 9-5) leads to a spreading of the fringe-parame- 
ter information over several DFT coefficients and a change of the value of 
the p, coefficient. Since the fringe period is precisely known in advance, 
however, there is no reason why the system cannot be designed to capture 
an integer number of fringe periods. 
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Exactly how will we estimate the parameters Y and rp from the poth 
component of the DFT? To answer this question we must first consider the 
character of the mean of this DFT component. To do so, let Eq. (9.4-5) be 
written in terms of two equations, one each for the real and imaginary parts 
of X(p , ) .  Since the count vector I? is entirely real, the resulting equations 
are 

where XR and XI are the real and imaginary parts of X(  p,), respec- 
tively. 

The means vaIues of cX, and XI can easily be evaluated by using the 
expression (9.4-2) for K( n ). Straightforward manipulations yield the follow- 
ing expressions for these means: 

~ A T ( I ~  + IZ) 2I = 
2 

Y sin +. 

It is now possible to describe our strategy for estimating the parameters 
of interest. If there were no noise associated with the photodetection 
process, the actual values of ;Y, and XI would be the mean values given 
in Eq. (9.4-8). In such a case the detected fringe amplitude, which we 
represent by C, could be obtained by simply taking the square root of the 
sum of the squares of the two expressions in that equation. Similarly, the 
phase of the fringe could be obtained by taking the arc tangent of the ratio 
of XI to Xk. In the absence of noise, such a strategy would yield error-free 
estimates of the detected fringe amplitude and phase. In the presence of 
photocount fluctuations, the strategy is not perfect, in the sense that there 
will always be some difference between our estimates of the parameters and 
the true parameters. Nonetheless, the performance of such an estimator has 
been found to be excellent (Ref. 9-17), and we adopt it here. Thus our 
estimates and 6 of the detected fringe amplitude and phase are given as 
follows: 
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To estimate the visibility of the fringe, again in the absence of noise, one 
further step is required. Since the noise-free fringe amplitude is 

it is necessary to divide by aAr( I ,  + 1 2 ) / 2  to obtain V". Note that the 
parameters a, T ,  and A are all known in advance. However, in general the 
sum of the two incident intensities, I ,  + I, is not known. Lack of knowl- 
edge of the total intensity incident on the array does not impede our ability 
to estimate the phase of the fringe pattern, but it does impede our ability to 
estimate its visibility. The only solution is to obtain a separate estimate of 
the value of this sum. Such an estimate could be obtained from the DC 
component of the DFT, X(O), which has a mean value 

Often in practice a sequence of measurements is to be performed for fringes 
of different spatial frequencies (different subaperture spacings in the case of 
the Michelson stellar interferometer). During the course of this sequence it 
is possible to obtain many independent estimates of the total incident 
intensity, one for each different fringe measured. Presumably this total 
intensity does not change with time or with the spatial frequency of the 
fringe of interest, and hence from the sequence of measurements an estimate 
of the total intensity can be obtained that is much more accurate than any 
one estimate of fringe amplitude. For this reason we assume that the sum of 
intensities is, for all practical purposes, a known quantity. Thus the visibility 
of the fringes can be estimated simply as 

9.4.4 Accuracy of the Visibility and Phase Estimates 

The rules for estimating the fringe visibility and phase from the DFT were 
derived by considering the case in which the light level is so high that 
photocount fluctuations can be neglected. Attention is now turned to the 
crucial question of how accurately these parameters can be measured by this 
technique when the fluctuations of the photocounts cannot be neglected. As 



LIMITATIONS OF THE AMPLITUDE INTERFEROMETER 497 

an aid in answering this question, we consider the variances and covariance 
of the real and imaginary parts of the DFT coefficient X ( p , ) .  To illustrate, 
consider 

Now with the help of Eqs. (9.4-3) and (9.4-4), 

- 1 N - 1  N - 1  2ampo 2anpo ;x;:=- C C K(m)K(n)cos 
N 

- COS 

N' m-o n - o  N 

1 N-1-  
= - K ' ( n )  cos2 

iV2 ,,=o N terms 

N - 1  +($ n = O  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ~ ( l + $ )  N 

terms. # (9.4-14) 

- ($ F1 l ~ ( n ) 1 2 c o s  2 n n p ~ ) ( ~  + f) 
n = O  N 

Using Eq. (9.4-3) for the second moment of K(n), we obtain 

Finally, with the application of Eq. (9.4-2) for K(n), and without loss of 
generality, with selection of the phase reference such that + is zero (we are 
always able to choose any convenient phase reference we wish), the summa- 
tions can be performed and yield 

Defining El and E2 to be the average numbers of photoevents generated 
by the two interfering beams across the entire array, that is, 
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we can express the variance of XR as 

Application of an identical analysis to find the variance of cX, yields 

Finally, the 
found to be 

covariance E[(XR - 2 R ) ( X I  - can be evaluated and is 
identically zero. 

The preceding analysis has shown that the real and imaginary parts of 
X ( p , )  are uncorrelated and in general have different means and variances. 
Figure 9-5 illustrates the various quantities of interest. The true value of the 
fringe phasor is represented by C and is seen to be directed along the 
positive real axis, in accord with our assumption that the true phase of 
the fringe is zero. About the point defined by the tip of C there exists a 
"noise cloud," the contours of which can be regarded as contours of 
constant probability density. These contours are broader in the direction of 
the real axis than they are in the direction of the imaginary axis. More 

Figure 9-5. Phasor diagram for noisy fringe estimation. 
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generally, when the true phase of the fringe is not zero, the contours are 
elongated in the direction of C. 

Referring back to Eqs. (9.4-18) and (9.4-19), it can be seen that the two 
variances differ only though the second term in parentheses in the former 
equation. This term can be recognized as being the product of the squared 
visibility with the arithmetic average of the degeneracy parameters of the 
two incident beams. As noted in Section 9.3.2, these degeneracy parameters 
are almost always much less than unity for visible thermal radiation. In 
addition, the fringe visibility can never exceed unity. Hence this second 
term, which causes the asymmetry of the noise cloud in Fig. 9-5, is generally 
negligible, provided we are dealing with thermal light in the visible region of 
the spectrum. Accordingly, hereafter we shall assume that the two variances 
are identical. 

With the above analysis as background, we can now arrive at expressions 
indicating the accuracies that can be achieved for estimates of fringe 
visibility and phase. Two different approaches to achieving useful results 
can be taken. One is to assume that the total number of photocounts across 
the array is sufficiently great to apply the central limit theorem to the real 
and imaginary parts of . f ( p , ) .  In such a case, the problem of determining 
fringe amplitude and phase is identical to that of determining the amplitude 
and phase of a constant phasor in circular complex Gaussian noise. Such an 
approach was taken in Ref. 9-18. Here we choose to take a somewhat 
simpler approach, whch requires a different assumption. Rather than 
assuming that the central limit theorem can be invoked, instead we assume 
that the width of the noise cloud in Fig. 9-5 is much smaller than the length 
of the true phasor along the real axis. (See Sections 2.9.5 and 6.2.3 for 
similar analyses carried out with this same high signal-to-noise ratio as- 
sumption.) Referring to Fig. 9-5, the mathematical statement of this as- 
sumption is 

Thus the fringe visibility must be greater than a certain limit, where the limit 
decreases as the number of photoevents detected by the array increases. 
Under such a condition, the errors in estimation of the fringe amplitude are 
caused almost entirely by the noise component that is in phase with the true 
phasor (variance 0; in this case), whereas errors in the estimated phase are 
caused almost entirely by the noise component in quadrature with the true 
phasor (variance of in this case). The signal-to-noise ratio associated with 
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the estimate of fringe amplitude (and also fringe visibility, since I, and I, 
are assumed accurately known) then takes the from 

rrns OR 2 r ,  

whereas the rms error associated with measurement of fringe phase is given 
by 

Equations (9.4-21) and (9.4-22) are the primary results of this section. 
Some discussion of their implications is in order. Considering the problem 
of measuring fringe visibility first, the key facts to note in Eq. (9.4-22) are 
that the signal-to-noise ratio depends (1) on the square root of the total 
number of photoevents detected by the entire array (as might be expected 
for a Poisson-type phenomenon) and (2) linearly on the visibility of the 
fringe. One important implication of these results concerns the integration 
time required to achieve a predetermined signal-to-noise ratio. Since El and 
z2 are linearly proportional to the integration time T, we can state a third 
important conclusion, namely, to hold the signal- to-noise ratio cons tan t 
while decreasing the visibility, Kl + x2 must be increased in proportion to 
1 / r  2. 

For some purposes it is convenient to express the result (9.4-21) in a 
different form. Assuming that the average intensities of the two interfering 
beams are equal ( g l  = K,), and noting that 6, = K/A? and A? - T/T~,  

where T, is the coherence time of the light, we can write 

thereby explicitly noting the role of the count degeneracy parameter. 
Turning to the problem of measuring fringe phase, the primary conclu- 

sions to be noted are that (1) the rms error in measurement of phase is 
inversely proportional to the square root of total number of photoevents 
produced by the array and (2) the rms phase error is inversely proportional 
to the visibility of the fringe. 

With the preceding results in hand, it should now be possible to estimate, 
for example, the observation time required to determine the visibility of a 
fringe formed in a Michelson stellar interferometer. To achieve a given 
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signal-to-noise ratio Eq. (9.4-23) implies that the ratio of the observation 
time to the coherence time of the light must satisfy 

where we have assumed that the two interfering beams have the same count 
degeneracy parameter 8,. Suppose that we wish to achieve a signal-to-noise 
ratio of 10 in the visibility measurement using light with a degeneracy 
parameter of lo-) .  The averaging time required to achieve this accuracy will 
depend on the magnitude of the visibility we are measuring. If the visibility 
of interest is close to unity, appropriate substitutions in (9.4-24) show that 
the observation time required is about lo5  coherence times. On the other 
hand, if the visibility of the fringe of interest is only 0.1, the observation 
time required is about lo7 coherence times. The coherence time itself 
depends on the spectral width of the light that is incident on the photodetec- 
tor. If the spectral width is, for example, 0.001 micrometers (10 A )  and the 
mean wavelength is 0.5 micrometers, the coherence time is approximately 
lo-'* seconds. Hence a measurement time of lo7 coherence times is still 
extremely short. Thls example is somewhat artificial in that in real astro- 
nomical problems the effective degeneracy parameter is likely to be much 
smaller than that assumed here. Nonetheless, the numbers will prove useful 
for comparison purposes when we consider the sensitivity of the intensity 
interferometer in the section that follows. 

9.5 NOISE LIMITATIONS OF THE INTENSITY INTERFEROMETER 
AT LOW LIGHT LEVELS 

In the preceding section we considered one method for measuring the 
visibility of an incident fringe pattern, or equivalently, the complex coherence 
factor pI2 of the light incident on two spatially separated apertures. (Since 
the incident intensities were assumed perfectly known, the complex coherence 
factor can be determined from the visibility and will, in fact, equal the 
visibility when the average intensities of the two interfering beams are the 
same.) That method superimposed the two beams before detection. 

In this section we reconsider the intensity interferometer discussed in 
Section 6.3. In this case the light incident on two spatially separated 
apertures is detected directly, without bringing together the two optical 
beams. The detected photocurrents are then correlated, and the fringe 
visibility is determined from that correlation. The reader may wish to reread 
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Section 6.3 at this time. In that section, the limitations posed by purely 
classical noise arising from the fluctuations of the intensity of the thermal 
radiation striking the photodetectors were investigated. Here we concentrate 
on the noise limitations of the intensity interferometer caused by the 
discrete nature of the photoevents generated at each of the two detectors. In 
general, both types of noise will be present. As we shall see, however, in the 
visible region of the spectrum, photocount fluctuations are the primary 
limitation to the sensitivity and accuracy of the intensity interferometer. 

9.5.1 The Counting Version of the Intensity Interferometer 

The version of the the intensity interferometer depicted in Fig. 6-15 is 
appropriate for a purely classical situation in which the continuous currents 
generated by the two photodetectors are operated on and combined using 
analog filters and devices. In the case of interest here, the analysis will be 
simplified if we assume a slightly different form of the interferometer, as 
depicted in Fig. 9-6. The light beams collected by two large mirrors are 
focused onto two separate photodetectors. Each such photodetector is 
assumed to be followed by a counter, which counts the number of photo- 
events observed in a time interval of duration To seconds. From the numbers 
of counts K ,  and K ,  produced in the two arms of the interferometer, the 
mean numbers of counts Fl and x2 expected in the two arms are 
subtracted, respectively. The resulting "count fluctuations" AK, and A K ,  
are then multiplied together and passed to an averaging accumulator, where 

Count for 
time TO 

Figure 9-6. Counting version of the intensity interferometer. 

Detectors N -?I; N A K ~ A K ,  

Count for 
time r0 
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this count product is added to the count products produced in earlier 
r0-second periods, and the total sum is divided by the number of accu- 
mulated count products. The output of interest is the average count product, 
which will be seen to yield information about the visibility of the fringe that 
would have been formed if the two optical beams had been directIy 
interfered. Our goal is to find the relationship between the expected value of 
the averaged count product and the fringe visibility or complex coherence 
factor. In addition, we wish to find the variance of this quantity, so that the 
rms signal-to-noise ratio associated with the measurement can be de- 
termined and compared with the similar quantities found in the previous 
section. 

9.5.2 The Expected Value of the Count-Fluctuation Product 
and Its Relationship to F'ringe Visibility 

By the "count fluctuations" we mean explicitly the differences between the 
actual numbers of counts obtained in a 7,-second interval at detectors 1 and 
2 and the expected values of these two numbers of counts. Thus 

The averaging accumulator at the output of the system depicted in Fig. 9-6 
in effect produces an estimate of the expected value of the product of the 
two count fluctuations. Thus we are interested in the statistical properties of 
the quantity A K ,  A K2, and in particular its mean and variance. As an aid to 
this analysis, we first calculate the expected value of the product of K1 and 

where P(Kl, K , )  represents the joint probability distribution of K ,  and K, .  
First note that, from the basic properties of conditional probabilities, 

In addition, since K ,  and K ,  are independent when conditioned by the 
integrated intensities W, and W2, respectively, we can write 

- - (awl) K1 ,-.w, (ffw2)K2e-.w2 
K,!  K2! 9 (9  3 4 )  
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where we have utilized the fact that both K ,  and K 2  are conditionally 
Poisson. Using these facts, the following expression for the average of the 
count product can now be written 

At this point we interchange the orders of summation and integration in 
(9.5-5). Using the relationshlp 

we can express the average of the count product in terms of the average of 
the classical integrated intensities at the two detectors, 

Some investigation of the average of the products of the integrated 
intensities is needed. Substitution of the definitions of the two integrated 
intensities into the average and interchange of orders of integration and 
averaging yields 

where P, and P, represent the centers of the two collecting apertures of the 
interferometer, whereas r1 is the cross-correlation of the intensities incident 
at those two points. 

To make further progress, it is necessary to incorporate some specific 
assumptions about the nature of the light involved in the measurement. We 
assume that the Light is (1) polarized and thermal in origin and (2) 
cross-spectrally pure, allowing us to separate the temporal and spatial 
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aspects of coherence. With these assumptions, the cross-correlation function 
of the two intensities can be reduced to the form 

It is worth further emphasis that t h s  expression is valid only for thermal or 
pseudothermal light. It specifically is not valid for single-mode, 
amplitude-stabilized laser light. The symmetry properties of y(6, - 5,) 
allow further simplification of the integrals of concern. By use of a reduction 
similar to one used on several occasions before [see, e.g., Eq. (6.2-18)], the 
double integral is reduced to a single integral 

Substituting this result back into Eq. (9.5-7), and talung note of the 
definition (9.2-22) for the number of degrees of freedom, we find 

where p12 = (p121. Thus, knowing K,, K, ,  and &, we can determine p12 
from AK, AK2. Finally, this result can equally well be expressed in terms of 
fringe visibility V. Since 

the average of the count-fluctuation product is given by 

Equation (9.5-1 3), relating the average count-fluctuation product to the 
fringe visibility that would be observed if the two beams of light were to 
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interfere, is an important milestone in our analysis. It shows that, if a 
sufficiently large number of count fluctuation products are entered into the 
averaging accumulator, so that the estimate of the true statistical average is 
reasonably accurate, the visibility Y can be estimated from the information 
present at the output of the interferometer. Note that, as in the case of the 
classical intensity interferometer, no information about the phase of the 
fringe is available. What we do not know at this point is how many 
count-fluctuation products must be averaged for the estimate of visibility to 
be an accurate one. This brings us to a consideration of the fluctuations of 
the estimate of V ,  for which we must turn our attention to the noise present 
at the output of the interferometer. 

9.5.3 The Signal-to-Noise Ratio Associated with the Visibility Estimate 

A fully general study of the noise fluctuations associated with the output of 
the counting interferometer illustrated in Fig. 9-6 would be nontrivial. The 
difficulty arises in simultaneously including the effects on that noise of both 
the classically induced fluctuations and the shot-noise fluctuations of the 
counts. Whereas the shot-noise fluctuations of the counts at the outputs of 
the two detectors are statistically independent, the classically induced 
fluctuations are not. In fact, it is precisely the statistical dependence of those 
counts that allows us to extract information about the fringe visibility. Not 
only does the "signal" portion of the interferometer output depend on this 
statistical relationship between the counts, but also the noise at the output is 
influenced by it. The full analysis of the interferometer, including both of 
these effects, is a very difficult analytical problem. 

Fortunately, in the particular case of most interest, namely, light originat- 
ing from a true thermal source in the visible region of the spectrum, a much 
simplified analysis will suffice. We know that for such sources, because of 
the very small degeneracy parameter of the light they emit, the fluctuations 
of the photocounts are strongly dominated by pure shot noise. We cannot 
neglect the classically induced fluctuations of the counts when we calculate 
the signal component of the output, but we can neglect them when we 
calculate the noise, simply because their contribution to the noise is so 
small. 

In the analysis that follows, we consider first the signal- to-noise ratio 
associated with the measurement of a single count product. It is defined as 
follows: 

AK, AK, if) = 2 . 1 / 2  ' 
(9.5-14) 

[ ( A K , A K ~ ) ~ - ( A K ~ A K ~ ) ]  
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After calculating this quantity, we then specify the signal-to-noise ratio at 
the output of the averaging accumulator simply by multiplying the signal- 
to-noise ratio for one count product by the square root of the number of 
independent measurements averaged in the accumulator. The only require- 
ment for accuracy of this procedure is that the count fluctuations be 
uncorrelated from counting interval to counting interval, a property that 
does hold for the Poisson shot noise we have assumed to be the main limit 
to accuracy. 

The quantity inside the brackets of the denominator of Eq. (9.5-14) can 
be evaluated by noting that, for the purpose of noise calculations, the count 
fluctuations as the two detectors are those of statistically independent 
Poisson variates. It follows that 

- 
where the properties AK = 0 (by definition) and AK = (by the Poisson 
assumption) have been used. Substitution of Eqs. (9.5-13) and (9.5-15) in 
(9.5-14) shows that the signal-to-noise ratio associated with a single count 
product is given by 

When the average intensities incident on the two detectors are equal, the 
expression for the signal-to-noise ratio reduces to the useful form 

(f) = s ,v2 ,  
1 

where 6, is the count degeneracy parameter of the light incident on either 
detector. 

It should be emphasized once more that Eq. (9.5-17) represents the 
signal-to-noise ratio only for a single count-fluctuation product, based on 
the counts in a single counting interval of length seconds. Even a casual 
inspection of this result indicates that a problem exists. Since the degeneracy 
parameter has been assumed to be much less than unity, and since the 
visibility of the fringe can never exceed unity, we see that the signal-to-noise 
ratio of Eq. (9.5-17) is always much less than unity! Note that this 
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expression is independent of the length 7, of the single counting period used. 
Therefore, the signal-to-noise ratio is not improved by counting longer with 
the counters that follow the photodetectors. We conclude that it is impossi- 
ble to extract information about the fringe visibility from a single count- 
product measurement, for the noise dominates the signal by a large margin. 

To obtain a more accurate estimate of the visibility, we must resort to 
averaging the count products obtained in many independent counting 
intervals. This is precisely the function of the averaging accumulator shown 
at the output of the interferometer in Fig. 9-6. Assuming that the count- 
product fluctuations are independent from counting interval to counting 
interval, we see that the rms signal-to-noise ratio associated with averaged 
results from N counting intervals is gven by 

If ro is the basic counting interval, and if the counters can be reset 
instantaneously, the total measurement time is r = Nro. Hence the expres- 
sion (9.5-18) can be restated with total measurement time as a parameter, 

Note that it is, in fact, advantageous to have the basic counting interval 70 
as small as possible, for then the number of independent count products 
averaged in a fixed total measurement time is maximized. 

To obtain a more concrete feeling for the implications of this analysis, we 
examine exactly the same example that was treated in Section 9.4 for the 
amplitude interferometer. The ratio of the total measurement time to the 
basic counting time required in order to achieve a predetermined signal- 
to-noise ratio can be written, from (9.5-19), as 

Let the degeneracy parameter of the light be lo-),  the basic counting 
interval ro be seconds, and the required signal-to-noise ratio be 10 (as 
in the previous example). The required measurement time now depends on 
the fourth power of visibility. If the visibility of the fringe is unity, the 
required measurement time in this case is at least 10 seconds (compared 
with a small fraction of a second for the amplitude interferometer). If the 
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visibility of the fringe drops to 0.1, the measurement time increases to 10 
seconds, or about 28 hours (again to be compared with a small fraction of a 
second)! 

If the sensitivity of the intensity interferometer is really as poor as 
indicated above, why has this instrument been of practical interest? The 
answer lies partly in the fact that the collecting apertures of the intensity 
interferometer can be far larger than the collecting apertures of an ampli- 
tude interferometer, and thus a larger fraction of a single coherence cell can 
be covered by the collecting aperture in the present case. Our assumption 
that the degeneracy parameter of the counts is the same for the two 
interferometers when utilizing light from the same source is not really true. 
When the collecting aperture in an arm of an interferometer is smaller than 
the size of a single coherence cell, then the count degeneracy parameter at 
the photodetector for that arm is proportional to the area of that aperture 
[cf. Eq. (9.3-22)]. The diameter of the largest allowable collector in a 
Michelson interferometer operating within the Earth's atmosphere is of the 
order of 10 centimeters (or perhaps somewhat smaller); larger apertures 
result in a loss of fringe visibility due to the presence of more than one 
atmospileric coherence cell in the measurement. On the other hand, the 
intensity interferometer, which is insensitive to atmospheric distortions of 
the phase of the light impinging on the detectors, can use collecting 
apertures that are far larger than those mentioned previously. For example, 
the intensity interferometer at Narrabri, Australia, has collectors that are 
about 7 meters in diameter. Thus the effective count degeneracy parameter 
of the detected light is about ( 7 0 ) ~  times larger for this intensity inter- 
ferometer than for a comparable amplitude interferometer. 

There are a variety of other reasons for interest in the intensity inter- 
ferometer, in spite of its comparatively low sensitivity. First, the pathlengths 
in the two arms of such an interferometer need only be equalized and 
maintained to a fraction of c/B, where c is the velocity of light and B is the 
electrical bandwidth of the postdetection electronics. For an amplitude 
interferometer, the corresponding requirement is equalization to a fraction 
of c/Av, where Av is the optical bandwidth of the interferometer. It would 
not be uncommon to have several orders of magnitude difference between 
the electrical and optical bandwidths, Hence the alignment tolerances are 
greatly retaxed with the intensity interferometer. 

A second advantage of the intensity interferometer is that relatively 
imperfect collectors can be used, whereas an amplitude interferometer 
requires high-precision optical components. 

A thlrd advantage is that inhomogeneities of the atmosphere have 
comparatively little effect on the performance of an intensity interferometer 
but a profound effect on an amplitude interferometer. The detectors in the 
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intensity interferometer are completely insensitive to any phase errors of the 
optical waves falling on them. The only significant effect comes from 
scintillation induced by the atmosphere, and these effects are often com- 
paratively minor. An amplitude interferometer, by comparison, is exceed- 
ingly sensitive to atmospherically induced phase perturbations, even when 
the aperture sizes are small. In such a case the fringe that is to be detected is 
actually running back and forth on the detector array, as a result of the 
constantly changing relative phase shifts introduced in the two atmospheric 
paths intercepted by the two arms of the interferometer. In practice, such 
wandering of the fringe negates the possibility of extracting phase informa- 
tion about the complex coherence factor (the intensity interferometer also 
cannot determine this phase). I t  also makes the job of extracting visibility 
information more difficult than it would be if the fringe were completely 
stationary. 

In summary, the lower inherent sensitivity of the intensity interferometer 
is at least partially compensated for by the increased areas possible for the 
collecting apertures, the lower precision required of those collecting ele- 
men ts, the relative insensitivity to atmospheric effects, and the much relaxed 
tolerances on alignment of the system. However, the majority of current 
research in interferometric imaging is directed toward the amplitude inter- 
ferometer, precisely because of its superior noise performance. The reader 
interested in pursuing the subject of intensity interferometry further is 
referred to Ref. 6-24 for a detailed discussion of the history and perfor- 
mance capabilities of the intensity interferometer. 

9.6 NOISE LIMITATIONS IN SPECKLE INTERFEROMETRY 

Our final analysis considers the noise limitations encountered in stellar 
speckle interferometry, particularly the fundamental limitations that arise 
from the finite number of photoevents participating in any measurement. 
The reader may wish to review Section 8.8, which introduced the basic ideas 
behind stellar speckle interferometry, before proceeding further. Here it 
suffices to remind the reader that, by averaging the squared moduli of the 
Fourier spectra of an ensemble of detected short-exposure images, an 
estimate of the squared modulus of the object spectrum can be obtained, 
free from degrading effects of the atmosphere. The ability to extract such 
Fourier information about the object is limited, however, particularly for 
the weak objects of greatest interest in astronomy, by the noise that is 
inherent in the photodetection process. 

Our attention is first focused on the analytical model that will be used to 
study the sensitivity of this imaging method. A calculation of the spectral 
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density of the detected imagery is presented next, followed by a calculation 
of the fluctuations that are encountered in one possible estimation proce- 
dure used to determine the squared modulus of the object spectrum. Finally, 
the signal-to-noise ratio (S/N) achieved by the process will be calculated. 
Some general comments will then complete the final section. Alternative 
discussions of this problem can be found in Refs. 9-19 through 9-21. 

9.6.1 A Continuous Model for the Detection Process 

The analyses of amplitude and intensity interferometry presented in the 
previous sections used discrete models for the detection process. By ths  we 
mean that the analysis of amplitude interferometry assumed a discrete set of 
small photodetectors, each of which produced an element of a count vector, 
whereas the detectors used by the intensity interferometer were assumed to 
be gated in discrete time intervals, each producing a discrete sequence of 
counts for further processing. The reader may appreciate being introduced 
to another method of analysis here, namely, one that uses a spatially 
continuous model of the photodetection process. 

In this case we suppose that the detector is continuous in space and 
capable of registering not only the occurrence of a photoevent anywhere on 
its sensitive surface, but also the location of that photoevent. The detected 
signal is then represented in the form 

where d(x, y )  represents the detected signal as a function of the two spatial 
coordinates and S ( x  - x,, y - y,) represents a particular photoevent oc- 
curring at spatial coordinates ( x , ,  y,) in terms of a two-dimensional 6 
function centered at those coordinates. There is a total of K such photo- 
events, at different locations on the photosurface, during the time that this 
single image is detected. In this representation, K, xn, and y, are all to be 
regarded as random variables, with statistical properties to be described in 
the following paragraphs. 

The model described in the preceding paragraph is that of a compound 
or inhomogeneous Poisson impulse process, of the kind discussed in Section 
3.7. In accord with the semiclassical theory of photodetection, the probabil- 
ity that K photoevents occur in an area A on the photodetector is taken to 
be Poisson, under the assumption that the incident light is thermal in origin 
and has very small degeneracy parameter. Thus the probability of detecting 
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K photoevents in area A is written 

where the "rate" X(x, y) of the Poisson impulse process is related to the 
classical intensity I(x, y) falling on the photosurface through 

and the finite extent of the detector has been incorporated in I(x, y). Here 
ar is given by Eq. (9.1-9), and r represents the detector integration time for 
this particular image. Since the distribution I ( x ,  y )  of classical intensity is 
unknown a priori, we first treat h(x, y ) as a given known function and then 
later average over the statistics of A. This procedure is entirely consistent 
with rules of conditional statistics. We further note, for future use, that, 
when conditioned by knowledge of the number K of events, the event 
locations (x,, yn) are independent random variables, with common prob- 
ability density function [cf. Eq. (3.7-14)] 

where the rate function X(x, y), which is proportional to the classical image 
intensity, is a nonnegative function. 

Figure 9-7 shows a typical classical intensity distribution and the corre- 
sponding typical detected image; the illustration is one-dimensional for 
simplicity. 

9.6.2 The Spectral Density of the Detected Imagery 

The speckle interferometry method rests on the generation of an accurate 
estimate of the spectral density of the detected imagery. It is thus important 
to consider the statistical properties of such spectral estimates. In this 
section we focus on the mean or expectation of the spectral density estimate. 
In Section 9.6.3 we consider the fluctuations of the estimate about the mean. 
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Figure 9-7. Classical and detected images: (a) classical image intensity; ( b )  detected image. 

The classical intensity I(x,  y) falling on the photosurface is not repre- 
sentable as a sample function of a stationary random process. The finite 
area of the photosensitive surface in effect supplies a "window" through 
which the incident images must be measured, and independent of whether 
the images incident on this window are stationary, they certainly are 
non-stationary after windowing. In fact, the integral (over the detector area) 
of each sample function of the windowed intensity process is finite, a 
consequence of the fact that each image contains finite optical power. Hence 
the Fourier transform of each sample function exists, and it is appropriate 
to deal with the enera spectral density of the images, rather than the power 
spectral density. This conclusion is also true for the detected image d(x, y). 
Our interest lies in determining the expected value of the squared modulus 
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for the Fourier transform D(vX,  v , )  of the detected image data, where 

As a first step, expression (9.6-1) for d ( x ,  y )  is substituted into the 
Fourier transform of (9.6-5), yielding 

The squared modulus of this quantity is given by 

It remains to find the expected value of 1 ~ 1 ~  over the statistics of K ,  
( x , ,  y,), and A.  It is convenient to first regard K and A(x, y) as known 
quantities, average over the conditional statistics of ( x , ,  y,) and ( x , ,  y,,,), 
and then average over K and A. Thus our first goal is to compute 

where En, signifies an average over ( x , ,  y,) and (x , ,  y,). 
Two classes of terms can be identified: (1) K terms for which n = m, 

each of which yields unity and (2) K - K terms for which n + m. For the 
latter terms we know that ( x , ,  y,) and (x, ,  y,) are independent random 
variables and, therefore, that 

For these K 2  - K terms, the result of the averaging process is 
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Thus the result of averaging  ID^ over the statistics of (x,, y,) and (x,, y,) 
becomes 

where A(vx, v ,) is the Fourier transform of the rate function A(x, y ). 
At this point a few comments are in order regarding the number of 

counts K in a single frame. This number varies from frame to frame. In 
some applications, particularly those where accurate photon-counting 
equipment is used, it is possible to measure K for each detected frame. In 
such a case it would not be appropriate to treat K as a random variable, 
since it is completely known for each measurement. In other cases it is not 
possible to measure K, such as when the detector is photographic film. 
Under such circumstances K must be treated as a random variable. Here we 
assume the latter case, although later comments will address the changes 
necessary when K can, in fact, be measured for each frame. 

Continuing our averaging process, we next find the expected value of Eq. 
(9.6-11) over the random variable K, assuming A(x, y) to be known. 
Representing the conditional mean of K (given A) by F(x,, and noting that, 
for Poisson statistics, 

we find that 

Finally, averaging over the statistics of X(x ,  y ), we obtain 

where W is the unconditional mean of K and gA(vX, v ,) = E[IA(vX, v,)1*]. 
Thus the spectral density of the detected image is the sum of a constant 

spectral level & plus the spectral density of the rate function. This result is 
in agreement with Eq. (3.7-32), which was obtained by a related argument. 
Alternate forms of this result are also useful. First, if we define a normalized 
energy spectral density 



516 

we have 
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Furthermore, since h ( x ,  y)  is proportional to the classical intensity I ( x ,  y), 
we must have 

@ A ( V X ,  v y )  = ~ , ( V X ,  v y ) ,  (9.6-17) 

where cft(v,, v y )  is the normalized energy spectral density of the classical 
image intensity incident on the detector. The result is illustrated in Fig. 9-8. 

(b) 

Figure 9-8. ( a )  Normalized energy spectral density of the image intensity and ( b )  correspond- 
ing energy spectral density of the detected image. 
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Having calculated the mean or expected distribution of the squared 
modulus of the Fourier spectrum of the image, we next consider the more 
difficult problem of calculating the fluctuations associated with the estimate. 

9.6.3 Fluctuations of the Estimate of Image Spectral Density 

In the imaging problem of interest here, the initial desired result is an 
accurate estimate of the normalized energy spectral density of the 
classical image intensity falling on the detector. Because of the simple 
relationslup that exists between &d and the energy spectral density il of the 
detected image [Eq. (9.6-17)], a reasonable approach is to first estimate d'(, 
and then express as 

The quantity K is simply a measure of the total image brightness, whch we 
assume is either known a priori or can be determined accurately by a 
suitable photometric measurement. (An alternate estimation procedure, 
described in Ref. 9-21, in which K is replaced by the actual number K of 
photoevents detected in the picture, is discussed briefly later.) The fluctua- 
tions in our estimate of gl are determined by the fluctuations in our 
measurement of gd. It is these fluctuations that we wish to find here. 

An estimate of 8, can be made by measuring 1 ~ 1 ~  for a single image. The 
expected value of this estimate is, of course, gd(v,, v ,). But how far from 
this expected value is a single measurement likely to be? To answer this 
question, it is necessary to find the second moment of 1 ~ 1 ~ ;  that is, we must 
calculate 

K K K K  

E I I D I ~ I  = C C C Z ~ [ e x p { j 2 n [ v , ( x ,  - x, + x p  - x q )  

This calculation is a lengthy one and is presented in Appendix C. The result 
is found to be 

I f  we subtract the square of the mean of ]Dl2, that is, the square of Eq. 
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Dl2 

Figure 9-9. Spectral density estimate for a sinusoidal image. The solid line represents the 
mean, and the shaded area represents the standard deviation of the estimate at each frequency. 

(9.6-14), we obtain the variance of J D ~ ~ ,  

oh,, = a + ( Q 2  + 2(2 + K)gA(vX, v,) + gA(2vX, 2vY) + &,Z(r,, vy). 

(9.6-21) 

Equivalently, using the proportionality between h and I ,  we have 

- 2 4 " 2  
+ ( K )  a,(2vx,2vy) + ( k )  8, (v,, v y ) .  (9.6-22) 

This equation represents the main result of this section. It is sufficiently 
interesting to deserve some comment. Note in particular that the fluctua- 
tions of the spectral density of the detected image at frequency (v,, v y )  
depend not only on the spectral density of the classical intensity at the same 
frequency, but also on the spectral density at frequency (2vx, 2v ,)! Stated in 
other words, a frequency component of the classical intensity at (2 v,, 2 v ,) 
induces fluctuations of the spectral estimate at frequency (v,, v,). This 
" half-frequency" phenomenon is a fundamental property of photon-limited 
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images. It has previously been noted in another context by Walkup (Ref. 
9-22). The character of the spectral density estimate of a photon-limited 
image consisting of a single sp;.tial sinusoid (of finite extent) is illustrated in 
Fig. 9-9. Note the fluctuations of the spectral estimate at one-half the 
frequency of the sinusoid actually present. 

Having found both the mean and the variance of the spectral estimate, 
we can now consider the signal-to-noise ratio associated with the measure- 
ment. 

9.6.4 Signal-to-Noise Ratio for Stellar Speckle Interferometry 

On the basis of calculations performed in the preceding two sections, it is 
now possible to express the rms signal-to-noise ratio associated with a 
single-frame estimate of the normalized energy spectral density of the image 
at frequency (vx, v,). Following subtraction of the bias associated with 
the mean of gd [cf. Eq. (9.6-16)], the signal-to-noise ratio takes the form 

A more useful form of the result is obtained if we remember that it is 
really the spectral density of the object that we ultimately seek, not that of 
the image. It is now necessary to incorporate the relationship between these 
two spectral densities, taking into account the effects of atmospheric turbu- 
lence. Such calculations have been carried out in Section 8.8. Best suited for 
our use is the result of the heuristic analysis in Section 8.8.2. Noting that the 
normalized spectral densities of the image and object are related by [cf. Eq. 
(8.8-4)] 

we can use the result (8.8-13) to express the average squared short-exposure 
OTF, 
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Here, as before, ro is the atmospheric coherence diameter, Do is the 
diameter of the telescope collecting aperture, and So is the diffraction- 
limited OTF of the telescope in the absence of the atmosphere. With the 
substitution 

and the definition 

representing the average number of photoevents per speckle, the signal-to- 
noise ratio for a single frame takes the form 

In practice, the measured data are obtained not from one frame of 
imagery, but from a large number of frames taken in time sequence. With 
the assumption that the realizations of the state of the atmosphere are 
independent from frame to frame, the signal-to-noise ratio associated with 
an average over N frames of imagery is 

(f) Iv =fi(f). 1 

We now have in hand expressions for the signal-to-noise ratio that should 
suffice in any assessment of the limitations of stellar speckle interferometry. 
These results require some further discussion, however, which we take up in 
Section 9.6.5. 
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9.6.5 Discussion of the Results 

The expression for the single-frame signal-to-noise ratio [Eq. (9.6-28)] 
reveals some interesting and important properties of the stellar speckle 
interferometry technique. Most important is the fact that, as the number of 
photoevents per speckle k grows large without bound, the signal-to-noise 
ratio approaches unity. Thus it is not possible to achieve a signal-to-noise 
ratio greater than unity by use of a single frame for the estimate of the 
image spectral density. This property is shared by all spectral estimates that 
rely on a Fourier transform of a single sample function of a random process 
(see, e.g., the discussion of "periodograms" in Ref. 9-12, Section 6-6). The 
only way to increase the signal- to-noise ratio is to average the single-frame 
estimates over many frames, yielding the behavior described in Eq. (9.6-29). 

There is a striking resemblance between the intensity interferometer and 
the stellar speckle interferometer in this regard. The signal-to-noise ratio 
associated with any single count product in the intensity interferometer was 
found to be bounded from above by unity. Only by averaging over many 
independent count products could the performance be improved. The 
analogy does not stop here. In the case of the intensity interferometer, the 
critical parameter determining performance is the count degeneracy param- 
eter, or the average number of photoevents produced in a single coherence 
interval of the incident light. In the case of the stellar speckle interferometer, 
a similar role is played by the parameter k ,  the average number of 
photoevents occurring in a single spatial coherence cell of the atmosphere. 

The expression (9.6-28) for the single-frame signal-to-noise ratio is com- 
plicated by the fact it depends on the spectral content of the object at both 
(v,, Y y )  and (2vX, 2 ~ ~ ) .  This complication can be removed if we restrict 
attention to frequencies that lie between one-half the diffraction-limited 
cutoff frequency and the cutoff frequency of the telescope, for then we know 
that the double frequency term can make no contribution to the noise at the 
frequency of interest. In this case the single-frame signal-to-noise can be 
written 

There are three limiting regions of interest, each with a different dependence 
on k: 
(1) For L J P , ~ ~  1, (S/N), = 1 (independent of x), 

- 
(2) For Z#',C?~ -c 1 but a >> 1, ( S / N ) ,  = k ~ , 8 ~ ,  

- 
(3) For z~l"o8~ * 1 but K e  1, (S/N)I k3'2(~o/ro)f l~&. 
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Figure 9-10 shows a typical dependence of the single-frame signal-to-noise 
ratio on k. The three different regions of performance are indicated. Note 
the asymptotic approach to a signal-to-noise ratio of unity at large (on the 
right). In this region (S/N), is relatively independent of the brightness of 
the object. In the middle range, (S/N), increases in proportion to the 
average number of photoevents per coherence area. Only in the third range, 
when the total number of photoevents per picture is much less than unity, 
does increase of the telescope aperture improve the signal- to-noise ratio. 
This latter range is generally not important in practice, since the resulting 
signal-to-noise ratio is so small. 

Dainty and Greenaway (Ref. 9-21) have shown that if the actual number 
of photoevents in a gven frame is known, then in (9.6-18) that number 
should be subtracted, rather than F, the expected number. Then the 
performance described in the middle regon extends through the third 
region on the left. Thus the signal-to-noise ratio remains proportional to L 

Figure 9-10. Single-image rms signal-to-noise ratio for speckle interferometry, as a function of - 
k ,  the mean number of photoevents per speckle. Assumptions: spatial frequency 0.8 of the 
cutoff, telescope mirror diameter 1.5 meters, atmospheric coherence diameter 10 centimeters 
normalized object energy spectral density 1.0 (appropriate for a point-source object). 
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in all regions for which < 1. They have also examined so-called q-clipped 
estimates, in which all frames having fewer than q photoevents are dis- 
carded and do not take part in the averaging process. The results in this case 
are more complicated, but it is shown that by discarding frames containing 
0 or 1 photoevents, best performance is achieved, and that performance 
again yields a single-frame signal-to-noise ratio that increases in proportion 
to Z when % 1, as in the middle region of Fig. 9-10. 
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PROBLEMS 

9-1 Consider the characteristic function of the number of photoevents 
occurring in a T-second interval when light falls on a photosurface. 
Express this characteristic function in terms of the characteristic 
function of the integrated intensity of the incident light. Note that to 
do so requires extension of the characteristic function of W to a 
function of a complex variable. 

9-2 Using characteristic functions, show that the gamma density in Eq. 
(9.2-21) asymptotically approaches a Gaussian density as the parame- 
ter d grows arbitrarily large. 

9-3 Show that the negative binomial distribution in Eq. (9.2-24) reduces 
to the Bose-Einstein distribution when the number of degrees of 
freedom is unity. 

9-4 Demonstrate that, when the photosensitive area of a detector is much 
larger than the coherence area of an incident cross-spectrally pure 
wave, the number of spatial degrees of freedom reduces to the ratio 
of the detector area to the coherence area of the incident wave. 

9-5 A partially polarized thermal light wave is incident on a photo- 
surface. The total incident integrated intensity of the wave can be 
regarded to consist of two statistically independent components, W, 
(mean wl) and W, (mean m2). Thus the probability density of W 
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can be expressed as the convolution of the probability densities of Wl 
and W,. Under such circumstances show that the probability distri- 
bution P ( K )  of the total number of photoevents observed can be 
expressed as a discrete convolution of the distribution functions 
P , ( K )  and P , ( K )  for the numbers of photoevents that would be 
observed if W, and W, were incident individually. 

9-6 Equation (9.2-29) presents a general expression for the probability 
distribution of the photocounts when the Light is thermal in origin 
and partially polarized. Show that when the degree of polarization is 
0, this expression reduces to a negative binomial distribution with 
2M degress of freedom. Repeat for the case of a perfectly polarized 
wave, showing that the distribution becomes a negative binomial 
distribution with A degrees of freedom. 

9-7 Given the assumption that the energy levels of an harmonic oscillator 
can take on only the values nhF, and given the Maxwell-- 
Boltzmann distribution of occupation numbers (Eq. 9.3-16), show 
that the probability distribution associated with occupation number 
is Bose-Einstein, and derive the mean occupation number. 

9-8 Show that for the detector array depicted in Fig. 9-4, and for the 
assumptions adopted in connection with the problem treated there 
(including the assumption of thermal light), the correlation between 
the counts registered on the j th and k th detector elements is given 
by 

9-9 Consider the noise performance of the system of Fig. 9-4 when the 
light impinging on the detector array is pseudothermal and has a 
large degeneracy parameter (i.e., S, >> 1). Make the following as- 
sumptions about the relative values of the various parameters: 

Find an expression for the rms signal-to-noise ratio associated with 
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the measurement of fringe visibility, and compare the result with that 
obtained in Eq. (9.4-23). 

9-10 A single-mode, amplitude-stabilized laser is intensity modulated to 
produce an intensity as a function of time given by 

Where I, and v, are known constants, but B is a random variable 
uniformly distributed on 0 to 27r. 

(a) Find the mean number of photoevents detected by a photode- 
tector in a time interval of length 7 when such light is incident. 

(b) Find the variance a; of the number of photocounts observed in 
7 seconds. 

9-11 The field emitted by a laser oscillating in N equal strength, indepen- 
dent modes falls on a photodetector. The photoevents are counted 
over an interval that is sufficiently short that the incident light stays 
constant (but random) over this interval. 

(a) Find the mean B and the variance o: of the number of 
photocoun ts observed, expressing the latter result as a function 
of N and K. 

(b) Express the ratio of the classically induced component of count 
variance to the shot-noise-induced component of count variance, 
stating the answer in terms of N and F. 

9-12 A certain fluorescence process produces extremely short pulses of 
light, each carrying a known classical energy Wo. The number of 
pulses incident on a photoelectric detector per second is Poisson 
distributed, with the mean h pulses per second known. We count the 
number K of photoelectrons released from the photosurface in a 
measurement time 7. 

(a) Express the variance a: of the number of photoevents K in 
terms of the mean number of counts in time 7 and the mean 
number of counts per pulse #. 

(b) On the basis of the result of part (a), under what condition do 
you expect classically induced fluctuations to exceed the shot- 
noise fluctuations due to the photoemission process itself? 

9-13 A certain photodetector generates a finite pulse of constant known 
area for every photoevent that is detected. To a first approximation, 
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the pulses generated may be assumed to be rectangular in form, to 
have a duration 7 ,  and to have peak voltage Vb. 

(a) Suppose that single-mode, amplitude-stabilized laser light (in- 
tensity I,) is incident on the photosensitive surface (area = A) 
of the detector. Find the probability distribution of the voltage 
V observed at the detector output at any arbitrarily selected time 
t o .  

(b) Repeat part (a) for the case of polarized thermal light, with no 
restrictions on the coherence time of the light. 



Appendix A 

The Fourier Transform 

The Fourier transform is perhaps the most important analytical tool needed 
for work in statistical optics, or for that matter in the field of modern optics 
in general. For this reason we present here a brief summary of the most 
important Fourier transform theorems and Fourier transform pairs needed 
in practice. No attempt at derivation of these properties or relationships i s  
made here. Rather, for such information the reader is encouraged to consult 
any of a number of excellent books on the subject (see, e.g., Refs. A-1 
through A-4). 

A. 1 FOURIER TRANSFORM DEFINITIONS 

In this book we have chosen to use definitions of the forward Fourier 
transform that have a positive exponential kernel. Thus our definitions of 
the one-dimensional and two-dimensional Fourier transforms of (generally 
complex valued) functions f(x) and f(x, y) are: 

and 
00 

F(vX, v,) = JJ ~ ( x ,  y)eJ2v(vxx+v dxdy. 
-bC, 

(A-2) 

Along with these definitions are corresponding definitions of the one-dimen- 
sional and two-dimensional inverse Fourier transforms, 

and 

528 
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The reader may be more accustomed to using one of several other 
possible definitions of these transforms. For example, often a negative sign 
is used in the exponential kernel of the forward transform (and a positive 
sign in the kernel of the inverse). The question then naturally arises as to 
how a Fourier transform defined with the positive kernel [call i t  F'(v)] can 
be related to the transform defined with the negative kernel [ F ( v ) ] .  Just a 
single line of algebra shows that the desired relationship is 

in the one-dimensional case and 

in the two-dimensional case. Thus tables of Fourier transforms valid for one 
definition can easily be converted into corresponding tables for the other. 

A.2 BASIC PROPERTIES OF THE FOURIER TRANSFORM 

A number of relationships that are useful in manipulating Fourier trans- 
forms are presented now without proof, for both the one-dimensional and 
two-dimensional cases. Throughout this appendix, g and h represent func- 
tions (generally complex valued) of one or two variables, and G and H 
represent their Fourier transforms, defined in accord with Eqs. (A-1) or 
(A-2). In all cases, a script 9{ ) represents a Fourier transform operator in 
either one or two dimensions. The dimensionality should be clear from the 
context. When only one form of the relationship is shown, i t  holds for both 
the one-dimensional and the two-dimensional cases. 

Linearity. If a and b represent arbitrary complex constants, then, for both 
the one- and two-dimensional cases, 

S l a g  + bh) = aG + b~ (A-7) 

Similarity. If a and b are real-valued constants, then 
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Shift. If a and b are real-valued constants, then 

g(g(x - 4 )  = e~2"'"G(v) (A- 10) 

and 

9 ( g ( x  - a ,  y - b )  = e j 2 w ( v x a +  v y b ) ~  
(vx3 VY). (A-1 1) 

Parseval's Theorem. In one dimension 

and in two dimensions 

Convolution Theorem. In one dimension 

and in two dimensions 

Autocorrelation Theorem. In one dimension 

and in two dimensions 
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Fourier Integral Theorem. At each point of continuity of g, a Fourier 
transform followed by an inverse Fourier transform yields the value of the 
original function g again. At a point of discontinuity of g, the succession of 
a transform and an inverse transform yields: (1) in one dimension, the 
arithmetic mean of the values of the function on both sides of the discon- 
tinuity, and (2) in two dimensions, the angular average of the function 
about the point of discontinuity. 

A.3 TABLE OF ONE-DIMENSIONAL FOURIER TRANSFORMS 

Table A-1 presents a collection of one-dimensional Fourier transform pairs 
that is fully adequate as an aid for the material presented in this book 

Table A- 1 One-Dimensional Fourier Transform pairs 

Function Transform 

e - 7rx2 

1 

W x )  
cos V X  

sin ~x 

rect x 

e - nv2 

1 

is(, - +) + + s ( u  + +) 
$(v - :) - t s ( v  + t )  
sinc v 
sinc * v 

2 

sgn v 

e i ( n / 4 ) e - / * ~  2 
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Table A-2 Two-Dimensional Fourier Transform Pairs 

Function 
-- 

Transform 

rect x rect y 

4 x 9  Y 
e - S ( X ~ + ~ ~ )  = , - m r 2  

circ r 

sinc v, sinc V, 
1 
,-.(V:+V:> , ,-.p 

2 

J , ( ~ V P )  
P 

277a J o ( 2 r a p )  

sinc v, sinc2 v , 

A.4 TABLE OF TWO-DIMENSIONAL FOURIER TRANSFORM 
PAIRS 

Table A-2 presents a collection of two-dimensional Fourier transform pairs 
that may prove useful in the study of this book. The symbol r represents 
radius in the ( x ,  y) plane, whereas the symbol p represents radius in the 
two-dimensional spatial frequency plane ( v,, v ,). 
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Appendix B 
Random Phasor Sv ms 

Because of the great importance of the random walk problem in statistical 
optics, we present in this appendix a generalization of the theory discussed 
in Chapter 2, Section 2.9. There the assumption was made that the phases of 
the individual phasors contributing to the sum are independent and uni- 
formly distributed on the interval (-7, T). Here we derive results valid 
when the phases take on an arbitrary probability density function p,($) 
while remaining identically distributed and independent. The characteristic 
function corresponding to the probability density function of the phase is 
represented by M+(o).  

As in Section 2.9, we consider the sum 

where N represents the number of independent phasors contributing to the 
random walk and a, represents the length of the k th phasor. The a, are 
assumed to be independent of each other and of the phases and identically 
distributed. The real and imaginary parts of this sum are 

Clearly, the means of the real and imaginary parts of the resultant can be 
expressed as 

1 N 
- -- 
r = -  C a,cos 4, 

fi ,==I 
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Further simplification can be made by noting that the means of the cosine 
and sine functions can be related to the characteristic function of the 
random variables 4,. Expanding the cosine and sine functions using Euler's 
formulas, we can express the means as 

These results are the most general ones consistent with our previous 
assumptions but can be simplified if further constraints are applied. For 
example, if the probability density function of the random phases is 
assumed to be symmetrical about zero, the characteristic function is entirely 
real and even in the variable w (Ref. B-1, p. 14). It follows that the means of 
the real and imaginary parts of the random walk become 

Having found the first-order moments of the real and imaginary parts, we 
turn to second-order moments, with the goal of specifying the variances of 
the real and imaginary parts and their covariance. General expressions for 
the second-order moments of r and i are 

Again using Euler's formulas, we obtain the following general expressions 
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for the moments of the trigonometric functions of concern: 

! [ 2 ~ , ( 1 ) ~ , ( - 1 )  + Mi(1)  + M:(-l)] k  + n  
cos +,' cos +, = 

! [2 + M+(2) + M+( - 2)) k = n  

$ [ 2 ~ , ( 1 ) ~ , ( -  1) - M:(l) - M:( - l ) ]  k + n 

$12 - M+(2) - ~ + ( - 2 ) ]  k = n  

1 
- ( 1  - M -  1 k + n  

cos +,sin +,, = 
4 j  
1 
- [ ~ , ( 2 )  - M,(-2)) k = n .  
4 j  

Combining these expressions, we find the second-order moments of interest 
to be given by 

- - 
Subtracting the squares of the means from r2  and i2  and the product of the 



536 RANDOM PHASOR SUMS 

means from 2, we obtain the variances and the covariance, 

a2 ( E ) ~  
C O V ( ~ ,  i )  = - [ ~ ~ ( 2 )  - M + ( -  2)] - - [M:(l) - M:(- l ) ] .  

4 j  4 j  

For the special case of a probability density function for the phases that 
is even about the origin, we obtain the simpler expressions 

cov(r, i )  = 0. (B-lOj 

Finally, when the phases are uniformly distributed, we have 

M,(l) = M,(2) = 0, (B-1 1) 

and the variances and covariances reduce to 

which is identical with the results obtained in Section 2.9. 
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There is one further subtlety regarding the random walk problem that we 
wish to clarify here. It was argued in Section 2.9 that, when the number of 
terms in the sums of Eq. (B-2) grows large, the central limit theorem implies 
that the statistics of the real and imaginary parts of the sum tend asymptoti- 
cally toward Gaussian. Such an argument is valid regardless of whether the 
phases associated with the individual contributions have uniform statistics. 
However, the assumption has been made that the real and imaginary parts 
are asymptotically jointly Gaussian random variables; that is, they satisfy 
together a second-order Gaussian probability density function [cf. Eq. 
(2.9-5)]. Whereas the Gaussian character of their marginal densities is 
implied by the central limit theorem, their joint Gaussian character is less 
obvious. 

To prove joint Gaussianity, we make the simplifying assumption that the 
phases +, are uniformly distributed, independent random variables. We 
retain the assumption that the amplitudes a, are independent of the phases 
and of each other. The joint characteristic function of the real and imagin- 
ary parts r and i is given by 

We define polar coordinate variables in the (a , ,  o,) plane, through 

With substitution of Eqs. (B-2) and (B-14) in (B-13) and use of the 
trigonometric identity cos A cos B + sin A sin B = cos( A - B), the char- 
acteristic function becomes 

For the moment we refrain from averaging over the a, and take a 
conditional average over the +,, with the result 

where J, is a Bessel function of the first lund, order zero. As N grows large, 
the argument of the Bessel function grows small, allowing that function to 
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be approximated by the first two terms of its power series expansion about 
the origin, 

At this point we perform the averaging operation over the amplitudes a,, 
yielding 

If the number of terms N in the random walk is allowed to increase without 
bound, the joint characteristic function of the real and imaginary parts 
asymptotically approaches a circularly symmetrical Gaussian function, 

(B- 1 9) 

Finally, an inverse Fourier transform of this characteristic function yields 
the two-dimensional Gaussian joint probability density function, 

1 r 2  + i 
p i ,  i )  = e x -  42 2 ) .  

4va2 

Hence we have proved that the real and imaginary parts of the random walk 
are joint Gaussian random variables. 

Whereas the preceding argument assumed that the phases of the- individ- 
ual components of the random walk are uniformly distributed, a more 
complex argument allows one to demonstrate that joint Gaussianity holds 
asymptotically even when the phases are nonuniforrnly distributed. 
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Appendix C 
Fourth-Order Moment of the Spectrum 
of a Detected Speckle Image 

In this appendix the fourth-order moment of the Fourier transform of an 
image used in speckle interferometry is calculated. The goal is to derive the 
result presented in Eq. (9.6-20). 

Our starting point is Eq. (9.6-19), which we repeat here for convenience: 

The K~ terms in this summation can be placed in 15 different classes as 
follows: 

K terms 
K( K  - 1) terms 
K ( K  - 1)(K - 2 )  terms 
K ( K  - 1 )  terms 
K ( K  - 1)(K - 2) terms 
K(K - 1) terms 
K ( K  - 1)(K - 2) terms 
K ( K  - 1 )  terms 
K ( K  - 1) terms 
K ( K  - 1) terms 
K(K - 1) terms 
K ( K  - 1)(K - 2)(K - 3) terms 
K ( K  - l ) ( K  - 2)  terms 
K ( K  - 1)(K - 2)  terms 
K ( K  - 1)(K - 2) terms 
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For the moment, condition the statistics by a known rate function 
A(x,  y); we shall later average over the statistics of A .  Thus we first average 
over the 2K + 1 random variables (x, ,  y,) ,  ( x 2 ,  y2),  . . . , ( x , ,  y,), K .  Not- 
ing that for a Poisson random variable K ,  the following expectation over K ,  
conditioned on a known A ,  is given by 

where K(A, represents the conditional mean of K .  The contributions of the 
15 sets of terms identified above can now be written as follows: 

Here, the definition 

has been used. Noting further that 
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and combining these results, we obtain 

To simplify the result further, express A(v,, v ,) in terms of its modulus 
and phase, 

and write the fourth moment of D as 

The task now remains to average over the statistics of A ( x , y ) .  If the 
image intensity distribution extends over a finite region of size L x L, then 
under rather general conditions, for vx>> l /L and v,>> 1/L, A(v,, v,) 
is approximately a circular complex Gaussian random process, with correla- 
tion extending over a region of dimensions approximately 2/L x 2/L in 
the frequency domain. It follows that the phase 8 is uniformly distributed 
on ( - T, T)  and that 1A12 obeys negative exponential statistics. Further- 
more, for such frequencies 8(2 v,, 2 vy  ), 8( v,, v ,), 1 A(2 v,, 2 v,)  1, and 
I A(v,, v,) are all approximately independent. Using these facts and averag- 
ing over A, we find 
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Substituting these relations in Eq. (C-7), we obtain the final result, 

E  ID^^] = R + 2 g 2  + 4(1 + R)&Jv,, v,) 

+8A(2~x, 2vY) + 2g:(~x~ vy), 

which agrees with Eq. (9.6-20). Thus the proof is complete. 
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for Poisson random variable, 20 

Checkerboard random phase screen, 37 1- 
3 74 

Chernoff, L. A., 459 
Circular source, 2 1 1-2 18 
Circular statistics, 42-44, 108, 109, 122 
Clifford, S. F., 459 
Coherence: 

area, 210, 221, 235, 308, 323 
complex degree of, 162, 164, 175 
high order, 237, 238 
length, 296, 299 
mutual, 174 
self, 16 1 
spatial, 170-187 
temporal, 158-170 
time, 158, 167 

Coherence relationships: 
exit pupil to image plane, 300-303 
focal plane to focal plane, 292-296 
object to image, 296-300 

Coherency matrix, 130-1 34 
Coherent field, 202-205 
Coherent imaging, 321, 322 
Coherent limit, 321 
Coherent transfer function, 322 
Collier, R. J., 356 
Complex coherence factor, 18 1, 183 
Complex degree of coherence, 162, 164, 

175, 183 
Complex degree of spectral coherence, 

202 
Complex envelope, 103, 104 
Complex Gaussian moment theorem, 260, 

274, 354 
Complex Gaussian random process, 108, 

109, 350 
Complex valued random variables, 40-44 
Condie, M. A,, 28 1 
Convolution, 3 12, 530 
Cooley, J. W., 229 
Correlation, 17 
Count degeneracy parameter, 483 
Count fluctuation product, 503 
Count vector, 491 
Covariance, 17 
Crimmins, T. R., 358 
Critical illumination, 306, 307 

Cross-correlation function, 79 
Cross-spectral density : 

definition of, 80 
propagation of, 201 

Cross-spectral purity, 187-1 95, 233, 260, 
2 75 

Currie, D. G. ,  357 

Daino, B., 152 
Dainty, J. C., 348, 357, 358, 460, 522, 

5 24 
Davenport, W. B., Jr., 56, 523 
Degeneracy parameter, 481-490 

for blackbody radiation, 486-490 
Degree of polarization, 134-1 36 
Degrees of freedom, 475, 476 
Delisle, C., 281 
Density function, 11, 12 
Depolarization, 394 
Detector, 4 
d e  Wolf, D. A,, 460 
Dialetis, D., 357 
Diameter, stellar, 340 
Diffraction, 222-228 
Diffuser, 15 1, 233, 349 

moving, 193-195 
Diffusion, 142 
Dillon, H. S., 229 
Discrete Fourier transform, 494 
Distribution function: 

definition, 9, 10 
joint, 13 

Double star, 446 
Duffieux, P. M., 321, 356 
Dugundji, J., 11 1 
Dumontet, P., 157, 228 
Dutta, K., 356 

Ehn, D. C., 460 
Eigenvalues, 135 
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Electromagnetic propagation, 393-3 99 
Energy spectral density, 68  
Ensemble average coherence, 35 1-356 
Entrance pupil, 300, 301, 323 
Erdelyi, A,, 459 
Ergodicity, 64-68 
Evanescent wave, 206 
Excess fluctuations, 471, 483 
Exit pupil, 300, 301 
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Far field, 225 
Fast Fourier transform, 170 
Feller, W., 56 
Fellgett, P., 170, 229 
Fiddy, M. A., 358 
Fienup, J .  R., 346, 347, 357 ,358  
Filter function: 

in atmospheric propagation, 4 15-427 
for log amplitude and phase, 424, 

4 25 
Fizeau, H., 357 
I-izeau stellar interferometer, 336-338 
Flugge, S., 356 
1-ocal length, 291 
I'ourier spectroscopy, 169, 170, 232, 

3 44 
ITourier transform : 

definitions, 528, 529 
four-dimensional, 295 
one-dimensional pairs, 5 3 1 
properties of, 529-53 1 
two-dittlensional pairs, 532 

Fractional bias, 255, 266, 283 
Francon, M., 229 
Fraunhofer diffraction, 210, 226 
Fresnel diffraction, 396 
Fried, D. L., 429, 431, 432, 436, 441, 
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Frieden, B. R., 11 1, 282 
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Fringe measurement, 500 
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Gamma probability density, 246,475 
Gas discharge: 
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low pressure, 164, 165 

Gaskill, J .  D., 532 
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circular statistics, 42-44 
complex random variable, 4 1-44 
density function, 12 
line shape, 165, 166 
moment theorem, 3 9 , 4 4 ,  84, 85, 278 
random phase screen, 3 76-3 84 
random process, 82-85, 108, 109 
random variable, 33-40 

reference sphere, 3 1 0  
spectrum, 242, 243, 283 
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Gezari, D. Y., 442, 460  
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Goldin, E., 523 
Goodman, J. W., 152, 229, 281, 282, 356, 
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Grating spectroscopy, 170 
Greenaway, A. H., 522, 524 
Green's function, 395 
Crimes, D., 326, 356 
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Half-frequency phenomenon, 5 18 
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Harp, J .  C., 459 
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Heibreider, G. R., 460 
Helmholtz equation, 200, 201, 234 
Herman, B. ,  459 
Hilbert transform, 105, 199, 344, 345 
Ho, T. L., 460 
Hodara, H., 147, 152 
Hologram, 463 
Holsztnski, W., 358 
Homogeneous turbulence, 3 86 
Hopkins, H. H., 157, 228, 287, 356 
Hudpin, R. H., 460 
Hufnagel, R. E., 429, 459, 460 
Huiser, A. M. J., 357 
Huygens-Fresnel principle, 1 17, 196 

Image formation: 
analyzed by four-dimensional linear 

systems approach, 3 12-3 20 
analyzed with incident mutual intensity 

function, 307-3 12 
analyzed by integration over source, 303- 

3 07 
as interferonletric process, 33 1-335 

Imaging with partially coherent light, 286- 
331 

Incoherence, 205-207, 322-324 
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Incoherent imaging, 3 20, 32 1 
Incoherent object, 320 
Independence, 15, 18 
Inertial subrange, 389 
Inhomogeneities of atmosphere, 384- 

3 93 
Inner scale, 389 
Instantaneous frequency, 14 1 
Integrated intensity, 238-256,467 

approximate probability density for, 244- 
250 

exact probability density for, 250-256 
measured with finite time, 256-27 1 

Integration time: 
in intensity interferometer, 508 
in Michelson stellar interferometer, 

501 
Intensity: 

definition, 123 
instantaneous, 123 

Intensity interferometer: 
advantages of, 273, 509, 510 
classical analysis of, 27 1-28 1 
counting version, 502 
ideal output of, 277 
noise limitations of, 277, 501 -5 10 
output signal-to-noise ratio, 28 1, 5 19- 

5 23 
Interferogram, 159, 160, 168 
Interferometer: 

Fizeau stellar, 336-3 38 
Michelson, 158 
Michelson stellar, 338-340 
stellar speckle, 44 1-455, 5 10-5 23 

Ishimaru, A., 459 
Isoplanatic assumption, 408 
Isoplanatic spread function, 3 13 
Isotropic turbulence, 386, 387 
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Joint random variables, 12-1 5 
Jones, D. G. C., 152 
Jones, R. C., 127, 152 
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Kallistratova, M. A., 460 
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Klauder, J. R., 523 
Klein, M. V., 152 
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Korff, D., 450, 454 ,460 
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460 
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Lambda Cratis, 403 
Laplace transform, 344 
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gas, 230 
modes, 229 
multimode, 145-15 1 
single mode, 282 

Laser light, 4, 121, 138-151, 193 
Lawrence, R.  S., 459 
Lee, R. W., 459 
Lens law, 298 
Liewer, K. M., 357 
Lin, L. H., 356 
Linear filtering, 7 1-73 
Linear system, four dimensional, 3 12 
Lloyd's mirror, 230 
Loive, M., 1 1 1 
Log amplitude fluctuation, 398 
Log normal: 

distribution, 399-402 
statistics, 397 

Long-exposure image, 43 3-435 
Long-exposure OTF, 402-4 14 
Lord Rayleigh, see Strutt, J. W. (Lord 

Rayleigh) 
Lorentzian spectrum, 165, 166, 242, 243, 

252, 284 
Lowenthal, S., 281 
Luneburg, R. K., 356 
Lutomirski, R., 460 
Lynds, C. R., 460 
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Mandel, L., 1, 147, 152, 157, 203, 228, 

229, 244, 281, 357 ,523  
Mandel's formula, 469 
Marathay, A. S., 229, 357 
Martienssen, W., 152  
Maxwell-Boltzmann distribution, 487 
Maxwell's equations, 393 
Mehta, C. L., 281, 523 
Mertz, L., 229 
Michelson, A. A,, 229, 338, 357 
Michelson interferometer, 158, 232 
Michelson stellar interferometer, 338-340, 

359, 360 ,445 ,491  
Microdensitonieter, 3 24 
Middleton, D., 56 
Miller, R. H., 357 
Mitchell, A. C. C., 229 
Mitchell, R. L., 460  
Moments: 

definition, 16 
joint, 17 
obtained from characteristic function, 

19 
Moment theorem: 

complex Gaussian, 237, 260, 274 
for laser light, 283 
for Poisson variates, 57 
real Gaussian, 39 ,44 ,  278 

Monochromatic light, propagation of, 1 17 
Monotonic transformations of probability, 

23-25 
Multivariate transformations of probability, 

23-25, 27-29 
Murdoch, D. C., 152 
Mutual coherence: 

definition, 174 
function, 183 
propagation of, 195-202 

Mutual intensity: 
definition, 180, 181 
statistical properties of, 256-271 

Narrowband light, propagation of, 120, 
1 96 

Negative binomial distribution, 476 
Negative exponential statistics, 123, 124, 

350 ,448  
Nisenson, P., 460  

Nonmonotonic transformations of probabil- 
ity, 25-27 

Nussenzvieg, H. M., 357 

Oberhettinger, F., 459 
Occupation number, 487 
Oliver, B. M., 357 
O'Neill, E. L., 152, 357, 459 
Optical axis, 293 
Optical transfer function, 32 1, 335 

average, 364, 368, 369, 373, 374, 376- 
380, 382 ,383  

Outer scale, 389 

Paley-Wiener condition, 345 
Papoulis, A., 56, 532 
Paraxial approximation, 178, 209, 219, 

220, 224, 291, 294, 302 
Parrent, G. B., 152, 228, 330, 356 
Parseval's theorem, 114, 530 
Partiai polarization, 127-138, 247-250 
Parzen, E., 56 
Pearson, K., 357 
Pease, F. G., 338, 357 
~e;ina, J., 228, 356 
Periodogranl, 5 2 1 
Phase information, importance of, 340- 

343 
Phase retrieval, 343-347 
Phase screen, Gaussian, 462  
Phase unwrapping, 455 
Phasor, 44-56 
Photocount: 

definition, 466 
fluctuations, 481-486 

Photocount statistics: 
for laser light, 470-472 
polarization effects, 477-479 
for polarized thermal light, 472- 

477 
spatial coherence effects, 479-481 

Photoelectric effect, 465 
Photoemission, 466 
Photoevent, 466 
Photosurface, 466 
Piazzolla, S., 152 
Picinbono, B., 281 
Pinhole size effects, 183-187 
Planck, M., 486 
Planck's constant, 468 ,487  
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Point-spread function: 
amplitude, 298 
atmospheric, 403, 435 
average, 366, 370, 371, 374, 380, 383 
intensity, 320 

Poisson: 
density function, 12 
impulse process, 85-98,46 7 
statistics, 88-91 
transform, 469 

Pokasov, V. V., 460 
Polarization: 

analyzer, 129 
circular, 13 1 
degree of, 134-136 
matrix, 128 
partial, 240, 241 

Pollak, H. O., 282 
Power spectral density, 68, 164-166 
Probability: 

axioms obeyed by, 8 
conditional, 14 
definition of, 7, 8 
marginal, 14 

Prolate spheroidal functions, 254 
Propagat ion: 

of mutual coherence, 195-202 
of mutual intensity, 198, 200 
through inhomogeneous atmosphere, 

393-399 
Pseudothermal light, 150-152, 16 1, 240, 

243, 283 
Pupil function, 224, 225, 315, 325, 333, 

364 

Quantum efficiency, 468 
Quantum electrodynamics, 465 
Quantum mechanics, 465 
Quasi-homogeneous source, 2 19 
Quasimonochromatic conditions, 180 

Radio astronomy, 33 1 
Random : 

absorbing screen, 367-374, 46 1 
checkerboard, 462 
experiment, 7 
phase screen, 374-384,406 
phasor sum, 44-56, 264,447, 448, 533- 

536 
Random process: 

complex, 99- 109 
definition, 6 0  
Gaussian, 82-85 
Poisson impulse, 85-99 

Random variable: 
complex, 40-44 
continuous, 9-1 2 
definition, 8 
discrete, 9-1 2 
Gaussian, 33-40 
independent, 3 1 
mixed, 9-12 
sums of, 29-33, 37-39 
transformations of, 21-29 

Random walk, 44-56, 447 
Ratcliffe, J .  A., 459 
Rayleigh: 

limit, 326 
Lord, see Strutt, J. W. (Lord 

Rayleigh) 
probability density function, 50 
separation, 3 5 9 
statistics, 123, 448 

Rectangular spectrum, 243 
Reducibility, 187, 189, 192 
Redundancy of vector spacings, 336 
Refractive index of atmosphere, 385 
Relative frequency, 7 
Rhodes, W. T., 455 ,460  
Riccati equation, 397 
Rice, S. O., 244, 281 
Rician statistics, 52, 399, 464 
Rigden, J. D., 357 
Risken, H., 143, 152 
Roberts, J. A,, 358 
Robinson, S. R., 357 
Roddier, F., 46 1, 523 
Rogers, G. L., 331, 356 
Rogstad, D. H., 455 ,460  
Roman, P., 152, 357 
Root, W. L., 56, 523 
Rough surface, 349 
Russell, F. D., 357 
Rytov: 

approximation, 399 ,457 ,464  
transformation, 397 

Sakai, H., 229 
Saleh, B. E. A., 358, 523, 524 
Sample function, 60,  6 2  
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Scalar theory, 1 16 
Scl~ell,  A. C.. 229 
Schell's theorem, 225, 226, 228 
Scherf, V. E., 460  
Schmeltzer, R. A., 433,  4 6 0  
Schwartz's inequality, 17, 74, 204 
Screen: 

random, 362-384 
thin, 362 

Scully, M. D., 523 
Self coherence, 16 1, 183 
Semiclassical theory of photodetection, 

465-468 
Shinn, D. H., 459 
Shore, R. A., 229 
Short-exposure: 

image, 433-435 
OTF, 402, 433-441 

Shumaker, J .  B., 229 
Siegman, A, E., 523 
Silver, S., 152 
Singh, K., 229 
Slepian, D., 282 
Small perturbations, 395 
Smith, A. W., 152 
Snyder, D. L., 524 
Sodin, L. G., 357 
Solar a$trnnoniy, 455,  456 
Spano, P., 1 5 2 
Sparrow condition, 3 2 8  
Speckle: 

atmospheric, 442 
in coherent imaging, 347-356 
contrast, 350  
first-order statistics, 348-3 50 
power spectral density of, 353-356 

Spectral coherence, 202 
Spectral density estimate, 5 17-5 1 9  
Spiller, E., 152 
Spizzichino, A., 56,  282, 357 
Spontaneous emission, 139,  142, 146 
Spread function, see Point-spread 

function 
Staclinik, R. V., 456,  4 6 0  
Standard deviation, 16 
Stanley, N. R., 4 6 0  
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in increments, 63,  14 1 
strict sense, 63, 8 4  
wide sense, 6 3 ,  8 4  

Steel, W. H., 229 
Stegan, I. A., 523 
Stellar speckle interferometry, 402,  441- 

4 5 5 
basic principle of, 442-446 
complete analysis of,  450-455 
heuristic analysis of, 446-450 
noise lirliitations of, 5 10-523 
signal-to-noise ratio in, 5 19-523 

Stimulated emission, 139, 142  
Strohbehn, J .  W., 4 5 8 , 4 5 9 , 4 6 0  
Strong fluctuation regime, 4 5 8  
Structure constant, 389 

dependence on  height, 4 2 8 , 4 2 9  
effects of smooth variations of, 427- 

4 29 
typical values of, 392 

Structure function: 
definition, 79  
of refractive index, 390-393 

Strutt ,  J. W. (Lord Rayleigh), 1, 348,  357, 
4 86 

Sudarshan, E. C. G., 523 
Sunis of random variables, 29-3 3, 3 7-39 
Sun, 235 
Swing, R. E., 356 
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Talbot effect, 419 
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Taylor's hypothesis, 386, 433  
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Telescope, 3 36, 338, 339 
Thcrnial light, 4, 121, 240, 250 

partially polarized, 127-138 
polarized, 12 1-1 24 
~rnpolarized, 124-1 27 

Thermal source, 4 
Thin lens, 290-292 
Thin object, 287 
Thomas, J. B., 52, 53, 56 
Thompson, B. J., 229, 286, 326,  356, 

455, 460  
Tichenor, D. A., 356 
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Topper, L., 45 9 
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Triple interferometer, 455 
Tukey, J. W., 229 
Turbulence, atmospheric, 388-393 
Turbulent eddies, 388 
Turner, R. E., 459 
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