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PREFACE 

Fourier analysis is a ubiquitous tool that has found application to diverse areas of 
physics and engineering. This book deals with its applications in optics, and in partic- 
ular with applications to diffraction, imaging, optical data processing, and holography. 

Since the subject covered is Fourier Optics, it is natural that the methods of Fourier 
analysis play a key role as the underlying analytical structure of our treatment. Fourier 
analysis is a standard part of the background of most physicists and engineers. The 
theory of linear systems is also familiar, especially to electrical engineers. Chapter 2 
reviews the necessary mathematical background. For those not already familiar with 
Fourier analysis and linear systems theory, it can serve as the outline for a more detailed 
study that can be made with the help of other textbooks explicitly aimed at this subject. 
Ample references are given for more detailed treatments of this material. For those 
who have already been introduced to Fourier analysis and linear systems theory, that 
experience has usually been with functions of a single independent variable, namely 
time. The material presented in Chapter 2 deals with the mathematics in two spatial 
dimensions (as is necessary for most problems in optics), yielding an extra richness not 
found in the standard treatments of the one-dimensional theory. 

The original edition of this book has been considerably expanded in this second 
edition, an expansion that was needed due to the tremendous amount of progress in 
the field since 1968 when the first edition was published. The book can be used as a 
textbook to satisfy the needs of several different types of courses. It is directed towards 
both physicists and engineers, and the portions of the book used in the course will in 
general vary depending on the audience. However, by properly selecting the material to 
be covered, the needs of any of a number of different audiences can be met. This Preface 
will make several explicit suggestions for the shaping of different kinds of courses. 

First a one-quarter or one-semester course on diffraction and image formation can 
be constructed from the materials covered in Chapters 2 through 6, together with all 
three appendices. If time is short, the following sections of these chapters can be omitted 
or left as reading for the advanced student: 3.8, 3.9,5.4, and 6.6. 

A second type of one-quarter or one-semester course would cover the basics of 
Fourier Optics, but then focus on the application area of analog optical signal process- 
ing. For such a course, I would recommend that Chapter 2 be left to the reading of 
the student, that the material of Chapter 3 be begun with Section 3.7, and followed 
by Section 3.10, leaving the rest of this chapter to a reading by those students who 
are curious as to the origins of the Huygens-Fresnel principle. In Chapter 4, Sections 
4.2.2 and 4.5.1 can be skipped. Chapter 5 can begin with Eq. (5-10) for the amplitude 
transmittance function of a thin lens, and can include all the remaining material, with 
the exception that Section 5.4 can be left as reading for the advanced students. If time 
is short, Chapter 6 can be skipped entirely. For this course, virtually all of the material 
presented in Chapter 7 is important, as is much of the material in Chapter 8. If it is nec- 
essary to reduce the amount of material, I would recommend that the following sections 
be omitted: 8.2,8.8, and 8.9. It is often desirable to include some subset of the material 
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on holography from Chapter 9 in this course. I would include sections 9.4,9.6.1,9.6.2, 
9.7.1, 9.7.2, 9.8, 9.9, and 9.12.5. The three appendices should be read by the students 
but need not be covered in lectures. 

A third variation would be a one-quarter or one-semester course that covers the 
basics of Fourier Optics but focuses on holography as an application. The course can 
again begin with Section 3.7 and be followed by Section 3.10. The coverage through 
Chapter 5 can be identical with that outlined above for the course that emphasizes op- 
tical signal processing. In this case, the material of Sections 6.1, 6.2, 6.3, and 6.5 can 
be included. In Chapter 7, only Section 7.1 is needed, although Section 7.3 is a useful 
addition if there is time. Chapter 8 can now be skipped and Chapter 9 on holography 
can be the focus of attention. If time is short, Sections 9.10 and 9.11 can be omitted. 
The first two appendices should be read by the students, and the third can be skipped. 

In some universities, more than one quarter or one semester can be devoted to this 
material. In two quarters or two semesters, most of the material in this book can be 
covered. 

The above suggestions can of course be modified to meet the needs of a particular 
set of students or to emphasize the material that a particular instructor feels is most ap- 
propriate. I hope that these suggestions will at least give some ideas about possibilities. 

There are many people to whom I owe a special word of thanks for their help with 
this new edition of the book. Early versions of the manuscript were used in courses at 
several different universities. I would in particular like to thank Profs. A.A. Sawchuk, 
J.F. Walkup, J. Leger, P. Pichon, D. Mehrl, and their many students for catching so many 
typographical errors and in some cases outright mistakes. Helpful comments were also 
made by I. Erteza and M. Bashaw, for which I am grateful. Several useful suggestions 
were also made by anonymous manuscript reviewers engaged by the publisher. A spe- 
cial debt is owed to Prof. Emmett Leith, who provided many helpful suggestions. I 
would also like to thank the students in my 1995 Fourier Optics class, who competed 
fiercely to see who could find the most mistakes. Undoubtedly there are others to whom 
I owe thanks, and I apologize for not mentioning them explicitly here. 

Finally, I thank Hon Mai, without whose patience, encouragement and support this 
book would not have have been possible. 

Joseph W. Goodman 
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Introduction 

1.1 
OPTICS, INFORMATION, AND COMMUNICATION 

Since the late 1930s, the venerable branch of physics known as optics has gradually 
developed ever-closer ties with the communication and information sciences of elec- 
trical engineering. The trend is understandable, for both communication systems and 
imaging systems are designed to collect or convey information. In the former case, the 
information is generally of a temporal nature (e.g. a modulated voltage or current wave- 
form), while in the latter case it is of a spatial nature (e.g. a light amplitude or intensity 
distribution over space), but from an abstract point of view, this difference is a rather 
superficial one. 

Perhaps the strongest tie between the two disciplines lies in the similar mathemat- 
ics which can be used to describe the respective systems of interest - the mathematics 
of Fourier analysis and systems theory. The fundamental reason for the similarity is not 
merely the common subject of "information", but rather certain basic properties which 
communication systems and imaging systems share. For example, many electronic net- 
works and imaging devices share the properties called linearity and invariance (for def- 
initions see Chapter 2). Any network or device (electronic, optical, or otherwise) which 
possesses these two properties can be described mathematically with considerable ease 
using the techniques of frequency analysis. Thus, just as it is convenient to describe an 
audio amplifier in terms of its (temporal) frequency response, so too it is often conve- 
nient to describe an imaging system in terms of its (spatial) frequency response. 

The similarities do not end when the linearity and invariance properties are absent. 
Certain nonlinear optical elements (e-g. photographic film) have input-output relation- 
ships which are directly analogous to the corresponding characteristics of nonlinear 
electronic components (diodes, transistors, etc.), and similar mathematical analysis can 
be applied in both cases. 
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It is particularly important to recognize that the similarity of the mathematical 
structures can be exploited not only for analysis purposes but also for synthesis pur- 
poses. Thus, just as the spectrum of a temporal function can be intentionally manipu- 
lated in a prescribed fashion by filtering, so too can the spectrum of a spatial function 
be modified in various desired ways. The history of optics is rich with examples of im- 
portant advances achieved by application of Fourier synthesis techniques - the Zernike 
phase-contrast microscope is an example that was worthy of a Nobel prize. Many other 
examples can be found in the fields of signal and image processing. 

1.2 
THE BOOK 

The readers of this book are assumed at the start to have a solid foundation in Fourier 
analysis and linear systems theory. Chapter 2 reviews the required background; to 
avoid boring those who are well grounded in the analysis of temporal signals and sys- 
tems, the review is conducted for functions of two independent variables. Such func- 
tions are, of course, of primary concern in optics, and the extension from one to two 
independent variables provides a new richness to the mathematical theory, introducing 
many new properties which have no direct counterpart in the theory of temporal signals 
and systems. 

The phenomenon called difSraction is of the utmost importance in the theory of 
optical systems. Chapter 3 treats the foundations of scalar diffraction theory, including 
the Kirchhoff, Rayleigh-Sommerfeld, and angular spectrum approaches. In Chapter 4, 
certain approximations to the general results are introduced, namely the Fresnel and 
Fraunhofer approximations, and examples of diffraction-pattern calculations are pre- 
sented. 

Chapter 5 considers the analysis of coherent optical systems which consist of lenses 
and free-space propagation. The approach is that of wave optics, rather than the more 
common geometrical optics method of analysis. A thin lens is modeled as a quadratic 
phase transformation; the usual lens law is derived from this model, as are certain 
Fourier transforming properties of lenses. 

Chapter 6 considers the application of frequency analysis techniques to both co- 
herent and incoherent imaging systems. Appropriate transfer functions are defined and 
their properties discussed for systems with and without aberrations. Coherent and in- 
coherent systems are compared from various points of view. The limits to achievable 
resolution are derived. 

In Chapter 7 the subject of wavefront modulation is considered. The properties 
of photographic film as an input medium for incoherent and coherent optical systems 
are discussed. Attention is then turned to spatial light modulators, which are devices 
for entering information into optical systems in real time or near real time. Finally, 
diffractive optical elements are described in some detail. 

Attention is turned to analog optical information processing in Chapter 8. Both 
continuous and discrete processing systems are considered. Applications to image 
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enhancement, pattern recognition, and processing of synthetic-aperture radar data are 
considered. 

The final chapter is devoted to the subject of holography. The techniques devel- 
oped by Gabor and by Leith and Upatnieks are considered in detail and compared. 
Both thin and thick holograms are treated. Extensions to three-dimensional imaging 
are presented. Various applications of holography are described, but emphasis is on the 
fundamentals. 
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Analysis of Two-Dimensional Signals 
and Systems 

Many physical phenomena are found experimentally to share the basic property that 
their response to several stimuli acting simultaneously is identically equal to the sum of 
the responses that each component stimulus would produce individually. Such phenom- 
ena are called lineal; and the property they share is called linearity. Electrical networks 
composed of resistors, capacitors, and inductors are usually linear over a wide range of 
inputs. In addition, as we shall soon see, the wave equation describing the propagation 
of light through most media leads us naturally to regard optical imaging operations as 
linear mappings of "object" light distributions into "image" light distributions. 

The single property of linearity leads to a vast simplification in the mathematical 
description of such phenomena and represents the foundation of a mathematical struc- 
ture which we shall refer to here as linear systems theory. The great advantage afforded 
by linearity is the ability to express the response (be it voltage, current, light amplitude, 
or light intensity) to a complicated stimulus in terms of the responses to certain "elemen- 
tary" stimuli. Thus if a stimulus is decomposed into a linear combination of elementary 
stimuli, each of which produces a known response of convenient form, then by virtue 
of linearity, the total response can be found as a corresponding linear combination of 
the responses to the elementary stimuli. 

In this chapter we review some of the mathematical tools that are useful in describ- 
ing linear phenomena, and discuss some of the mathematical decompositions that are 
often employed in their analysis. Throughout the later chapters we shall be concerned 
with stimuli (system inputs) and responses (system outputs) that may be either of two 
different physical quantities. If the illumination used in an optical system exhibits a 
property called spatial coherence, then we shall find that it is appropriate to describe 
the light as a spatial distribution of complex-valued field amplitude. When the illumi- 
nation is totally lacking in spatial coherence, it is appropriate to describe the light as a 
spatial distribution of real-valued intensity. Attention will be focused here on the anal- 
ysis of linear systems with complex-valued inputs; the results for real-valued inputs are 
thus included as special cases of the theory. 
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2.1 
FOURIER ANALYSIS IN TWO DIMENSIONS 

A mathematical tool of great utility in the analysis of both linear and nonlinear phenom- 
ena is Fourier analysis. This tool is widely used in the study of electrical networks and 
communication systems; it is assumed that the reader has encountered Fourier theory 
previously, and therefore that he or she is familiar with the analysis of functions of one 
independent variable (e.g. time). For a review of the fundamental mathematical con- 
cepts, see the books by Papoulis [226], Bracewell [32], and Gray and Goodman [131]. 
A particularly relevant treatment is by Bracewell [33]. Our purpose here is limited to 
extending the reader's familiarity to the analysis of functions of two independent vari- 
ables. No attempt at great mathematical rigor will be made, but rather, an operational 
approach, characteristic of most engineering treatments of the subject, will be adopted. 

2.1.1 Definition and Existence Conditions 

The Fourier transform (alternatively the Fourier spectrum or frequency spectrum) of 
a (in general, complex-valued) function g of two independent variables x and y will be 
represented here by F{g} and is defined by1 

The transform so defined is itself a complex-valued function of two independent vari- 
ables fx and fr, which we generally refer to as frequencies. Similarly, the inverse 
Fourier transform of a function G(fx, fy) will be represented by F 1 { G }  and is de- 
fined as 

Note that as mathematical operations the transform and inverse transform are very sim- 
ilar, differing only in the sign of the exponent appearing in the integrand. The inverse 
Fourier transform is sometimes referred to as the Fourier integral representation of a 
function g(x, y). 

Before discussing the properties of the Fourier transform and its inverse, we must 
first decide when (2-1) and (2-2) are in fact meaningful. For certain functions, these 
integrals may not exist in the usual mathematical sense, and therefore this discussion 
would be incomplete without at least a brief mention of "existence conditions". While 
a variety of sets of suficient conditions for the existence of (2- 1) are possible, perhaps 
the most common set is the following: 

'When a single limit of integration appears above or below a double integral, then that limit applies to both 
integrations. 
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1. g must be absolutely integrable over the infinite ( x , y )  plane. 
2. g must have only a finite number of discontinuities and a finite number of maxima 

and minima in any finite rectangle. 
3. g must have no infinite discontinuities. 

In general, any one of these conditions can be weakened at the price of strengthen- 
ing one or both of the companion conditions, but such considerations lead us rather far 
afield from our purposes here. 

As Bracewell [32] has pointed out, "physical possibility is a valid sufficient condi- 
tion for the existence of a transform." However, it is often convenient in the analysis of 
systems to represent true physical waveforms by idealized mathematical functions, and 
for such functions one or more of the above existence conditions may be violated. For 
example, it is common to represent a strong, narrow time pulse by the so-called Dirac 
delta function2 often represented by 

2 2 6(t) = lim Nexp(-N ~t ), 
N + m  

(2-3) 

where the limit operation provides a convenient mental construct but is not meant to be 
taken literally. See Appendix A for more details. Similarly, an idealized point source of 
light is often represented by the two-dimensional equivalent, 

6(x ,  y) = ~ - + m  lim N~ ~ X ~ [ - N ~ T ( ~  + y2)]. 

Such "functions", being infinite at the origin and zero elsewhere, have an infinite dis- 
continuity and therefore fail to satisfy existence condition 3. Qther important examples 
are readily found; for example, the functions 

both fail to satisfy existence condition 1. 
If the majority of functions of interest are to be included within the framework of 

Fourier analysis, some generalization of the definition (2-1) is required. Fortunately, it 
is often possible to find a meaningful transform of functions that do not strictly satisfy 
the existence conditions, provided those functions can be defined as the limit of a se- 
quence of functions that are transformable. By transforming each member function of 
the defining sequence, a corresponding sequence of transforms is generated, and we 
call the limit of this new sequence the generalized Fourier transform of the original 
function. Generalized transforms can be manipulated in the same manner as conven- 
tional transforms, and the distinction between the two cases can generally be ignored, 
it being understood that when a function fails to satisfy the existence conditions and 
yet is said to have a transform, then the generalized transform is actually meant. For a 
more detailed discussion of this generalization of Fourier analysis the reader is referred 
to the book by Lighthill [194]. 

To illustrate the calculation of a generalized transform, consider the Dirac delta 
function, which has been seen to violate existence condition 3. Note that each member 
function of the defining sequence (2-4) does satisfy the existence requirements and that 
each, in fact, has a Fourier transform given by (see Table 2.1) 

2For a more detailed discussion of the delta function, including definitions, see Appendix A. 
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[ -'f$ f3]. F{N2 exp[-N2.sr(x2 + y2)]) = exp - 

Accordingly the generalized transform of S(x, y) is found to be 

Note that the spectrum of a delta function extends uniformly over the entire frequency 
domain. 

For other examples of generalized transforms, see Table 2.1. 

2.1.2 The Fourier Transform as a Decomposition 

As mentioned previously, when dealing with linear systems it is often useful to decom- 
pose a complicated input into a number of more simple inputs, to calculate the response 
of the system to each of these "elementary" functions, and to superimpose the individ- 
ual responses to find the total response. Fourier analysis provides the basic means of 
performing such a decomposition. Consider the familiar inverse transform relationship 

expressing the time function g in terms of its frequency spectrum. We may regard this 
expression as a decomposition of the function g(t) into a linear combination (in this 
case an integral) of elementary functions, each with a specific form exp(j2.sr f t). From 
this it is clear that the complex number G( f )  is simply a weighting factor that must 
be applied to the elementary function of frequency f in order to synthesize the desired 
g( t ) .  

In a similar fashion, we may regard the two-dimensional Fourier transform as a de- 
composition of a function g(x, y) into a linear combination of elementary functions of 
the form e x p [ j 2 ~ (  fxx + fry)]. Such functions have a number of interesting properties. 
Note that for any particular frequency pair ( fx, fy) the corresponding elementary func- 
tion has a phase that is zero or an integer multiple of 2.sr radians along lines described 
by the equation 

where n is an integer. Thus, as indicated in Fig. 2.1, this elementary function may be 
regarded as being "directed" in the (x,y) plane at an angle 8 (with respect to the x axis) 
given by 

In addition, the spatial period (i.e. the distance between zero-phase lines) is given by 
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\ \ FIGURE 2.1 - - - - -. - 

Lines of zero phase for 
exp[j2.rr(fxn + fry)]. 

the fur 

In conclusion, then, we may again regard the inverse Fourier transform as providing a 
means for decomposing mathematical functions. The Fourier spectrum G of a function g 
is simply a description of the weighting factors that must be applied to each elementary 
function in order to synthesize the desired g. The real advantage obtained from using 
this decomposition will not be fully evident until our later discussion of invariant linear 
systems. 

2.1.3 Fourier Transform Theorems 

The basic definition (2-1) of the Fourier transform leads to a rich mathematical 
structure associated with the transform operation. We now consider a few of the 
basic mathematical properties of the transform, properties that will find wide use in 
later material. These properties are presented as mathematical theorems, followed 
by brief statements of their physical significance. Since these theorems are direct 
extensions of the analogous one-dimensional statements, the proofs are deferred to 
Appendix A. 

1. Linearity theorem. F{ug  + ph} = uF{g) + PF{h}; that is, the transform of a 
weighted sum of two (or more) functions is simply the identically weighted sum of 
their individual transforms. 

2. Similarity theorem. If F{g(x, y)) = G( fx, fv), then 

F{g(ax, by)) = 

that is, a "stretch" of the coordinates in the space domain (x, y) results in a contrac- 
tion of the coordinates in the frequency domain ( fx, fy), plus a change in the overall 
amplitude of the spectrum. 

3. Shift theorem. If F{g(x, y)} = G( fx, fy), then 

that is, translation in the space domain introduces a linear phase shift in the fre- 
quency domain. 
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4. Rayleigh's theorem (Parseval's theorem). If F{g(x, y)} = G( fx, fy), then 

The integral on the left-hand side of this theorem can be interpreted as the energy 
contained in the waveform g(x, y). This in turn leads us to the idea that the quantity 
IG( fx, fy)I2 can be interpreted as an energy density in the frequency domain. 

5. Convolution theorem. If 3{g(x, y)) = G( fx, fy) and F{h(x, y)} = H (  fx, fy), then 

The convolution of two functions in the space domain (an operation that will be 
found to arise frequently in the theory of linear systems) is entirely equivalent to 
the more simple operation of multiplying their individual transforms and inverse 
transforming. 

6. Autocorrelation theorem. If 3{g(x, y)} = G( fx, fy), then 

Similarly, 

This theorem may be regarded as a special case of the convolution theorem in which 
we convolve g(x, y) with g*(-x, -y). 

7. Fourier integral theorem. At each point of continuity of g, 

At each point of discontinuity of g, the two successive transforms yield the angular 
average of the values of g in a small neighborhood of that point. That is, the suc- 
cessive transformation and inverse transformation of a function yields that function 
again, except at points of discontinuity. 

The above transform theorems are of far more than just theoretical interest. They 
will be used frequently, since they provide the basic tools for the manipulation of Fourier 
transforms and can save enormous amounts of work in the solution of Fourier analysis 
problems. 
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2.1.4 Separable Functions 

A function of two independent variables is called separable with respect to a specific 
coordinate system if it can be written as a product of two functions, each of which 
depends on only one of the independent variables. Thus the function g is separable in 
rectangular coordinates (x, y) if 

while it is separable in polar coordinates (r, 8) if 

Separable functions are often more convenient to deal with than more general 
functions, for separability often allows complicated two-dimensional manipulations to 
be reduced to more simple one-dimensional manipulations. For example, a function 
separable in rectangular coordinates has the particularly simple property that its two- 
dimensional Fourier transform can be found as a product of one-dimensional Fourier 
transforms, as evidenced by the following relation: 

Thus the transform of g is itself separable into a product of two factors, one a function 
of fx only and the second a function of f y  only, and the process of two-dimensional 
transformation simplifies to a succession of more familiar one-dimensional manipula- 
tions. 

Functions separable in polar coordinates are not so easily handled as those sep- 
arable in rectangular coordinates, but it is still generally possible to demonstrate that 
two-dimensional manipulations can be performed by a series of one-dimensional ma- 
nipulations. For example, the reader is asked to verify in the problems that the Fourier 
transform of a general function separable in polar coordinates can be expressed as an 
infinite sum of weighted Hankel transforms 

where 

and X k { }  is the Hankel transform operator of order k, defined by 
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Rk{g~(r))  = 2~ r g ~ ( r )  Jk(2m-p) dr. I," 
Here the function Jk  is the kth-order Bessel function of the first kind. 

2.1.5 Functions with Circular Symmetry: Fourier-Bessel lkansforms 

Perhaps the simplest class of functions separable in polar coordinates is composed of 
those possessing circular symmetry. The function g is said to be circularly symmetric 
if it can be written as a function of r alone, that is, 

Such functions play an important role in the problems of interest here, since most optical 
systems have precisely this type of symmetry. We accordingly devote special attention 
to the problem of Fourier transforming a circularly symmetric function. 

The Fourier transform of g in a system of rectangular coordinates is, of course, 
given by 

m 

-w 

To fully exploit the circular symmetry of g, we make a transformation to polar coordi- 
nates in both the (x, y) and the ( fx, fy) planes as follows: 

r = Jm x = r c o s ~  

0 = arctan - (3 

For the present we write the transform as a function of both radius and angle,3 

Applying the coordinate transformations (2-26) to Eq. (2-25), the Fourier transform 
of g can be written 

G0(p 4 )  = l
o

2' d0 1; dr rga(r) e x p l  j2nrp(cos 0 cos 4 + sin 0 sin +)I (2-28) 

or equivalently, 

3Note the subscript in Go is added simply because the functional form of the expression for the transform 
in polar coordinates is in general different than the functional form for the same transform in rectangular 
coordinates. 
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Finally, we use the Bessel function identity 

where Jo is a Bessel function of the first kind, zero order, to simplify the expression for 
the transform. Substituting (2-30) in (2-29), the dependence of the transform on angle 
4 is seen to disappear, leaving Go as the following function of radius p, 

Thus the Fourier transform of a circularly symmetric function is itself circularly 
symmetric and can be found by performing the one-dimensional manipulation of (2- 
3 1). This particular form of the Fourier transform occurs frequently enough to warrant 
a special designation; it is accordingly referred to as the Fourier-Bessel transfomz, or 
alternatively as the Hankel transform of zero order (cf. Eq. (2-23)). For brevity, we 
adopt the former terminology. 

By means of arguments identical with those used above, the inverse Fourier trans- 
form of a circularly symmetric spectrum Go@) can be expressed as 

Thus for circularly symmetric functions there is no difference between the transform 
and the inverse-transform operations. 

Using the notation a { )  to represent the Fourier-Bessel transform operation, it fol- 
lows directly from the Fourier integral theorem that 

at each value of r where gR(r) is continuous. In addition, the similarity theorem can be 
straightforwardly applied (see Prob. 2-6c) to show that 

B{g~(ar))  = +o a (s) 
When using the expression (2-3 1) for the Fourier-Bessel transform, the reader should re- 
member that it is no more than a special case of the two-dimensional Fourier transform, 
and therefore any familiar property of the Fourier transform has an entirely equivalent 
counterpart in the terminology of Fourier-Bessel transforms. 

2.1.6 Some Frequently Used Functions and Some Useful Fourier Transform 
Pairs 

A number of mathematical functions will find such extensive use in later material that 
considerable time and effort can be saved by assigning them special notations of their 
own. Accordingly, we adopt the following definitions of some frequently used func- 
tions: 
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FIGURE 2.2 
Special functions. 

Rectangle function 

0 otherwise 

s i n ( ~ x )  
Sinc function sinc(x) = 

T X  

1 x > o  
Signum function 

- 1  x < o  

Triangle function A(x) = 
otherwise 

Comb function cornb(x) = 6(x  - n) 
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T A B L E  2.1 

Transform pairs for some functions separable in 
rectangular coordinates. 

Function Transform 

e x - ( a 2  + 2 y 2  ?- exp [ -n  (2 - + - 2 )] 
lab1 

I 
6(ax, by) - 

lab1 

exp[j.rr(ax + by)] 6(fx - al2, f~ - bl2) 

ab 1 1 
sgn(ax) sgn(by) --- 

lab1 jnfx jnfy 

comb(ax) comb(by) 
1 - comb( fxla) comb( fylb) 

lab1 

exp[jn(a2x2 + b2y2)] - 

1 2 2 
exp[-(alxl + blyl)l lab1 1 + (2n  f ~ l a ) ~  1 + (27r fylb)2 

Circle function circ( ,/-) = ,/-- = 1 

( 0 otherwise. 

The first five of these functions, depicted in Fig. 2.2, are all functions of only one in- 
dependent variable; however, a variety of separable functions can be formed in two 
dimensions by means of products of these functions. The circle function is, of course, 
unique to the case of two-dimensional variables; see Fig. 2.3 for an illustration of its 
structure. 

We conclude our discussion of Fourier analysis by presenting some specific two- 
dimensional transform pairs. Table 2.1 lists a number of transforms of functions sep- 
arable in rectangular coordinates. For the convenience of the reader, the functions are 
presented with arbitrary scaling constants. Since the transforms of such functions can 
be found directly from products of familiar one-dimensional transforms, the proofs of 
these relations are left to the reader (cf. Prob. 2-2). 

On the other hand, with a few exceptions (e.g. exp[-v(x2 + y2)], which is both 
separable in rectangular coordinates and circularly symmetric), transforms of most 
circularly symmetric functions cannot be found simply from a knowledge of one- 
dimensional transforms. The most frequently encountered function with circular sym- 
metry is: 

circ(r) = 3 r = 1 . "' 
( 0  otherwise 



(a) 

FIGURE 2.3 
(a) The circle function and (b) its transform. 
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Accordingly, some effort is now devoted to finding the transform of this function. Using 
the Fourier-Bessel transform expression (2-3 I), the transform of the circle function can 
be written 

1 

B{circ(r)) = 2 7 ~  r J o ( 2 ~ r p )  dr. 
I0  

Using a change of variables r' = 2 ~ r p  and the identity 

we rewrite the transform as 

where J 1  is a Bessel function of the first kind, order 1 .  Figure 2.3 illustrates the circle 
function and its transform. Note that the transform is circularly symmetric, as expected, 
and consists of a central lobe and a series of concentric rings of diminishing amplitude. 
Its value at the origin is T .  AS a matter of curiosity we note that the zeros of this trans- 
form are not equally spaced in radius. A convenient normalized version of this function, 
with value unity at the origin, is 2 F .  This particular function is called the "besinc" 
function, or the "jinc" function. 

For a number of additional Fourier-Bessel transform pairs, the reader is referred to 
the problems (see Prob. 2-6). 

2.2 
LOCAL SPATIAL FREQUENCY 
AND SPACE-FREQUENCY LOCALIZATION 

Each Fourier component of a function is a complex exponential of a unique spatial fre- 
quency. As such, every frequency component extends over the entire (x, y) domain. 
Therefore it is not possible to associate a spatial location with a particular spatial fre- 
quency. Nonetheless, we know that in practice certain portions of an image could con- 
tain parallel grid lines at a certain fixed spacing, and we are tempted to say that the 
particular frequency or frequencies represented by these grid lines are localized to cer- 
tain spatial regions of the image. In this section we introduce the idea of local spatial 
frequencies and their relation to Fourier components. 

For the purpose of this discussion, we consider the general case of complex-valued 
functions, which we will later see represent the amplitude and phase distributions of 
monochromatic optical waves. For now, they are just complex functions. Any such func- 
tion can be represented in the form 

where a(x, y) is a real and nonnegative amplitude distribution, while 4(x, y) is a real 
phase distribution. For this discussion we assume that the amplitude distribution a(x, y) 
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is a slowly varying function of (x, y), so that we can concentrate on the behavior of the 
phase function +(x, y). 

We define the local spatial frequency of the function g as a frequency pair (fix, fi y) 
given by 

1 d 1 d 
fix = Gz4(x' Y) f i y  = T;; &4(* Y) .  

In addition, both fix and fiY are defined to be zero in regions where the function g(x, y) 
vanishes. 

Consider the result of applying these definitions to the particular complex function 

representing a simple linear-phase exponential of frequencies ( fx, fy). We obtain 

Thus we see that for the case of a single Fourier component, the local frequencies do 
indeed reduce to the frequencies of that component, and those frequencies are constant 
over the entire (x, y) plane. 

Next consider a space-limited version of a quadratic-phase exponential function: 
which we call a "finite chirp" f ~ n c t i o n , ~  

g(x, y) = exp[ j7.r~ (x2 + y2)l rect (& ) rect(&). 

Performing the differentiations called for by the definitions of local frequencies, we find 
that they can be expressed as 

We see that in this case the local spatial frequencies do depend on location in the 
(x, y) plane; within a rectangle of dimensions 2Lx X 2Ly, f i x  varies linearly with the 
x-coordinate while fiY varies linearly with the y-coordinate. Thus for this function (and 
for most others) there is a dependence of local spatial frequency on position in the (x, y) 
plane.6 

Since the local spatial frequencies are bounded to covering a rectangle of dimen- 
sions 2Lx X 2Ly, it would be tempting to conclude that the Fourier spectrum of g(x, y) 
is also limited to the same rectangular region. In fact this is approximately true, but not 
exactly so. The Fourier transform of this function is given by the expression 

4For a tutorial discussion of the importance of quadratic-phase functions in various fields of optics, see [229]. 
5The name "chirp function", without the finite length qualifier, will be used for the infinite-length quadratic 
phase exponential, exp[j.rrp (xZ + y2)].  

6From the definition (2-37) the dimensions of f ix and f iY  are both cycles per meter; in spite of what might 
appear to be a contrary implication of Eq. (2-39). The dimensions of P are meters-2. 
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This expression is separable in rectangular coordinates, so it suffices to find the one- 
dimensional spectrum 

Lx 

Gx(fx) = , j r P x Z e j 2 r f x x  dX. 

Completing the square in the exponent and making a change of variables of integration 
from x to t = ,/@ (x - $) yields 

This integral can be expressed in terms of tabulated functions, the Fresnel integrals, 
which are defined by 

The spectrum Gx can then be expressed as 

The expression for Gy is of course identical, except the Y subscript replaces the X 
subscript. Figure 2.4 shows a plot of IGx( fx)l vs. fx for the particular case of Lx = 10 
and p = 1. As can be seen, the spectrum is almost flat over the region (-Lx, Lx) and 

0.8. 

0.6. 

0.4 

0.2. 

- 

FIGURE 2.4 

-15 -10 -5 5 10 15 The spectrum of the finite chirp function, 
fx L x = 1 O , / 3 = 1 .  
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almost zero outside that region. We conclude that local spatial frequency has provided 
a good (but not exact) indication of where the significant values of the Fourier spectrum 
will occur. However, local spatial frequencies are not the same entity as the frequency 
components of the Fourier spectrum. Examples can be found for which the local spatial 
frequency distribution and the Fourier spectrum are not in as good agreement as found in 
the above example. Good agreement can be expected only when the variations of +(x, y) 
are sufficiently "slow" in the (x, y) plane to allow +(x, y) to be well approximated by 
only three terms of its Taylor series expansion about any point (x, y), i.e. a constant 
term and two first-partial-derivative terms. 

Local spatial frequencies are of special physical significance in optics. When the 
local spatial frequencies of the complex amplitude of a coherent optical wavefront are 
found, they correspond to the ray directions of the geometrical optics description of that 
wavefront. However, we are getting ahead of ourselves; we will return to this idea in 
later chapters and particularly in Appendix B. 

2.3 
LINEAR SYSTEMS 

For the purposes of discussion here, we seek to define the word system in a way suf- 
ficiently general to include both the familiar case of electrical networks and the less- 
familiar case of optical imaging systems. Accordingly, a system is defined to be a map- 
ping of a set of input functions into a set of output functions. For the case of electrical 
networks, the inputs and outputs are real-valued functions (voltages or currents) of a 
one-dimensional independent variable (time); for the case of imaging systems, the in- 
puts and outputs can be real-valued functions (intensity) or complex-valued functions 
(field amplitude) of a two-dimensional independent variable (space). As mentioned pre- 
viously, the question of whether intensity or field amplitude should be considered the 
relevant quantity will be treated at a later time. 

If attention is restricted to deterministic (nonrandom) systems, then a specified in- 
put must map to a unique output. It is not necessary, however, that each output corre- 
spond to a unique input, for as we shall see, a variety of input functions can produce no 
output. Thus we restrict attention at the outset to systems characterized by many-to-one 
mappings. 

A convenient representation of a system is a mathematical operator, S O ,  which we 
imagine to operate on input functions to produce output functions. Thus if the function 
gl (xl, yl) represents the input to a system, and g2(x2, y2) represents the corresponding 
output, then by the definition of S {I, the two functions are related through 

g2(~2,  ~ 2 )  = S{gl (XI, Y I  )I. (2-41) 

Without specifying more detailed properties of the operator SO, it is difficult to state 
more specific properties of the general system than those expressed by Eq. (2-41). In 
the material that follows, we shall be concerned primarily, though not exclusively, with 
a restricted class of systems that are said to be lineal: The assumption of linearity will 
be found to yield simple and physically meaningful representations of such systems; it 
will also allow useful relations between inputs and outputs to be developed. 
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2.3.1 Linearity and the Superposition Integral 

A system is said to be linear if the following superposition property is obeyed for all 
input functions p and q and all complex constants a and b: 

As mentioned previously, the great advantage afforded by linearity is the ability 
to express the response of a system to an arbitrary input in terms of the responses to 
certain "elementary" functions into which the input has been decomposed. It is most 
important, then, to find a simple and convenient means of decomposing the input. Such 
a decomposition is offered by the so-called sifting property of the 6 function (cf. Section 
1 of Appendix A), which states that 

This equation may be regarded as expressing gl as a linear combination of weighted 
and displaced 6 functions; the elementary functions of the decomposition are, of course, 
just these 6 functions. 

To find the response of the system to the input gl ,  substitute (2-43) in (2-41): 

Now, regarding the number gl(5, q )  as simply a weighting factor applied to the ele- 
mentary function 6(x1 - 5, yl - q),  the linearity property (2-42) is invoked to allow 
S { )  to operate on the individual elementary functions; thus the operator S{} is brought 
within the integral, yielding 

As a final step we let the symbol h(x2, y2; 6, q )  denote the response of the system at 
point (x2, y2) of the output space to a 6 function input at coordinates (6, q )  of the input 
space; that is, 

The function h is called the impulse response (or in optics, the point-spreadfunction) 
of the system. The system input and output can now be related by the simple equation 

This fundamental expression, known as the superposition integral, demonstrates 
the very important fact that a linear system is completely characterized by its responses 
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to unit impulses. To completely specify the output, the responses must in general be 
known for impulses located at all possible points in the input plane. For the case of 
a linear imaging system, this result has the interesting physical interpretation that the 
effects of imaging elements (lenses, stops, etc.) can be fully described by specifying 
the (possibly complex-valued) images of point sources located throughout the object 
field. 

2.3.2 Invariant Linear Systems: Transfer Functions 

Having examined the input-output relations for a general linear system, we turn now to 
an important subclass of linear systems, namely invariant linear systems. An electrical 
network is said to be time-invariant if its impulse response h(t; 7) (that is, its response at 
time t to a unit impulse excitation applied at time 7) depends only on the time difference 
(t - 7). Electrical networks composed of fixed resistors, capacitors, and inductors are 
time-invariant since their characteristics do not change with time. 

In a similar fashion, a linear imaging system is space-invariant (or equivalently, 
isoplanatic) if its impulse response h(x2, y2; 5 , q )  depends only on the distances (x2 -6) 
and (y2 - q )  (i.e. the x and y distances between the excitation point and the response 
point). For such a system we can, of course, write 

h(x2, ~ 2 ;  5, q )  = h(x2 - 6, y2 - q). 

Thus an imaging system is space-invariant if the image of a point source object changes 
only in location, not in functional form, as the point source explores the object field. In 
practice, imaging systems are seldom isoplanatic over their entire object field, but it 
is usually possible to divide that field into small regions (isoplanatic patches), within 
which the system is approximately invariant. To completely describe the imaging sys- 
tem, the impulse response appropriate for each isoplanatic patch should be specified; 
but if the particular portion of the object field of interest is sufficiently small, it often 
suffices to consider only the isoplanatic patch on the optical axis of the system. Note 
that for an invariant system the superposition integral (2-47) takes on the particularly 
simple form 

m 

(2-49) 

which we recognize as a two-dimensional convolution of the object function with the 
impulse response of the system. In the future it will be convenient to have a short- 
hand notation for a convolution relation such as (2-49), and accordingly this equation 
is written symbolically as 

where a @ symbol between any two functions indicates that those functions are to be 
convolved. 

The class of invariant linear systems has associated with it a far more detailed math- 
ematical structure than the more general class of all linear systems, and it is precisely 
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because of this structure that invariant systems are so easily dealt with. The simplicity of 
invariant systems begins to be evident when we note that the convolution relation (2-49) 
takes a particularly simple form after Fourier transformation. Specifically, transforming 
both sides of (2-49) and invoking the convolution theorem, the spectra G2( fx, fy) and 
Gl ( fxJ fy) of the system output and input are seen to be related by the simple equation 

where H is the Fourier transform of the impulse response 

The function H, called the transfer function of the system, indicates the effects of the 
system in the "frequency domain". Note that the relatively tedious convolution opera- 
tion of (2-49) required to find the system output is replaced in (2-50) by the often more 
simple sequence of Fourier transformation, multiplication of transforms, and inverse 
Fourier transformation. 

From another point of view, we may regard the relations (2-50) and (2-5 1) as indi- 
cating that, for a linear invariant system, the input can be decomposed into elementary 
functions that are more convenient than the 6 functions of Eq. (2-43). These alternative 
elementary functions are, of course, the complex-exponential functions of the Fourier 
integral representation. By transforming gl we are simply decomposing the input into 
complex-exponential functions of various spatial frequencies ( fxJ fy). Multiplication 
of the input spectrum G1 by the transfer function H then takes into account the effects 
of the system on each elementary function. Note that these effects are limited to an 
amplitude change and a phase shift, as evidenced by the fact that we simply multiply 
the input spectrum by a complex number H (  fx, fy) at each ( fx, fy). Inverse transfor- 
mation of the output spectrum G2 synthesizes the output g2 by adding up the modified 
elementary functions. 

The mathematical term eigenfunction is used for a function that retains its original 
form (up to a multiplicative complex constant) after passage through a system. Thus 
we see that the complex-exponential functions are the eigenfunctions of lineal; invari- 
ant systems. The weighting applied by the system to an eigenfunction input is called 
the eigenvalue corresponding to that input. Hence the transfer function describes the 
continuum of eigenvalues of the system. 

Finally, it should be strongly emphasized that the simplifications afforded by 
transfer-function theory are only applicable for invariant linear systems. For applica- 
tions of Fourier theory in the analysis of time-varying electrical networks, the reader 
may consult Ref. [158]; applications of Fourier analysis to space-variant imaging 
systems can be found in Ref. [199]. 

2.4 
TWO-DIMENSIONAL SAMPLING THEORY 

It is often convenient, both for data processing and for mathematical analysis pur- 
poses, to represent a function g(x, y) by an array of its sampled values taken on a 
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discrete set of points in the (x, y) plane. Intuitively, it is clear that if these samples 
are taken sufficiently close to each other, the sampled data are an accurate representa- 
tion of the original function, in the sense that g can be reconstructed with considerable 
accuracy by simple interpolation. It is a less obvious fact that for a particular class of 
functions (known as bandlimited functions) the reconstruction can be accomplished ex- 
actly, provided only that the interval between samples is not greater than a certain limit. 
This result was originally pointed out by Whittaker [298] and was later popularized by 
Shannon [259] in his studies of information theory. 

The sampling theorem applies to the class of bandlimited functions, by which we 
mean functions with Fourier transforms that are nonzero over only a finite region R 
of the frequency space. We consider first a form of this theorem that is directly analo- 
gous to the one-dimensional theorem used by Shannon. Later we very briefly indicate 
improvements of the theorem that can be made in some two-dimensional cases. 

2.4.1 The Whittaker-Shannon Sampling Theorem 

To derive what is perhaps the simplest version of the sampling theorem, we consider a 
rectangular lattice of samples of the function g, as defined by 

gdx, y) = comb - comb - g(x, y). (4 (3 
The sampled function g, thus consists of an array of S functions, spaced at intervals of 
width X in the x direction and width Y in the y direction, as illustrated in Fig. 2.5. The 
area under each 6 function is proportional to the value of the function g at that particular 
point in the rectangular sampling lattice. As implied by the convolution theorem, the 
spectrum Gs of g, can be found by convolving the transform of comb(x1X) comb(y1Y) 
with the transform of g, or 

G,y( fx, f ~ )  = F comb - comb - 8 G(fx, f ~ )  { (3 (;)I 

FIGURE 2.5 
The sampled function. 
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FIGURE 2.6a 
Spectrum of the original function. 

where the @ again indicates that a two-dimensional convolution is to be performed. 
Now using Table 2.1 we have 

F comb - comb - = XY comb(X fx) comb(Y fy) 1 (4 (:)I 
while from the results of Prob. 2-1 b, 

FIGURE 2.6b 
Spectrum of the sampled data (only three periods 
are shown in each direction for this infinitely 
periodic function). 
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It follows that 

Evidently the spectrum of g, can be found simply by erecting the spectrum of g about 
each point (nlX, mlY) in the ( fx, fY) plane as shown in Fig. 2.6b. 

Since the function g is assumed to be bandlimited, its spectrum G is nonzero over 
only a finite region R of the frequency space. As implied by Eq. (2-53), the region over 
which the spectrum of the sampled function is nonzero can be found by constructing 
the region R about each point (nlX, mlY) in the frequency plane. Now it becomes clear 
that if X and Y are sufficiently small (i.e. the samples are sufficiently close together), 
then the separations 11X and 1/Y of the various spectral islands will be great enough 
to assure that the adjacent regions do not overlap (see Fig. 2.6b). Thus the recovery of 
the original spectrum G from Gs can be accomplished exactly by passing the sampled 
function g, through a linear invariant filter that transmits the term (n = 0, m = 0) of 
Eq. (2-53) without distortion, while perfectly excluding all other terms. Thus, at the 
output of this filter we find an exact replica of the original data g(x, y). 

As stated in the above discussion, to successfully recover the original data it is 
necessary to take samples close enough together to enable separation of the various 
spectral regions of Gs. To determine the maximum allowable separation between sam- 
ples, let 2Bx and 2By represent the widths in the fx and fy directions, respectively, of 
the smallest rectangle7 that completely encloses the region R .  Since the various terms 
in the spectrum (2-53) of the sampled data are separated by distances 11X and IIY in 
the fx and fy directions, respectively, separation of the spectral regions is assured if 

1 
X I  - 

1 
and Y I - 

2Bx 2By' 

The maximum spacings of the sampling lattice for exact recovery of the original func- 
tion are thus (2Bx)-' and  BY)-'. 

Having determined the maximum allowable distances between samples, it remains 
to specify the exact transfer function of the filter through which the data should be 
passed. In many cases there is considerable latitude of choice here, since for many 
possible shapes of the region R there are a multitude of transfer functions that will pass 
the (n = 0, m = 0) term of Gs and exclude all other terms. For our purposes, however, 
it suffices to note that if the relations (2-54) are satisfied, there is one transfer function 
that will always yield the desired result regardless of the shape of R, namely 

The exact recovery of G from Gs is seen by noting that the spectrum of the output of 
such a filter is 

'For simplicity we assume that this rectangle is centered on the origin. If this is not the case, the arguments 
can be modified in a straightforward manner to yield a somewhat more efficient sampling theorem. 
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The equivalent identity in the space domain is 

where h is the impulse response of the filter, 

h(x,y) = 3-' { rect (kX) - rect(&-)} = 4BxBy sinc(2Bxx) sinc(2Byy). 

Noting that 

Eq. (2-56) becomes 

Finally, when the sampling intervals X and Y are taken to have their maximum allow- 
able values, the identity becomes 

Equation (2-57) represents a fundamental result which we shall refer to as the 
Whittaker-Shannon sampling theorem, It implies that exact recovery of a bandlimited 
function can be achieved from an appropriately spaced rectangular array of its sampled 
values; the recovery is accomplished by injecting, at each sampling point, an interpola- 
tion function consisting of a product of sinc functions, where each interpolation function 
is weighted according to the sampled value of g at the corresponding point. 

The above result is by no means the only possible sampling theorem. Two rather 
arbitrary choices were made in the analysis, and alternative choices at these two points 
will yield alternative sampling theorems. The first arbitrary choice, appearing early 
in the analysis, was the use of a rectangular sampling lattice. The second, somewhat 
later in the analysis, was the choice of the particular filter transfer function (2-55). 
Alternative theorems derived by making different choices at these two points are no less 
valid than Eq. (2-57); in fact, in some cases alternative theorems are more "efficient" in 
the sense that fewer samples per unit area are required to assure complete recovery. The 
reader interested in pursuing this extra richness of multidimensional sampling theory 
is referred to the works of Bracewell [31] and of Peterson and Middleton [230]. A 
more modern treatment of multidimensional sampling theory is found in Dudgeon and 
Mersereau [85]. 
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2.4.2 Space-Bandwidth Product 

It is possible to show that no function that is bandlimited can be perfectly space-limited 
as well. That is, if the spectrum G of a function g is nonzero over only a limited re- 
gion R in the (fx, fy) plane, then it is not possible for g to be nonzero over only a 
finite region in the (x, y) plane simultaneously. Nonetheless, in practice most functions 
do eventually fall to very small values, and therefore from a practical point-of-view 
it is usually possible to say that g has signijicant values only in some finite region. 
Exceptions are functions that do not have Fourier transforms in the usual sense, and 
have to be dealt with in terms of generalized Fourier transforms (e.g. g(x, y) = 1, 
g(x, Y) = cosP.rr(fxx + fry)], etc.). 

If g(x, y) is bandlimited and indeed has significant value over only a finite region 
of the (x, y) plane, then it is possible to represent g with good accuracy by aJinite number 
of samples. If g is of significant value only in the region - Lx 5 x < Lx, -Ly I y < 
Ly, and if g is sampled, in accord with the sampling theorem, on a rectangular lattice 
with spacings (~Bx)- ' ,   BY)-' in the x and y directions, respectively, then the total 
number of significant samples required to represent g(x, y) is seen to be 

which we call the space-bandwidth product of the function g. The space-bandwidth 
product can be regarded as the number of degrees of freedom of the given function. 

The concept of space-bandwidth product is also useful for many functions that 
are not strictly bandlimited. If the function is approximately space-limited and ap- 
proximately bandlimited, then a rectangle (size 2Bx X 2By) within which most of the 
spectrum is contained can be defined in the frequency domain, and a rectangle (size 
2Lx x 2Ly) within which most of the function is contained can be defined in the space 
domain. The space-bandwidth product of the function is then approximately given by 
Eq. (2-58). 

The space-bandwidth product of a function is a measure of its complexity. The 
ability of an optical system to accurately handle inputs and outputs having large space- 
bandwidth products is a measure of performance, and is directly related to the quality 
of the system. 

PROBLEMS-CHAPTER 2 

2-1. Prove the following properties of 6 functions: 

(a) @x, by) = &S(x, y). 

m m 

m  (b) comb(ax) comb(by) = ,& 1 1 8 (x - z ,  y - %). 
n = - m m = - m  

2-2. Prove the following Fourier transform relations: 

(a) F{rect(x) rect(y)) = sinc( fx) sinc( fy). 
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(b) 3{A(x)A(y)) = sinc2( fx) sinc2( fy ). 

Prove the following generalized Fourier transform relations: 

2-3. Prove the following Fourier transform theorems: 

(a) 3F{g(x, y)) = 3-' 3-1{g(x, y)) = g(-x, - y) at all points of continuity of g. 

(c) .T(v~~(x,  y)) = -4r2(  f; + ~,?)F{~(x, y)) where V2 is the Laplacian operator 

2-4. Let the transform operators FA{ ) and &{) be defined by 

(a) Find a simple interpretation for 

F B { ~ A { ~ ( x ,  ~ ) l l .  

(b) Interpret the result for a > b and a < b. 

2-5. The "equivalent area" Ax of a function g(x, y) can be defined by 

Ij g(x9 Y ) ~ X ~ Y  
-m 

Axr = 
g(09 0) 

2 

while the "equivalent bandwidth" A fx fY of g is defined in terms of its transform G by 

i GCfx. f v  dfx dfy 
- m 

Afxf* = G(O,O) 

Show that Axy Afx fY = 1. 

2-6. Prove the following Fourier-Bessel transform relations: 

(a) If gR(r) = 6(r - ro), then 

B{g~(r)l = Z.rrroJo(2.rrro PI. 
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(b) If g ~ ( r )  = 1 for a 5 r 5 1 and zero otherwise, then 

J1(2rp) - aJ1(2rrap) 
B{gR(r)) = 

P 

(d) B{exp(- .rrr2)) = exp(- rrp2). 

2-7. Let g(r, 8) be separable in polar coordinates. 

(a) Show that if g(r, 8)  = gR(r)eJme, then 

3{g(r, 611 = (- j)meim4.Flm{gR(r)) 

where X,{) is the Hankel transform of order m, 

and (p, 4) are polar coordinates in the frequency space. (Hint: exp(jasinx) = 

(b) With the help of part (a), prove the general relation presented in Eq. (2-22) for func- 
tions separable in polar coordinates. 

2-8. Suppose that a sinusoidal input 

g(x, y) = cos[2.rr(fxx + fry)] 

is applied to a linear system. Under what (sufficient) conditions is the output a real si- 
nusoidal function of the same spatial frequency as the input? Express the amplitude and 
phase of that output in terms of an appropriate characteristic of the system. 

2-9. Show that the zero-order Bessel function Jo(2.rrp,r) is an eigenfunction of any invariant 
linear system with a circularly symmetric impulse response. What is the corresponding 
eigenvalue? 

2-10. The Fourier transform operator may be regarded as a mapping of functions into their trans- 
forms and therefore satisfies the definition of a system as presented in this chapter. 

(a) Is this system linear? 

(b) Can you specify a transferhnction for this system? If yes, what is it? If no, why not? 

2-11. The expression 

p(x, y) = g(x, y) 8 comb - comb - [ i (:)I 
defines a periodic function, with period X in the x direction and period Y in they direction. 
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(a) Show that the Fourier transform of p can be written 

where G is the Fourier transform of g. 

(b) Sketch the function p(x, y) when 

g(x, y) = rect 2- rect 2- (9 ( 
and find the corresponding Fourier transform P( fx, fy). 

2-12. Show that a function with no nonzero spectral components outside a circle of radius B in 
the frequency plane obeys the following sampling theorem: 

2-13. The input to a certain imaging system is an object complex field distribution U,(x, y) 
of unlimited spatial frequency content, while the output of the system is an image field 
distribution Ui(x, y). The imaging system can be assumed to act as a linear, invariant 
lowpass filter with a transfer function that is identically zero outside the region 1 fxl 5 Bx, 
1 fYl 5 By in the frequency domain. Show that there exists an "equivalent" object Uh(x, y) 
consisting of a rectangular array of point sources that produces exactly the same image Ui 
as does the true object U,, and that the field distribution across the equivalent object can 
be written 

r -, 

2-14. The Wigner distribution function of a one-dimensional function g(x) is defined by 

and is a description of the simultaneous (one-dimensional) space and spatial-frequency 
occupancy of a signal. 

(a) Find the Wigner distribution function of the infinite-length chirp function by inserting 
g(x) = exp(j.rrpx2) in the definition of W (  f, x). 

(b) Show that the Wigner distribution function for the one-dimensional finite chirp 

g(x) = exp( j.rrp x2) rect - (k) 
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is given by 

w(f, X) = (2L - 1x1) sinc[(2L - 1x1) ( p x  - f )] 

for 1x1 < 2L and zero otherwise. 

(c) If you have access to a computer and appropriate software, plot the Wigner distribution 
function of the finite-length chirp for L = 10 and P = 1, with x ranging from - 10 
to 10 and f ranging from - 10 to 10. To make the nature of this function clearer, also 
plot W(0, x) for 1x1 5 1. 



CHAPTER 3 

Foundations of Scalar Diffraction Theory 

T h e  phenomenon known as diflraction plays a role of utmost importance in the 
branches of physics and engineering that deal with wave propagation. In this chap- 
ter we consider some of the foundations of scalar diffraction theory. While the theory 
discussed here is sufficiently general to be applied in other fields, such as acoustic- 
wave and radio-wave propagation, the applications of primary concern will be in the 
realm of physical optics. To fully understand the properties of optical imaging and 
data processing systems, it is essential that diffraction and the limitations it imposes 
on system performance be appreciated. A variety of references to more comprehensive 
treatments of diffraction theory will be found in the material that follows. 

3.1 
HISTORICAL INTRODUCTION 

Before beginning a discussion of diffraction, it is first necessary to mention another 
phenomenon with which diffraction should not be confused-namely refraction. Re- 
fraction can be defined as the bending of light rays that takes place when they pass 
through a region in which there is a gradient of the local velocity of propagation of the 
wave. The most common example occurs when a light wave encounters a sharp bound- 
ary between two regions having different refractive indices. The propagation velocity in 
the first medium, having refractive index nl ,  is vl = clnl ,  c being the vacuum velocity 
of light. The velocity of propagation in the second medium is v2 = cln2. 

As shown in Fig. 3.1, the incident light rays are bent at the interface. The angles of 
incidence and refraction are related by Snell's law, which is the foundation of geomet- 
rical optics, 

n 1 sin 8 = n2 sin 02, (3- 1) 

where in this example, n2 > nl and therefore O2 < 8 1. 
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FIGURE 3.1 
Snell's law at a sharp boundary. 

Light rays are also bent upon reflection, which can occur at a metallic or dielectric 
interface. The fundamental relation governing this phenomenon is that the angle of 
reflection is always equal to the angle of incidence. 

The term diffraction has been defined by Sommerfeld (Ref. [270]) as "any de- 
viation of light rays from rectilinear paths which cannot be interpreted as reflection or 
refraction." Diffraction is caused by the confinement of the lateral extent of a wave, and 
is most appreciable when that confinement is to sizes comparable with a wavelength of 
the radiation being used. The diffraction phenomenon should also not be confused with 
the penumbra effect, for which the finite extent of a source causes the light transmitted 
by a small aperture to spread as it propagates away from that aperture (see Fig. 3.2). 
As can be seen in the figure, the penumbra effect does not involve any bending of the 
light rays. 

There is a fascinating history associated with the discovery and explanation of 
diffraction effects. The first accurate report and description of such a phenomenon 
was made by Grimaldi and was published in the year 1665, shortly after his death. 
The measurements reported were made with an experimental apparatus similar to that 
shown in Fig. 3.3. An aperture in an opaque screen was illuminated by a light source, 
chosen small enough to introduce a negligible penumbra effect; the light intensity 
was observed across a plane some distance behind the screen. The corpuscular theory 
of light propagation, which was the accepted means of explaining optical phenomena 
at the time, predicted that the shadow behind the screen should be well defined, with 
sharp borders. Grimaldi's observations indicated, however, that the transition from 
light to shadow was gradual rather than abrupt. If the spectral purity of the light source 
had been better, he might have observed even more striking results, such as the pres- 
ence of light and dark fringes extending far into the geometrical shadow of the screen. 
Such effects cannot be explained by a corpuscular theory of light, which requires rec- 
tilinear propagation of light rays in the absence of reflection and refraction. 

The initial step in the evolution of a theory that would explain such effects was 
made by the first proponent of the wave theory of light, Christian Huygens, in the year 

Screen with 
pinhole 
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Screen 

Observation 
plane 

FIGURE 3.3 
Arrangement used for observing 
diffraction of light. 

1678. Huygens expressed the intuitive conviction that if each point on the wavefront 
of a disturbance were considered to be a new source of a "secondary" spherical dis- 
turbance, then the wavefront at a later instant could be found by constructing the 
"envelope" of the secondary wavelets, as illustrated in Fig. 3.4. 

Progress on further understanding diffraction was impeded throughout the entire 
18th century by the fact that Isaac Newton, a scientist with an enormous reputation for 
his many contributions to physics in general and to optics in particular, favored the cor- 
puscular theory of light as early as 1704. His followers supported this view adamantly. 
It was not until 1804 that further significant progress occurred. In that year, Thomas 
Young, an English physician, strengthened the wave theory of light by introducing the 
critical concept of inteiference. The idea was a radical one at the time, for it stated that 
under proper conditions, light could be added to light and produce darkness. 

The ideas of Huygens and Young were brought together in 1818 in the famous 
memoir of Augustin Jean Fresnel. By making some rather arbitrary assumptions about 
the amplitudes and phases of Huygens' secondary sources, and by allowing the various 
wavelets to mutually interfere, Fresnel was able to calculate the distribution of light in 
diffraction patterns with excellent accuracy. 

At Fresnel's presentation of his paper to a prize committee of the French Academy 
of Sciences, his theory was strongly disputed by the great French mathematician 
S. Poisson, a member of the committee. He demonstrated the absurdity of the theory 

wavelets 

Primary 

Envelope 
(new wavefront) 

FIGURE 3.4 
Huygens' envelope construction. 
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by showing that it predicted the existence of a bright spot at the center of the shadow 
of an opaque disk. F. Arago, who chaired the prize committee, performed such an ex- 
periment and found the predicted spot. Fresnel won the prize, and since then the effect 
has been known as "Poisson's spot". 

In 1860 Maxwell identified light as an electromagnetic wave, a step of enormous 
importance. But it was not until 1882 that the ideas of Huygens and Fresnel were put 
on a firmer mathematical foundation by Gustav Kirchhoff, who succeeded in show- 
ing that the amplitudes and phases ascribed to the secondary sources by Fresnel were 
indeed logical consequences of the wave nature of light. Kirchhoff based his mathe- 
matical formulation upon two assumptions about the boundary values of the light in- 
cident on the surface of an obstacle placed in the way of propagation of light. These 
assumptions were later proved to be inconsistent with each other, by PoincarC in 1892 
and by Sommerfeld in 1894.' As a consequence of these criticisms, Kirchhoff's for- 
mulation of the so-called Huygens-Fresnel principle must be regarded as a first ap- 
proximation, although under most conditions it yields results that agree amazingly well 
with experiment. Kottler [174] attempted to resolve the contradictions by reinterpret- 
ing Kirchhoff's boundary value problem as a saltus problem, where saltus is a Latin 
word signifying a discontinuity or jump. The Kirchhoff theory was also modified by 
Sommerfeld, who eliminated one of the aforementioned assumptions concerning the 
light amplitude at the boundary by making use of the theory of Green's functions. This 
so-called Rayleigh-Sommei$eld difraction theory will be treated in Section 3.5. 

It should be emphasized from the start that the Kirchhoff and Rayleigh-Sommer- 
feld theories share certain major simplifications and approximations. Most important, 
light is treated as a scalar phenomenon, neglecting the fundamentally vectorial na- 
ture of the electromagnetic fields. Such an approach neglects the fact that, at bound- 
aries, the various components of the electric and magnetic fields are coupled through 
Maxwell's equations and cannot be treated independently. Fortunately, experiments in 
the microwave region of the spectrum [262] have shown that the scalar theory yields 
very accurate results if two conditions are met: ( I )  the diffracting aperture must be 
large compared with a wavelength, and (2) the diffracting fields must not be observed 
too close to the aperture. These conditions will be well satisfied in the problems treated 
here. For a more complete discussion of the applicability of scalar theory in instrumen- 
tal optics the reader may consult Ref. [28] (Section 8.4). Nonetheless, there do exist 
important problems for which the required conditions are not satisfied, for example in 
the theory of diffraction from high-resolution gratings and from extremely small pits 
on optical recording media. Such problems are excluded from consideration here, since 
the vectorial nature of the fields must be taken into account if reasonably accurate re- 
sults are to be obtained. Vectorial generalizations of diffraction theory do exist, the first 
satisfactory treatment being due to Kottler [172]. 

The first truly rigorous solution of a diffraction problem was given in 1896 by 
Sommerfeld [268], who treated the two-dimensional case of a plane wave incident on 
an infinitesimally thin, perfectly conducting half plane. Kottler [I731 later compared 
Sommerfeld's solution with the corresponding results of Kirchhoff's scalar treatment. 

'For a more detailed discussion of these inconsistencies, see Section 3.5. 
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Needless to say, an historic introduction to a subject so widely mentioned in the 
literature can hardly be considered complete. The reader is therefore referred to more 
comprehensive treatments of diffraction theory, for example Refs. [13], [29], and [145]. 

3.2 
FROM A VECTOR TO A SCALAR THEORY 

The most fundamental beginning for our analysis is Maxwell's equations. In MKS units 
and in the absence of free charge, the equations are given by 

Here 2 is the electric field, with rectilinear components (Ex, Eu, Ez), and & is the mag- 
netic field, with components (Hx, Fly ,  Hz). p and E are the permeability and permittiv- 
ity, respectively, of the medium in which the wave is propagating. 2 and 'il are functions 
of both position P and time t. The symbols x and . represent a vector cross product and 

A A 

a vector dot product, respectively, while V = -& r + & + & s ,  where i, j and R are unit 
vectors in the x, y, and z directions, respectively. 

We assume that the wave is propagating in a dielectric medium. It is important to 
further specify some properties of that medium. The medium is linear if it satisfies the 
linearity properties discussed in Chapter 2. The medium is isotropic if its properties are 
independent of the direction of polarization of the wave (i.e. the directions of the 2 and 
?I vectors). The medium is homogeneous if the permittivity is constant throughout the 
region of propagation. The medium is nondispersive if the permittivity is independent 
of wavelength over the wavelength region occupied by the propagating wave. Finally, 
all media of interest in this book are nonmagnetic, which means that the magnetic per- 
meability is always equal to po, the vacuum permeability. 

Applying the Vx operation to the left and right sides of the first equation for 2, we 
make use of the vector identity 

If the propagation medium is linear, isotropic, homogeneous (constant E ) ,  and nondis- 
persive, substitution of the two Maxwell's equations for 2 in Eq. (3-3) yields 

where n is the refractive index of the medium, defined by 
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€0 is the vacuum permittivity, and c is the velocity of propagation in vacuum, given by 

The magnetic field satisfies an identical equation, 

Since the vector wave equation is obeyed by both 2 and '6, an identical scalar wave 
equation is obeyed by all components of those vectors. Thus, for example, Ex obeys the 
equation 

and similarly for l y ,  EZ, Nx, Fly, and Nz. Therefore it is possible to summarize the 
behavior of all components of 2 and 6 through a single scalar wave equation, 

where u(R t) represents any of the scalar field components, and we have explicitly 
introduced the dependence of u on both position P in space and time t. 

From above we conclude that in a dielectric medium that is linear, isotropic, homo- 
geneous, and nondispersive, all components of the electric and magnetic field behave 
identically and their behavior is fully described by a single scalar wave equation. How, 
then, is the scalar theory only an approximation, rather than exact? The answer becomes 
clear if we consider situations other than propagation in the uniform dielectric medium 
hypothesized. 

For example, if the medium is inhomogeneous with a permittivity E(P) that de- 
pends on position P (but not on time t), it is a simple matter to show (see Prob. 3- 1) that 
the wave equation satisfied by 2 becomes 

where n and c are again given by Eqs. (3-5) and (3-6). The new term that has been ad- 
ded to the wave equation will be nonzero for a refractive index that changes over space. 
More importantly, that term introduces a coupling between the various components of 
the electric field, with the result that Ex, Ey, and Ez may no longer satisfy the same 
wave equation. This type of coupling is important, for example, when light propagates 
through a "thick" dielectric diffraction grating. 

A similar effect takes place when boundary conditions are imposed on a wave that 
propagates in a homogeneous medium. At the boundaries, coupling is introduced be- 
tween 2 and ??, as well as between their various scalar components. As a consequence, 
even when the propagation medium is homogeneous, the use of a scalar theory entails 
some degree of error. That error will be small provided the boundary conditions have 
effect over an area that is a small part of the area through which a wave may be passing. 
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In the case of diffraction of light by an aperture, the 2 and $l fields are modified only at 
the edges of the aperture where light interacts with the material of which the edges are 
composed, and the effects extend over only a few wavelengths into the aperture itself. 
Thus if the aperture has an area that is large compared with a wavelength, the cou- 
pling effects of the boundary conditions on the 2 and fl fields will be small. As will 
be seen, this is equivalent to the requirement that the diffraction angles caused by the 
aperture are small. 

With these discussions as background, we turn away from the vector theory of 
diffraction to the simpler scalar theory. We close with one final observation. Circuit 
theory is based on the approximation that circuit elements (resistors, capacitors, and 
inductors) are small compared to the wavelength of the fields that appear within them, 
and for this reason can be treated as lumped elements with simple properties. We need 
not use Maxwell's equations to analyze such elements under these conditions. In a simi- 
lar vein, the scalar theory of diffraction introduces substantial simplifications compared 
with a full vectorial theory. The scalar theory is accurate provided that the diffracting 
structures are large compared with the wavelength of light. Thus the approximation 
implicit in the scalar theory should be no more disturbing than the approximation used 
in lumped circuit theory. In both cases it is possible to find situations in which the ap- 
proximation breaks down, but as long as the simpler theories are used only in cases for 
which they are expected to be valid, the losses of accuracy will be small and the gain 
of simplicity will be large. 

3.3 
SOME MATHEMATICAL PRELIMINARIES 

Before embarking on a treatment of diffraction itself, we first consider a number of 
mathematical preliminaries that form the basis of the later diffraction-theory deriva- 
tions. These initial discussions will also serve to introduce some of the notation used 
throughout the book. 

3.3.1 The Helmholtz Equation 

In accord with the previous introduction of the scalar theory, let the light disturbance 
at position P and time t be represented by the scalar function u(P, t). Attention is now 
restricted to the case of a purely monochromatic wave, with the generalization to poly- 
chromatic waves being deferred to Section 3.8. 

For a monochromatic wave, the scalar field may be written explicitly as 

where A(P) and $(P) are the amplitude and phase, respectively, of the wave at position 
P,  while v is the optical frequency. A more compact form of (3-9) is found by using 
complex notation, writing 
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where Re{) signifies "real part of", and U(P) is a complex function of position (some- 
times called a phasor), 

If the real disturbance u(P, t) is to represent an optical wave, it must satisfy the 
scalar wave equation 

at each source-free point. As before, V2 is the Laplacian operator, n represents the re- 
fractive index of the dielectric medium within which light is propagating, and c repre- 
sents the vacuum velocity of light. The complex function U(P) serves as an adequate 
description of the disturbance, since the time dependence is known a priori. If (3-10) is 
substituted in (3-12), it follows that U must obey the time-independent equation 

Here k is termed the wave number and is given by 

and A is the wavelength in the dielectric medium (A = clnv). The relation (3-13) is 
known as the Helmholtz equation; we may assume in the future that the complex am- 
plitude of any monochromatic optical disturbance propagating in vacuum (n = 1) or in 
a homogeneous dielectric medium (n > 1) must obey such a relation. 

3.3.2 Green's Theorem 

Calculation of the complex disturbance U at an observation point in space can be ac- 
complished with the help of the mathematical relation known as Green S theorem. This 
theorem, which can be found in most texts on advanced calculus, can be stated as fol- 
lows: 

Let U(P) and G(P) be any two complex-valued functions of position, and let S be a closed 
surface surrounding a volume V. If U, G, and their first and second partial derivatives are 
single-valued and continuous within and on S, then we have 

where 5 signifies a partial derivative in the outward normal direction at each point on S. 

This theorem is in many respects the prime foundation of scalar diffraction theory. 
However, only a prudent choice of an auxiliary function G and a closed surface S will 
allow its direct application to the diffraction problem. We turn now to the former of 
these problems, considering Kirchhoff's choice of an auxiliary function and the conse- 
quent integral theorem that follows. 
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FIGURE 3.5 
Surface of integration. 

3.3.3 The Integral Theorem of Helmholtz and Kirchhoff 

The Kirchhoff formulation of the diffraction problem is based on a certain integral the- 
orem which expresses the solution of the homogeneous wave equation at an arbitrary 
point in terms of the values of the solution and its first derivative on an arbitrary closed 
surface surrounding that point. This theorem had been derived previously in acoustics 
by H. von Helmholtz. 

Let the point of observation be denoted Po, and let S denote an arbitrary closed 
surface surrounding Po, as indicated in Fig. 3.5. The problem is to express the optical 
disturbance at Po in terms of its values on the surface S. To solve this problem, we 
follow Kirchhoff in applying Green's theorem and in choosing as an auxiliary function 
a unit-amplitude spherical wave expanding about the point Po (the so-called free space 
Green's function). Thus the value of Kirchhoff's G at an arbitrary point PI is given by2 

where we adopt the notation that rol is the length of the vector Fol pointing from Po 
to P1. 

Before proceeding further, a short diversion regarding Green's functions may be in 
order. Suppose that we wish to solve an inhomogeneous linear differential equation of 
the form 

where V(x) is a driving function and U(x) satisfies a known set of boundary conditions. 
We have chosen a one-dimensional variable x but the theory is easily generalized to 
a multidimensional Z. It can be shown (see Chapter 1 of [223] and [16]) that if G(x) 
is the solution to the same differential equation (3-16) when V(x) is replaced by the 

2The reader may wish to verify that, for our choice of clockwise rotation of phasors, the description of an 
expanding wave should have a + sign in the exponential. 
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impulsive driving function S(x - x') and with the same boundary conditions applying, 
then the general solution U ( x )  can be expressed in terms of the specific solution G(x) 
through a convolution integral 

U ( x )  = G(x - x') V(xr)dx'. J (3- 17) 

The function G(x) is known as the Green 'sfunction of the problem, and is clearly a form 
of impulse response. Various solutions to the scalar diffraction problem to be discussed 
in the following sections correspond to results obtained under different assumptions 
about the Green's function of the problem. The function G appearing in Green's theo- 
rem may be regarded either as simply an auxiliary function which we cleverly choose 
to solve our problem, or it may eventually be related to the Green's function of the prob- 
lem. Further consideration of the theory of Green's functions is beyond the scope of this 
treatment. 

Returning now to our central discussion, to be legitimately used in Green's theo- 
rem, the function G (as well as its first and second partial derivatives) must be continu- 
ous within the enclosed volume V. Therefore to exclude the discontinuity at Po, a small 
spherical surface S,, of radius E ,  is inserted about the point Po. Green's theorem is then 
applied, the volume of integration V' being that volume lying between S and S,, and 
the surface of integration being the composite surface 

as indicated in Fig. 3.5. Note that the "outward normal to the composite surface points 
outward in the conventional sense on S, but inward (towards Po) on S,. 

Within the volume V', the disturbance G, being simply an expanding spherical 
wave, satisfies the Helmholtz equation 

Substituting the two Helmholtz equations (3-13) and (3-18) in the left-hand side of 
Green's theorem, we find 

Thus the theorem reduces to 

Note that, for a general point P1 on S r,  we have 
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and 

where cos(n', Tol) represents the cosine of the angle between the outward normal n' and 
the vector Fool joining Po to PI. For the particular case of PI on S,, cos(2, FO1) = - 1, 
and these equations become 

ejke 
and 

dG(Pl) ejkE 1 
G(P1) = 

- - - (; - jk) .  
dn E 

Letting E become arbitrarily small, the continuity of U (and its derivatives) at Po allows 
us to write 

Substitution of this result in (3-19) (taking account of the negative sign) yields 

This result is known as the integral theorem of Helmholtz and Kirchhofl, it plays an 
important role in the development of the scalar theory of diffraction, for it allows the 
field at any point Po to be expressed in terms of the "boundary values" of the wave 
on any closed surface surrounding that point. As we shall now see, such a relation is 
instrumental in the further development of scalar diffraction equations. 

3.4 
THE KIRCHHOFF FORMULATION OF DIFFRACTION BY 
A PLANAR SCREEN 

Consider now the problem of diffraction of light by an aperture in an infinite opaque 
screen. As illustrated in Fig. 3.6, a wave disturbance is assumed to impinge on the 
screen and the aperture from the left, and the field at the point Po behind the aperture 
is to be calculated. Again the field is assumed to be monochromatic. 

3.4.1 Application of the Integral Theorem 

To find the field at the point Po, we apply the integral theorem of Helmholtz and Kirch- 
hoff, being careful to choose a surface of integration that will allow the calculation 
to be performed successfully. Following Kirchhoff, the closed surface S is chosen to 
consist of two parts, as shown in Fig. 3.6. Let a plane surface, S1, lying directly behind 
the diffracting screen, be joined and closed by a large spherical cap, S2, of radius R and 
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FIGURE 3.6 
Kirchhoff formulation of diffraction by a plane screen. 

centered at the observation point Po. The total closed surface S is simply the sum of S1 
and S2. Thus, applying (3-21), 

where, as before, 

G = 
exp(jkr01) 

'-0 1 

As R increases, S2 approaches a large hemispherical shell. It is tempting to reason that, 
since both U and G will fall off as lIR, the integrand will ultimately vanish, yielding a 
contribution of zero from the surface integral over S2. However, the area of integration 
increases as R ~ ,  SO this argument is incomplete. It is also tempting to assume that, since 
the disturbances are propagating with finite velocity cln, R will ultimately be so large 
that the waves have not yet reached S2, and the integrand will be zero on that surface. 
But this argument is incompatible with our assumption of monochromatic disturbances, 
which must (by definition) have existed for all time. Evidently a more careful investi- 
gation is required before the contribution from S2 can be disposed of. 

Examining this problem in more detail, we see that, on S2, 

G = 
exp(jkR) 

R 
and, from (3-20), 

where the last approximation is valid for large R. The integral in question can thus be 
reduced to 
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where .12 is the solid angle subtended by S2 at Po. Now the quantity lRGl is uniformly 
bounded on S2. Therefore the entire integral over S2 will vanish as R becomes arbi- 
trarily large, provided the disturbance has the property 

lim R(% - /XU) = 0 
R+ m 

uniformly in angle. This requirement is known as the Sommei$eld radiation condi- 
tion [269] and is satisfied if the disturbance U vanishes at least as fast as a diverging 
spherical wave (see Prob. 3-2). It guarantees that we are dealing only with outgoing 
waves on S2, rather than incoming waves, for which the integral over Sz might not van- 
ish as R + m. Since only outgoing waves will fall on S2 in our problem, the integral 
over S2 will yield a contribution of precisely zero. 

3.4.2 The Kirchhoff Boundary Conditions 

Having disposed of the integration over the surface S2, it is now possible to express the 
disturbance at Po in terms of the disturbance and its normal derivative over the infinite 
plane S1 immediately behind the screen, that is, 

The screen is opaque, except for the open aperture which will be denoted C. It 
therefore seems intuitively reasonable that the major contribution to the integral (3-23) 
arises from the points of S1 located within the aperture Z, where we would expect the 
integrand to be largest. Kirchhoff accordingly adopted the following assumptions [162]: 

1. Across the surface Z, the field distribution U and its derivative dUldn are exactly 
the same as they would be in the absence of the screen. 

2. Over the portion of Sl that lies in the geometrical shadow of the screen, the field 
distribution U and its derivative dUldn are identically zero. 

These conditions are commonly known as the Kirchhoflboundary conditions. The 
first allows us to specify the disturbance incident on the aperture by neglecting the 
presence of the screen. The second allows us to neglect all of the surface of integration 
except that portion lying directly within the aperture itself. Thus (3-23) is reduced to 

While the Kirchhoff boundary conditions simplify the results considerably, it is 
important to realize that neither can be exactly true. The presence of the screen will 
inevitably perturb the fields on 2 to some degree, for along the rim of the aperture 
certain boundary conditions must be met that would not be required in the absence of 
the screen. In addition, the shadow behind the screen is never perfect, for fields will 
inevitably extend behind the screen for a distance of several wavelengths. However, if 
the dimensions of the aperture are large compared with a wavelength, these fringing 
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effects can be safely neg le~ ted ,~  and the two boundary conditions can be used to yield 
results that agree very well with experiment. 

3.4.3 The Fresnel-Kirchhoff Diffraction Formula 

A further simplification of the expression for U(Po) is obtained by noting that the dis- 
tance rol from the aperture to the observation point is usually many optical wavelengths, 
and therefore, since k >> l l roI ,  Eq. (3-20) becomes 

Substituting this approximation and the expression (3-1 5) for G in Eq. (3-24), we find 

Now suppose that the aperture is illuminated by a single spherical wave, 

arising from a point source at P2, a distance r2l from P1 (see Fig. 3.7). If r-21 is many 
optical wavelengths, then (3-26) can be directly reduced (see Prob. 3-3) to 

FIGURE 3.7 
Point-source illumination of a plane screen. 

3As we shall see, objections to the use of the Kirchhoff boundary conditions arise, not because of the fring- 
ing effects, but rather because of certain internal inconsistencies. 
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This result, which holds only for an illumination consisting of a single point source, is 
known as the Fresnel-Kirchhojfdijfraction formula. 

Note that Eq. (3-27) is symmetrical with respect to the illumination point source 
at P2 and the observation point at Po. Thus a point source at Po will produce at P2 the 
same effect that a point source of equal intensity placed at P2 will produce at Po. This 
result is referred to as the reciprocity theorem of Helmholtz. 

Finally, we point out an interesting interpretation of the diffraction formula (3-27), 
to which we will return later for a more detailed discussion. Let that equation be rewrit- 
ten as follows: 

where 

Now (3-28) may be interpreted as implying that the field at Po arises from an infinity 
of fictitious "secondary" point sources located within the aperture itself. The secondary 
sources have certain amplitudes and phases, described by Ut(Pl), that are related to 
the illuminating wavefront and the angles of illumination and observation. Assump- 
tions resembling these were made by Fresnel rather arbitrarily in his combination of 
Huygens' envelope construction and Young's principle of interference. Fresnel as- 
sumed these properties to hold in order to obtain accurate results. Kirchhoff showed 
that such properties are a natural consequence of the wave nature of light. 

Note that the above derivation has been restricted to the case of an aperture illumi- 
nation consisting of a single expanding spherical wave. However, as we shall now see, 
such a limitation can be removed by the Rayleigh-Sommerfeld theory. 

3.5 
THE RAYLEIGH-SOMMERFELD FORMULATION OF DIFFRACTION 

The Kirchhoff theory has been found experimentally to yield remarkably accurate 
results and is widely used in practice. However, there are certain internal inconsis- 
tencies in the theory which motivated a search for a more satisfactory mathematical 
development. The difficulties of the Kirchhoff theory stem from the fact that boundary 
conditions must be imposed on both the field strength and its normal derivative. In par- 
ticular, it is a well-known theorem of potential theory that if a two-dimensional potential 
function and its normal derivative vanish together along any finite curve segment, then 
that potential function must vanish over the entire plane. Similarly, if a solution of the 
three-dimensional wave equation vanishes on any finite surface element, it must vanish 
in all space. Thus the two Kirchhoff boundary conditions together imply that the field 
is zero everywhere behind the aperture, a result which contradicts the known physical 
situation. A further indication of these inconsistencies is the fact that the Fresnel- 
Kirchhoff diffraction formula can be shown to fail to reproduce the assumed boundary 
conditions as the observation point approaches the screen or aperture. In view of these 
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contradictions, it is indeed remarkable that the Kirchhoff theory has been found to yield 
such accurate results in p r a~ t i ce .~  

The inconsistencies of the Kirchhoff theory were removed by Sommerfeld, who 
eliminated the necessity of imposing boundary values on both the disturbance and its 
normal derivative simultaneously. This so-called Rayleigh-Sommerfeld theory is the 
subject of this section. 

3.5.1 Choice of Alternative Green's Functions 

Consider again Eq. (3-23) for the observed field strength in terms of the incident field 
and its normal derivative across the entire screen: 

The conditions for validity of this equation are: 

1. The scalar theory holds. 
2. Both U and G satisfy the homogeneous scalar wave equation. 
3. The Sommerfeld radiation condition is satisfied. 

Suppose that the Green's function G of the Kirchhoff theory were modified in such a 
way that, while the development leading to the above equation remains valid, in addi- 
tion, either G or dGldn vanishes over the entire surface S 1 .  In either case the necessity 
of imposing boundary conditions on both U and dUldn  would be removed, and the 
inconsistencies of the Kirchhoff theory would be eliminated. 

Sommerfeld pointed out that Green's functions with the required properties do in- 
deed exist. Suppose G is generated not only by a point source located at Po, but also 
simultaneously by a second point source at a position Po which is the mirror image of 
Po on the opposite side of the screen (see Fig. 3.8). Let the source at Po be of the same 
wavelength h as the source at Po, and suppose that the two sources are oscillating with 
a 180" phase difference. The Green's function in this case is given by 

Clearly such a function vanishes on the plane aperture 2, leaving the following expres- 
sion for the observed field: 

We refer to this solution as the jirst Rayleigh-Sommei$eld solution. 

4The fact that one theory is consistent and the other is not does not necessarily mean that the former is more 
accurate than the latter. 
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FIGURE 3.8 
Rayleigh-Sommerfeld formulation of 
diffraction by a plane screen. 

To specify this solution further let Fol be the distance from Po to P I .  The corre- 
sponding normal derivative of G- is 

Now for P1  on S1, we have 

r01 = To1 

cos(n', FOl) = - cos(n', FOl) 

and therefore on that surface 

For rol >> A, the second term above can be dropped, leaving 

which is just twice the normal derivative of the Green's function G used in the Kirchhoff 
analysis, i.e. 

With this result, the first Rayleigh-Sommerfeld solution can be expressed in terms of 
the more simple Green's function used by Kirchhoff, 
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An alternative and equally valid Green's function is found by allowing the two 
point sources to oscillate in phase, giving 

It is readily shown (see Prob. 3-4) that the normal derivative of this function vanishes 
across the screen and aperture, leading to the second Rayleigh-Sommer3'eld solution, 

It can be shown that, on 2 and under the condition that rol >> A, G+ is twice the Kirch- 
hoff Green's function G, 

This leads to an expression for U(Po) in terms of the Green's function used by Kirch- 
hoff, 

3.5.2 The Rayleigh-Sommerfeld Diffraction Formula 

Let the Green's function G- be substituted for G in Eq. (3-23). Using (3-35), it follows 
directly that 

where it has been assumed that rol >> A. The Kirchhoff boundary conditions may now 
be applied to U alone, yielding the general result 

Since no boundary conditions need be applied to dUldn, the inconsistencies of the 
Kirchhoff theory have been removed. 

If the alternative Green's function of (3-37) is used, the result can be shown to be 

We now specialize Eq. (3-41) and Eq. (3-42) to the case of illumination with a 
diverging spherical wave, allowing direct comparison with Eq. (3-27) of the Kirchhoff 
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theory. The illumination of the aperture in all cases is a spherical wave diverging from 
a point source at position P2 (see Fig. 3.7 again): 

Using G -  we obtain 

This result is known as the Rayleigh-Sommegeld difraction formula. Using G + ,  and 
assuming that r21 >> A, the corresponding result is 

where the angle between ii and is greater than 90". 

3.6 
COMPARISON OF THE KIRCHHOFF AND 
RAYLEIGH-SOMMERFELD THEORIES 

We briefly summarize the similarities and differences of the Kirchhoff and the Rayleigh- 
Sommerfeld theories. For the purposes of this section, let GK represent the Green's 
function for the Kirchhoff theory, while G- and G+ are the Green's functions for 
the two Rayleigh-Sommerfeld formulations. As pointed out earlier, on the surface x, 
G+ = 2GK and dG-ldn = 2dGKldn. Therefore the general results of interest are as 
follows. For the Kirchhoff theory (cf. Eq. (3-24)) 

U(PO) = 111 4 7 ~  ( E G ~  dn - (I- dn ds, 
X 

for the first Rayleigh-Sommerfeld solution (cf. Eq. (3-36)) 

and for the second Rayleigh-Sommerfeld solution (cf. Eq. (3-39)) 

A comparison of the above equations leads us to an interesting and surprising 
conclusion: the Kirchhof solution is the arithmetic average of the two Rayleigh- 
Sommer$eld solutions! 
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Comparing the results of the three approaches for the case of spherical wave illumi- 
nation, we see that the results derived from the Rayleigh-Sommerfeld theory (i.e. Eqs. 
(3-43) and (3-44)) differ from the Fresnel-Kirchhoff diffraction formula, Eq. (3-27), 
only through what is known as the obliquity factor +, which is the angular dependence 
introduced by the cosine terms. For all cases we can write 

where 

$[cos(d, Fo1) - cos(d, F2])] Kirchhoff theory + = {  cos(n', Fol) First Rayleigh-Sommerfeld solution (3-49) 
- cos(n', FZ1) Second Rayleigh-Sommerfeld solution. 

For the special case of an infinitely distant point source producing normally incident 
plane wave illumination, the obliquity factors become 

[1 + cos e]  Kirchhoff theory + = {cosO First Rayleigh-Sommerfeld solution (3-50) 
1 Second Rayleigh-Sommerfeld solution, 

where 8 is the angle between the vectors n' and Fol. 
Several authors have compared the two formulations of the diffraction problem. 

We mention in particular Wolf and Marchand [301], who examined differences be- 
tween the two theories for circular apertures with observation points at a sufficiently 
great distance from the aperture to be in the "far field" (the meaning of this term will 
be explained in the chapter to follow). They found the Kirchhoff solution and the two 
Rayleigh-Sommerfeld solutions to be essentially the same provided the aperture diam- 
eter is much greater than a wavelength. Heurtley [I431 examined the predictions of 
the three solutions for observation points on the axis of a circular aperture for all dis- 
tances behind the aperture, and found differences between the theories only close to the 
aperture. 

When only small angles are involved in the diffraction problem, it is easy to 
show that all three solutions are identical. In all three cases the obliquity factors 
approach unity as the angles become small, and the differences between the results 
vanish. Note that only small angles will be involved if we are far from the diffract- 
ing aperture. 

In closing it is worth noting that, in spite of its internal inconsistencies, there 
is one sense in which the Kirchhoff theory is more general than the Rayleigh- 
Sommerfeld theory. The latter requires that the diffracting screens be planar, while 
the former does not. However, most of the problems of interest here will involve 
planar diffracting apertures, so this generality will not be particularly significant. In 
fact, we will generally choose to use the first Rayleigh-Sommerfeld solution because 
of its simplicity. 
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3.7 
FURTHER DISCUSSION OF THE HUYGENS-FRESNEL PRINCIPLE 

The Huygens-Fresnel principle, as predicted by the first Rayleigh-Sommerfeld solu- 
tion5 (see Eq. (3-40)), can be expressed mathematically as follows: 

where 8 is the angle between the vectors f i  and FOl. We give a "quasi-physical" inter- 
pretation to this integral. It expresses the observed field U(Po) as a superposition of 
diverging spherical waves exp(jkrol)lrol originating from secondary sources located 
at each and every point P1 within the aperture 2. The secondary source at PI has the 
following properties: 

1. It has a complex amplitude that is proportional to the amplitude of the excitation 
U(PI)  at the corresponding point. 

2. It has an amplitude that is inversely proportional to A, or equivalently directly pro- 
portional to the optical frequency v. 

3. It has a phase that leads the phase of the incident wave by 90°, as indicated by the 
factor 11 j. 

4. Each secondary source has a directivity pattern cos 8. 

The first of these properties is entirely reasonable. The wave propagation phe- 
nomenon is linear, and the wave passed through the aperture should be proportional 
to the wave incident upon it. 

A reasonable explanation of the second and third properties would be as follows. 
Wave motion from the aperture to the observation point takes place by virtue of changes 
of the field in the aperture. In the next section we will see more explicitly that the field 
at Po contributed by a secondary source at P1 depends on the time-rate-of-change of 
the field at P1. Since our basic monochromatic field disturbance is a clockwise rotating 
phasor of the form exp(- j 2 ~ v t ) ,  the derivative of this function will be proportional to 
both v and to - j = 11 j. 

The last property, namely the obliquity factor, has no simple "quasi-physical" ex- 
planation, but arises in slightly different forms in all the theories of diffraction. It is 
perhaps expecting too much to find such an explanation. After all, there are no material 
sources within the aperture; rather, they all lie on the rim of the aperture. Therefore 
the Huygens-Fresnel principle should be regarded as a relatively simple mathematical 
construct that allows us to solve diffraction problems without paying attention to the 
physical details of exactly what is happening at the edges of the aperture. 

It is important to realize that the Huygens-Fresnel principle, as expressed by Eq. 
(3-51), is nothing more than a superposition integral of the type discussed in Chapter 
2. To emphasize this point of view we rewrite (3-51) as 

5Hereafter we drop the subscript on the first Rayleigh-Sommerfeld solution, since it will be the solution we 
use exclusively. 
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where the impulse response h(Po, P I )  is given explicitly by 

The occurrence of a superposition integral as a result of our diffraction analysis should 
not be a complete surprise. The primary ingredient required for such a result was pre- 
viously seen to be linearity, a property that was assumed early in our analysis. When 
we examine the character of the impulse response h(Po, P I )  in more detail in Chapter 
4, we will find that it is also space-invariant, a consequence of the homogeneity as- 
sumed for the dielectric medium. The Huygens-Fresnel principle will then be seen to 
be a convolution integral. 

3.8 
GENERALIZATION TO NONMONOCHROMATIC WAVES 

The wave disturbances have previously been assumed to be ideally monochromatic in 
all cases. Such waves can be closely approximated in practice and are particularly easy 
to analyze. However, the more general case of a nonmonochromatic disturbance will 
now be considered briefly; attention is restricted to the predictions of the first Rayleigh- 
Sommerfeld solution, but similar results can be obtained for the other solutions. 

Consider the scalar disturbance u(Po, t) observed behind an aperture C in an opaque 
screen when a disturbance u(P1, t) is incident on that aperture. The time functions 
u(Po, t) and u(P1, t) may be expressed in terms of their inverse Fourier transforms: 

U(PI ,v )exp( j2nv t )dv  
(3-54) 

00 

u(Po, t) = U(Po, v) exp( j 2 7 ~  vt) d v, I- m 

where U(Po, v) and U(Pl, v) are the Fourier spectra of u(Po, t) and u(P1, t), respec- 
tively, and v represents frequency. 

Let Eqs. (3-54) be transformed by the change of variables v' = - v, yielding 

U(P1, - vf)exp(- j2nv1t)dv '  

a. 

(3-55) 

U(Po, - v') exp(- j2nv1t)  d v'. 

Now these relations may be regarded as expressing the nonmonochromatic time 
functions u(PI,  t) and u(Po, t) as a linear combination of monochromatic time functions 
of the type represented by Eq. (3-10). The monochromatic elementary functions are of 
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various frequencies v', the complex amplitudes of the disturbance at frequency v' being 
simply U(PI, - v') and U(Po, - v'). By invoking the linearity of the wave-propagation 
phenomenon, we use the results of the previous section to find the complex amplitude 
at Po of each monochromatic component of the disturbance, and superimpose these 
results to yield the general time function u(Po, t). 

To proceed, Eq. (3-5 1) can be directly used to write 

exp( j2av1rollv) 
U(P0, - v') = - COS(~~ ,  To,) ds, (3-56) 

ro 1 
H 

where v is the velocity of propagation of the disturbance in a medium of refractive 
index n (v = cln), and the relation v'h = v has been used. Substitution of (3-56) in the 
second of Eqs. (3-55) and an interchange of the orders of integration give 

cos(ii, F0,) 
- j2av1U(PI,  - v') exp 

E 

Finally, the identity 

d m 

-u(P1,t) = - 
dt  ( U(Pl, - v') exp(- j 2 a  v't) d v' d t  -, 

can be used to write 

The wave disturbance at point Po is seen to be linearly proportional to the time 
derivative of the disturbance at each point P1 on the aperture. Since it takes time rollv 
for the disturbance to propagate from PI to Po, the observed wave depends on the 
derivative of the incident wave at the "retarded" time t - (rollv). 

This more general treatment shows that an understanding of diffraction of mono- 
chromatic waves can be used directly to synthesize the results for much more general 
nonmonochromatic waves. However, the monochromatic results are directly applicable 
themselves when the optical source has a sufficiently narrow spectrum. See Prob. 3-6 
for further elucidation of these points. 

3.9 
DIFFRACTION AT BOUNDARIES 

In the statement of the Huygens-Fresnel principle, we found it convenient to regard each 
point on the aperture as a new source of spherical waves. It was pointed out that such 
sources are merely mathematical conveniences and have no real physical significance. 
A more physical point-of-view, first qualitatively expressed by Thomas Young in 1802, 
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is to regard the observed field as consisting of a superposition of the incident wave 
transmitted through the aperture unperturbed, and a diffracted wave originating at the 
rim of the aperture. The possibility of a new wave originating in the material medium 
of the rim makes this interpretation a more physical one. 

Young's qualitative arguments were given added impetus by Sommerfeld's rigor- 
ous electromagnetic solution of the problem of diffraction of a plane wave by a semi- 
infinite, perfectly conducting screen [268]. This rigorous solution showed that the field 
in the geometrical shadow of the screen has the form of a cylindrical wave originat- 
ing on the rim of the screen. In the directly illuminated region behind the plane of the 
screen the field was found to be a superposition of this cylindrical wave with the directly 
transmitted wave. 

The applicability of a boundary diffraction approach in more general diffraction 
problems was investigated by Maggi [202] and Rubinowicz [249], who showed that 
the Kirchhoff diffraction formula can indeed be manipulated to yield a form that is 
equivalent to Young's ideas. More recently, Miyamoto and Wolf [250] have extended 
the theory of boundary diffraction. For further discussion of these ideas, the reader 
should consult the references cited. 

Another approach closely related to Young's ideas is the geometrical theory of 
diffraction developed by Keller [161]. In this treatment, the field behind a diffracting 
obstacle is found by the principles of geometrical optics, modified by the inclusion of 
"diffracted rays" that originate at certain points on the obstacle itself. New rays are as- 
sumed to be generated at edges, corners, tips, and surfaces of the obstacle. This theory 
can often be applied to calculate the fields diffracted by objects that are too complex to 
be treated by other methods. 

3.10 
THE ANGULAR SPECTRUM OF PLANE WAVES 

It is also possible to formulate scalar diffraction theory in a framework that closely re- 
sembles the theory of linear, invariant systems. As we shall see, if the complex field 
distribution of a monochromatic disturbance is Fourier-analyzed across any plane, the 
various spatial Fourier components can be identified as plane waves traveling in differ- 
ent directions away from that plane. The field amplitude at any other point (or across any 
other parallel plane) can be calculated by adding the contributions of these plane waves, 
taking due account of the phase shifts they have undergone during propagation. For a 
detailed treatment of this approach to diffraction theory, as well as its applications in the 
theory of radio-wave propagation, the reader is referred to the work of Ratcliffe [240]. 

3.10.1 The Angular Spectrum and Its Physical Interpretation 

Suppose that, due to some unspecified system of monochromatic sources, a wave is 
incident on a transverse (x ,  y) plane traveling with a component of propagation in the 
positive z direction. Let the complex field across that z = 0 plane be represented by 
U ( x ,  y, 0); our ultimate objective is to calculate the resulting field U ( x ,  y, z) that appears 
across a second, parallel plane a distance z to the right of the first plane. 
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Across the z = 0 plane, the function U has a two-dimensional Fourier transform 
given by 

m 

A(fx, fy; 0) = I( U(x, y, 0) expi- j 2 ~ (  fxx + fry)] dx dy. (3-58) 

As pointed out in Chapter 2, the Fourier transform operation may be regarded as a 
decomposition of a complicated function into a collection of more simple complex- 
exponential functions. To emphasize this point-of-view, we write U as an inverse 
Fourier transform of its spectrum, 

To give physical meaning to the functions in the integrand of the above integral, 
consider the form of a simple plane wave propagating with wave vector 6 where i has 
magnitude 2 n l h  and has direction cosines (a ,  P ,  y), as illustrated in Fig. 3.9. Such a 
plane wave has a complex representation of the form 

where 3 = x f  + y9 + z i  is a position vector (the A symbol signifies a unit vector), while 
X = % ( a 2  + p 9 + yi).  Dropping the time dependence, the complex phasor amplitude 
of the plane wave across a constant z-plane is 

Note that the direction cosines are interrelated through 

Thus across the plane z = 0, a complex-exponential function exp[ j 2 ~ (  fxx + fy  y)] 
may be regarded as representing a plane wave propagating with direction cosines 

a = hfx P = hfy y = J1 - ( A f ~ ) ~ - ( h f y ) ~ .  (3-62) 

In the Fourier decomposition of U, the complex amplitude of the plane-wave com- 
ponent with spatial frequencies (fx, fy) is simply A(fx, fy;O)dfxdfy, evaluated at 
( fx = alh ,  fy = PIA). For this reason, the function 

FIGURE 3.9 
The wave vector i. 
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is called the angular spectrum of the disturbance U(x ,  y, 0 ) .  

3.10.2 Propagation of the Angular Spectrum 

Consider now the angular spectrum of the disturbance U across a plane parallel to the 
(x ,  y )  plane but at a distance z from it. Let the function A(aIA, P I A ;  z )  represent the 
angular spectrum of U(x ,  y, z ) ;  that is, 

Now if the relation between A(aIA, P I A ;  0) and A(aIA, PlA; z )  can be found, then the 
effects of wave propagation on the angular spectrum of the disturbance will be evident. 

To find the desired relation, note that U can be written 

In addition, U must satisfy the Helmholtz equation, 

v2u + k 2 u  = 0 

at all source-free points. Direct application of this requirement to Eq. (3-65) shows that 
A must satisfy the differential equation 

An elementary solution of this equation can be written in the form 

This result demonstrates that when the direction cosines (a, P )  satisfy 

a2 + ,B2 < 1 ,  (3-67) 

as all true direction cosines must, the effect of propagation over distance z is simply a 
change of the relative phases of the various components of the angular spectrum. Since 
each plane-wave component propagates at a different angle, each travels a different 
distance between two parallel planes, and relative phase delays are thus introduced. 

However, when (a, p )  satisfy 

a2 + p2 > 1, 

a different interpretation is required. Note that since A(alA, P I A ;  0 )  is the Fourier trans- 
form of a field distribution on which boundary conditions are imposed in the aperture 
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plane, it is quite possible that this spectrum will contain components that satisfy the 
above equation. Under such a condition, a and P are no longer interpretable as direc- 
tion cosines. Now the square root in Eq. (3-66) is imaginary, and that equation can be 
rewritten 

where 

Since p is a positive real number, these wave components are rapidly attenuated by the 
propagation phenomenon. Such components are called evanescent waves and are quite 
analogous to the waves produced in a microwave waveguide driven below its cutoff 
frequency. As in the case of the waveguide driven below cutoff, these evanescent waves 
carry no energy away from the a p e r t ~ r e . ~  

Finally, we note that the disturbance observed at (x, y, z) can be written in terms of 
the initial angular spectrum by inverse transforming Eq. (3-66), giving 

x circ( ,/-) exp [ j2a (Y*  -x  + -y f)]: d  - d- ,  f (3-69) 

where the circ function limits the region of integration to the region within which Eq. 
(3-67) is ~at i s f ied .~  Note that no angular spectrum components beyond the evanescent 
wave cutoff contribute to U(x, y, z). This fact is the fundamental reason why no con- 
ventional imaging system can resolve a periodic structure with a period that is finer 
than the wavelength of the radiation used. It is possible, though, to couple to evanes- 
cent waves with very fine structures placed in very close proximity to the diffracting 
object, and thereby recover information that would otherwise be lost. However, we will 
focus here on conventional optical instruments, for which the evanescent waves are not 
recoverable. 

3.10.3 Effects of a Diffracting Aperture on the Angular Spectrum 

Suppose that an infinite opaque screen containing a diffracting structure is intro- 
duced in the plane z = 0. We now consider the effects of that diffracting screen on the 

6Note that evanescent waves are predicted only under the very same conditions for which the use of the scalar 
theory is suspect. Nonetheless, they are a real phenomenon, although perhaps more accurately treated in a 
full vectorial theory. 

'We can usually assume that the distance z is larger than a few wavelengths, allowing us to completely drop 
the evanescent components of the spectrum. 
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angular spectrum of the disturbance. Define the amplitude transmittance function of 
the aperture as the ratio of the transmitted field amplitude Ur(x, y;O) to the incident 
field amplitude Ui(x, y; 0) at each (x, y) in the z = 0 plane, 

Then 

and the convolution theorem can be used to relate the angular spectrum Ai(alA, PlA) 
of the incident field and the angular spectrum At(aIA, PlA) of the transmitted field, 

a P  a P  a P  A - -  = A. - - @ T  - - 
' ( A '  A )  [ ' ( A '  A )  ( A '  A)] '  

where 

and @ is again the symbol for convolution. 
The angular spectrum of the transmitted disturbance is thus seen to be the convolu- 

tion of the angular spectrum of the incident disturbance with a second angular spectrum 
that is characteristic of the diffracting structure. 

For the case of a unit amplitude plane wave illuminating the diffracting structure 
normally, the result takes a particularly simple form. In that case 

a P  a P  A , - -  = S - -  
. ( A '  A )  ( A '  A )  

and 

a P  CUP a P  a P  A - -  = S - - @ T - -  = T - -  
( A )  ( A )  ( A , * )  (A '*) .  

Thus the transmitted angular spectrum is found directly by Fourier transforming the 
amplitude transmittance function of the aperture. 

Note that, if the diffracting structure is an aperture that limits the extent of the field 
distribution, the result is a broadening of the angular spectrum of the disturbance, from 
the basic properties of Fourier transforms. The smaller the aperture, the broader the an- 
gular spectrum behind the aperture. This effect is entirely analogous to the broadening 
of the spectrum of an electrical signal as its duration is decreased. 

3.10.4 The Propagation Phenomenon as a Linear Spatial Filter 

Consider again the propagation of light from the plane z = 0 to a parallel plane at 
nonzero distance z. The disturbance U(x, y, 0) incident on the first plane may be con- 
sidered to be mapped by the propagation phenomenon into a new field distribution 
U(x, y, z). Such a mapping satisfies our previous definition of a system. We shall, in 
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fact, demonstrate that the propagation phenomenon acts as a linear space-invariant sys- 
tem and is characterized by a relatively simple transfer function. 

The linearity of the propagation phenomenon has already been discussed; it is di- 
rectly implied by the linearity of the wave equation, or alternatively, by the superpo- 
sition integral (3-52). The space-invariance property is most easily demonstrated by 
actually deriving a transfer function that describes the effects of propagation; if the 
mapping has a transfer function, then it must be space-invariant. 

To find the transfer function, we return to the angular spectrum point-of-view. 
However, rather than writing the angular spectra as functions of the direction cosines 
(a, p),  it is now more convenient to leave the spectra as functions of spatial frequen- 
cies ( fx, fy). The spatial frequencies and the direction cosines are related through Eq. 
(3-62). 

Let the spatial spectrum of U(x, y, z) again be represented by A( fx, f y  ; z), while 
the spectrum of U(x, y; 0) is again written A( fx, fv; 0). Thus we may express U(x, y, z) 
as 

But in addition, from Eq.(3-69), 

where we have again explicitly introduced the bandwidth limitation associated with 
evanescent waves through the use of a circ function. A comparison of the above two 
equations shows that 

Finally, the transfer function of the wave propagation phenomenon is seen to be 

l o  - 

- 

otherwise. 

Thus the propagation phenomenon may be regarded as a linear, dispersive spatial 
filter with a finite bandwidth. The transmission of the filter is zero outside a circular re- 
gion of radius A-' in the frequency plane. Within that circular bandwidth, the modulus 
of the transfer function is unity but frequency-dependent phase shifts are introduced. 
The phase dispersion of the system is most significant at high spatial frequencies and 
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vanishes as both fx and fy approach zero. In addition, for any fixed spatial frequency 
pair, the phase dispersion increases as the distance of propagation z increases. 

In closing we mention the remarkable fact that, despite the apparent differences of 
their approaches, the angular spectrum approach and the jirst Rayleigh-Sommerfeld 
solution yield identical predictions of difSracted jields! This has been proved most 
elegantly by Sherman [260]. 

PROBLEMS-CHAPTER 3 

3-1. Show that in an isotropic, nonmagnetic, and inhomogeneous dielectric medium, Maxwell's 
equations can be combined to yield Eq. (3-8). 

3-2. Show that a diverging spherical wave satisfies the Sornrnerfeld radiation condition. 

3-3. Show that, if r21 >> A, Eq. (3-26) can be reduced to Eq. (3-27). 

3-4. Show that the normal derivative of Eq. (3-37) for G+ vanishes across the screen and aper- 
ture. 

3-5. Assuming unit-amplitude normally incident plane-wave illumination, find the angular 
spectrum of 

(a) A circular aperture of diameter d. 

(b) A circular opaque disk of diameter d. 

3-6. Consider a real nonmonochromatic disturbance u(P, t) of center frequency 3 and bandwidth 
Av. Let a related complex-valued disturbance u- (P, t) be defined as consisting of only the 
negative-frequency components of u(P, t). Thus 

where U(P, v) is the Fourier spectrum of u(P, t). Assuming the geometry of Fig. 3.6 show 
that if 

Av 1 n r o ~  << 1 and - >> - 
v Av U 

then 

where A = vlfi and i = 2.rrIA. In the above equations, n is the refractive index of the 
medium and u is the velocity of propagation. 

3-7. For a wave that travels only in directions that have small angles with respect to the optical 
axis, the general form of the complex field may be approximated by 

U(x, y, z) = A(x, y, z) exp( jkz), 

where A(x, y, z) is a slowly varying function of z. 
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(a) Show that for such a wave the Helmholtz equation can be reduced to 

where Vf = d2/dx2 + d2/dy2 is the transverse portion of the Laplacian. This equation 
is known as the paraxial Helmholtz equation. 

(b) Show that a solution to this equation is given by 

A 1 
A(x, y, 2) = - exp jk------ 

~ ( 2 )  [ x:;i;'] 
for any complex q(z) having gq(z) = 1 

(c) Given 

show that the solution U(x, y, z) takes the form 

w o  
U(X, Y. z) = A, exp [- &] exp [jkz + jx- 2Wz) p2 + j ~ ( z ) ]  

where Wo is a constant (independent of z) and 8(z) is a phase angle that changes with 
z. Note that this is a beam with a Gaussian profile and with a quadratic-phase approxi- 
mation to a spherical wavefront. 
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Fresnel and Fraunhofer Diffraction 

I n  the preceding chapter the results of scalar diffraction theory were presented in their 
most general forms. Attention is now turned to certain approximations to the general 
theory, approximations that will allow diffraction pattern calculations to be reduced to 
comparatively simple mathematical manipulations. These approximations, which are 
commonly made in many fields that deal with wave propagation, will be referred to 
as Fresnel and Fraunhofer approximations. In accordance with our view of the wave 
propagation phenomenon as a "system", we shall attempt to find approximations that 
are valid for a wide class of "input" field distributions. 

4.1 
BACKGROUND 

In this section we prepare the reader for the calculations to follow. The concept of the 
intensity of a wave field is introduced, and the Huygens-Fresnel principle, from which 
the approximations are derived, is presented in a form that is especially well suited for 
approximation. 

4.1.1 The Intensity of a Wave Field 

In the optical region of the spectrum, a photodetector responds directly to the optical 
power falling on its surface. Thus for a semiconductor detector, if optical power P is 
incident on the photosensitive region, absorption of a photon generates an electron in 
the conduction band and a hole in the valence band. Under the influence of internal and 
applied fields, the hole and electron move in opposite directions, leading to a photocur- 
rent i that is the response to the incident absorbed photon. Under most circumstances 
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the photocurrent is linearly proportional to the incident power, 

i = RP. (4- 1) 

The proportionality constant R is called the responsivity of the detector and is given by 

where qqe is the quantum efJiciency of the photodetector (the average number of 
electron-hole pairs released by the absorption of a photon, a quantity that is less than or 
equal to unity in the absence of internal gain), q is the electronic charge (1.602 x 10- l9 

coulombs), h is Planck's constant (6.626196 X joule-second), and v is the optical 
frequency. 

Thus in optics the directly measurable quantity is optical power, and it is important 
to relate such power to the complex scalar fields u(P, t) and U ( P )  dealt with in earlier 
discussions of diffraction theory. To understand this relation requires a return to an elec- 
tromagnetic description of the problem. We omit the details here, referring the reader 
to Ref. [253], Sections 5.3 and 5.4, and simply state the major points. Let the medium 
be isotropic, and the wave monochromatic. Assuming that the wave behaves locally as 
a transverse electromagnetic plane wave (i.e. 2, fl, and i form a mutually orthogonal 
triplet), then the electric and magnetic fields can be expressed locally as 

where Eo and & are locally constant and have complex components. The power flows 
in the direction of the vector i and the power density can be expressed as 

where T, is the characteristic impedance of the medium and is given by 

In vacuum, T, is equal to 37752. The total power incident on a surface of area A is the 
integral of the power density over A, taking into account that the direction of power 
flow is in the direction of I;, - 

Here ir is a unit vector pointing into the surface of the detector, while i/~il is a unit 
vector in the direction of power flow. When is nearly normal to the surface, the total 
power P is simply the integral of the power density p over the detector area. 

'The reader may wonder why the generation of both an electron and a hole does not lead to a charge 2q 
rather than q in this equation. For an answer, see [253], p. 653. 
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The proportionality of power density to the squared magnitude of the i0 vector seen 
in Eq. (4-4) leads us to define the intensity of a scalar monochromatic wave at point P as 
the squared magnitude of the complex phasor representation U(P) of the disturbance, 

I(P)  = Ju(p)I2. (4-5) 

Note that power density and intensity are not identical, but the latter quantity is directly 
proportional to the former. For this reason we regard the intensity as the physically 
measurable attribute of an optical wavefield. 

When a wave is not perfectly monochromatic, but is narrow band, a straightforward 
generalization of the concept of intensity is given by 

I(P) = < lu(P, t)I2 >, (4-6) 

where the angle brackets signify an infinite time average. In some cases, the concept of 
instantaneous intensity is useful, defined as 

I ( P ,  t) = (u(P, t)I2. (4-7) 

When calculating a diffraction pattern, we will generally regard the intensity of the 
pattern as the quantity we are seeking. 

4.1.2 The Huygens-Fresnel Principle in Rectangular Coordinates 

Before introducing a series of approximations to the Huygens-Fresnel principle, it will 
be helpful to first state the principle in more explicit form for the case of rectangular 
coordinates. As shown in Fig. 4.1, the diffracting aperture is assumed to lie in the (t, q )  
plane, and is illuminated in the positive z direction. We will calculate the wavefield 
across the (x, y) plane, which is parallel to the (6, q )  plane and at normal distance z 
from it. The z axis pierces both planes at their origins. 

According to Eq. (3-41), the Huygens-Fresnel principle can be stated as 

where 0 is the angle between the outward normal ii and the vector Fo, pointing from Po 
to P1. The term cos 8 is given exactly by 

FIGURE 4.1 
Diffraction geometry. 
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and therefore the Huygens-Fresnel principle can be rewritten 

where the distance rol is given exactly by 

rul = Jz2 + (X - 5)2 + (y - q)2 

There have been only two approximations in reaching this expression. One is the ap- 
proximation inherent in the scalar theory. The second is the assumption that the obser- 
vation distance is many wavelengths from the aperture, rol >> A. We now embark on 
a series of additional approximations. 

4.2 
THE FRESNEL APPROXIMATION 

To reduce the Huygens-Fresnel principle to a more simple and usable expression, we 
introduce approximations for the distance rol between P I  and Po. The approximations 
are based on the binomial expansion of the square root in Eq. (4-10). Let b be a number 
that is less than unity, and consider the expression Jl+b. The binomial expansion of 
the square root is given by 

where the number of terms needed for a given accuracy depends on the magnitude 
of b. 

To apply the binomial expansion to the problem at hand, factor a z outside the 
expression for rol , yielding 

Let the quantity b in Eq. (4-1 1) consist of the second and third terms under the square 
root in (4- 12). Then, retaining only the first two terms of the expansion (4- 1 l), we have 

The question now arises as to whether we need to retain all the terms in the approxi- 
mation (4- 13), or whether only the first term might suffice. The answer to this question 
depends on which of the several occurrences of rol is being approximated. For the 4, 
appearing in the denominator of Eq. (4-9), the error introduced by dropping all terms 
but z is generally acceptably small. However, for the rol appearing in the exponent, 
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errors are much more critical. First, they are multiplied by a very large number k, a 
typical value for which might be greater than 10' in the visible region of the spectrum 
(e.g. A = 5 X meters). Second, phase changes of as little as a fraction of a radian 
can change the value of the exponential significantly. For this reason we retain both 
terms of the binomial approximation in the exponent. The resulting expression for the 
field at (x, y) therefore becomes 

m 

where we have incorporated the finite limits of the aperture in the definition of U(6, v), 
in accord with the usual assumed boundary conditions. 

Equation (4-14) is readily seen to b e d  convolution, expressible in the form 

where the convolution kernel is 

ejkZ [E ( 2 2)] h(x, y) = - exp - x + y . 
J A ~  

We will return to this viewpoint a bit later. 
Another form of the result (4-14) is found if the term exp[&x2 + y2)] is factored 

outside the integral signs, yielding 
rn 

which we recognize (aside from multiplicative factors) to be the Fourier transform of 
the product of the complex field just to the right of the aperture and a quadratic phase 
exponential. 

We refer to both forms of the result, (4-14) and (4-17), as the Fresnel diflraction 
integral. When this approximation is valid, the observer is said to be in the region of 
Fresnel diffraction, or equivalently in the nearJield of the aperture.2 

4.2.1 Positive vs. Negative Phases 

We have seen that it is common practice when using the Fresnel approximation to 
replace expressions for spherical waves by quadratic-phase exponentials. The question 
often arises as to whether the sign of the phase should be positive or negative in a given 

2Recently an interesting relation between the Fresnel diffraction formula and an entity known as the "frac- 
tional Fourier transform" has been found. The interested reader can consult Ref. [225] and the references 
contained therein. 
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expression. This question is not only pertinent to quadratic-phase exponentials, but also 
arises when considering exact expressions for spherical waves and when considering 
plane waves propagating at an angle with respect to the optical axis. We now present 
the reader with a methodology that will help determine the proper sign of the exponent 
in all of these cases. 

The critical fact to keep in mind is that we have chosen our phasors to rotate in the 
clockwise direction, i.e. their time dependence is of the form exp(- j 2 ~ v t ) .  For this 
reason, if we move in space in such a way as to intercept portions of a wavefield that 
were emitted later in time, the phasor will have advanced in the clockwise direction, 
and therefore the phase must become more negative. On the other hand, if we move in 
space to intercept portions of a wavefield that were emitted earlier in time, the phasor 
will not have had time to rotate as far in the clockwise direction, and therefore the phase 
must become more positive. 

If we imagine observing a spherical wave that is diverging from a point on the z 
axis, the observation being in an (x, y) plane that is normal to that axis, then movement 
away from the origin always results in observation of portions of the wavefront that 
were emitted earlier in time than that at the origin, since the wave has had to propa- 
gate further to reach those points. For that reason the phase must increase in a posi- 
tive sense as we move away from the origin. Therefore the expressions exp(jkrol) and 
exp[j&(x2 + y2)] (for positive Z) represent a diverging spherical wave and a quadratic- 
phase approximation to such a wave, respectively. By the same token, exp(- jkrol) and 
exp[- j&(x2 + P ) ]  represent a converging spherical wave, again assuming that z is 
positive. Clearly, if z is a negative number, then the interpretation must be reversed, 
since a negative sign is hidden in z. 

Similar reasoning applies to the expressions for plane waves traveling at an angle 
with respect to the optical axis. Thus for positive a ,  the expression exp(j2nay) rep- 
resents a plane wave with a wave vector in the (y, z) plane. But does the wave vector 
point with a positive angle with respect to the z axis or with a negative angle, keeping in 
mind that a positive angle is one that has rotated counterclockwise with respect to the z 
axis? If we move in the positive y direction, the argument of the exponential increases 
in a positive sense, and therefore we are moving to a portion of the wave that was 
emitted earlier in time. This can only be true if the wave vector points with a positive 
angle with respect to the z axis, as illustrated in Fig. 4.2. 

Wavefront A Y 
emitted A 

earlier k 

z 
Wavefront 
emitted FIGURE 4.2 
later Determining the sign of 

the phases of exponential 
representations of (a) spherical 

(a) (b) waves and (b) plane waves. 
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cos nx2 

sin nx2 

X 

FIGURE 4.3 
Quadratic phase cosine and sine 
functions. 

of this function with a second function that is smooth and slowly varying will come from 
the range -2 < X < 2, due to the fact that outside this range the rapid oscillations of 
the integrand do not yield a significant addition to the total area. 

For the scaled quadratic-phase exponential of Eqs. (4-14) and (4-16), the corre- 
sponding conclusion is that the majority of the contribution to the convolution integral 
comes from a square in the ( 6 , ~ )  plane, with width 4 & and centered on the point 
(5 = x, 7 = y). This square grows in size as the distance z behind the aperture in- 
creases. In effect, when this square lies entirely within the open portion of the aperture, 
the field observed at distance z is, to a good approximation, what it would be if the 
aperture were not present. When the square lies entirely behind the obstruction of the 
aperture, then the observation point lies in a region that is, to a good approximation, dark 

, Integral 

FIGURE 4.4 
Magnitude of the integral of the 

0 0.5 1 1.5 2 2.5 3 quadratic-phase exponential function. 



CHAPTER 4 Fresnel and Fraunhofer Diffraction 7 1 

due to the shadow of the aperture. When the square bridges the open and obstructed 
parts of the aperture, then the observed field is in the transition region between light 
and dark. The detailed structure within these regions may be complex, but the general 
conclusions above are correct. Figure 4.5 illustrates the various regions mentioned. For 
the case of a one-dimensional rectangular slit, the boundaries between the light region 
and the transition region, and between the dark region and the transition region, can be 
shown to be parabolas (see Prob. 4-5). 

Note that if the amplitude transmittance andlor the illumination of the diffracting 
aperture is not a relatively smooth and slowly varying function, the above conclusions 
may not hold. For example, if the amplitude of the field transmitted by the aperture 
has a high-spatial-frequency sinusoidal component, that component may interact with 
the high frequencies of the quadratic-phase exponential kernel to produce a nonzero 
contribution from a location other than the square mentioned above. Thus the restriction 
of attention to the square of width 4 must be used with some caution. However, 
the idea is valid when the diffracting apertures do not contain fine structure and when 
they are illuminated by uniform plane waves. 

If the distance z is allowed to approach zero, i.e. the observation point approaches 
the diffracting aperture, then the two-dimensional quadratic-phase function behaves in 
the limit like a delta function, producing a field U ( x ,  y) that is identical to the aperture 
field U ( [ ,  v) in the aperture. In such a case, the predictions of geometrical optics are 
valid, for such a treatment would predict that the field observed behind the aperture is 
simply a geometrical projection of the aperture fields onto the plane of observation. 

Our discussion above is closely related to the principle of stationary phase, a 
method for finding the asymptotic values of certain integrals. A good discussion of 
this method can be found in Appendix I11 of Ref. [28]. For other examinations of the 
accuracy of the Fresnel approximation, see Chapter 9 of Ref. [227] and also Ref. [27 11. 
The general conclusions of all of these analyses are similar; namely, the accuracy of the 
Fresnel approximation is extremely good to distances that are very close to the aperture. 

4.2.3 The Fresnel Approximation and the Angular Spectrum 

It is of some interest to understand the implications of the Fresnel approximations from 
the point-of-view of the angular spectrum method of analysis. Such understanding can 
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FIGURE 4.5 
Light, dark, and transition regions 
behind a rectangular slit aperture. 



72 Introduction to Fourier Optics 

be developed by beginning with Eq. (3-74), which expresses the transfer function of 
propagation through free space, 

i 0 otherwise. 

This result, which is valid subject only to the scalar approximation, can now be com- 
pared with the transfer function predicted by the results of the Fresnel analysis. Fourier 
transforming the Fresnel diffraction impulse response (4-16), we find (with the help of 
Table 2.1) a transfer function valid for Fresnel diffraction, 

= ejkz exp 1- j?rhz (fi + f:)]. 

Thus in the Fresnel approximation, the general spatial phase dispersion representing 
propagation is reduced to a quadratic phase dispersion. The factor eJkz on the right of 
this equation represents a constant phase delay suffered by all plane-wave components 
traveling between two parallel planes separated by normal distance z. The second term 
represents the different phase delays suffered by plane-wave components traveling in 
different directions. 

The expression (4-2 1) is clearly an approximation to the more general transfer func- 
tion (4-20). We can obtain the approximate result from the general result by applying 
a binomial expansion to the exponent of (4-20), 

which is valid provided (A fx( << 1 and ( A  f y l  << 1 .  Such restrictions on fx and fy are 
simply restrictions to small angles. So we see that, from the perspective of the angular 
spectrum, the Fresnel approximation is accurate provided only small angles of diffrac- 
tion are involved. It is for this reason that we often say that the Fresnel approximations 
and the paraxial approximation are equivalent. 

4.2.4 Fresnel Diffraction Between Confocal Spherical Surfaces 

Until now, attention has been focused on diffraction between two planes. An alternative 
geometry, of more theoretical than practical interest but nonetheless quite instructive, 
is diffraction between two confocal spherical surfaces (see, for example, [24], [25]). As 
shown in Fig. 4.6, two spheres are said to be confocal if the center of each lies on the 
surface of the other. In our case, the two spheres are tangent to the planes previously 
used, with the points of tangency being the points where the z axis pierces those planes. 
The distance rol in our previous diffraction analysis is now the distance between the 
two spherical caps shown. 
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A proper analysis would write equations for the left-hand spherical surface and for 
the right-hand spherical surface, and then use those equations to find the distance rol 
between the two spherical caps. In the process it would be helpful to simplify certain 
square roots by using the first two terms of their binomial expansions (i.e. to make 
paraxial approximations to the spherical surfaces). The result of such an analysis is the 
following simple expression for rol, valid if the extent of the spherical caps about the 
z-axis is small compared with their radii: 

The Fresnel diffraction equation now becomes 

which, aside from constant multipliers and scale factors, expresses the field observed 
on the right-hand spherical cap as the Fourier transform of the field on the left-hand 
spherical cap. 

Comparison of this result with the previous Fourier-transform version of the Fres- 
nel diffraction integral, Eq. (4-17), shows that the quadratic-phase factors in (x, y) and 
( 6 , ~ )  have been eliminated by moving from the two planes to the two spherical caps. 
The two quadratic phase factors in the earlier expression are in fact simply paraxial 
representations of spherical phase surfaces, and it is therefore reasonable that moving 
to the spheres has eliminated them. 

One subtle point worth mention is that, when we analyze diffraction between two 
spherical caps, it is not really valid to use the Rayleigh-Sommerfeld result as the basis 
for the calculation, for that result was explicitly valid only for diffraction by a planar 
aperture. However, the Kirchhoff analysis remains valid, and its predictions are the 
same as those of the Rayleigh-Sommerfeld approach provided paraxial conditions hold. 

4.3 
THE FRAUNHOFER APPROXIMATION 

Before presenting several examples of diffraction pattern calculations, we consider 
another more stringent approximation which, when valid, greatly simplifies the cal- 
culations. It was seen in Eq. (4-17) that, in the region of Fresnel diffraction, the observed 
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field strength U(x, y) can be found from a Fourier transform of the product of the aper- 
ture distribution U(6, q )  and a quadratic phase function exp [j(k12z)(t2 + q2)]. If in 
addition to the Fresnel approximation the stronger (Fraunhofer) approximation 

is satisfied, then the quadratic phase factor under the integral sign in Eq. (4-17) is ap- 
proximately unity over the entire aperture, and the observed field strength can be found 
(up to a multiplicative phase factor in (x, y)) directly from a Fourier transform of the 
aperture distribution itself. Thus in the region of Fraunhofer diflraction (or equiva- 
lently, in the farjeld),  

m 

e j k ~ e j & ( ~ Z + ~ 2 )  
IJ(r v) = (( rn) exp [- jz(xt + y q)] de dl). (4-25) 

hz 

Aside from multiplicative phase factors preceding the integral, this expression is simply 
the Fourier transform of the aperture distribution, evaluated at frequencies 

fx = xlhz 

fy = ylhz. 

At optical frequencies, the conditions required for validity of the Fraunhofer approxi- 
mation can be severe ones. For example, at a wavelength of 0.6 p m  (red light) and an 
aperture width of 2.5 cm (1 inch), the observation distance z must satisfy 

z >> 1,600 meters. 

An alternative, less stringent condition, known as the "antenna designer's formula", 
states that for an aperture of linear dimension D, the Fraunhofer approximation will be 
valid provided 

where the inequality is now > rather than >>. However, for this example the distance z 
is still required to be larger than 2,000 meters. Nonetheless, the required conditions are 
met in a number of important problems. In addition, Fraunhofer diffraction patterns can 
be observed at distances much closer than implied by Eq. (4-24) provided the aperture 
is illuminated by a spherical wave converging toward the observer (see Prob. 4-16), 
or if a positive lens is properly situated between the observer and the aperture (see 
Chapter 5). 

Finally, it should be noted that, at first glance, there exists no transfer function 
that can be associated with Fraunhofer diffraction, for the approximation (4-24) has 
destroyed the space invariance of the diffraction equation (cf. Prob. 2-10). The sec- 
ondary wavelets with parabolic surfaces (as implied by the Fresnel approximation) 
no longer shift laterally in the (x, y) plane with the particular (5, q )  point under con- 
sideration. Rather, when the location of the secondary source shifts, the corresponding 
quadratic surface tilts in the (x, y) plane by an amount that depends on the location of the 
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secondary source. Nonetheless, it should not be forgotten that since Fraunhofer diffrac- 
tion is only a special case of Fresnel diffraction, the transfer function (4-21) remains 
valid throughout both the Fresnel and the Fraunhofer regimes. That is, it is always pos- 
sible to calculate diffracted fields in the Fraunhofer region by retaining the full accuracy 
of the Fresnel approximation. 

4.4 
EXAMPLES OF FRAUNHOFER DIFFRACTION PATTERNS 

We consider next several examples of Fraunhofer diffraction patterns. For additional 
examples the reader may consult the problems (see Probs. 4-7 through 4-10). 

The results of the preceding section can be applied directly to find the complex field 
distribution across the Fraunhofer diffraction pattern of any given aperture. However, of 
ultimate interest, for reasons discussed at the beginning of this chapter, is the intensity 
rather than the complex field strength. The final descriptions of the specific diffraction 
patterns considered here will therefore be distributions of intensity. 

4.4.1 Rectangular Aperture 

Consider first a rectangular aperture with an amplitude transmittance given by 

tA., q )  = rect ('- ) rect (' ). 
2wx ~ W Y  

The constants wx and wy are the half-widths of the aperture in the 6 and q directions. 
If the aperture is illuminated by a unit-amplitude, normally incident, monochromatic 
plane wave, then the field distribution across the aperture is equal to the transmittance 
function t~ . Thus using Eq. (4-25), the Fraunhofer diffraction pattern is seen to be 

e j k ~ e j $ ( ~ 2 + y 2 )  
U(x, y) = 

jhz fx = xlhz 

Noting that F{U(&, q)) = A sinc(2wx fx) sinc(2wy fy), where A is the area of the aper- 
ture (A = 4wxwy), we find 

e j k ~ e j $ ( x 2 + ~ 2 )  ~ W Y Y  

U(x, y)  = jhz A sinc (2) sinc (x), 
and 

Figure 4.7 shows a cross section of the Fraunhofer intensity pattern along the x 
axis. Note that the width of the main lobe (i.e. the distance between the first two ze- 
ros) is 



76 Introduction to Fourier Optics 

FIGURE 4.7 
Cross section of the Fraunhofer 

- .  ,, , 2wxx hz diffraction pattern of a rectangular 
-3 -2 -1 1 2 3 aperture. 

FIGURE 4.8 
The Fraunhofer diffraction pattern of a rectangular aperture (wxlwy = 2). 
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Figure 4.8 shows a photograph of the diffraction pattern produced by a rectangular 
aperture with a width ratio of wxlwr = 2. 

4.4.2 Circular Aperture 

Consider a diffracting aperture that is circular rather than rectangular, and let the radius 
of the aperture be w. Thus if q is a radius coordinate in the plane of the aperture, then 

t* (q)  = circ (:). 
The circular symmetry of the problem suggests that the Fourier transform of Eq. (4-25) 
be rewritten as a Fourier-Bessel transform. Thus if r is the radius coordinate in the 
observation plane, we have 

U(r)  = J ~ Z  exp ( j Z ) B ( U ( q ) ) l  , 
p = rlAz 

where q = ,/-- represents radius in the aperture plane, and p = Jm rep- 
resents radius in the spatial frequency domain. For unit-amplitude, normally incident 
plane-wave illumination, the field transmitted by the aperture is equal to the amplitude 
transmittance; in addition, 

where A = r w 2 .  The amplitude distribution in the Fraunhofer diffraction pattern is 
seen to be 

U(r)  = e j k z e ~ z  - J l  (kwrlz) " ' " [ Z  jhz kwrlz 1. 
and the intensity distribution can be written 

This intensity distribution is referred to as the Airy pattern, after G.B. Airy who first 
derived it. Table 4.1 shows the values of the Airy pattern at successive maxima and 
minima, from which it can be seen that the width of the central lobe, measured along 
the x or y axis, is given by 
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TABLE 4.1 

Locations of maxima and minima of the 
Airy pattern. 

Figure 4.9 shows a cross section of the Airy pattern, while Fig. 4.10 is a photograph 
of the Fraunhofer diffraction pattern of a circular aperture. 

4.4.3 Thin Sinusoidal Amplitude Grating 

In the previous examples, diffraction was assumed to be caused by apertures in infinite 
opaque screens. In practice, diffracting objects can be far more complex. In accord 
with our earlier definition (3-68), the amplitude transmittance tA(&, q) of a screen is 
defined as the ratio of the complex field amplitude immediately behind the screen to 
the complex amplitude incident on the screen. Until now, our examples have involved 
only transmittance functions of the form 

1 in the aperture 
0 outside the aperture. 

It is possible, however, to introduce a prescribed amplitude transmittance function 
within a given aperture. Spatial attenuation can be introduced with, for example, an 
absorbing photographic transparency, thus allowing real values of t~ between zero 
and unity to be realized. Spatial patterns of phase shift can be introduced by means of 
transparent plates of varying thickness, thus extending the realizable values of t~ to all 
points within or on the unit circle in the complex plane. 

Normalized 

FIGURE 4.9 
Cross section of the Fraunhofer 
diffraction pattern of a circular 

2 3 ' 2wr / hz aperture. 
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FIGURE 4.10 
Fraunhofer diffraction pattern of a circular aperture. 

As an example of this more general type of diffracting screen, consider a thin si- 
nusoidal amplitude grating defined by the amplitude transmittance function 

where for simplicity we have assumed that the grating structure is bounded by a square 
aperture of width 2w. The parameter m represents the peak-to-peak change of ampli- 
tude transmittance across the screen, and fo is the spatial frequency of the grating. The 
term thin in this context means that the structure can indeed be represented by a simple 
amplitude transmittance. Structures that are not sufficiently thin can not be so repre- 
sented, a point we shall return to in a later chapter. Figure 4.11 shows a cross section of 
the grating amplitude transmittance function. 

If the screen is normally illuminated by a unit-amplitude plane wave, the field 
distribution across the aperture is equal simply to t ~ .  To find the Fraunhofer diffraction 
pattern, we first Fourier transform 
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FIGURE 4.11 
5 Amplitude transmittance function of the 

sinusoidal amplitude grating. 

and 

F rect - rect - = A sinc(2w fx) sinc(2w fy), { i:w) (8 
the convolution theorem can be used to write 

where A signifies the area of the aperture bounding the grating. The Fraunhofer diffrac- 
tion pattern can now be written 

Finally, the corresponding intensity distribution is found by taking the squared 
magnitude of Eq. (4-35). Note that if there are many grating periods within the aper- 
ture, then fo >> l lw, and there will be negligible overlap of the three sinc functions, 
allowing the intensity to be calculated as the sum of the squared magnitudes of the three 
terms in (4-35). The intensity is then given by 

This intensity pattern is illustrated in Fig. 4.12. Note that some of the incident light 
is absorbed by the grating, and in addition the sinusoidal transmittance variation across 
the aperture has deflected some of the energy out of the central diffraction pattern into 
two additional side patterns. The central diffraction pattern is called the zero order of 
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Normalized 

FIGURE 4.12 
Fraunhofer diffraction pattern for a thin 
sinusoidal amplitude grating. 

the Fraunhofer pattern, while the two side patterns are called thefirst orders. The spatial 
separation of the first orders from the zero order is foAz, while the width of the main 
lobe of all orders is Azlw. 

Another quantity of some practical interest in both holography and optical informa- 
tion processing is the dinraction eficiency of the grating. The diffraction efficiency is 
defined as the fraction of the incident optical power that appears in a single diffraction 
order (usually the +I order) of the grating. The diffraction efficiency for the grating 
of interest can be deduced from Eq. (4-34). The fraction of power appearing in each 
diffraction order can be found by squaring the coefficients of the delta functions in this 
representation, for it is the delta functions that determine the power in each order, not 
the sinc functions that simply spread these impulses. From this equation we conclude 
that the diffraction efficiencies 70, q + 1, q - 1 associated with the three diffraction orders 
are given by 

Thus a single first diffraction order carries at most 1/16 = 6.25% of the incident 
power, a rather small fraction. If the efficiencies of the three orders are added up, it 
will be seen that only 114 + m2/8 of the total is accounted for. The rest is lost through 
absorption by the grating. 

4.4.4 Thin Sinusoidal Phase Grating 

As a final example of Fraunhofer diffraction calculations, consider a thin sinusoidal 
phase grating defined by the amplitude transmittance function 

tA((,  q) = exp 

where, by proper choice of phase reference, we have dropped a factor representing the 
average phase delay through the grating. The parameter m represents the peak-to-peak 
excursion of the phase delay. 
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If the grating is illuminated by a unit-amplitude, normally incident plane wave, 
then the field distribution immediately behind the screen is given precisely by Eq. 
(4-38). The analysis is simplified by use of the identity 

where Jq is a Bessel function of the first kind, order q. Thus 

and 

= 2 AJ, (y ) sinc [2w(fx - qfo)] sinc(2wfY). 
q= -a, 

Thus the field strength in the Fraunhofer diffraction pattern can be written 

m 

X Jq - sinc -(x - qfohz) sinc - 
q= -m ( T )  [:: ] ( )  (4-40) 

If we again assume that there are many periods of the grating within the bounding 
aperture ( fo >> llw), there is negligible overlap of the various diffracted terms, and 
the corresponding intensity pattern becomes 

The introduction of the sinusoidal phase grating has thus deflected energy out of 
the zero order into a multitude of higher orders. The peak intensity of the qth order is 
[A  J ,  (m12)1hz]~, while the displacement of that order from the center of the diffraction 
pattern is q foAz. Figure 4.13 shows a cross section of the intensity pattern when the 
peak-to-peak phase delay m is 8 radians. Note that the strengths of the various orders 
are symmetric about the zero order. 

The diffraction efficiency of the thin sinusoidal phase grating can be found by de- 
termining the squared magnitude of the coefficients in Eq. (4-39). Thus the diffraction 
efficiency of the 9th order of this grating is 
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I 
Normalized 
intensity 

0.2 

FIGURE 4.13 
I I Fraunhofer diffraction pattern for a thin 

-4hzfo -2hzfo 4 2hzfo 4hzf0 sinusoidal phase gating. The f l orders . . 
hz/w have nearly vanished in this example. 

Figure 4.14 shows a plot of q, vs. ml2 for various values of q. Note that whenever 
ml2 is a root of Jo, the central order vanishes entirely! The largest possible diffraction 
efficiency into one of the + 1 and - 1 diffraction orders is the maximum value of J:. This 
maximum is 33.8%, far greater than for the case of a thin sinusoidal amplitude grating. 
No power is absorbed by this grating, and therefore the sum of the powers appearing in 
all orders remains constant and equal to the incident power as m is changed. 

4.5 
EXAMPLES OF FRESNEL DIFFRACTION CALCULATIONS 

In a previous section, several different methods for calculating Fresnel diffraction pat- 
terns have been introduced. For the beginner, it is difficult to know when one method 
will be easier than another, and therefore in this section two examples are presented that 
provide some insight in this regard. The first example, Fresnel diffraction by a square 
aperture, illustrates the application of the classical approach based on the convolution 
representation of the diffraction calculation. The second example, Talbot imaging, il- 
lustrates a case in which a frequency-domain approach has a large advantage. 

FIGURE 4.14 
Diffraction efficiency ~92(m/2) vs. 
m/2 for three values of q. 
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4.5.1 Fresnel Diffraction by a Square Aperture 

Suppose that a square aperture of width 2w is normally illuminated by a monochromatic 
plane wave of unit amplitude. The distribution of complex field immediately behind the 
aperture is 

~ ( 6 ,  q) = rect (&) rect (&). 
The convolution form of the Fresnel diffraction equation is most convenient for this 
problem, yielding 

This expression can be separated into the product of two one-dimensional integrals, 

where 

To reduce these integrals to expressions that are related to the Fresnel integrals men- 
tioned on several previous occasions, make the following change of variables: 

yielding 

where the limits of integration are 
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At this point we define the Fresnel numbel; NF = w2/Az, and we introduce normalized 
distance variables in the observation region, X = XI& and Y = y/&, yielding sim- 
pler expressions for the limits of integration, 

The integrals Z(x) and Z(y) are related to the Fresnel integrals C(z) and S(z) of Sections 
2.2 and 4.2. Noting that 

1"' a I exp ( 'y  J-a 2 ) d a = ~ 2 e x p ( j ~ a 2 ) d a - ~ o a 1 e x p ( j ~ a 2 ) d a ,  

we can write 

Finally, substitution of (4-45) in (4-43) yields a complex field distribution 

Now recall from Section 4.1 that the measurable physical quantity is the intensity of 
the wavefield, I(x, y) = IU(x, y)I2, which in this case is given by 

The Fresnel integrals are tabulated functions and are available in many mathemat- 
ical computer programs (e.g. see Ref. [302], p. 576).3 It is therefore a straightforward 
matter to calculate the above intensity distribution. Note that, for fixed w and A, as 
z increases the Fresnel number NF decreases and the normalization increasingly en- 
larges the true physical distance represented by a fixed distance on the x axis. Figure 
4.15 shows a series of graphs of the normalized intensity distribution along the x axis 
(y = 0) for various normalized distances from the aperture, as represented by different 
Fresnel numbers. 

31n the past it has been customary to introduce a graphical aid known as "Cornu's spiral" as a tool for 
estimating values of Fresnel integrals. Modem computer software packages that contain the Fresnel integrals 
have made this graphical aid largely obsolete, so we have omitted it here. 
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FIGURE 4.15 
Fresnel diffraction patterns at different 
distances from a square aperture. 
Distance increases as the Fresnel 
number NF shrinks. The size of the 

x original rectangular aperture is indicated 
by the shaded boxes. 

Attention is called to the fact that, as the observation plane approaches the plane of 
the aperture (NF becomes large), the Fresnel kernel approaches the product of a delta 
function and a factor elkz, and the shape of the diffraction pattern approaches the shape 
of the aperture itself. In fact, the limit of this process is the geometrical optics prediction 
of the complex field, 
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U ( X ,  Y ,  Z) = e j k z u ( ~ ,  y, 0) = e j k z  rect ( w )  - rect (:I) - 
where, to avoid confusion, we have explicitly included the z coordinate in the argument 
of the complex field U .  

Note also that, as the distance z becomes large ( N F  grows small), the diffraction 
pattern becomes much wider than the size of the aperture, and comparatively smooth 
in its structure. In this limit the diffraction pattern is approaching the Fraunhofer limit 
discussed earlier. 

4.5.2 Fresnel Diffraction by a Sinusoidal Amplitude Grating - Talbot Images 

Our final example of a diffraction calculation considers again the case of a thin sinu- 
soidal amplitude grating, but this time within the region of Fresnel diffraction rather 
than Fraunhofer diffraction. For simplicity we neglect the finite extent of the grating 
and concentrate on the effects of diffraction and propagation on the periodic structure of 
the fields transmitted by the grating. In effect, we are limiting attention to the central re- 
gion of the Fresnel diffraction pattern associated with any bounding aperture, between 
the two transition regions illustrated in Fig. 4.5. 

The geometry is illustrated in Fig. 4.16. The grating is modeled as a transmitting 
structure with amplitude transmittance 

with period L and with the grating lines running parallel to the q axis. The field and 
intensity will be calculated some distance z to the right of the grating. The structure is 
assumed to be illuminated by a unit-amplitude, normally incident plane wave, so the 
field immediately behind the grating is equal to the amplitude transmittance written 
above. 

There are several possible approaches to calculating the fields behind the grating. 
We could use the convolution form of the Fresnel diffraction equation, i.e. Eq. (4-14), 
or the Fourier transform form of Eq. (4-17). Alternatively, we could use the transfer 
function approach represented by Eq. (4-21), and reproduced here as 

FIGURE 4.16 
Geometry for diffraction calculation. 
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where we have omitted a constant term exp(jkz). In this problem, and indeed in any 
problem that deals with a purely periodic structure, the transfer function approach will 
yield the simplest calculations, and we adopt that approach here. 

The solution begins by first finding the spatial frequency spectrum of the field trans- 
mitted by the structure. To that end we Fourier transform the amplitude transmittance 
above, yielding 

Now the above transfer function has value unity at the origin, and when evaluated at 
frequencies ( fx, fu) = (k i, 0) yields 

Thus after propagation over distance z behind the grating, the Fourier transform of the 
field becomes 

Inverse transforming this spectrum we find the field at distance z from the grating to be 
given by 

which can be simplified to 

Finally, the intensity distribution is given by 

I(x, y) = I 4 [1 + 2- cos ($) cos (F) + m2 COG (?)I (4-52) 

We now consider three special cases of this result that have interesting interpreta- 
tions. 

2 n ~ ~  1. Suppose that the distance z behind the grating satisfies = 2nn or z = T ,  
where n is an integer. Then the intensity observed at this distance behind the grating 
is 

which can be interpreted as a pe$ect image of the grating. That is, it is an exact 
replica of the intensity that would be observed just behind the grating. A multiplicity 
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of such images appear behind the grating, without the help of lenses! Such images 
are called Talbot images (after the scientist who first observed them), or simply self- 
images. A good discussion of such images is found in Ref. [280]. 

(2n+ l )L2 
2. Suppose that the observation distance satisfies 3 = (2n + l ) ~ ,  or z = - A -  

Then 

This distribution is also an image of the grating, but this time with a 180' spatial 
phase shift, or equivalently with a contrast reversal. This, too, is called a Talbot 
image. 

(n- S)L2 3. Finally, consider distances satisfying 9 = (2n - I)?, or z = T .  Then 

cos (9) = 0, and 

This image has twice the frequency of the original grating and has reduced contrast. 
Such an image is called a Talbot subimage. Note that if m << 1, then the periodic 
image will effectively vanish at the subimage planes. 

Figure 4.17 shows the locations of the various types of images behind the original 
grating. 

The Talbot image phenomenon is much more general than just the particular case 
analyzed here. It can be shown to be present for any periodic structure (see Prob. 4-1 8). 

Talbot subimages 

Grating Phase- Talbot Phase- 
reversed image reversed 
Talbot Talbot 
image image 

I 
I 
I 
I 
I 
I 
I 
I 

Talbot 
image 

FIGURE 4.17 
Locations of Talbot image planes behind the grating. 
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PROBLEMS-CHAPTER 4 

4-1. Consider the quadratic-phase exponential & exp [ j $  (x2 + Y ~ ) ] .  

(a) Show that the volume (with respect to x and y) under this function is unity. 

(b) Show that the two-dimensional quadratic-phase sinusoidal part of this function con- 
tributes all of the volume and the two-dimensional quadratic-phase cosinusoidal part 
contributes none of the volume. 

(Hint: Make use of Table 2.1 .) 

4-2. Consider a spherical wave expanding about the point (0, 0, -zo) in a cartesian coordinate 
system. The wavelength of the light is A, and zo > 0. 

(a) Express the phase distribution of the spherical wave across an (x ,  y) plane located 
normal to the z axis at coordinate z = 0. 

(b) Using a paraxial approximation, express the phase distribution of the parabolic wave- 
front that approximates this spherical wavefront. 

(c) Find an exact expression for the phase by which the spherical wavefront lags or leads 
the phase of the parabolic wavefront. Does it lag or lead? 

4-3. Consider a spherical wave converging towards the point (0, 0, +zo) in a cartesian coordi- 
nate system. The wavelength of the light is A and zo > 0. 

(a) Express the phase distribution of the spherical wave across an (x, y) plane located 
normal to the z axis at coordinate z = 0. 

(b) Using a paraxial approximation, express the phase distribution of the parabolic wave- 
front that approximates this spherical wavefront. 

(c) Find an exact expression for the phase by which the spherical wavefront lags or leads 
the phase of the parabolic wavefront. Does it lag or lead? 

4-4. Fresnel propagation over a sequence of successive distances z l ,  22, . . . , Zn must be equiv- 
alent to Fresnel propagation over the single distance z = zl + 22 + ' ' . + z,. Find a simple 
proof that this is the case. 

4-5. Show that the top "transition region" shown in Fig. 4.5 is bounded by the parabola 
(w - x ) ~  = 4hz and the bottom transition region by (w + x ) ~  = 4Az, where the aperture 
is 2w wide, the origin of the coordinates is at the center of the aperture, z is the distance 
from the plane of the aperture, and x is the vertical coordinate throughout the figure. 

4-6. A spherical wave is converging toward a point (0, 0, zo) to the right of a circular aperture 
of radius R, centered on (O,O,O). The wavelength of the light is A. Consider the field 
observed at an arbitrary point (axial distance z )  to the right of the aperture. Show that 
the wavefront error made in a paraxial approximation of the illuminating spherical wave 
and the error incurred by using a quadratic phase approximation in the Fresnel diffraction 
equation partially cancel one another. Under what condition does complete cancellation 
occur? 
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4-7. Assuming unit-amplitude, normally incident plane-wave illumination: 

(a) Find the intensity distribution in the Fraunhofer diffraction pattern of the double-slit 
aperture shown in Fig. P4.7. 

(b) Sketch normalized cross sections of this pattern that appear along the x and y axes 
in the observation plane, assuming XIAz = 10 m-', YIAz = 1 m-',  and Alhz = 
312 m-', z being the observation distance and A the wavelength. 

FIGURE P4.7 

4-8. (a) Sketch the aperture described by the amplitude transmittance function 

t ~ ( s .  TI) = { [rect (f)rect(?)] 8 [i comb(i)S(f) rect - I1 (:A) 
where N is an odd integer and A > Y .  

(b) Find an expression for the intensity distribution in the Fraunhofer diffraction pattern 
of that aperture, assuming illumination by a normally incident plane wave. 

(c) What relationship between Y and A can be expected to minimize the strength of the 
even-order diffraction components while leaving the zero-order component approxi- 
mately unchanged? 

4-9. Find an expression for the intensity distribution in the Fraunhofer diffraction pattern of 
the aperture shown in Fig. P4.9. Assume unit-amplitude, normally incident plane-wave 
illumination. The aperture is square and has a square central obscuration. 

FIGURE P4.9 
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4-10. Find an expression for the intensity distribution in the Fraunhofer diffraction pattern of 
the aperture shown in Fig. P4.10. Assume unit-amplitude, normally incident plane-wave 
illumination. The aperture is circular and has a circular central obscuration. 

4-11. Two discrete spectral lines of a source are said to be "just resolved" by a diffraction grating 
if the peak of the 9th-order diffraction component due to source wavelength A l  falls ex- 
actly on the first zero of the 9th-order diffraction component due to source wavelength A2. 

The resolving power of the grating is defined as the ratio of the mean wavelength A to 
the minimum resolvable wavelength difference Ah. Show that the resolving power of the 
sinusoidal phase grating discussed in this chapter is 

where q is the diffraction order used in the measurement, 2w is the width of the square 
grating, and M is the number of spatial periods of the grating contained in the aperture. 
What phenomenon limits the use of arbitrarily high diffraction orders? 

4-12. Consider a thin periodic grating whose amplitude transmittance can be represented by a 
complex Fourier series, 

where L is the period of the grating and 

Neglect the aperture that bounds the grating, since it will not affect the quantities of interest 
here. 

(a) Show that the diffraction efficiency into the kth order of the grating is simply vk = 

lckI2- 

(b) Calculate the diffraction efficiency into the first diffraction order for a grating with 
amplitude transmittance given by 
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4-13. The amplitude transmittance function of a thin square-wave absorption grating is shown 
in Fig. P4.13. Find the following properties of this grating: 

(a) The fraction of incident light that is absorbed by the grating. 

(b) The fraction of incident light that is transmitted by the grating. 

(c) The fraction of light that is transmitted into a single first order. 

k-~-l FIGURE P4.13 

4-14. A thin square-wave phase grating has a thickness that varies periodically (period L) such 
that the phase of the transmitted light jumps between 0 radians and 4 radians. 

(a) Find the diffraction efficiency of this grating for the first diffraction orders. 

(b) What value of 4 yields the maximum diffraction efficiency, and what is the value of 
that maximum efficiency? 

4-15. A "sawtooth" phase grating is periodic with period Land has a distribution of phase within 
one period from 0 to L given by 

(a) Find the diffraction efficiencies of all of the orders for this grating. 

(b) Suppose that the phase profile of the grating is of the more general form 

Find a general expression for the diffraction efficiency into all the orders of this new 
grating. 

4-16. An aperture Z in an opaque screen is illuminated by a spherical wave converging towards 
a point P located in a parallel plane a distance z behind the screen, as shown in Fig. P4.16. 

(a) Find a quadratic-phase approximation to the illuminating wavefront in the plane of 
the aperture, assuming that the coordinates of P in the (x, y) plane are (0, Y). 

(b) Assuming Fresnel diffraction from the plane of the aperture to the plane containing 
P, show that in the above case the observed intensity distribution is the Fraunhofer 
diffraction pattern of the aperture, centered on the point P. 
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FIGURE P4.16 

4-17. Find the intensity distribution on the aperture axis in the Fresnel diffraction patterns 
of apertures with the following transmittance functions (assume normally incident, unit- 
amplitude, plane-wave illumination): 

(a) tA(6, q) = circ ,/-. 

(b) la({, 7 )  = { 1 a s  J m < b  
0 otherwise 

wherea < I ,  b < 1 anda  < b. 

4-18. Consider a one-dimensional periodic object with an amplitude transmittance having an 
arbitrary periodic profile. Neglect the size of any bounding aperture, ignore the evanes- 
cent wave phenomenon, and assume that paraxial conditions hold. Show that at certain 
distances behind this object, perfect images of the amplitude transmittance are found. At 
what distances do these "self-images" appear? 

4-19. A certain two-dimensional non-periodic object has the property that all of the frequency 
components of its amplitude transmittance fall on circles in the frequency plane, the radii 
of the circles being given by 

where a is a constant. Assume uniform plane-wave illumination, neglect the finite size 
of the object and the evanescent wave phenomenon, and assume that paraxial conditions 
hold. Show that perfect images of the object form at periodic distances behind the object. 
Find the locations of these images. 

4-20. A certain circularly symmetric object, infinite in extent, has amplitude transmittance 

where Jo is a Bessel function of the first kind, zero order, and r is radius in the two- 
dimensional plane. This object is illuminated by a normally incident, unit-amplitude plane 
wave. Paraxial conditions are assumed to hold. At what distances behind this object will 
we find a field distribution that is of the same form as that of the object, up to possible 
complex constants? (Hint: The Fourier transform of the circularly symmetric function 
Jo(2.rrr) is the circularly symmetric spectrum & S(p - I).) 



CHAPTER 4 Fresnel and Fraunhofer Diffraction 95 

4-21. An expanding cylindrical wave falls on the "input" plane of an optical system. A paraxial 
approximation to that wave can be written in the form 

where A is the optical wavelength, while zo and yo are given constants. The optical system 
can be represented by a paraxial ABCD matrix (see Appendix B, Section B.3) that holds 
between the input and output planes of the system. Find a paraxial expression for the 
complex amplitude of the field across the "output" plane of the optical system, expressing 
the results in terms of arbitrary elements of the ray matrix. Assume that the refractive index 
in the input and output planes is unity. You may treat this problem as one-dimensional. 



C H A P T E R  5 

Wave-Optics Analysis of Coherent 
Optical Systems 

The most important components of optical imaging and data processing systems are 
lenses. While a thorough discussion of geometrical optics and the properties of lenses 
would be helpful, such a treatment would require a rather lengthy detour. To provide the 
most rudimentary background, Appendix B presents a short description of the matrix 
theory of paraxial geometric optics, defining certain quantities that will be important in 
our purely "wave-optics" approach in this chapter. The reader will be referred to appro- 
priate material in the appendix when needed. However, the philosophy of our approach 
is to make minimum use of geometrical optics, and instead to develop purely wave-optic 
analyses of the systems of interest. The results of this approach are entirely consistent 
with the results of geometrical optics, with the added advantage that diffraction effects 
are entirely accounted for in the wave-optics approach, but not in the geometrical-optics 
approach. Our discussions will be limited to the case of monochromatic illumination, 
with generalization to nonmonochromatic light being deferred to Chapter 6. 

5.1 
A THIN LENS AS A PHASE TRANSFORMATION 

A lens is composed of an optically dense material, usually glass with a refractive index 
of approximately 1.5, in which the propagation velocity of an optical disturbance is 
less than the velocity in air. With reference to Appendix B, a lens is said to be a thin 
lens if a ray entering at coordinates (x, y) on one face exits at approximately the same 
coordinates on the opposite face, i.e. if there is negligible translation of a ray within the 
lens. Thus a thin lens simply delays an incident wavefront by an amount proportional 
to the thickness of the lens at each point. 

Referring to Fig. 5.1, let the maximum thickness of the lens (on its axis) be Ao, and 
let the thickness at coordinates (x, y) be A(x, y). Then the total phase delay suffered by 
the wave at coordinates (x, y) in passing through the lens may be written 
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d FIGURE 5.1 
I I The thickness function. (a) Front view, 

(b) (b) side view 

where n is the refractive index of the lens material, knA(x, y) is the phase delay intro- 
duced by the lens, and k[Ao - A(x, y)] is the phase delay introduced by the remaining 
region of free space between the two planes. Equivalently the lens may be represented 
by a multiplicative phase transformation of the form 

tl(x, y) = exp[jkAol exp[ jk(n - 1 )A(x, y)l. (5-1) 

The complex field U;(x, y) across a plane immediately behind the lens is then related 
to the complex field Ul(x, y) incident on a plane immediately in front of the lens by 

u;(x, Y) = t l h  Y) Ul(x7 Y). (5-2) 

The problem remains to find the mathematical form of the thickness function h(x, y) in 
order that the effects of the lens may be understood. 

5.1.1 The Thickness Function 

In order to specify the forms of the phase transformations introduced by a variety of 
different types of lenses, we first adopt a sign convention: as rays travel from left to 
right, each convex surface encountered is taken to have a positive radius of curvature, 
while each concave surface is taken to have a negative radius of curvature. Thus in 
Fig. 5.1 (b) the radius of curvature of the left-hand surface of the lens is a positive number 
R 1 ,  while the radius of curvature of the right-hand surface is a negative number R2. 

To find the thickness A(x, y), we split the lens into three parts, as shown in Fig. 5.2, 
and write the total thickness function as the sum of three individual thickness functions, 

Referring to the geometries shown in that figure, the thickness function Al  (x, y) is given 
by 
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FIGURE 5.2 
Calculation of the thickness function. 
(a) Geometry for A, ,  (b) geometry for A2, 
and (c) geometry for A3. 

The second component of the thickness function comes from a region of glass of con- 
stant thickness AO2. The third component is given by 

where we have factored the positive number - R2 out of the square root. Combining the 
three expressions for thickness, the total thickness is seen to be 

where A. = Aol + AO2 + 803. 

5.1.2 The Paraxial Approximation 

The expression for the thickness function can be substantially simplified if attention is 
restricted to portions of the wavefront that lie near the lens axis, or equivalently, if only 
paraxial rays are considered. Thus we consider only values of x and y sufficiently small 
to allow the following approximations to be accurate: 
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The resulting phase transformation will, of course, represent the lens accurately over 
only a limited area, but this limitation is no more restrictive than the usual paraxial 
approximation of geometrical optics. Note that the relations (5-7) amount to approx- 
imations of the spherical surfaces of the lens by parabolic surfaces. With the help of 
these approximations, the thickness function becomes 

5.1.3 The Phase Transformation and Its Physical Meaning 

Substitution of Eq. (5-8) into Eq. (5-1) yields the following approximation to the lens 
transformation: 

x2 + y2 
tl(x, y) = exp[jknAo] exp 

The physical properties of the lens (that is, n, R I ,  and R2) can be combined in a single 
number f called the focal length, which is defined by 

Neglecting the constant phase factor, which we shall drop hereafter, the phase transfor- 
mation may now be rewritten 

This equation will serve as our basic representation of the effects of a thin lens on an 
incident disturbance. It neglects the finite extent of the lens, which we will account for 
later. 

Note that while our derivation of this expression assumed the specific lens shape 
shown in Fig. 5.1, the sign convention adopted allows the result to be applied to other 
types of lenses. Figure 5.3 illustrates several different types of lenses with various com- 
binations of convex and concave surfaces. In Prob. 5-1, the reader is asked to verify 
that the sign convention adopted implies that the focal length f of a double-convex, 
plano-convex, or positive meniscus lens is positive, while that of a double-concave, 
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Double-convex Plano-convex Positive 
meniscus 

Double-concave Plano-concave Negative FIGURE 5.3 
meniscus Various types of lenses. 

plano-concave, or negative meniscus lens is negative. Thus Eq. (5-10) can be used to 
represent any of the above lenses, provided the correct sign of the focal length is used. 

The physical meaning of the lens transformation can best be understood by consid- 
ering the effect of the lens on a normally incident, unit-amplitude plane wave. The field 
distribution Ul in front of the lens is unity, and Eqs. (5-1) and (5-10) yield the following 
expression for Uj' behind the lens: 

Ul(x, y) = exp 

We may interpret this expression as a quadratic approximation to a spherical wave. If 
the focal length is positive, then the spherical wave is converging towards a point on 
the lens axis a distance f behind the lens. Iff is negative, then the spherical wave is 
diverging about a point on the lens axis a distance f in front of the lens. The two cases 
are illustrated in Fig. 5.4. Thus a lens with a positive focal length is called a positive 
or converging lens, while a lens with a negative focal length is a negative or diverging 
lens. 

Our conclusion that a lens composed of spherical surfaces maps an incident plane 
wave into a spherical wave is very much dependent on the paraxial approximation. 
Under nonparaxial conditions, the emerging wavefront will exhibit departures from 
perfect sphericity (called aberrations-see Section 6.4), even if the surfaces of the 
lens are perfectly spherical. In fact, lenses are often "corrected for aberrations by 
making their surfaces aspherical in order to improve the sphericity of the emerging 
wavefront. 

We should emphasize, however, that the results which will be derived using the 
multiplicative phase transformation (5- 10) are actually more general than the analysis 
leading up to that equation might imply. A thorough geometrical-optics analysis of most 
well-corrected lens systems shows that they behave essentially in the way predicted by 
our more restrictive theory. 
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FIGURE 5.4 
Effects of a converging lens and a diverging 
lens on a normally incident plane wave. 

5.2 
FOURIER TRANSFORMING PROPERTIES OF LENSES 

One of the most remarkable and useful properties of a converging lens is its inherent 
ability to perform two-dimensional Fourier transforms. This complicated analog oper- 
ation can be performed with extreme simplicity in a coherent optical system, taking 
advantage of the basic laws of propagation and diffraction of light. 

In the material that follows, several different configurations for performing the 
transform operation are described. In all cases the illumination is assumed to be 
monochromatic. Under this condition the systems studied are "coherent" systems, 
which means that they are linear in complex amplitude, and the distribution of light 
amplitude across a particular plane behind the positive lens is of interest. In some cases 
this is the back focal plane of the lens, which by definition is a plane normal to the lens 
axis situated a distance f behind the lens (in the direction of propagation of light). The 
information to be Fourier-transformed is introduced into the optical system by a device 
with an amplitude transmittance that is proportional to the input function of interest. In 
some cases this device may consist of a photographic transparency, while in others it 
may be a nonphotographic spatial light modulatoc capable of controlling the amplitude 
transmittance in response to externally supplied electrical or optical information. Such 
input devices will be discussed in more detail in Chapter 7. We will refer to them 
as input "transparencies", even though in some cases they may operate by reflection 
of light rather than transmission of light. We will also often refer to the input as the 
"object". 

Figure 5.5 shows three arrangements that will be considered here. In all cases 
shown, the illumination is a collimated plane wave which is incident either on the input 
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lnput (a) 

- - - - - - - 

FIGURE 5.5 
-- f Geometries for performing the Fourier transform operation 

(c) with a positive lens. 

transparency or on the lens. In case (a), the input transparency is placed directly against 
the lens itself. In case (b), the input is placed a distance d in front of the lens. In case 
(c), the input is placed behind the lens at distance d from the focal plane. An additional, 
more general case, will be studied in Section 5.4. 

For alternative discussions of the Fourier transforming properties of positive len- 
ses, the reader may wish to consult Refs. [243], [73], or [235]. 

5.2.1 Input Placed Against the Lens 

Let a planar input transparency with amplitude transmittance tA(x, y) be placed imme- 
diately in front of a converging lens of focal length f ,  as shown in Fig. 5.5(a). The input 
is assumed to be uniformly illuminated by a normally incident, monochromatic plane 
wave of amplitude A, in which case the disturbance incident on the lens is 

The finite extent of the lens can be accounted for by associating with the lens a pupil 
function P(x, y) defined by 

1 inside the lens aperture 
0 otherwise. 

Thus the amplitude distribution behind the lens becomes, using (5-lo), 

(r;(x. y) = UI(X. y) P(X, y) exp (5- 12) 

To find the distribution Uf(u, v )  in the back focal plane of the lens, the Fresnel 
diffraction formula, Eq. (4-17), is applied. Thus, putting z = f ,  
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exp [ j A (u2 + v2)] 
Uf@, v) = 

j A f 

x 11 u;(x, y) exp (xu + yo) dx dy, I 
where a constant phase factor has been dropped. Substituting (5-12) in (5-13), the 
quadratic phase factors within the integrand are seen to exactly cancel, leaving 

X 1 ui(x, y) P(x, y) exp - j-(xu + yo) dx dy. [ :; I 
Thus the field distribution Uf is proportional to the two-dimensional Fourier transform 
of that portion of the incident field subtended by the lens aperture. When the physical 
extent of the input is smaller than the lens aperture, the factor P(x, y) may be neglected, 
yielding 

exp [ j s ( u 2  + v2)] 
Uf(U, v) = 

j A f 
+ yu) dx dy. (5- 15) I 

Thus we see that the complex amplitude distribution of the field in the focal plane of 
the lens is the Fraunhofer diflraction pattern of the field incident on the lens, even 
though the distance to the observation plane is equal to the focal length of the lens, 
rather than satisfying the usual distance criterion for observing Fraunhofer diffraction. 
Note that the amplitude and phase of the light at coordinates (u, v) in the focal plane are 
determined by the amplitude and phase of the input Fourier component at frequencies 
(fx = ulAf, fy = vlAf 1. 

The Fourier transform relation between the input amplitude transmittance and the 
focal-plane amplitude distribution is not a complete one, due to the presence of the 
quadratic phase factor that precedes the integral. While the phase distribution across 
the focal plane is not the same as the phase distribution across the spectrum of the 
input, the difference between the two is a simple phase curvature. 

In most cases it is the intensity across the focal plane that is of real interest. This 
phase term is important if the ultimate goal is to calculate another field distribution 
after further propagation and possibly passage through additional lenses, in which case 
the complete complex field is needed. In most cases, however, the intensity distribution 
in the focal plane will be measured, and the phase distribution is of no consequence. 
Measurement of the intensity distribution yields knowledge of the power spectrum (or 
more accurately, the energy spectrum) of the input. Thus 
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5.2.2 Input Placed in Front of the Lens 

Consider next the more general geometry of Fig. 5.5(b). The input, located a distance 
d in front of the lens, is illuminated by a normally incident plane wave of amplitude 
A. The amplitude transmittance of the input is again represented by t ~ .  In addition, let 
Fo( fx, fY)  represent the Fourier spectrum of the light transmitted by the input trans- 
parency, and Fl( fx, f y )  the Fourier spectrum of the light incident on the lens; that is, 

Assuming that the Fresnel or paraxial approximation is valid for propagation over dis- 
tance d, then F,  and Fl are related by means of Eq. (4-21), giving 

where we have dropped a constant phase delay. 
For the moment, the finite extent of the lens aperture will be neglected. Thus, letting 

P = 1, Eq. (5-14) can be rewritten 

Substituting (5-17) into (5-18), we have 

Thus the amplitude and phase of the light at coordinates (u, v )  are again related to 
the amplitude and phase of the input spectrum at frequencies (ulh f ,  vlA f ). Note that a 
quadratic phase factor again precedes the transform integral, but that it vanishes for the 
very special case d = f .  Evidently when the input is placed in the front focal plane of 
the lens, the phase curvature disappears, leaving an exact Fourier transform relation! 
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Input plane Lens Focal plane . . 

[-(d/f)ul -(d/f)v 

Object 3s 
f- 

FIGURE 5.6 
Vignetting of the input. The shaded area in the input plane represents 
the portion of the input transparency that contributes to the Fourier 
transform at (ul, v l ) .  

To this point we have entirely neglected the finite extent of the lens aperture. To 
include the effects of this aperture, we use a geometrical optics approximation. Such an 
approximation is accurate if the distance d is sufficiently small to place the input deep 
within the region of Fresnel diffraction of the lens aperture, if the light were propagating 
backwards from the focal plane to the plane of the input transparency. This condition is 
well satisfied in the vast majority of problems of interest. With reference to Fig. 5.6, the 
light amplitude at coordinates (ul,  v l )  is a summation of all the rays traveling with di- 
rection cosines (6 = ull f ,  77 = vll  f ). However, only a finite set of these rays is passed 
by the lens aperture. Thus the finite extent of the aperture may be accounted for by geo- 
metrically projecting that aperture back to the input plane, the projection being centered 
on a line joining the coordinates (u l ,  v l )  with the center of the lens (see Fig. 5.6). The 
projected lens aperture limits the effective extent of the input, but the particular por- 
tion of t~ that contributes to the field U depends on the particular coordinates (u vl ) 
being considered in the back focal plane. As implied by Fig. 5.6, the value of Uf at 
(u, v )  can be found from the Fourier transform of that portion of the input subtended by 
the projected pupil function P, centered at coordinates [& = -(dl f )u, q = -(dl f )v]. 
Expressing this fact mathematically, 

The limitation of the effective input by the finite lens aperture is known as a vi- 
gnetting effect. Note that for a simple Fourier transforming system, vignetting of the 
input space is minimized when the input is placed close to the lens and when the lens 
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aperture is much larger than the input transparency. In practice, when the Fourier trans- 
form of the object is of prime interest, it is often preferred to place the input directly 
against the lens in order to minimize vignetting, although in analysis it is generally 
convenient to place the input in the front focal plane, where the transform relation is 
unencumbered with quadratic phase factors. 

5.2.3 Input Placed Behind the Lens 

Consider next the case of an input that is placed behind the lens, as illustrated in 
Fig. 5.5(c). The input again has amplitude transmittance t ~ ,  but it is now located a 
distance d in front of the rear focal plane of the lens. Let the lens be illuminated by a 
normally incident plane wave of uniform amplitude A. Then incident on the input is 
a spherical wave converging towards the back focal point of the lens. 

In the geometrical optics approximation, the amplitude of the spherical wave im- 
pinging on the object is A f ld ,  due to the fact that the linear dimension of the circular 
converging bundle of rays has been reduced by the factor dlf and energy has been 
conserved. The particular region of the input that is illuminated is determined by the 
intersection of the converging cone of rays with the input plane. If the lens is circular 
and of diameter 1, then a circular region of diameter Id1 f is illuminated on the input. 
The finite extent of the illuminating spot can be represented mathematically by pro- 
jecting the pupil function of the lens down the cone of rays to the intersection with 
the input plane, yielding an effective illuminated region in that plane described by the 
pupil function P[ t (  f Id), q (  f Id)]. Note that the input amplitude transmittance t~ will 
also have a finite aperture associated with it; the effective aperture in the input space 
is therefore determined by the intersection of the true input aperture with the projected 
pupil function of the lens. If the finite input transparency is fully illuminated by the 
converging light, then the projected pupil can be ignored. 

Using a paraxial approximation to the spherical wave that illuminates the input, 
the amplitude of the wave transmitted by the input may be written 

Assuming Fresnel diffraction from the input plane to the focal plane, Eq. (4- 17) can be 
applied to the field transmitted by the input. If this is done it is found that the quadratic 
phase exponential in (5,q)  associated with the illuminating wave exactly cancels the 
similar quadratic phase exponential in the integrand of the Fresnel diffraction integral, 
with the result 

A exp[ j&(u2 + u2)] f 
Uf ( 4  4 = - 

j h d  d 
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Thus, up to a quadratic phase factor, the focal-plane amplitude distribution is the Fourier 
transform of that portion of the input subtended by the projected lens aperture. 

The result presented in Eq. (5-22) is essentially the same result obtained when the 
input was placed directly against the lens itself. However, an extra flexibility has been 
obtained in the present configuration; namely, the scale of the Fourier transform is under 
the control of the experimenter. By increasing d, the distance from the focal plane, the 
size of the transform is made larger, at least until the transparency is directly against 
the lens (i.e. d = f ). By decreasing d, the scale of the transform is made smaller. This 
flexibility can be of utility in spatial filtering applications (see Chapter 8), where some 
potential adjustment of the size of the transform can be of considerable help. 

5.2.4 Example of an Optical Fourier Transform 

We illustrate with a typical example the type of two-dimensional Fourier analysis that 
can be achieved optically with great ease. Figure 5.7 shows a transparent character 3, 
which is placed in front of a positive lens and illuminated by a plane wave, yielding in 
the back focal plane the intensity distribution shown in the right-hand part of the figure. 
Note in particular the high-frequency components introduced by the straight edges in 
the input. 

FIGURE 5.7 
Optically obtained Fourier transform of the character 3. 
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5.3 
IMAGE FORMATION: MONOCHROMATIC ILLUMINATION 

Certainly the most familiar property of lenses is their ability to form images. If an object 
is placed in front of a lens and illuminated, then under appropriate conditions there will 
appear across a second plane a distribution of light intensity that closely resembles the 
object. This distribution of intensity is called an image of the object. The image may be 
real in the sense that an actual distribution of intensity appears across a plane behind the 
lens, or it may be virtual in the sense that the light behind the lens appears to originate 
from an intensity distribution across a new plane in front of the lens. 

For the present we consider image formation in only a limited context. First we 
restrict attention to a positive, aberration-free thin lens that forms a real image. Second, 
we consider only monochromatic illumination, a restriction implying that the imaging 
system is linear in complex field amplitude (see Prob. 6-18). Both of these restrictions 
will be removed in Chapter 6, where the problem of image formation will be treated in 
a much more general fashion. 

5.3.1 The Impulse Response of a Positive Lens 

Referring to the geometry of Fig. 5.8, suppose that a planar object is placed a distance 
zl in front of a positive lens and is illuminated by monochromatic light. We represent 
the complex field immediately behind the object by U,(t, q). At a distance z2 behind 
the lens there appears a field distribution that we represent by Ui(u, v). Our purpose is 
to find the conditions under which the field distribution Ui can reasonably be said to be 
an "image" of the object distribution U,. 

In view of the linearity of the wave propagation phenomenon, we can in all cases 
express the field Ui by the following superposition integral: 

where h(u, v;  6, q )  is the field amplitude produced at coordinates (u, v) by a unit- 
amplitude point source applied at object coordinates ( 5 , ~ ) .  Thus the properties of the 
imaging system will be completely described if the impulse response h can be specified. 

If the optical system is to produce high-quality images, then Ui must be as similar as 
possible to Uo. Equivalently, the impulse response should closely approximate a Dirac 
delta function, 

Ui 

FIGURE 5.8 
t - z l - +  - 22- Geometry for image formation. 
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where K is a complex constant, M represents the system magnification, and the plus 
and minus signs are included to allow for the absence or presence of image inversion, 
respectively. We shall therefore specify as the "image plane" that plane where (5-24) 
is most closely approximated. 

To find the impulse response h, let the object be a S function (point source) at 
coordinates (6, q). Then incident on the lens will appear a spherical wave diverging 
from the point (6, q). The paraxial approximation to that wave is written 

After passage through the lens (focal length f), the field distribution becomes 

Finally, using the Fresnel diffraction equation (4-14) to account for propagation over 
distance z2, we have 

h(u, u; 6.7) = 1 u;(x, y) exp jG [(u - x)' + (u - Y)'I dx (5-27) 
{ k  I 

where constant phase factors have been dropped. Combining (5-25), (5-26), and (5-27), 
and again neglecting a pure phase factor, yields the formidable result 

Equations (5-23) and (5-28) now provide a formal solution specifying the rela- 
tionship that exists between the object U, and the image Ui. However, it is difficult 
to determine the conditions under which Ui can reasonably be called an image of U, 
unless further simplifications are adopted. 

5.3.2 Eliminating Quadratic Phase Factors: The Lens Law 

The most troublesome terms of the impulse response above are those containing 
quadratic phase factors. Note that two of these terms are independent of the lens coor- 
dinates, namely 
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while one term depends on the lens coordinates (the variables of integration), namely 

We now consider a succession of approximations and restrictions that eliminate 
these factors. Beginning with the term involving the variables of integration (x, y) first, 
note that the presence of a quadratic phase factor in what otherwise would be a Fourier 
transform relationship will generally have the effect of broadening the impulse re- 
sponse. For this reason we choose the distance 22 to the image plane so that this term 
will identically vanish. This will be true if 

Note that this relationship is precisely the classical lens law of geometrical optics, and 
must be satisfied for imaging to hold. 

Consider next the quadratic phase factor that depends only on image coordinates 
(u, v). This term can be ignored under either of two conditions: 

1. It is the intensity distribution in the image plane that is of interest, in which case the 
phase distribution associated with the image is of no consequence. 

2. The image field distribution is of interest, but the image is measured on a spherical 
surface, centered at the point where the optical axis pierces the thin lens, and of 
radius 22. 

Since it is usually the intensity of the image that is of interest, we will drop this quadratic 
phase factor in the future. 

Finally, consider the quadratic phase factor in the object coordinates (5,~). Note 
that this term depends on the variables over which the convolution operation (5-23) is 
carried out, and it has the potential to affect the result of that integration significantly. 
There are three different conditions under which this term can be neglected: 

1 .  The object exists on the surface of a sphere of radius zl centered on the point where 
the optical axis pierces the thin lens. 

2. The object is illuminated by a spherical wave that is converging towards the point 
where the optical axis pierces the lens. 

3. The phase of the quadratic phase factor changes by an amount that is only a small 
fraction of a radian within the region of the object that contributes significantly to 
the field at the particular image point (u, v). 

The first of these conditions rarely occurs in practice. The second can easily be made 
to occur by proper choice of the illumination, as illustrated in Fig. 5.9. In this case the 
spherical wave illumination results in the Fourier transform of the object appearing in 
the pupil plane of the lens. The quadratic phase factor of concern is exactly canceled 
by this converging spherical wave. 
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FIGURE 5.9 
Converging illumination of the object. 

The third possibility for eliminating the effect of the quadratic phase factor in object 
coordinates requires a more lengthy discussion. In an imaging geometry, the response 
of the system to an impulse at particular object coordinates should extend over only a 
small region of image space surrounding the exact image point corresponding to that 
particular object point. If this were not the case, the system would not be producing an 
accurate image of the object, or stated another way, it would have an unacceptably large 
image blur. By the same token, if we view the impulse response for a fixed image point 
as specifying the weighting function in object space that contributes to that image point, 
then only a small region on the object should contribute to any given image point. Figure 
5.10 illustrates this point-of-view. The gray patch on the left in this figure represents 
the area from which significant contributions arise for the particular image point on the 
right. If over this region the factor &( f2  + q2)  changes by an amount that is only a 
small fraction of a radian, then the quadratic phase factor in the object plane can be 
replaced by a single phase that depends on which image point (u, v )  is of interest but 
does not depend on the object coordinates (5,~). The replacement can be stated more 
precisely as 

where M = -z21z1 is the magnification of the system, to be defined shortly. This new 
quadratic phase factor in the image space can now be dropped provided that image 
intensity is the quantity of interest. 

Tichenor and Goodman [282] have examined this argument in detail and have 
found that the approximation stated above is valid provided the size of object is no 
greater than about 114 the size of the lens aperture. For further consideration of this 
problem, see Prob. 5-12. 

The end result of these arguments is a simplified expression for the impulse re- 
sponse of the imaging system, 

FIGURE 5.10 
Region of object space contributing 
to the field at a particular image 
point. 
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Defining the magnijication of the system by 

the minus sign being included to remove the effects of image inversion, we find a final 
simplified form for the impulse response, 

Thus, if the lens law is satisfied, the impulse response is seen to be given (up to 
an extra scaling factor llAzl) by the Fraunhofer diffraction pattern of the lens aperture, 
centered on image coordinates (u = M5, v = Mq). The occurrence of a Fraunhofer 
diffraction formula should not be entirely surprising. By choosing z2 to satisfy the lens 
law, we have chosen to examine the plane towards which the spherical wave leaving the 
lens is converging. From the results of Prob. 4-16, we should expect the distribution of 
light about this point of convergence to be precisely the Fraunhofer diffraction pattern 
of the lens aperture that limits the extent of the spherical wave. 

5.3.3 The Relation Between Object and Image 

Consider first the nature of the image predicted by geometrical optics. If the imaging 
system is perfect, then the image is simply an inverted and magnified (or demagnified) 
replication of the object. Thus according to geometrical optics, the image and object 
would be related by 

Indeed we can show that our wave optics solution reduces to this geometrical optics 
solution by using the common artifice of allowing the wavelength A to approach zero, 
with the result that (see Prob. 5- 15) 

Substitution of this result in the general superposition equation (5-23) yields (5-34). 



CHAPTER 5 Wave-Optics Analysis of Coherent Optical Systems 113 

The predictions of geometrical optics do not include the effects of diffraction. A 
more complete understanding of the relation between object and image can be obtained 
only if such effects are included. Towards this end, we return to the expression (5-33) 
for the impulse response of the imaging system. As it currently stands, the impulse re- 
sponse is that of a linear space-variant system, so the object and image are related by 
a superposition integral but not by a convolution integral. This space-variant attribute 
is a direct result of the magnification and image inversion that occur in the imaging 
operation. To reduce the object-image relation to a convolution equation, we must nor- 
malize the object coordinates to remove inversion and magnification. Let the following 
normalized object-plane variables be introduced: 

in which case the impulse response of (5-33) reduces to 

which depends only on the differences of coordinates (u - [, v - i j ) .  
A final set of coordinate normalizations simplifies the results even further. Let 

Then the object-image relationship becomes 

where 

is the geometrical-optics prediction of the image, and 

is the point-spread function introduced by diffraction. 
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There are two main conclusions from the analysis and discussion above: 

1. The ideal image produced by a diffraction-limited optical system (i.e. a system that 
is free from aberrations) is a scaled and inverted version of the object. 

2. The effect of diffraction is to convolve that ideal image with the Fraunhofer diffrac- 
tion pattern of the lens pupil. 

The smoothing operation associated with the convolution can strongly attenuate the fine 
details of the object, with a corresponding loss of image fidelity resulting. Similar ef- 
fects occur in electrical systems when an input with high-frequency components passes 
through a filter with a limited frequency response. In the case of electrical systems, the 
loss of signal fidelity is most conveniently described in the frequency domain. The great 
utility of frequency-analysis concepts in the electrical case suggests that similar con- 
cepts might be usefully employed in the study of imaging systems. The application 
of filtering concepts to imaging systems is a subject of great importance and will be 
considered in detail in Chapter 6.  

5.4 
ANALYSIS OF COMPLEX COHERENT OPTICAL SYSTEMS 

In the previous sections we have analyzed several different optical systems. These sys- 
tems involved at most a single thin lens and at most propagation over two regions of 
free space. More complex optical systems can be analyzed by using the same methods 
applied above. However, the number of integrations grows as the number of free-space 
regions grows, and the complexity of the calculations increases as the number of lenses 
included grows. For these reasons some readers may appreciate the introduction of a 
certain "operator" notation that is useful in analyzing complex systems. Not all readers 
will find this approach attractive, and for those the methods already used can simply be 
extended to the more complex systems. 

5.4.1 An Operator Notation 

Several different operator methods for analyzing coherent optical systems have been 
introduced in the literature. The first was that of VanderLugt [292] who exploited certain 
properties of quadratic-phase exponentials to simplify their manipulation. Later papers 
by Butterweck [46], and Nazarathy and Shamir [219] used what can be called a true 
operator notation to simplify calculations. We shall follow the approach of Nazarathy 
and Shamir here. 

There are several simplifying assumptions that will be used in the analysis. As 
has been the case in previous analyses, we restrict attention to monochromatic light, 
an assumption that will be seen in the next chapter to limit consideration to what we 
call "coherent" systems. In addition, only paraxial conditions will be considered, a 
limitation also inherent in the usual geometrical optics treatment using ray matrices, as 
discussed in Appendix B. Finally, for simplicity we will treat the problems in this sec- 
tion as one-dimensional problems rather than two-dimensional problems. For problems 
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with apertures that are separable in rectangular coordinates, this is not a significant 
restriction, since the separability of quadratic-phase exponentials allows each of two 
orthogonal directions to be considered independently. However, if the optical system 
contains apertures that are not separable in rectangular coordinates, a two-dimensional 
extension of the treatment is necessary. This extension is not difficult to make, but we 
will not present it here. 

The operator approach is based on several fundamental operations, each of which 
is represented by an "operator". Most operators have parameters that depend on the 
geometry of the optical system being analyzed. Parameters are included within square 
brackets [ I  following the operator. The operators act on the quantities contained in curly 
brackets { }. 

The basic operators of use to us here are as follows: 

Multiplication by a quadratic-phase exponential. The definition of the operator 
Q is 

where k = 2 r l h  and c is an inverse length. The inverse of &[c] is Q[- c].  

Scaling by a constant. This operator is represented by the symbol V and is defined 
by 

where b is dimensionless. The inverse of V[b]  is V[ l lb ] .  

Fourier transformation. This operator is represented by the usual symbol F and 
is defined by 

m 

n U ( x ) }  = U ( x )  e-j2"fx dx. 

The inverse Fourier transform operator is defined in the usual way, i.e. with a change 
of the sign of the exponent. 

Free-space propagation. Free-space propagation is represented by the operator 
R ,  which is defined by the equation 

where d is the distance of propagation and x;! is the coordinate that applies after prop- 
agation. The inverse of R [ d ]  is R[-d l .  

These four operators are sufficient for analyzing most optical systems. Their utility 
arises from some simple properties and certain relations between them. These properties 
and relations allow complicated chains of operators to be reduced to simple results, as 
will shortly be illustrated. Some simple and useful properties are listed below: 
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Relations (5-45) and (5-48) are quite obvious and simple to prove. Relation (5-46) is 
a statement of the similarity theorem of Fourier analysis, while relation (5-47) follows 
from the Fourier inversion theorem, slightly modified to account for the fact that both 
transforms are in the forward direction. Relation (5-49) is a statement that free-space 
propagation over distance d can be analyzed either by a Fresnel diffraction equation 
or by a sequence of Fourier transformation, multiplication by the transfer function of 
free space, and inverse Fourier transformation. The left-hand and right-hand sides of 
relation (5-50) are shown to be equal simply by writing out their definitions. 

A slightly more sophisticated relation is 

which is a statement that the Fresnel diffraction operation is equivalent to premulti- 
plication by a quadratic-phase exponential, a properly scaled Fourier transform, and 
postmultiplication by a quadratic-phase exponential. Another relation of similar com- 
plexity is 

which is a statement that the fields across the front and back focal planes of a posi- 
tive lens are related by a properly scaled Fourier transform, with no quadratic-phase 
exponential multiplier, as proved earlier in this chapter. 

Many useful relations between operators are summarized in Table 5.1. With these 
relations to draw on, we are now ready to apply the operator notation to some simple 
optical systems. 

5.4.2 Application of the Operator Approach to Some Optical Systems 

We illustrate the use of the operator notation by analyzing two optical geometries that 
have not yet been treated. The first is fairly simple, consisting of two spherical lenses, 
each with the same focal length f ,  with a separation off between them, as shown in 
Fig. 5.1 1. The goal is to determine the relationship between the complex field across a 
plane S1 just to the left of lens L , ,  and the complex field across a plane S2 just to the right 
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TABLE 5.1 

Relations between operators. 

of the lens L2. We represent that relationship by a system operator S. The first operation 
on the wave takes place as it passes through L 1 ,  and this operation is represented by the 
operator Q[ - j]. The second operation is propagation through space over distance f, 
represented by the operator R[ f]. The third operation is passage through the lens L2, 
which is represented by the operator Q[ - j]. Thus the entire sequence of operations 
is represented by the operator chain 

This set of operators can be simplified by means of Eq. (5-5 1) applied to R[ f 1, as now 
demonstrated, 

'lK! Ll f L2 (Is2 FIGURE 5.11 - First problem analyzed. 
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where the relations 

have been used to simplify the equation. Thus we see that this system of two lenses 
separated by their common focal length f performs a scaled optical Fourier transform, 
without quadratic-phase exponentials in the result, similar to the focal-plane-to-focal- 
plane relationship derived earlier. Stating the result explicitly in terms of the input and 
output fields, 

where U, is the field just to the left of L I  and Uf is the field just to the right of L2. 
The second example we would classify as a complex optical system. Even though 

its appearance may be simple, the analysis required to find its properties is relatively 
complex. In addition, the information gleaned from its solution is quite revealing. As 
shown in Fig. 5.12, the system contains only a single lens. However, the object or the 
input to the system, located distance d to the left of the lens, is illuminated by a diverging 
spherical wave, emanating from a point that is distance zl > d to the left of the lens. 
The output of interest here will be in the plane where the point source is imaged, at 
distance 22 to the right of the lens, where zl, zz, and the focal length f of the lens satisfy 
the usual lens law, z;  l + z ,  - f = 0. 

The sequence of operators describing this system is 

where the & operator furthest to the right represents the fact that the input is illuminated 
by a diverging spherical wave, the R operator second from the right represents propa- 
gation over distance d to the lens, the & operator next to the left represents the effect of 
the positive lens, and the operator R furthest to the left represents the final propagation 
over distance 22. It is simplest to apply the lens law immediately, replacing Q[- 11 f ] 
by &[- l l z ~  - 11~21. 

input- 
- 

FIGURE 5.12 - z1-- 
22 * Second problem analyzed. 
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There are several different ways to simplify this sequence of operators. Our ap- 
proach will be to first use the relationship in the 4th row and 3rd column of Table 5.1 
to replace the two operators furthest to the left as follows: 

The two remaining adjacent R operators can now be combined using the relation given 
in the 4th row and 4th column of Table 5.1. The operator sequence is now of the form 

Next Eq. (5-5 1) is applied to write 

Substitution of this result yields an operator sequence 

where the last two Q operators on the right canceled each other. The last steps are to 
apply the relation (5-50) to invert the order of the V and Q operators in the middle of the 
chain, following which the two adjacent V operators and the two adjacent & operators 
can be combined. With some algebra the final result becomes 

A more conventional statement of the relationship between in the input field U 1  (6) and 
the output field U2(u) is 

Thus the field is again seen to be a Fourier transform of the input amplitude dis- 
tribution. The results of this analysis reveal some important general facts not explicitly 
evident in our earlier analyses. We emphasize these results because of their generality: 

The Fourier transform plane need not be the focal plane of the lens performing the transform! 
Rather, the Fourier transform always appears in the plane where the source is imaged. 

While it is not obvious without some further thought and analysis, our results show 
that the quadratic-phase factor preceding the Fourier transform operation is always the 
quadratic-phase factor that would result at the transform plane from a point source of light 
located on the optical axis in the plane of the input transparency. 
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The result presented in Eq. (5-57) can be shown to reduce to the results of the 
previous cases considered if 21, z2, and d are properly chosen to represent those cases 
(see Prob. 5-16). 

We conclude with a few general comments about the operator method of analy- 
sis. Its advantage is that it allows a methodical approach to complex calculations that 
might otherwise be difficult to treat by the conventional methods. However, the method 
also has some drawbacks. Being one step more abstract than the diffraction integrals 
it replaces, the operator method is one step further from the physics of the experiment 
under analysis. Second, to save time with the operator approach, it is necessary that 
one be rather familiar with the operator relations of Table 5.1. Good intuition about 
which operator relations to use on a given problem comes only after experience with 
the method. 

PROBLEMS-CHAPTER 5 

5-1. Show that the focal lengths of double-convex, plano-convex, and positive meniscus lenses 
are always positive, while the focal lengths of double-concave, plano-concave, and nega- 
tive meniscus lenses are always negative. 

5-2. Consider a thin lens that is composed of a portion of a cylinder, as shown in Fig. P5.2. 

FIGURE P5.2 

(a) Find a paraxial approximation to the phase transformation introduced by a lens of this 
form. 

(b) What is the effect of such a lens on a plane wave traveling down the optical axis? 

5-3. A prism (illustrated in Fig. P5.3), which deflects the direction of propagation of a normally 
incident plane wave to angle 8 with respect to the optical axis (the z axis) in the (y, z )  plane, 
can be represented mathematically by an amplitude transmittance 

(a) Consider a thin transmitting structure with amplitude transmittance given by 

tA(x, y) = exp { - jn- [a2x2 + (by + c ) ~ ] }  , 
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Incident 

Pictorial 
view 

Side 
view FIGURE P5.3 

with a, b, c all real and positive constants. It is claimed that this structure can be con- 
sidered to consist of a sequence of one spherical lens, one cylindrical lens, and one 
prism, all placed in contact. Describe such a combination of thin elements that yields 
this transmittance, specifying the focal lengths of the lenses and the angle of deflection 
of the prism in terms of a, b, c, and the wavelength A. 

(b) Can you think of a way to use two cylindrical lenses to achieve an amplitude trans- 
mittance 

where d is a constant? Explain your conclusion. 

5-4. Consider a lens that consists of the portion of a cone illustrated in Fig. P5.4. 

/ FIGURE P5.4 

(a) Show that a paraxial approximation to the phase transformation introduced by such a 
lens is (under the thin lens assumption) 

where 

R(l  - ylh) 
f ( y ) =  n - l  . 

(b) What is the effect of such a lens on a plane wave traveling normal to the ( x ,  y) plane? 

5-5. An input function U,, bounded by a circular aperture of diameter D and illuminated by a 
normally incident plane wave, is placed in the front focal plane of a circular positive lens 
of diameter L. The intensity distribution is measured across the back focal plane of the 
lens. Assuming L > D: 
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(a) Find an expression for the maximum spatial frequency of the input for which the 
measured intensity accurately represents the squared modulus of the input's Fourier 
spectrum (free from the effects of vignetting). 

(b) What is the numerical value of that spatial frequency (in cycles/mm) when L = 4 cm, 
D = 2 cm, f (focal length) = 50 cm, and A = 6 X meters? 

(c) Above what frequency does the measured spectrum vanish, in spite of the fact that 
the input may have nonzero Fourier components at such frequencies? 

5-6. An array of one-dimensional input functions can be represented by Uo(t, qk), where 
771, 772, . . . , qk, . . . 7 7 ~  are N fixed 77 coordinates in the input plane. It is desired to perform 
a one-dimensional Fourier transform of all N functions in the 8 direction, yielding an array 
of transforms 

Neglecting the finite extent of the lens and object apertures, use the Fourier transforming 
and imaging properties of lenses derived in this chapter to show how this can be done with 

(a) Two cylindrical lenses of different focal lengths. 

(b) A cylindrical and a spherical lens of the same focal length. 

SIMPLIFICATION: You need only display lcOl2, so phase factors may be dropped. 

5-7. A normally incident, unit-amplitude, monochromatic plane wave illuminates a converging 
lens of 5 cm diameter and 2 meters focal length (see Fig. P5.7). One meter behind the lens 
and centered on the lens axis is placed an object with amplitude transmittance 

m i l  m i  FIGURE P5.7 

Assuming L = 1 cm, A = 0.633 pm,  and f, = 10 cycles/mm, sketch the intensity dis- 
tribution across the u axis of the focal plane, labeling the numerical values of the distance 
between diffracted components and the width (between first zeros) of the individual com- 
ponents. 

5-8. In Fig. P5.8, a monochromatic point source is placed a fixed distance zl to the left of a 
positive lens (focal lengthf), and a transparent object is placed a variable distance d to 
the left of the lens. The distance zl is greater than f. The Fourier transform and the image 
of the object appear to the right of the lens. 
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21- FIGURE P5.8 

(a) How large should the distance d be (in terms of zl and f )  to assure that the Fourier 
plane and the object are equidistant from the lens? 

(b) When the object has the distance found in part (a) above, how far to the right of the 
lens is its image and what is the magnification of that image? 

5-9. A unit-amplitude, normally incident, monochromatic plane wave illuminates an object 
of maximum linear dimension D, situated immediately in front of a larger positive lens 
of focal length f (see Fig. P5.9). Due to a positioning error, the intensity distribution is 
measured across a plane at a distance f - A behind the lens. How small must A be if 
the measured intensity distribution is to accurately represent the Fraunhofer diffraction 
pattern of the object? 

- f - FIGURE P5.9 

5-10. Consider the optical system shown in Fig. P5.10. The object on the left is illuminated by 
a normally incident plane wave. Lens L1 is a negative lens with focal length - f ,  and lens 
L2 is a positive lens with focal length f .  The two lenses are spaced by distance f .  Lens L I  
is a distance 2 f to the right of the object. Use the simplest possible reasoning to predict 
the distances d and z2, respectively, to the Fourier plane and the image plane to the right 
or left of lens L2 (specify right or left in the answers). 

L1 L2 FIGURE P5.10 

5-11. In the optical system shown in Fig. P5.11, specify the locations of all Fourier and image 
planes to the left and right of the lens. The lens shown is positive and has focal length f .  
The illumination of the object is a converging spherical wave, as indicated. 
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- f - 2f - FIGURE P5.11 

5-12. With reference to Eq. (5-30): 

(a) At what radius ro in the object plane has the phase of exp[ j & ( t 2  + q2)] changed by 
1 radian from its value at the origin? 

(b) Assuming a circular pupil function of radius R, what is the radius (in the object plane) 
to the first zero of the impulse response h, assuming that the observation point in the 
image space is the origin? 

(c) From the results obtained so far, what relation between R, A, and zl will allow the 
quadratic-phase exponential exp [ j & (t2 + q2)] to be replaced by a single complex 
number, assuming observation near the lens axis? 

5-13. A diffracting structure has a circularly symmetric amplitude transmittance function given 
by 

tA(r) = (k  + cos +) circ (i). 
(a) In what way does this screen act like a lens? 

(b) Give an expression for the focal length of the screen. 

(c) What characteristics might seriously limit the use of this screen as an imaging device 
for polychromatic objects? 

5-14. A certain diffracting screen with an amplitude transmittance 

is normally illuminated by a unit-amplitude, monochromatic plane wave. Show that the 
screen acts as a lens with multiple focal lengths. Specify the values of these focal lengths 
and the relative amounts of optical power brought to focus in the corresponding focal 
planes. (A diffracting structure such as this is known as a Fresnel zone plate. Hint: The 
square wave shown in Fig P5.14 can be represented by the Fourier series 

s in (~n l2)  
f ( ~ )  = 1 [ ,, ] exp (/?). 

n =  -m 
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5-15. Show that in the limit A + 0. Eq. (5-33) approaches the impulse response shown in Eq. 
(5-35). 

5-16. Find the form of the general result of Eq. (5-57) under the following limiting conditions: 

(a) z l  + and d + 0. 

(b) zl + a a n d d  -+ f 

(c) ZI + a ,  general distance d. 

5-17. Consider the simple optical system shown in Fig. P5.17. 

- f l  - f l  +f2 - + f2 - FIGURE P5.17 

(a) Write the operator sequence that describes the successive propagation between planes 
and through lenses for this system. 

(b) Reduce this operator sequence to a simple scaling operator. 



C H A P T E R  6 

Frequency Analysis of Optical 
Imaging Systems 

Considering the long and rich history of optics, the tools of frequency analysis and 
linear systems theory have played important roles for only a relatively short period of 
time. Nevertheless, in this short time these tools have been so widely and successfully 
used that they now occupy a fundamental place in the theory of imaging systems. 

A realization of the utility of Fourier methods in the analysis of optical systems 
arose rather spontaneously in the late 1930's when a number of workers began to ad- 
vocate the use of sinusoidal test patterns for system evaluation. Much of the initial 
stimulus was provided by a French scientist, P.M. Duffieux, whose work culminated in 
the publication of a book, in 1946, on the use of Fourier methods in optics [86]. This 
book has recently been translated into English [87]. In the United States, much of the 
interest in these topics was stimulated by an electrical engineer, Otto Schade, who very 
successfully employed methods of linear systems theory in the analysis and improve- 
ment of television camera lenses [255]. In the United Kingdom, H.H. Hopkins led the 
way in the use of transfer function methods for the assessment of the quality of optical 
imaging systems, and was responsible for many of the first calculations of transfer func- 
tions in the presence of common aberrations [146]. However, it must be said that the 
foundations of Fourier optics were laid considerably earlier, particularly in the works 
of Ernst Abbe (1 840- 1905) and Lord Rayleigh (1 842- 19 19). 

In this chapter we shall consider the role of Fourier analysis in the theory of coher- 
ent and incoherent imaging. While historically the case of incoherent imaging has been 
the more important one, nonetheless the case of coherent imaging has always been im- 
portant in microscopy, and it gained much additional importance with the advent of the 
laser. For example, the field of holography is predominantly concerned with coherent 
imaging. 

For additional discussions of various aspects of the subject matter to follow, the 
reader may wish to consult any of the following references: [223], [103], [196], [76], 
[300]. 
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6.1 
GENERALIZED TREATMENT OF IMAGING SYSTEMS 

In the preceding chapter, the imaging properties of a single thin positive lens were 
studied for the case of monochromatic illumination. In the material to follow, we shall 
first broaden our discussion beyond a single thin positive lens, finding results applicable 
to more general systems of lenses, and then remove the restriction to monochromatic 
light, obtaining results for "quasi-monochromatic" light, both spatially coherent and 
spatially incoherent. To broaden the perspective, it will be necessary to draw upon some 
results from the theory of geometrical optics. The necessary concepts are all introduced 
in Appendix B. 

6.1.1 A Generalized Model 

Suppose that an imaging system of interest is composed, not of a single thin lens, 
but perhaps of several lenses, some positive, some negative, with various distances 
between them. The lenses need not be thin in the sense defined earlier. We shall as- 
sume, however, that the system ultimately produces a real image in space; this is not 
a serious restriction, for if the system produces a virtual image, to view that image it 
must be converted to a real image, perhaps by the lens of the eye. 

To specify the properties of the lens system, we adopt the point of view that all 
imaging elements may be lumped into a single "black box", and that the significant 
properties of the system can be completely described by specifying only the terminal 
properties of the aggregate. Referring to Fig. 6.1, the "terminals" of this black box 
consist of the planes containing the entrance and exit pupils (see Appendix B for a 
discussion of these planes).' It is assumed that the passage of light between the entrance 
pupil and the exit pupil is adequately described by geometrical optics. 

Entrance Exit 

U 

Object "Black box" Image 

FIGURE 6.1 
Generalized model of an imaging system. 

'In general it is not necessary that the entrance pupil lie to the left of the exit pupil as shown in Fig. 6.1. 
However the conceptual ideaof a system mapping the light incident on the entrance pupil to the light leaving 
the exit pupil remains valid, regardless of the order of the two pupils. 
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The entrance and exit pupils are in fact images of the same limiting aperture 
within the system. As a consequence there are several different ways to visual- 
ize the origin of the spatial limitation of the wavefront that ultimately gives rise 
to diffraction. It can be viewed as being caused by the physical limiting aperture 
internal to the system (which is the true physical source of the limitation). Equiva- 
lently it can be viewed as arising from the entrance pupil or from the exit pupil of 
the system. 

Throughout this chapter, we shall use the symbol z ,  to represent the distance of 
the plane of the entrance pupil from the object plane, and the symbol zi to represent 
the distance of the plane of the exit pupil from the image plane.2 The distance z, is 
then the distance that will appear in the diffraction equations that represent the effect 
of diffraction by the exit pupil on the point-spread function of the optical system. We 
shall refer either to the exit pupil or simply to the "pupil" of the system when discussing 
these effects. 

An imaging system is said to be diflraction-limited if a diverging spherical wave, 
emanating from a point-source object, is converted by the system into a new wave, again 
perfectly spherical, that converges towards an ideal point in the image plane, where the 
location of that ideal image point is related to the location of the original object point 
through a simple scaling factor (the magnification), a factor that must be the same for all 
points in the image field of interest if the system is to be ideal. Thus the terminal prop- 
erty of a diffraction-limited imaging system is that a diverging spherical wave incident 
on the entrance pupil is converted by the system into a converging spherical wave at 
the exit pupil. For any real imaging system, this property will be satisfied, at best, over 
only finite regions of the object and image planes. If the object of interest is confined 
to the region for which this property holds, then the system may be regarded as being 
diffraction-limited. 

If in the presence of a point-source object, the wavefront leaving the exit pupil 
departs significantly from ideal spherical shape, then the imaging system is said to 
have aberrations. Aberrations will be considered in Section 6-4, where it is shown that 
they lead to defects in the spatial-frequency response of the imaging system. 

6.1.2 Effects of Diffraction on the Image 

Since geometrical optics adequately describes the passage of light between the entrance 
and exit pupils of a system, diffraction effects play a role only during passage of light 
from the object to the entrance pupil, or alternatively and equivalently, from the exit 
pupil to the image. It is, in fact, possible to associate all diffraction limitations with 
either of these two pupils. The two points of view that regard image resolution as being 
limited by (1) the finite entrance pupil seen from the object space or (2) the finite exit 
pupil seen from the image space are entirely equivalent, due to the fact that these two 
pupils are images of each other. 

*We reserve the symbols z ,  and z2 for the distances from the object to the first principal plane and the 
distance from the second principal plane to the image, respectively. 
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The view that diffraction effects result from the entrance pupil was first espoused 
by Ernst Abbe in 1873 [I]  in studies of coherent imagery with a microscope. According 
to the Abbe theory, only a certain portion of the diffracted components generated by a 
complicated object are intercepted by this finite pupil. The components not intercepted 
are precisely those generated by the high-frequency components of the object amplitude 
transmittance. This viewpoint is illustrated in Fig. 6.2 for the case of an object that is a 
grating with several orders and an imaging system composed of a single positive lens. 

A view equivalent to regarding diffraction effects as resulting from the exit pupil 
was presented by Lord Rayleigh in 1896 [241]. This is the viewpoint that was used in 
Section 5.3, and we shall adopt it again here. 

Again the image amplitude3 is represented by a superposition integral 

where h is the amplitude at image coordinates (u, v) in response to a point-source object 
at (6, q) ,  and U, is the amplitude distribution transmitted by the object. In the absence 
of aberrations, the response h arises from a spherical wave (of limited extent) converg- 
ing from the exit pupil towards the ideal image point (u = M t ,  v = Mq). We allow 
the magnification to be either negative or positive, according to whether the image is 
inverted or not. 

From the result of Prob. 4-16, the discussions of Section 5.3, and in particular, 
Eq. (5-33), the light amplitude about the ideal image point is simply the Fraunhofer 
diffraction pattern of the exit pupil, centered on image coordinates (u = M5, v = Mq). 
Thus 

m 

where the pupil function P is unity inside and zero outside the projected aperture, A 
is a constant amplitude, zi is the distance from the exit pupil to the image plane, and 
(x, y) are coordinates in the plane of the exit pupil. In writing this equation, we have 

plane 

FIGURE 6.2 
The Abbe theory of image formation. 

3We have retained the assumption of monochromatic illumination but will remove it in the section to follow. 
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again neglected quadratic phase factors over the object and image planes, as justified 
in Section 5.3. 

In order to achieve space invariance in the imaging operation, it is necessary to 
remove the effects of magnification and image inversion from the equations. This can 
be done by defining reduced coordinates in the object space4 according to 

in which case the amplitude point-spread function becomes 

- A 2Tr 
h(u - [, u - ij) = - 

hzi 
1 P(x, y) exp {- j - [(u - [)x + (u - ij)y] 

A z ~  

At this point it is convenient to define the ideal image, or the geometrical-optics pre- 
diction of the image for a perfect imaging system as 

yielding a convolution equation for the image, 

where 

Thus in this general case, for a digraction-limited system we can regard the image 
as being a convolution of the image predicted by geometrical optics with an impulse 
response that is the Fraunhofer d@raction pattern of the exit pupil. 

6.1.3 Polychromatic Illumination: The Coherent and Incoherent Cases 

The assumption of strictly monochromatic illumination has been present in all our dis- 
cussions of imaging systems up to this point. This assumption is overly restrictive, for 
the illumination generated by real optical sources, including lasers, is never perfectly 
monochromatic. The statistical nature of the time variations of illumination amplitude 
and phase can, in fact, influence the behavior of an imaging system in profound ways. 

40ften advantages are gained by using much more complex changes of coordinates, particularly when the 
analysis is nonparaxial. We have chosen to remain with the simplest coordinate system consistent with a 
paraxially space-invariant system. For discussions of other coordinate mappings (many of which are due to 
H.H. Hopkins) and their advantages, see Ref. [300]. 
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We therefore digress temporarily to consider the very important effects of polychro- 
maticity. 

To treat this subject in a completely satisfactory way, it would be necessary to 
take a rather long detour through the theory of partial coherence. However, for our 
purposes such a detailed detour would not be practical. We therefore treat the subject 
from two points of view, one entirely heuristic, and the second more rigorous but not 
entirely complete. The reader interested in a more complete treatment may wish to 
consult Refs. [20], [203], [28], or [123]. 

In the case of monochromatic illumination it was convenient to represent the com- 
plex amplitude of the field by a complex phasor U that was a function of space co- 
ordinates. When the illumination is polychromatic but narrowband, i.e. occupying a 
bandwidth that is small compared with its center frequency, this approach can be gen- 
eralized by representing the field by a time-varying phasor that depends on both time 
and space coordinates. For the narrowband case, the amplitude and phase of the time- 
varying phasor are readily identified with the envelope and phase of the real optical 
wave. 

Consider the nature of the light that is transmitted by or reflected from an object 
illuminated by a polychromatic wave. Since the time variations of the phasor amplitude 
are statistical in nature, only statistical concepts can provide a satisfactory description of 
the field. As we have seen previously, each object point generates an amplitude impulse 
response in the image plane. If the amplitude and phase of the light at a particular object 
point vary randomly with time, then the overall amplitude and phase of the amplitude 
impulse response will vary in a corresponding fashion. Thus the statistical relation- 
ships between the phasor amplitudes at the various points on the object will influence 
the statistical relationships between the corresponding impulse responses in the image 
plane. These statistical relationships will greatly affect the result of the time-averaging 
operation that yields the final image intensity distribution. 

We shall consider only two types of illumination here. First, we consider object 
illumination with the particular property that the phasor amplitudes of the field at all 
object points vary in unison. Thus while any two object points may have different rel- 
ative phases, their absolute phases are varying with time in a perfectly correlated way. 
Such illumination is called spatially coherent. Second, we consider object illumina- 
tion with the opposite property that the phasor amplitudes at all points on the object 
are varying in totally uncorrelated fashions. Such illumination is called spatially inco- 
herent. (In the future we shall refer to these types of illumination as simply coherent or 
incoherent.) Coherent illumination is obtained whenever light appears to originate from 
a single point.5 The most common example of a source of such light is a laser, although 
more conventional sources (e-g. zirconium arc lamps) can yield coherent light, albeit 
of weaker brightness than a laser, if their output is first passed through a pinhole. Inco- 
herent light is obtained from diffuse or extended sources, for example gas discharges 
and the sun. 

SThis is a sufficient but not necessary condition for complete coherence. For example, when light from a 
point source is passed through a stationary diffuser, the relative phases of the light at any two points behind 
the diffuser remain correlated. Therefore the transmitted light is still spatially coherent, even though it no 
longer appears to originate from a point source. Note, however, that before impinging on the diffuser it did 
originate from a point source. 
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When the object illumination is coherent, the various impulse responses in the im- 
age plane vary in unison, and therefore must be added on a complex amplitude basis. 
Thus a coherent imaging system is linear in complex amplitude. The results of the 
monochromatic analysis can therefore be applied directly to such systems, with the un- 
derstanding that the complex amplitude U is now a time-invariant phasor that depends 
on the relative phases of the light. 

When the object illumination is incoherent, the various impulse responses in the 
image plane vary in uncorrelated fashions. They must therefore be added on a power or 
intensity basis. Since the intensity of any given impulse response is proportional to the 
intensity of the point source that gave rise to it, it follows that an incoherent imaging 
system is linear in intensity, and the impulse response of such a system is the squared 
magnitude of the amplitude impulse response. 

The preceding arguments have been entirely heuristic, and in fact have certain as- 
sumptions and approximations hidden in them. We therefore turn to a more rigorous 
examination of the problem. To begin, note that in the monochromatic case we obtain 
the phasor representation of the field by suppressing the positive-frequency component 
of the cosinusoidal field, and doubling the remaining negative frequency component. 
To generalize this concept to a polychromatic wave u(P, t), we suppress all positive- 
frequency components of its Fourier spectrum, and double its negative-frequency com- 
ponents, yielding a new (complex) function u- ( P ,  t). If we further write 

u- ( P ,  t) = U(P, t) exp(- j 2 ~ i s t )  

where Y represents the mean or center frequency of the optical wave, then the complex 
function U(P, t )  may be regarded as the time-varying phasor representation of u(P, t). 

Under the narrowband condition assumed above, the amplitude impulse response 
does not change appreciably for the various frequencies contained within the optical 
spectrum. Therefore it is possible to express the time-varying phasor representation of 
the image in terms of the convolution of a wavelength-independent impulse response 
with the time varying phasor representation of the object (in reduced object coordi- 
nates), 

( u ,  v ;  t) = [[ h(u - 6 v  - ) ( ; t - r)d[dij 

where T is a time delay associated with propagation from ([, ij) to (u, v )  (note that in 
general, T is a function of the coordinates involved). 

To calculate the image intensity, we must time average the instantaneous intensity 
represented by IUi(u, v ;  t)I2, due to the fact that the detector integration time is usually 
extremely long compared with the reciprocal of the optical bandwidth, even for narrow- 
band optical sources. Thus the image intensity is given by Ii(u, v )  = (Iu~(u, v;  t)I2), or, 
after substitution of Eq. (6-6) and interchanging orders of averaging and integration, 
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Now for a fixed image point, the impulse response h is nonzero over only a small region 
about the ideal image point. Therefore the integrand is nonzero only for points (6, f j l )  
and (6, f j 2 )  that are very close together. Hence we assume that the difference between 
the time delays 71 and 7 2  is negligible under the narrowband assumption, allowing the 
two delays to be dropped. 

The expression for image intensity can now be written 

where 

is known as the mutual intensity, and is a measure of the spatial coherence of the light 
at the two object points. 

When the illumination is perfectly coherent, the time-varying phasor amplitudes 
across the object plane differ only by complex constants. Equivalently we may write 

where the phase of the time-varying phasor at the origin has arbitrarily been chosen as 
a phase reference, the time-independent U ,  are phasor amplitudes relative to the time 
varying phasor amplitude at the origin, and the normalizations have been performed 
to allow the time-independent phasors to retain correct information about the average 
power or intensity. Substituting these relations in the definition of mutual intensity, 
Eq. (6-9), for the coherent case we obtain 

When this result is in turn substituted into Eq. (6-8) for the intensity, the result is 

Finally, defining a time-invariant phasor amplitude Ui in the image space relative to 
the corresponding phasor amplitude at the origin, the coherent imaging system is found 
to be described by an amplitude convolution equation, 
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the same result obtained in the monochromatic case. We thus confirm that coherent 
object illumination yields an imaging system that is linear in complex amplitude. 

When the object illumination is perfectly incoherent, the phasor amplitudes across 
the object vary in statistically independent fashions. This idealized property may be 
represented by the equation 

where K is a real constant. Such a representation is not exact; in actuality, the minimum 
distance over which coherence can exist is of the order of one wavelength (see Ref. [20], 
Section 4.4, for more details). Nonetheless, provided the coherence area on the object is 
small compared with a resolution cell size in object space, Eq. (6-14) is accurate. When 
used in Eq. (6-9), the result 

is obtained. Thus for incoherent illumination, the image intensity is found as a convo- 
lution of the intensity impulse response IhI2 with the ideal image intensity I,. Hence 
we have confirmed that an incoherent imaging system is linear in intensity, rather than 
amplitude. Furthermore, the impulse response of the incoherent mapping is just the 
squared modulus of the amplitude impulse response. 

When the source of illumination is an extended incoherent source, it is possible 
to specify the conditions under which the imaging system will behave substantially as 
an incoherent system and substantially as a coherent system (see Ref [123], page 324). 
Let 8, represent the effective angular diameter of the incoherent source that illuminates 
the object, 8, the angular diameter of the entrance pupil of the imaging system, and 8, 
the angular diameter of the angular spectrum of the object, all angles being measured 
from the object plane. Then the system can be shown to behave as an incoherent system 
provided 

and will behave a coherent system when 

For conditions between these extremes, the system will behave as a partially coherent 
system, the treatment of which is beyond the scope of this discussion. For information 
on partially coherent imaging systems, see, for example, [123]. 

6.2 
FREQUENCY RESPONSE FOR DIFFRACTION-LIMITED 
COHERENT IMAGING 

We turn now to the central topic of this chapter, the frequency analysis of imaging sys- 
tems. Attention in this section is devoted to imaging systems with coherent illumination. 
Systems with incoherent illumination will be treated in Section 6.3. 
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As emphasized previously, a coherent imaging system is linear in complex ampli- 
tude. This implies, of course, that such a system provides a highly nonlinear intensity 
mapping. If frequency analysis is to be applied in its usual form, it must be applied to 
the linear amplitude mapping. 

6.2.1 The Amplitude Wansfer Function 

Our analysis of coherent systems has yielded a space-invariant form of the amplitude 
mapping, as evidenced by the convolution equation (6- 13). We would anticipate, then, 
that transfer-function concepts can be applied directly to this system, provided it is done 
on an amplitude basis. To do so, define the following frequency spectra6 of the input 
and output, respectively: 

00 ,. ,. 

In addition, define the amplitude transfer function H as the Fourier transform of 
the space-invariant amplitude impulse response, 

Now applying the convolution theorem to (6-13), it follows directly that 

Thus the effects of the diffraction-limited imaging system have been expressed, at least 
formally, in the frequency domain. It now remains to relate H more directly to the phys- 
ical characteristics of the imaging system itself. 

To this end, note that while Eq. (6-17) defines H as the Fourier transform of the 
amplitude point-spread function h, this latter function is itself a Fraunhofer diffrac- 
tion pattern and can be expressed as a scaled Fourier transform of the pupil function 
(cf. Eq. 6-5). Thus 

6Here and throughout, we shall retain the subscripts X and Yon frequency variables, even though the space 
variables to which they correspond may have different symbols. 
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For notational convenience we set the constant Ahzi equal to unity and ignore the nega- 
tive signs in the arguments of P (almost all applications of interest to us here have pupil 
functions that are symmetrical in x and y). Thus 

H(fx, f ~ )  = P(Azifx, hzify). (6-20) 

This relation is of the utmost importance; it supplies very revealing information 
about the behavior of diffraction-limited coherent imaging systems in the frequency 
domain. If the pupil function P is indeed unity within some region and zero otherwise, 
then there exists a finite passband in the frequency domain within which the diffraction- 
limited imaging system passes all frequency components without amplitude or phase 
di~tort ion.~ At the boundary of this passband the frequency response suddenly drops to 
zero, implying that frequency components outside the passband are completely elimi- 
nated. 

Finally we give some intuitive explanation as to why the scaled pupil function plays 
the role of the amplitude transfer function. Remember that in order to completely re- 
move the quadratic phase factor across the object, the object should be illuminated with 
a spherical wave, in this case converging towards the point where the entrance pupil is 
pierced by the optical axis (cf. discussion leading up to Fig. 5.9). The converging spher- 
ical illumination causes the Fourier components of the object amplitude transmittance 
to appear in the entrance pupil, as well as in the exit pupil, since the latter is the image 
of the former (see Appendix B). Thus the pupil sharply limits the range of Fourier com- 
ponents passed by the system. If the converging illumination is not present, the same 
conclusion is approximately true, especially for an object of sufficiently small extent in 
the object plane, as was discussed in connection with Fig. 5.10. 

6.2.2 Examples of Amplitude Wansfer Functions 

To illustrate the frequency response of diffraction-limited coherent imaging systems, 
consider the amplitude transfer functions of systems with square (width 2w) and circu- 
lar (diameter 2w) pupils. For these two cases, we have, respectively, 

P(x, y) = rect - rect - ) (A) 
P(x,  y) = circ (""1- 

Thus, from (6-20), the corresponding amplitude transfer functions are 

7Note that this conclusion has been drawn only for a system free from aberrations. As we shall see in Section 
6.4, a system that has aberrations is not free from phase distortion within its passband. 
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fy/2fo 

FIGURE 6.3 
Amplitude transfer functions for 
diffraction-limited systems with (a) 
square and (b) circular exit pupils. 

These functions are illustrated in Fig. 6.3. Note that a cutoff frequency f, can be defined 
in both cases by 

where in the circular case this cutoff is uniform in all directions in the frequency plane, 
while in the square case this cutoff applies only along the fx and fr axes. To illustrate a 
particular order-of-magnitude off,, suppose that w = 1 cm, zi = 10 cm, and h = 
cm. Then the cutoff frequency is 100 cycleslmm. 

6.3 
FREQUENCY RESPONSE FOR DIFFRACTION-LIMITED 
INCOHERENT IMAGING 

In the coherent case, the relation between the pupil and the amplitude transfer function 
has been seen to be a very direct and simple one. When the object illumination is 
incoherent, the transfer function of the imaging system will be seen to be determined 
by the pupil again, but in a less direct and somewhat more interesting way. The theory 
of imaging with incoherent light has, therefore, a certain extra richness not present in 
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the coherent case. We turn now to considering this theory; again attention will be cen- 
tered on diflraction-limited systems, although the discussion that immediately follows 
applies to all incoherent systems, regardless of their aberrations. 

6.3.1 The Optical Transfer Function 

Imaging systems that use incoherent illumination have been seen to obey the intensity 
convolution integral 

m 

Ih(u - 6 71 - ij)12 I,([, ij) d[dij. (6-22) 

Such systems should therefore be frequency-analyzed as linear mappings of intensity 
distributions. To this end, let the normalized frequency spectra of I, and Ii be defined 
by 

m 

I[ Ii(u, v) exp[- j 2 ~ (  fxu + fyv)] d u  dv 
- m 

Gi(fx, fv) = (6-24) 
j Ii(u, U) d u  d~ 
- m 

The normalization of the spectra by their "zero-frequency" values is partly for mathe- 
matical convenience, and partly for a more fundamental reason. It can be shown that any 
real and nonnegative function, such as I, or Ii, has a Fourier transform which achieves 
its maximum value at the origin. We choose that maximum value as a normalization 
constant in defining G, and Gi. Since intensities are nonnegative quantities, they always 
have a spectrum that is nonzero at the origin. The visual quality of an image depends 
strongly on the "contrast" of the image, or the relative strengths of the information- 
bearing portions of the image and the ever-present background. Hence the spectra are 
normalized by that background. 

In a similar fashion, the normalized transfer function of the system can be defined 
by 

m 

(( Ih(u, v)I2 exp[- j2.rr(fxu + f ~ v ) l  d u  dv 
-00 

Wfx, fy) = (6-25) 
i Ih(u, v)12 du  dv 
- m 

Application of the convolution theorem to Eq. (6-22) then yields the frequency-domain 
relation 
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By international agreement, the function 3-1 is known as the optical transfer function 
(abbreviated OTF) of the system. Its modulus 13-11 is known as the modulation transfer 
function (MTF). Note that 3-1( fx, fy) simply specifies the complex weighting factor 
applied by the system to the frequency component at ( fx, fv), relative to the weighting 
factor applied to the zero-frequency component. 

Since the definitions of both the amplitude transfer function and the optical transfer 
function involve the function h, we might expect some specific relationship between 
the two. In fact, such a relationship exists and can be readily found with the help of the 
autocorrelation theorem of Chapter 2. Since 

and 

11 Ih(u, v)I2 dudv 
-w 

it follows (with the help of Rayleigh's theorem) that 

The simple change of variables 

results in the symmetrical expression 

Thus the OTF is the normalized autocorrelation function of the amplitude transfer 
finction! 

Equation (6-28) will serve as our primary link between the properties of coherent 
and incoherent systems. Note that it is entirely valid for systems both with and without 
aberrations. 

6.3.2 General Properties of the OTF 

A number of very simple and elegant properties of the OTF can be stated based only 
on knowledge that it is a normalized autocorrelation function. The most important of 
these properties are as follows: 
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Property 1 follows directly by substitution of ( fx = 0, fy = 0) in Eq. (6-28). The proof 
of Property 2 is left as an exercise for the reader, it being no more than a statement that 
the Fourier transform of a real function has Hermitian symmetry. 

The proof that the MTF at any frequency is always less than its zero-frequency 
value of unity requires more effort. To prove Property 3 we use Schwarz's inequality 
([227], p. 177), which can be stated as follows: If X(p, q) and Y(p, q) are any two 
complex-valued functions of (p, q), then 

with equality if and only if Y = KX* where K is a complex constant. Letting 

and Y(p,q) = H* 

we find 

Normalizing by the right-hand side of the inequality, it follows that (X( fx, fy)l is never 
greater than unity. 

Finally, it should be pointed out that while the OTF is always unity at the zero 
frequency, this does not imply that the absolute intensity level of the image background 
is the same as the absolute intensity level of the object background. The normalization 
used in the definition of the OTF has removed all information about absolute intensity 
levels. 

6.3.3 The OTF of an Aberration-Free System 

To this point, our discussions have been equally applicable to systems with and with- 
out aberrations. We now consider the special case of a diffraction-limited incoherent 
system. Recall that for coherent systems we have 
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For an incoherent system, it follows from Eq. (6-28) (with a simple change of variables) 
that 

where, in the denominator the fact that P equals either unity or zero has been used to 
replace p2 by P. 

The expression (6-30) for 'Fl lends itself to an extremely important geometrical in- 
terpretation. The numerator represents the area of overlap of two displaced pupil func- 
tions, one centered at (hzi fx/2 Azi fy/2) and the second centered on the diametrically 
opposite point (-hzi fx/2, -hz; fy/2). The denominator simply normalizes the area of 
overlap by the total area of the pupil. Thus 

area of overlap 
W f x ,  fy)  = total area - 

To calculate the OTF of a diffraction-limited system, the steps indicated by this inter- 
pretation can be directly performed, as illustrated in Fig. 6.4. For simple geometrical 
shapes, closed-form expressions for the normalized overlap area can be found (see ex- 
amples to follow). Note that this geometrical interpretation of the OTF implies that the 
OTF of a diffraction-limited system is always real and nonnegative. It is not neces- 
sarily a monotonically decreasing function of frequency, however (see, for example, 
Prob. 6-3). 

For complicated pupils, the OTF can be calculated with the help of a digital 
computer. A straightforward way to perform such a calculation is to Fourier trans- 
form the pupil function (finding the amplitude point-spread function), take the squared 

FIGURE 6.4 
Geometrical interpretations of the OTF of a diffraction-limited system. 
(a) The pupil function-total area is the denominator of the OTF; (b) 
two displaced pupil functions-the shaded area is the numerator of 
the OTF. 
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magnitude of this quantity (thus finding the intensity point-spread function), and inverse 
Fourier transform the result. 

To lend further physical insight into the OTF, consider the ways in which a sinu- 
soidal component of intensity at a particular frequency pair ( fx, fy) can be generated in 
the image. We claim that such a fringe can be generated only by interference of light in 
the image plane from two separate patches on the exit pupil of the system, with a sep- 
aration between patches that is (hzil fxl, Azil fy)(). Only when light contributions from 
two patches having this particular separation interfere can a fringe with this frequency 
be generated (cf. Prob. 6- 1). However, there are many different pairs of patches of this 
separation that can be embraced by the pupil of the system. In fact, the relative weight 
given by the system to this particular frequency pair is determined by how many dif- 
ferent ways such a separation can be fit into the pupil. The number of ways a particular 
separation can be fit into the exit pupil is proportional to the area of overlap of two 
pupils separated by this particular spacing. See Fig. 6.5. 

6.3.4 Examples of Diffraction-Limited OTFs 

We consider now as examples the OTFs that correspond to diffraction-limited systems 
with square (width 2w) and circular (diameter 2w) pupils. Figure 6.6 illustrates the 
calculation for the square case, The area of overlap is evidently 

( 0  otherwise. 

When this area is normalized by the total area 4w2, the result becomes 

where A is the triangle function of Chapter 2, and fo is the cutoff frequency of the same 
system when used with coherent illumination, 

I 
hzilfy 1 FIGURE 6.5 

I Light from patches separated by (Azil fxl ,  Azil ful)  interferes to 
produce a sinusoidal fringe at frequency (fx, fy). The shaded 
areas on the pupil are the areas within the light patches can 

+hzilfxJ- reside while retaining this special separation. 
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FIGURE 6.6 
Calculation of the OTF for a square aperture. 

Note that the cutoff frequency of the incoherent system occurs at frequency 2 fo along 
the fx and f y  axes.8 The OTF represented by Eq. (6-31) is illustrated in Fig. 6.7. 

When the pupil is circular, the calculation is not quite so straightforward. Since the 
OTF will clearly be circularly symmetric, it suffices to calculate 7-l along the positive 
fx axis. As illustrated in Fig. 6.8, the area of overlap may be regarded as being equal 
to four times the shaded area B of the circular sector A + B. But the area of the circular 
sector is 

while the area of the triangle A is 

1 hzifx Area ( A )  = (T) J W 2  - (y 7 .  
Finally, we have 

4[area (A + B) - area (A)] 
M f x ,  0) = 

7 r w 2  

or, for a general radial distance p in the frequency plane, 

The quantity po is the cutoff frequency of the coherent system, 

Referring to Fig. 6.9, the OTF is again seen to extend to a frequency that is twice the 
coherent cutoff frequency. 

8This should not be taken to imply that the incoherent system has twice the resolving power of the coherent 
system. See Section 6.5. 
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fy/2fo FIGURE 6.7 
The optical transfer function of a 
diffraction-limited system with a square 
pupil. 

. .. 
Calculation of the area of overlap of 
two displaced circles. 

(b) 
(a) Overlapping circles, (b) geometry 
of the calculation. 

FIGURE 6.9 
The optical transfer function 
of a diffraction-limited system 

1 with a circular pupil. (a) Three- 
p/2p0 dimensional perspective, (b) cross 

(b) section. 
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6.4 
ABERRATIONS AND THEIR EFFECTS ON FREQUENCY RESPONSE 

In the development of a generalized model of an imaging system, it was specifically 
assumed that the presence of a point-source object yielded at the exit pupil a perfect 
spherical wave, converging toward the ideal geometrical image point. Such a system 
was called diflraction-limited. We consider now the effects of aberrations, or depar- 
tures of the exit-pupil wavefront from ideal spherical form. Aberrations can arise in a 
variety of ways, ranging from a defect as simple as a focusing error to inherent proper- 
ties of perfectly spherical lenses, such as spherical aberration. A complete treatment of 
aberrations and their detailed effects on frequency response is beyond the scope of this 
development. Rather we concentrate on very general effects and illustrate with one rel- 
atively simple example. For a more complete treatment of various types of aberrations 
and their effects on frequency response, see, for example, Refs. [300], [146], or [296]. 

6.4.1 The Generalized Pupil Function 

When an imaging system is diffraction limited, the (amplitude) point-spread function 
has been seen to consist of the Fraunhofer diffraction pattern of the exit pupil, centered 
on the ideal image point. This fact suggests a convenient artifice which will allow aber- 
rations to be directly included in our previous results. Specifically, when wavefront er- 
rors exist, we can imagine that the exit pupil is illuminated by a perfect spherical wave, 
but that a phase-shifting plate exists in the aperture, thus deforming the wavefront that 
leaves the pupil. If the phase error at the point (x, y) is represented by kW(x, y), where 
k = 2mlh and W is an effective path-length error, then the complex amplitude trans- 
mittance P(x, y) of the imaginary phase-shifting plate is given by 

The complex function P may be referred to as the generalized pupil function. The am- 
plitude point-spread function of an aberrated coherent system is simply the Fraunhofer 
diffraction pattern of an aperture with amplitude transmittance P. The intensity impulse 
response of an aberrated incoherent system is, of course, the squared magnitude of the 
amplitude impulse response. 

Figure 6.10 shows the geometry that defines the aberration function W. If the sys- 
tem were free from aberrations, the exit pupil would be filled by a perfect spherical 
wave converging towards the ideal image point. We regard an ideal spherical surface, 
centered on the ideal image point and passing through the point where the optical axis 
pierces the exit pupil, as defining a Gaussian reference sphere with respect to which 
the aberration function can be defined. If we trace a ray backward from the ideal im- 
age point to the coordinates (x, y) in the exit pupil, the aberration function W(x, y) 
is the path-length error accumulated by that ray as it passes from the Gaussian refer- 
ence sphere to the actual wavefront, the latter wavefront also being defined to intercept 
the optical axis in the exit pupil. The error can be positive or negative, depending on 
whether the actual wavefront lies to the left or to the right (respectively) of the Gaussian 
reference sphere. 
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Exit 

Ideal 
image 
point 

FIGURE 6.10 
reference 
sphere 

Geometry for defining the aberration 
function. 

6.4.2 Effects of Aberrations on the Amplitude Transfer Function 

When considering a diffraction-limited coherent system, the transfer function was 
found by noting that (1) the impulse response is the Fourier transform of the pupil 
function, and (2) the amplitude transfer function is the Fourier transform of the am- 
plitude impulse response. As a consequence of the two Fourier transform relations, 
the amplitude transfer function was found to be proportional to a scaled pupil function 
P. Identical reasoning can be used when aberrations are present, provided the general- 
ized pupil function P replaces P. Thus the amplitude transfer function is written 

Evidently the band limitation of the amplitude transfer function, as imposed by 
the finite exit pupil, is unaffected by the presence of aberrations. The sole effect of 
aberrations is seen to be the introduction ofphase distortions within the passband. Phase 
distortions can, of course, have a severe effect on the fidelity of the imaging system. 

There is little more of a general nature that can be said about the effects of aber- 
rations on a coherent imaging system. Again the result is a very simple one: as we 
shall now see, the result for an incoherent system is again more complex and, in many 
respects, more interesting. 

6.4.3 Effects of Aberrations on the OTF 

Having found the effects of aberrations on the amplitude transfer function, it is now 
possible, with the help of Eq. (6-28), to find the effects on the optical transfer function. 
To simplify the notation, the function A( fx, fy) is defined as the area of overlap of 

Thus the OTF of a diffraction-limited system is given, in this new notation, by 
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When aberrations are present, substitution of (6-34) into (6-35) yields 

This expression allows us, then, to directly relate the wavefront errors and the OTF. 
As an important general property, it can be shown that aberrations will never in- 

crease the MTF (the modulus of the OTF). To prove this property, Schwarz's inequality 
(6-29) will be used. Let the functions X and Y of that equation be defined by 

X(x, y) = exp 

Noting that IxI2 = I Y I *  = 1, it follows that 

I N ( f x ,  fy)l$ith aberrations 

Thus aberrations cannot increase the contrast of any spatial-frequency component 
of the image, and in general will lower the contrast. The absolute cutoff frequency 
remains unchanged, but severe aberrations can reduce the high-frequency portions of 
the OTF to such an extent that the effective cutoff is much lower than the diffraction- 
limited cutoff. In addition, aberrations can cause the OTF to have negative values in 
certain bands of frequencies, a result that never occurs for an aberration-free system. 
When the OTF is negative, image components at that frequency undergo a contrast 
reversal; i.e., intensity peaks become intensity nulls, and vice versa. An example of 
this effect will be seen in the section that follows. 
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6.4.4 Example of a Simple Aberration: A Focusing Error 

One of the easiest aberrations to deal with mathematically is a simple error of focus. 
But even in this simple case, the assumption of a square aperture (rather than a circular 
aperture) is needed to keep the mathematics simple. 

When a focusing error is present, the center of curvature of the spherical wavefront 
converging towards the image of an object point-source lies either to the left or to the 
right of the image plane. Considering an on-axis point for simplicity, this means that 
the phase distribution across the exit pupil is of the form 

where za # zi. The path-lenth error W(x, y) can then be determined by subtracting the 
ideal phase distribution from the actual phase distribution, 

The path-length error is thus given by 

which is seen to depend quadratically on the space variables in the exit pupil. 
For a square aperture of width 2w, the maximum path-length error at the edge of 

the aperture along the x or y axes, which we represent by W,, is given by 

The number Wrn is a convenient indication of the severity of the focusing error. Using 
the definition of W,, we can express the path-length error as 

x2 + y2 
W ( x ,  y )  = Wrn (6-40) w2 

If the path-length error W given by (6-40) is substituted in the expression (6-36) 
for the OTF, a number of straightforward manipulations yield the result 

Plots of this OTF are shown in Fig. 6.11 for various values of WrnlA. Note that the 
diffraction-limited OTF is indeed obtained when W, = 0. Note also that, for values 
of Wrn greater than A12, sign reversals of the OTF occur. These reversals of contrast 
can readily be observed if the "spoke" target of Fig. 6.12(a) is used as the object. The 
"local spatial frequency" of this target changes slowly, increasing as the radius from 
the center is decreased. The local contrast of fringes is thus an indication of the value of 
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FIGURE 6.11 
OTF for a focusing error in a 
system with a square pupil. (a) 
Three-dimensional plot with 
fxl2 fo along one axis and W,lh 
along the other axis. (b) Cross 
section along the fx axis with 
W,lA as a parameter. 

the MTF at various frequencies. The position of the fringes is determined by the phase 
associated with the OTF at each frequency. When the system is out of focus, a gradual 
attenuation of contrast and a number of contrast reversals are obtained for increasing 
spatial frequency, as illustrated in Fig. 6.12(b). 

Finally, consider the form of the OTF when the focusing error is very severe (that 
is, when Wm >> A). In such a case, the frequency response drops towards zero for rel- 
atively small values of fX/2 fo and fy/2 fo. We may therefore write 

lfxl I - -  " 1,  1 - - - 1, l f y  l 
2fo 2fo 

and the OTF reduces to 

8Wm fx 8Wm f y  ~ ( f x ,  fy)  - sinc [- A (-)I 2 fo  sinc [- A (-)I. 2fo 

The interested reader can verify that this is precisely the OTF predicted by geometri- 
cal optics. Geometrical optics predicts a point-spread function that is the geometrical 
projection of the exit pupil into the image plane, and therefore the point-spread func- 
tion should be uniformly bright over a square and zero elsewhere (see Fig. 6.13). The 



150 Introduction to Fourier Optics 



CHAPTER 6 Frequency Analysis of Optical Imaging Systems 15 1 

FIGURE 6.13 
Geometrical optics prediction of the point-spread function 
of a system having a square pupil function and a severe 
focusing error. 

Fourier transform of such a spread function yields the OTF of (6-42). More generally, 
when aberrations of any kind are severe, the geometrical optics predictions of the inten- 
sity point-spread function may be Fourier-transformed to yield a good approximation 
to the OTF of the system. The fundamental reason for this behavior lies in the fact that, 
when severe aberrations are present, the point-spread function is determined primarily 
by geometrical-optics effects, and diffraction plays a negligible role in determining its 
shape. 

6.4.5 Apodization and Its Effects on Frequency Response 

The point-spread function of a diffraction-limited imaging system generally has side- 
lobes or side-rings of noticeable strength. While such extraneous responses may be 
of little concern in many imaging problems, they are of concern in a certain class of 
situations, such as when we wish to resolve a weak point-source next to a stronger 
point-source. Such a problem is of considerable importance in astronomy, where the 
presence or absence of weak companion stars next to a brighter star may often be of 
interest. 

In an attempt to reduce the strength of side-lobes or side-rings, methods known as 
apodization have been developed. The word apodize is taken from the Greek language, 
and literally means "to remove the feet". The "feet" being referred to are in fact the side- 
lobes and side-rings of the diffraction-limited impulse response. Similar techniques are 
well known in the field of digital signal processing, where they are known by the term 
windowing (see, for example, [85] ,  Section 3.3). 

Generally speaking, apodization amounts to the introduction of attenuation in the 
exit pupil of an imaging system, attenuation that may be insignificant at the center of 
the pupil but increases with distance away from the center. Thus it amounts to a "soft- 
ening" of the edges of the aperture through the introduction of an attenuating mask. 
Remembering that diffraction by an abrupt aperture can be thought of as coming from 
edge waves originating around the rim of the aperture, a softening of the edge has the 
effect of spreading the origin of these diffracted waves over a broader area around the 
edges of the pupil, thereby suppressing ringing effects caused by edge waves with a 
highly localized origin. Figure 6.14(a) shows a plot of the unapodized and apodized 
intensity transmissions through a square pupil with and without a Gaussian intensity 
apodization that falls to (lle)2 at the edge of the aperture. Part (b) of the figure shows 
cross sections of the intensity point-spread functions for the two cases. The logarithm 
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of intensity is plotted vertically in order to emphasize the side-lobes, and the intensity 
normalization is proportional to the total integrated intensity passed by the pupil in each 
case. Note that the side-lobes have been significantly suppressed by the apodization. 
Also note that the width of the main lobe is increased somewhat by apodization, and 
that the maximum intensity is also reduced due to extra absorption in the pupil. 

The effects of apodization on the frequency response of both coherent and inco- 
herent imaging systems are also of interest. In the coherent case the answer is straight- 
forward due to the direct correspondence between the pupil and the amplitude transfer 
function. Attenuation that increases with distance from the center of the pupil results 
in an amplitude transfer function that falls off more rapidly with increasing frequency 
than it would in the absence of apodization. In the incoherent case, the less direct re- 
lationship between the OTF and the pupil makes the effects more subtle. Figure 6.15 
shows a plot of cross sections of the apodized and unapodized OTFs of a system with a 
rectangular pupil, where the apodization is of the Gaussian form described above. As 
can be seen, the effect of the apodization has been to boost the relative importance of 
midrange and low frequencies, while diminishing the strength of high frequencies. 

Pupil 
Intensity Transmission 

Gaussian 

1 2 3 4 2wuIhzi 

(b) 

FIGURE 6.14 
Apodization of a rectangular aperture by a Gaussian function. 
(a) Intensity transmissions with and without apodization. 
(b) Point-spread functions with and without apodization. 
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0.5 -- 

FIGURE 6.15 
Optical transfer functions with and 

0 0.5 a0 f ~ 1 2 f ~  without a Gaussian apodization. 

Inverse 
apodized 

FIGURE 6.16 
Pupil amplitude transmittance 
and the corresponding OTF 
with and without a particular 
"inverse" apodization. 
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While the term apodization originally meant a tapering of the transmittance through 
the pupil near its edges in order to suppress side-lobes of the point-spread function, over 
time the term has come to be used to describe any introduction of absorption into the 
pupil, whether it lowers or raises the side-lobes. Perhaps a better term for weightings 
that increase the sidelobes of the point-spread function would be "inverse" apodization. 
Figure 6.16 shows the amplitude transmittance through the pupil with and without a 
triangular amplitude weighting that gives extra emphasis to portions of the pupil near 
the edges, and de-emphasizes the importance of the center of the pupil. Also shown 
are cross sections of the OTF with and without this weighting. Note that this type of 
weighting emphasizes the importance of high frequencies relative to low frequencies. 

As a closing remark regarding this subject, note that while the OTF of a system 
with or without apodization always has the value unity at the origin, nonetheless it is 
not true that the amount of light transmitted to the image is the same in the two cases. 
Naturally the introduction of absorbing material in the pupil diminishes the light that 
reaches the image, but the normalization of the OTF suppresses this fact. Note also 
that, unlike the case of aberrations, inverse apodization can raise the value of the OTF 
at certain frequencies, as compared with its unapodized values. 

6.5 
COMPARISON OF COHERENT AND INCOHERENT IMAGING 

As seen in previous sections, the OTF of a diffraction-limited system extends to a fre- 
quency that is twice the cutoff frequency of the amplitude transfer function. It is tempt- 
ing, therefore, to conclude that incoherent illumination will invariably yield "better" 
resolution than coherent illumination, given that the same imaging system is used in 
both cases. As we shall now see, this conclusion is in general not a valid one; a com- 
parison of the two types of illumination is far more complex than such a superficial 
examination would suggest. 

A major flaw in the above argument lies in the direct comparison of the cutoff 
frequencies in the two cases. Actually, the two are not directly comparable, since the 
cutoff of the amplitude transfer function determines the maximum frequency com- 
ponent of the image amplitude while the cutoff of the optical transfer function de- 
termines the maximum frequency component of image intensity. Surely any direct 
comparison of the two systems must be in terms of the same observable quantity, image 
intensity. 

Even when the quantity to be compared is agreed upon, the comparison remains 
a difficult one for an additional fundamental reason: the term better has not been de- 
fined. Thus we have no universal quality criterion upon which to base our conclusions. 
A number of potential criteria might be considered (e.g., least-mean-square difference 
between the object and image intensities), but unfortunately the interaction of a hu- 
man observer is so complex and so little understood that a truly meaningful criterion is 
difficult to specify. 

In the absence of a meaningful quality criterion, we can only examine certain 
limited aspects of the two types of images, realizing that the comparisons so made 
will probably bear little direct relation to overall image quality. Nonetheless, such 
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comparisons are highly instructive, for they point out certain fundamental differences 
between the two types of illumination. 

6.5.1 Frequency Spectrum of the Image Intensity 

One simple attribute of the image intensity which can be compared in the two cases 
is the frequency spectrum. Whereas the incoherent system is linear in intensity, the 
coherent system is highly nonlinear in that quantity. Thus some care must be used in 
finding the spectrum in the latter case. 

In the incoherent case, the image intensity is given by the convolution equation 

On the other hand, in the coherent case, we have 

Let the symbol * represent the autocorrelation integral 

Then we can directly write the frequency spectra of the image intensities in the two 
cases as 

Incoherent: F { l i }  = [ H  * HI [ G g  * Gg]  
Coherent: . F { l i }  = H G ,  * HG,,  

where G, is the spectrum of U, and H  is the amplitude transfer function. 
The general result (6-44) does not lead to the conclusion that one type of illumi- 

nation is better than the other in terms of image frequency content. It does, however, 
illustrate that the frequency content can be quite different in the two cases, and further- 
more it shows that the results of any such comparison will depend strongly on both the 
intensity and phase distributions across the object. 

To emphasize this latter point, we now consider two objects with the same intensity 
transmittance but different phase distributions, one of which can be said to be imaged 
better in coherent light and the other better in incoherent light. For simplicity, we sup- 
pose that the magnification of the system is unity, so that we may work in either the 
object or the image space at will without introducing a normalizing factor. Let the in- 
tensity transmittance of the ideal image in both cases be 

where to make our point we will assume that 

fo being the cutoff frequency of the amplitude transfer function. The amplitude trans- 
mittances of the two objects are taken to be 
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FIGURE 6.17 
Calculation of the spectrum of the image intensity for object A. 

A : tA(t, 7) = COS 2.rrft 
B : t A ( t ,  7) = I cos 2.rrftI. 

Thus the two objects differ only by a periodic phase distribution. 
Figure 6.17 illustrates the various frequency-domain operations that lead to the im- 

age spectrum for object A. In all cases the imaging system is assumed to be diffraction- 
limited. Note that the contrast of the image intensity distribution is poorer for the 
incoherent case than for the coherent case. Thus object A is imaged better in coher- 
ent light than in incoherent light. 

The corresponding comparison for object B requires less detail. The object ampli- 
tude distribution is now periodic with fundamental frequency 2 f .  But since 2f" > f,, 
no variations of image intensity will be present for the coherent case, while the incoher- 
ent system will form the same image it did for object A. Thus for object B, incoherent 
illumination must be termed better than coherent illumination. 

In summary, then, which particular type of illumination is better from the point of 
view of image spectral content depends very strongly on the detailed structure of the 
object, and in particular on its phase distribution. It is not possible to conclude that one 
type of illumination is preferred in all cases. The comparison is in general a complex 
one, although simple cases, such as the one illustrated above, do exist. For a second 
example, the reader is referred to Prob. 6- 10. 
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6.5.2 Two-Point Resolution 

A second possible comparison criterion rests on the ability of the respective systems to 
resolve two closely spaced point sources. The two-point resolution criterion has long 
been used as a quality factor for optical systems, particularly in astronomical applica- 
tions where it has a very real practical significance. 

According to the so-called Rayleigh criterion of resolution, two incoherent point 
sources are "barely resolvedy7 by a diffraction-limited system with a circular pupil when 
the center of the Airy intensity pattern generated by one point source falls exactly on 
the first zero of the Airy pattern generated by the second. The minimum resolvable 
separation of the geometrical images is therefore 

The corresponding result in the nonparaxial case can be shown to be 

A A 
S = 0.61- = 0.61- 

sin 8 N A  

where 8 represents the half-angle subtended by the exit pupil when viewed from the 
image plane, and NA is the numerical aperture of the optical system, defined by 
N A  = sin 8. Figure 6.18 illustrates the intensity distribution in the image of two 
equally bright incoherent point sources separated by the Rayleigh resolution distance. 
The central dip is found to fall about 27% below peak intensity. 

We can now ask whether the two point-source objects, separated by the same 
Rayleigh distance S, would be easier or harder to resolve with coherent illumination 
than with incoherent illumination. This question is academic for astronomical objects, 
but is quite relevant in microscopy, where the illumination is usually closer to coherent 
than incoherent, and where in some cases it is possible to control the coherence of the 
illumination. 

As in the previous examples, the answer to this question is found to depend on the 
phase distribution associated with the object. A cross section of the image intensity can 
be directly written, in normalized image coordinates, as 

FIGURE 6.18 
Image intensity for two equally 
bright incoherent point sources 
separated by the Rayleigh 
resolution distance. The vertical 

UW "i lines show the locations of the two 
-2 - 1 1 2 sources. 
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FIGURE 6.19 
Image intensities for two equally bright coherent point sources 
separated by the Rayleigh resolution distance, with the phase 
difference between the two sources as a parameter. The vertical 
lines show the locations of the two point sources. 

where 4 is the relative phase between the two point sources. Figure 6.19 shows the dis- 
tributions of image intensity for point sources in phase (4 = 0 radians), in quadrature 
(4 = 7~12 radians), and in phase opposition ( 4  = 7~ radians). When the sources are in 
quadrature, the image intensity distribution is identical to that resulting from incoherent 
point sources. When the sources are in phase, the dip in the image intensity is absent, 
and therefore the two points are not as well resolved as with incoherent illumination. 
Finally, when the two objects are in phase opposition, the dip falls all the way to zero 
intensity (a 100% dip) at the point midway between the locations of the two points, so 
the two points must be said to be better resolved with coherent illumination than with 
incoherent illumination. Thus there can again be no generalization as to which type of 
illumination is preferred for two-point resolution. 

6.5.3 Other Effects 

There are certain other miscellaneous properties of images formed with coherent light 
that should be mentioned in any comparison with incoherent images [71]. First, the re- 
sponses of incoherent and coherent systems to sharp edges are notably different. Figure 
6.20 shows the theoretical responses of a system with a circular pupil to a step function 
object, i.e. an object with amplitude transmittance 

Figure 6.21 shows actual photographs of the image of an edge in the two cases. The 
coherent system is seen to exhibit rather pronounced "ringing". This property is anal- 
ogous to the ringing that occurs in video amplifier circuits with transfer functions that 
fall too abruptly with frequency. The coherent system has a transfer function with sharp 
discontinuities, while the falloff of the OTF is much more gradual. Another important 
property of the coherent image is that it crosses the location of the actual edge with 
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Coherent image 

FIGURE 6.20 
Images of a step in coherent and 
incoherent light. 

(a) 

FIGURE 6.21 
Photographs of the image of an edge in (a) coherent and (b) incoherent illumination. [By 
permission of P. S. Considine, Technical Operations, Inc., Burlington, Mass.] 

only 114 of its asymptotic value of intensity, whereas the incoherent image crosses with 
a value of 112 of its asymptotic value. If we were to assume that the actual location 
of the edge is at the position where the intensity reaches half its asymptotic value, we 
would arrive at a correct estimate of the position of the edge in the incoherent case, 
but in the coherent case we would err in the direction of the bright side of the edge. 
This fact can be important, for example, in estimating the widths of lines on integrated 
circuit masks. 

In addition, we must mention the so-called speckle efSect that is readily observed 
with highly coherent illumination. While we shall consider this effect in the context of 
optical imaging, it has also proven to be a problem in certain other nonoptical imaging 
modalities, such as microwave side-looking radar and medical ultrasound imaging. 
Figure 6.22 shows photographs of a transparency object, illuminated through a dif- 
fuser (e.g. a piece of ground glass), taken in coherent light and incoherent light. The 
granular nature of the coherent image is a direct consequence of the complex, random 
perturbation of the wavefront introduced by the diffuser, together with the coherence 
of the light. For background on the speckle effect, see, for example, Refs. [221], [120], 
and [75]. The granularity in the image arises from interference between closely spaced 
and randomly phased scatterers within the diffuser. The size of the individual speckles 
can be shown [263] to be roughly the size of a resolution cell on the image (or object). 
In the case of incoherent illumination, such interference cannot take place, and speckle 
is missing from the image. Thus when a particular object of interest is near the resolution 
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FIGURE 6.22 
(a) Coherent and (b) incoherent images illustrating the speckle effect. (The 
object is a transparency illuminated through a diffuser.) 

limit of an optical system, the speckle effect can be quite bothersome if coherent light 
is used. Much of this problem can be eliminated by moving the diffuser during the 
observation, with the result that the coherence of the illumination is at least partially 
destroyed and the speckles "wash out" during the measurement process. Unfortunately, 
as we will see in a later chapter, motion of the diffuser is not possible in conventional 
holography, which by its very nature is almost always a coherent imaging process, so 
speckle remains a particular problem in holographic imaging. The subject is discussed 
further in that context in Section 9.10.4. 

Finally, highly coherent illumination is particularly sensitive to optical imperfec- 
tions that may exist along a path to the observer. For example, tiny dust particles on a 
lens may lead to very pronounced diffraction patterns that will be superimposed on the 
image. One fundamental reason for the importance of such effects in coherent imaging 
is the so-called "interference gain" that occurs when a weak undesired signal interferes 
with a strong desired signal (see Prob. 6-17). 

A reasonable conclusion from the above discussion would be that one should choose 
incoherent illumination whenever possible, to avoid the artifacts associated with coher- 
ent illumination. However, there are many situations in which incoherent illumination 
simply can not be realized or can not be used for a fundamental reason. These situa- 
tions include high-resolution microscopy, coherent optical information processing, and 
holography. 

6.6 
RESOLUTION BEYOND THE CLASSICAL DIFFRACTION LIMIT 

The diffraction limit to the resolution attainable by an imaging system is generally re- 
garded to be an accurate estimate of the limits that can actually be reached in practice. 
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However, it is of some interest to know that in principle, for a certain class of objects, 
resolution beyond the classical diffraction limit is theoretically possible. As we shall 
show in this section, for the class of spatially bounded objects, in the absence of noise 
it is in principal possible to resolve infinitesimally small object details. Resolution be- 
yond the classical diffraction limit is often referred to as super-resolution or bandwidth 
extrapolation. 

6.6.1 Underlying Mathematical Fundamentals 

There exist very fundamental mathematical reasons why, in the absence of noise and 
for the cited class of objects, resolution beyond the classical diffraction limit should be 
possible. These reasons rest on two basic mathematical principles, which we list here 
as theorems. For proofs of these theorems, see, for example, Ref. [136]. 

Theorem 1. The two-dimensional Fourier transform of a spatially bounded func- 
tion is an analytic function in the ( fx, fy) plane. 

Theorem 2. If an analytic function in the ( fx, fy) plane is known exactly in an 
arbitrarily small (but finite) region of that plane, then the entire function can be found 
(uniquely) by means of analytic continuation. 

Now for any imaging system, whether coherent or incoherent, the image informa- 
tion arises from only a finite portion of the object spectrum (i.e. a portion of the spectrum 
of object amplitude in the coherent case, or a portion of the spectrum of object inten- 
sity in the incoherent case), namely, that portion passed by the transfer function of the 
imaging system. If this finite portion of the object spectrum can be determined exactly 
from the image, then, for a bounded object, the entire object spectrum can be found by 
analytic continuation. If the entire object spectrum can be found, then the exact object 
present can be reconstructed with arbitrary precision. 

6.6.2 Intuitive Explanation of Bandwidth Extrapolation 

A plausibility argument that super-resolution might be possible for a spatially limited 
object can be presented with the help of a simple example. For this example we assume 
that the object illumination is incoherent, and for simplicity we argue in one dimension 
rather than two. Let the object be a cosinusoidal intensity distribution of finite extent, 
with a frequency that exceeds the incoherent cutoff frequency, as illustrated in Fig. 6.23. 
Note that the cosinusoidal intensity necessarily rides on a rectangular background pulse, 
assuring that intensity remains a positive quantity. The finite-length cosine itself can be 
expressed as the following intensity distribution: 

It follows that the (suitably normalized) spectrum of this intensity distribution is 
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as shown in part (b) of the figure, along with the assumed OTF of the imaging system. 
Note that the frequency $ lies beyond the cutoff of the OTF. The critical point to note 
from this figure is that the finite width of the cosinusoid has spread its spectral com- 
ponents into sinc functions, and while the frequency f lies beyond the limits of the 
OTF, nonetheless the tails of the sinc functions centered at fx = +f" extend below the 
cutoff frequency into the observable part of the spectrum. Thus, within the passband of 
the imaging system, there does exist information that originated from the cosinusoidal 
components that lie outside the passband. To achieve super-resolution, it is necessary 
to retrieve these extremely weak components and to utilize them in such a way as to 
recover the signal that gave rise to them. 

6.6.3 An Extrapolation Method Based on the Sampling Theorem 

While the fundamental mathematical principles are most easily stated in terms of 
analytic continuation, there are a variety of specialized procedures that have been ap- 
plied to the problem of bandwidth extrapolation. These include an approach based on 
the sampling theorem in the frequency domain [140], an approach based on prolate 
spheroidal wave-function expansions [15], and an iterative approach suitable for digital 

(a) Object intensity distribution, and 
(b) object spectrum and the OTF. 
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implementation that successively reinforces constraints in the space and space-frequen- 
cy domains [116], [228]. Here we will initially focus on the sampling-theorem approach 
due to its simplicity. 

To make the analysis as simple as possible, we treat only the one-dimensional 
restoration problem. Extension to two dimensions is straightforward. Suppose that a 
one-dimensional incoherent object with intensity distribution Ig(u) is bounded to the 
region (-Ll2, Ll2) on the u axis.9 By the Whittaker-Shannon sampling theorem, the 
object spectrum Gs( f )  can be written in terms of its sample values at frequencies nlL: 

Now, due to the limited passband of the optical system, values of Gg(2) can be 
found only for a few low-integer values of n. We would like, of course, to extend our 
knowledge of the spectrum to larger integer values, say for -N 5 n r N, so that the 
approximation 

would be a satisfactory representation of the image, not only within the passband of the 
imaging system, but also outside that passband over a frequency region of a size that 
depends on how large an N is chosen. The larger N is, the further beyond the classical 
diffraction-limited cutoff frequency we will be able to extend our knowledge of the 
spectrum. 

To determine the sample values outside the observable passband, we measurelo the 
values of Gg( f )  at any 2N + 1 distinct frequencies fk within the passband. The fk in 
general will not coincide with the sampling points nlL. (If some of the Gg(2) lie within 
the observable passband, this makes our job easier, for we can then measure them, 
rather than find them by manipulating measurements of other quantities.) The value 
of the object spectrum measured at frequency fk within the passband is represented by 
es( fk). Thus the measurements at the 2N + 1 separate frequencies within the observable 
passband generate a set of 2N + 1 simultaneous equations of the form 

This is a set of 2N + 1 linear equations in 2N + 1 unknowns, the Gs( fk). 
It is helpful to cast this problem in matrix form. Define a column vector consisting 

of the 2N + 1 unknown values of the G,(nlL) and a column vector 2 consisting of the 
2N + 1 measured values cg( fk). In addition define a (2N + 1) X (2N + 1) matrix D with 
entry sinc [L (fk - ?)I in the kth row and nth column. Then the set of equations (6-49) 

9As usual, I, actually represents the geometrical-optics prediction of the image, or the object geometrically 
projected into the image plane, but we refer to it as the object. 
'OPresumably we know the exact shape of the OTF within the passband, and can compensate for it to deter- 
mine the actual values of G, at each frequency. 
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can be represented by the simple matrix equation 

Our goal is to find the vector 2, from which we can reconstruct a satisfactory extension 
of the spectrum G, beyond the normal cutoff frequency. 

Many methods exist for numerically inverting the set of equations of interest. Sym- 
bolically, we wish to find the inverse of the matrix D, allowing us to express the matrix 
of unknowns g through the equation 

g = D - I '  g. 

It is possible to show that as long as the measurement frequencies fk are distinct, the de- 
terminant of D is nonzero, and therefore the inverse exists. Thus in principle the sample 
values of the object spectrum outside the passband can be determined, and a satisfac- 
tory approximation to the object spectrum can be found beyond the cutoff frequency, 
with the help of the interpolation functions of the sampling theorem. 

Before discussing the practical limitations of this and other techniques for extrap- 
olation, we briefly discuss one other approach to the same problem. 

6.6.4 An Iterative Extrapolation Method 

An iterative method for extrapolation beyond the diffraction limit is especially inter- 
esting because this type of method can be applied to many other important problems 
in optics. The method was applied to the bandwidth extrapolation problem first by 
Gerchberg [I161 and by Papoulis [228]. This method is purely numerical and is readily 
implemented on a digital computer. 

The algorithm is one that iterates between the object domain and the spectral do- 
main, making changes in each domain to reinforce prior knowledge or measured data. 
Figure 6.24 shows a block diagram illustrating the steps in the algorithm. The origi- 
nal object intensity (the relevant quantity if the system is incoherent) is known to be 
space-limited and nonnegative. These are the constraints to be reinforced in the object 
domain. In the spectral domain, we know the object spectrum within the passband of 
the imaging system, for this data was actually measured. This is the constraint that is 
reinforced in the spectral domain. 

Start with the measured image of the object. From a Fourier transform of that im- 
age we can discover that part of the spectrum of the object that lies within the passband 
of the imaging system. With these two pieces of data in hand, we begin the algorithm. 
Due to the finite passband of the imaging system, this image is not space-limited (or 
spatially bounded). We know that the object was space-limited, so we simply truncate 
the image to the spatial bound of the object (i.e. multiply it by a rectangle function of the 
appropriate width). The effect of the spatial truncation is to change the spectrum of the 
new image. In particular, spectral components are introduced outside of the passband 
of the imaging system, and in addition the spectral components within the passband are 
changed. The next step is to change the new spectral components within the passband 
to the old values, which were measured and are regarded as prior data. This changes 
the image again, spreading it beyond the spatial bound. Repeat the spatial bounding 
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process, transform'again, repeat the reinforcement of the known spectral components, 
etc. In this way, the spectral components beyond the diffraction limit are introduced 
and are gradually refined to be consistent with the known information. The algorithm 
terminates when the image and its spectrum are changing by amounts that are smaller 
than some threshold. In the absence of noise, this algorithm can be shown to converge. 

6.6.5 Practical Limitations 

Reinforce 
boundedness 
and 
posltlvlty 

Image 

All methods for extrapolating bandwidth beyond the diffraction limit are known to be 
extremely sensitive to both noise in the measured data and the accuracy of the assumed 
a priori knowledge. See, for example, [252], [104], [52], and [257]. That this should 
be so is not entirely a surprise, for as we discussed previously, the information within 
the passband that arose from frequency components outside the passband is extremely 
weak (see Fig. 6.23). This sensitivity also becomes evident in the method based on the 
sampling theorem when the conditioning of the matrix D is considered. As the spacing 
between the frequencies fk shrinks, as it must as we attempt to estimate more and more 
values of the spectrum on the sampling points outside the observable bandwidth, the 
matrix becomes more and more ill-conditioned, meaning that the solution vector 2 is ul- 
timately dominated by noise. The growth of noise sensitivity is extremely rapid. Based 
on these results, it is generally agreed that the Rayleigh limit to resolution represents a 
practical limit to the resolution that can be achieved with a conventional imaging sys- 
tem. Nonetheless, the ideas behind bandwidth extrapolation are important to be aware 
of and similar methods can be applied to other important problems in optics (see, for 
example, [273]). 

) 

PROBLEMS - CHAPTER 6 

A 
Inverse 
Fourier 
transform 

6-1. The mask shown in Fig. P6.1 is inserted in the exit pupil of an imaging system. Light from 
the small openings interferes to form a fringe in the image plane. 

Fourier 
transform 

1 

Reinforce 
measured 
frequency 
components 

ation algorithm. 

Spectrum FIGURE 6.24 
Block diagram of the iterative extrapol- 
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FIGURE P6.1 

(a) Find the spatial frequency of this fringe in terms of the center-to-center spacing s of 
the two openings, the wavelength A, and the image distance zi. 

(b) The openings are circular and have diameter d. Specify the envelope of the fringe 
pattern caused by the finite openings in the pupil plane. 

6-2. The line-spread function of a two-dimensional imaging system is defined to be the re- 
sponse of that system to a one-dimensional delta function passing through the origin of 
the input plane. 

(a) In the case of a line excitation lying along thex axis, show that the line-spread function 
1 and the point-spread function p  are related by 

m 

where 1 and p  are to be interpreted as amplitudes or intensities, depending on whether 
the system is coherent or incoherent, respectively. 

(b) Show that for a line source oriented along the x axis, the (ID) Fourier transform of 
the line-spread function is equal to a slice through the (2D) Fourier transform of the 
point-spread function, the slice being along the fy  axis. In other words, if F{1) = L 
and F { p }  = P, then L( f )  = P(0, f ). 

(c) Find the relationship between the line-spread function and the step response of the 
system, i.e. the response to a unit step excitation oriented parallel to the x axis. 

6-3. An incoherent imaging system has a square pupil function of width 2w. A square stop of 
width w is placed at the center of the pupil, as shown in Fig. P6.3. 

FIGURE P6.3 
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(a) Sketch cross sections of the optical transfer function with and without the stop present. 

(b) Sketch the limiting form of the optical transfer function as the size of the stop ap- 
proaches the size of the full pupil. 

6-4. An incoherent imaging system has a circular pupil of diameter 2w. A half-plane stop is 
inserted in the pupil, yielding the modified pupil shown in Fig. P6.4. Find expressions for 
the optical transfer function evaluated along the fx and fy axes. 

6-5. An incoherent imaging system has a pupil consisting of an equilateral triangle, as shown 
in Fig. P6.5. Find the OTF of this system along the fx and fy axes in the spatial frequency 
domain. 

+ s - t  FIGURE P6.5 

6-6. Sketch the fx and fy cross sections of the optical transfer function of an incoherent imag- 
ing system having as a pupil function the aperture shown in Fig. P6.6. Be sure to label the 
various cutoff frequencies and center frequencies on these sketches. 
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6-7. Consider a pinhole camera shown in Fig. P6.7. 
Assume that the object is incoherent and nearly monochromatic, the distance z ,  from the 
object is so large that it can be treated as infinite, and the pinhole is circular with diameter 
2w. 

(a) Under the assumption that the pinhole is large enough to allow a purely geometrical- 
optics estimation of the point-spread function, find the optical transfer function of 
this camera. If we define the "cutoff frequency" of the camera to be the frequency 
where the first zero of the OTF occurs, what is the cutoff frequency under the above 
geometrical-optics approximation? (Hint: First find the intensity point-spread func- 
tion, then Fourier transform it. Remember the second approximation above.) 

(b) Again calculate the cutoff frequency, but this time assuming that the pinhole is so 
small that Fraunhofer diffraction by the pinhole governs the shape of the point-spread 
function. 

(c) Considering the two expressions for the cutoff frequency that you have found, can 
you estimate the "optimum" size of the pinhole in terms of the various parameters of 
the system? Optimum in this case means the size that produces the highest possible 
cutoff frequency. 

Object 
Film 

I nl / 

FIGURE P6.7 

6-8. Consider the OTF of Eq. (6-41), as predicted for a system having square pupil and a focus- 
ing error. It is hypothesized that the point-spread function of this system is the convolution 
of the diffraction-limited point-spread function with the point-spread function predicted 
by geometrical optics. Examine the validity of this claim. 

6-9. A quantity of considerable utility in determining the seriousness of the aberrations of an 
optical system is the Strehl definition 27, which is defined as the ratio of the light intensity 
at the maximum of the point-spread function of the system with aberrations to that same 
maximum for that system in the absence of aberrations. (Both maxima are assumed to 
exist on the optical axis.) Prove that 2) is equal to the normalized volume under the optical 
transfer function of the aberrated imaging system; that is, prove 

where the notations "with" and "without" refer to the presence or absence of aberrations, 
respectively. 
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6 FIGURE P6.10 

6-10. An object with a square-wave amplitude transmittance (shown in Fig. P6.10) is imaged by 
a lens with a circular pupil function. The focal length of the lens is 10 cm, the fundamental 
frequency of the square wave is 100 cycles/mm, the object distance is 20 cm, and the 
wavelength is 1 pm.  What is the minimum lens diameter that will yield any variations of 
intensity across the image plane for the cases of 

(a) Coherent object illumination? 

(b) Incoherent object illumination? 

6-11. An object has an intensity transmittance given by 

and introduces a constant, uniform phase delay across the object plane. This object is 
placed at distance 2 f in front of a positive lens of focal length f ,  and the image is examined 
in a plane 2 f behind the lens. Compare the maximum frequencies f transmitted by the 
system for the cases of coherent and incoherent illumination. 

6-12. A sinusoidal amplitude grating with transmittance 

is placed in front of a thin, positive lens (circular with diameter 2w, focal length f )  and 
obliquely illuminated by a monochromatic plane wave traveling at angle 8 to the z axis in 
the (5, Z) plane, as shown in Fig. P6.12. 

(a) What is the Fourier transform of the amplitude distribution transmitted by the object? 

(b) Assuming zi = z ,  = 2 f ,  what is the maximum angle 13 for which any variations of 
intensity will appear in the image plane? 
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(c) Assuming that this maximum angle is used, what is the intensity in the image plane, 
and how does it compare with the corresponding intensity distribution for 0 = O? 

(d) Assuming that the maximum angle 8 is used, what is the maximum grating frequency 
f that will yield variations of intensity in the image plane? How does this frequency 
compare with the cutoff frequency when 0 = O? 

6-13. The F-number of a lens with a circular aperture is defined as the ratio of the focal length to 
the lens diameter. Show that when the object distance is infinite, the cutoff frequency for 
a coherent imaging system using this lens is given by f, = &, where F# represents 
the F-number. 

6-14. The Sparrow resolution criterion states that two equally strong incoherent point sources 
are barely resolved when their separation is the maximum separation for which the image 
of the pair of points shows no dip at the midpoint. This condition can be equivalently stated 
as one for which the curvature of the total intensity at the midpoint between the centers of 
the individual spread functions vanishes. 

(a) Show that, for a spread function that is an even function of u, such a condition occurs 
when the separation (in the u direction) between the centers of the spread functions is 
twice the value of u that satisfies the equation 

where jhI2 is the intensity point-spread function of the system. 

(b) What is the value of the Sparrow separation (in the image space) for a system with 
a square aperture of width 2w, where an edge of the aperture runs parallel to the 
direction of separation of the two sources? 

6-15. Consider the step responses of two different imaging systems, one with a circular aperture 
of diameter 2w and the second with a square aperture of width 2w, with one edge of 
the aperture parallel with the edge of the step. All other aspects of the two systems are 
identical. 

(a) Show that, with coherent illumination, the step responses of the two systems are iden- 
tical. 

(b) Show that, with incoherent illumination, the step responses of the two systems are not 
identical. 

(c) Describe how you would numerically calculate the step responses in both cases. 

6-16. Show that the intensity image of a step-object (edge along the 77 axis) formed by a coherent 
imaging system having a square pupil (width 2w) with edges parallel to and orthogonal 
to the direction of the step can be expressed as 

where Si(z) is defined by 
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and c is a constant. Note: The function Si(z) is a tabulated function and is known to many 
mathematical software packages. 

6-17. Consider the addition of a strong desired field of amplitude A with a weak undesired field 
of amplitude a. You may assume that A >> a. 

(a) Calculate the relative perturbation AZ//A~* to the desired intensity caused by the pres- 
ence of the undesired field when the two fields are mutually coherent. 

(b) Repeat for the case of mutually incoherent fields. 

6-18. Using the definition of mutual intensity, show that any purely monochromatic wave is fully 
coherent spatially, and therefore must be analyzed as a system that is linear in amplitude. 
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Wavefront Modulation 

I t  is clear from the previous chapter that the tools of linear systems and frequency 
analysis are useful in the analysis of optical systems. However, the theory becomes 
much more significant if it can be applied to synthesis problems as well. In order to 
synthesize linear optical systems with desired properties, the ability to manipulate light 
waves is needed. In particular, such an ability is needed to introduce information into an 
optical system, since the information is carried directly by the optical amplitude in the 
case of coherent systems, and by the optical intensity in the case of incoherent systems. 
In addition, for coherent optical information processing systems we require the ability 
to modify and manipulate the complex optical fields transmitted through the focal plane 
of a lens, for through such manipulation we are able to filter the input data in various 
desired ways. 

For the above reasons, in this chapter attention is focused on methods for spa- 
tially modulating optical wavefields, especially coherent fields. The traditional means 
of modulation has been through the use of photographic materials, so we consider the 
properties of such materials in Section 7.1. However, much more powerful optical in- 
formation processing systems can be realized if photographic film is replaced by spatial 
light modulators capable of changing transmitted light in real time in response to op- 
tical or electrical control signals. Many approaches to the construction of spatial light 
modulators have been studied over the years. In Section 7.2 we focus on just a few of 
the most important types of such devices. 

Finally, in Section 7.3 we consider several approaches to constructing optical ele- 
ments that control the complex amplitude of transmitted light in fixed but complicated 
ways, so-called dzffractive optical elements. As their name implies, these elements con- 
trol transmitted light through diffraction rather than refraction. Often a computer is em- 
ployed in the design and construction of these elements, and their properties can be 
much more complicated than those of refractive elements. 
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7.1 
WAVEFRONT MODULATION WITH PHOTOGRAPHIC FILM 

Photographic film is a basic component of optical systems in general and optical in- 
formation processing systems in particular. Film can play three very fundamental roles 
in optics. First, it can serve as a detector of optical radiation, a task it performs re- 
markably efficiently. Second, it can serve as a storage medium for images, capable of 
retaining information for long periods of time. Third, it can serve as a spatial modulator 
of transmitted or reflected light, a role of particular importance in optical information 
processing. All of these functions are achieved at extremely low cost. 

Because of the importance of photographic film in optics and in optical informa- 
tion processing, we devote some time here to discussing its properties. For a more com- 
prehensive treatment of the photographic process, see, for example, Ref. [208]. Other 
useful references include [266] and [22]. 

7.1.1 The Physical Processes of Exposure, Development, and Fixing 

An unexposed photographic film or plate generally consists of a very large number of 
tiny silver halide (often AgBr) grains suspended in a gelatin support, which in turn is 
attached to a firm "base" consisting of acetate or mylar1 for films, and glass for plates. 
The soft emulsion also has a thin layer of a protective overcoating on its exposed surface, 
as illustrated in the cross section shown in Fig. 7.1. In addition, certain sensitizing 
agents are added to the gelatin; these agents have a strong influence on the introduction 
of dislocation centers within the silver halide crystals. Light incident on the emulsion 
initiates a complex physical process that is outlined as follows: 

1. A photon incident on a silver halide grain may or may not be absorbed by that grain. 
If it is absorbed, an electron-hole pair is released within the grain. 

2. The resulting electron is in the conduction band, is mobile within the silver halide 
crystal, and eventually, with some probability, becomes trapped at a crystal disloca- 
tion. 

, Protective layer 

Emulsion Grains 
(gelatin) (AgBr, n=2.236) 
n=1.53 

Base 
(glass, mylar, acetate) 

FIGURE 7.1 
Structure of a photographic film or plate. 

-- 

'Mylar base should be avoided when coherent light is used, due to the fact that it is birefringent and causes 
unwanted variations of the polarization and phase of the transmitted light. 
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3. The trapped electron electrostatically attracts a silver ion; such ions are mobile even 
before exposure by light, a consequence of thermal agitation. 

4. The electron and the silver ion combine to form a single atom of metallic silver at 
the dislocation site. The lifetime of this combination is rather short, of the order of a 
few seconds. 

5. If within the lifetime of this first silver atom, a second silver atom is formed by the 
same process at the same site, a more stable two-atom unit is formed with a lifetime 
of at least several days. 

6. Typically at least two additional silver atoms must be added to the silver speck in 
order for it ultimately to be developable. The existence of a threshold, requiring 
several trapped electrons to activate the development process, is responsible for good 
stability of unexposed film on the shelf. 

The speck of silver formed as above is referred to as a development speck, and the 
collection of development specks present in an exposed emulsion is called the latent 
image. The film is now ready for the development and fixing processes. 

The exposed photographic transparency is immersed in a chemical bath, the devel- 
oper, which acts on silver specks containing more than the threshold number2 of silver 
atoms. For such grains, the developer causes the entire crystal to be entirely reduced 
to metallic silver. The ratio of the number of silver atoms in a developed grain to the 
number of photons that must be absorbed to make the grain developable is typically 
of the order of lo9, a number which is often called the "gain7' of the photographic 
process. 

At this point the processed emulsion consists of two types of grains, those that have 
been turned to silver, and those that did not absorb enough light to form a development 
center. The latter crystals are still silver halide and, without further processing, will 
eventually turn to metallic silver themselves simply through thermal processes. Thus 
in order to assure stability of the image, it is necessary to remove the undeveloped 
silver halide grains, a process calledJixing the emulsion. The transparency is immersed 
in a second chemical bath, which removes the remaining silver halide crystals from the 
emulsion, leaving only the stable metallic silver. 

The processes of exposure, development and fixing are illustrated in Fig. 7.2. 

7.1.2 Definition of Terms 

The field of photography has developed a certain nomenclature that should be mastered 
if the properties of photographic emulsions are to be discussed in any detailed way. At 
this point we introduce the reader to some of these terms. 

Exposure. The energy incident per unit area on a photographic emulsion during 
the exposure process is called the exposure. Represented by the symbol E, it is equal to 
the product of incident intensity Z at each point and the exposure time T, 

'The threshold is actually not a fixed number, but a statistical one. The assumption that the threshold is four 
atoms is an approximation. 
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FIGURE 7.2 
Pictorial representation of 
the photographic process. 
(a) Exposure, (b) latent image, 
(c) after development, and 
(d) after fixing. Only the 

(d) emulsion is shown. 

E(x, y) = q x ,  y)T. 

The units for exposure are m ~ l c m ~ .  Note that the symbol Z is used for intensity incident 
on the film during exposure; we reserve the symbol I to represent intensity incident on 
(or transmitted by) the transparency after development. 

Intensity transmittance. The ratio of intensity transmitted by a developed trans- 
parency to the intensity incident on that transparency, averaged over a region that is 
large compared with a single grain but small compared with the finest structure in the 
original exposure pattern, is called the intensity transmittance. Represented by the sym- 
bol T ,  it is equal to 

I transmitted at (x, y) 
I incident at (x, y) 

Photographic density. In the year 1890, F. Hurter and V.C. Driffield published a 
classic paper in which they showed that the logarithm of the reciprocal of the intensity 
transmittance of a photographic transparency should be proportional to the silver mass 
per unit area of that transparency. They accordingly defined the photographic density 
D as 

The corresponding expression for intensity transmittance in terms of density is 

7 = 10-O. 

Hurter-Dn'fJield curve. The most common description of the photometric proper- 
ties of a photographic emulsion is the Hurter-Driffield curve, or the H&D curve, for 
short. It is a plot of photographic density D vs. the exposure E that gave rise to that den- 
sity. A typical H&D curve is shown in Fig. 7.3 for the case of a photographic negative. 
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\ Gross 
fog 

FIGURE 7.3 
log E The Hurter-Driffield curve for a typical 

emulsion. 

Note the various regions of the H&D curve. When the exposure is below a certain 
level, the density is independent of exposure and equal to a minimum value called gross 
fog. In the toe of the curve, density begins increasing with exposure. There follows a 
region of considerable extent in which the density is linearly proportional to the log- 
arithm of exposure-this is the region most commonly used in ordinary photography. 
The slope of the curve in this linear region is referred to as the gamma of the emulsion 
and is represented by the symbol y. Finally the curve saturates in a region called the 
shouldel; beyond which there is no change of density with increasing exposure. 

A film with a large value of y is called a high-contrast film, while a film with a 
low y is called a low-contrast film. The particular value of y achieved in any case is 
influenced by three major factors: (1) the type of emulsion in question (for example, 
Plus-X and Tri-X are low contrast films, with gammas of 1 or less, while High Contrast 
Copy has a gamma of 2 or 3); (2) the particular developer used; and (3) the development 
time. Figure 7.4 illustrates a typical dependence of y on development time. With a 
judicious choice of film, developer, and development time, it is possible to achieve a 
prescribed value of y with a fair degree of accuracy. 

5 10 15 20 The dependence of film gamma on 
Development time (minutes) development time. 



CHAPTER 7 Wavefront Modulation 177 

7.1.3 Film in an Incoherent Optical System 

In many of its uses, film may be regarded as an element that maps an intensity dis- 
tribution Z incident during exposure into an intensity distribution I transmitted after 
development. Such a point-of-view is particularly appropriate when film is used as an 
element of an incoherent optical system. We consider now the detailed nature of the 
mapping so defined. 

Assuming that the film is used in the linear region of the H&D curve, the density 
D may be written 

where y n  is the slope of the linear region of the curve, and -Do is the value of D where 
a straight-line approximation would meet the D axis were there no toe. The subscript n 
on y is used to indicate that we are dealing with a negative transparency. 

The intensity incident during exposure can be related to the intensity transmitted 
after development by recalling the definition of photographic density, 

When this definition is substituted into Eq. (7-I), we find 

or equivalently 

Finally, 

Tn = KnZ-Yn 

where K, is a positive constant. Note that the intensity mapping defined by this relation 
is a highly nonlinear one for any positive value of y,. 

It is also possible to achieve a positive power-law relation between intensity trans- 
mittance and intensity incident during exposure, although to do so generally requires 
a two-step photographic process. During the first step, the negative transparency is 
made in the usual fashion. During the second step, the light transmitted by the neg- 
ative transparency is used to expose a second emulsion, and the result is a final positive 
transparency. To understand this process more quantitatively, let the transmittance of 
the first transparency be written, from (7-2), 

If this transparency is placed in contact with a second unexposed emulsion and illu- 
minated with intensity lo, then the intensity incident on the second emulsion is simply 
Tn lo, and the resulting intensity transmittance becomes 

rp = Kn2 (IOTn)-Yn2 = K I - Y ~ ~ K - Y ~ ~ P ~ I Y ~ Z  
n 2 O  n l  

or equivalently 
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where Kp is a positive constant and by convention y ,  = - y,, y,2 is a negative num- 
ber, making the overall exponent - y p  a positive number. From this result we can see 
that again the general relation between intensity incident during exposure and intensity 
transmitted after development is a nonlinear one, but in the specific case of an overall 
gamma equal to unity, the process becomes a linear one. 

While a linear mapping of intensity incident during exposure into intensity trans- 
mittance after development has been seen to occur only under very special conditions, 
nonetheless film can be shown to provide a linear mapping of incremental changes of 
intensity under a much wider class of conditions. For further development of this point, 
the reader is referred to Prob. 7- 1. 

7.1.4 Film in a Coherent Optical System 

When film is used as an element of a coherent optical system, it is more appropriately 
regarded as providing either (1) a mapping of intensity incident during exposure into 
complex field transmitted after development, or (2) a mapping of complex amplitude 
incident during exposure into complex amplitude transmitted after development. The 
second viewpoint can be used, of course, only when the light that exposes the trans- 
parency is itself coherent, and must incorporate the fact that all phase information about 
the incident complex wavefield is lost upon detection. Only when interferometric de- 
tection is used can phase information be captured, and such detection systems will be 
seen to benefit from the first viewpoint, rather than the second. 

Since the complex amplitude of the transmitted light is, from both viewpoints, the 
important quantity in a coherent system, it is necessary to describe a transparency in 
terms of its complex amplitude transmittance t~ [187]. It is most tempting to define 
t~ simply as the positive square root of the intensity transmittance 7. However, such a 
definition neglects the relative phase shifts that can occur as the light passes through 
the film [152]. Such phase shifts arise as a consequence of variations of the film or 
plate thickness, which can originate in two distinct ways. First, there are generally 
random thickness variations across the base of the film, i.e. the base is not optically 
flat. Second, the thickness of the emulsion is often found to vary with the density of the 
silver in the developed transparency. This latter variation is strongly dependent on the 
exposure variations to which the film has been subjected. Thus a complete description 
of the amplitude transmittance of the film must be written 

where +(x, y) describes the pattern of phase shifts introduced by the transparency. 
In most applications, the thickness variations are entirely undesired, for they cannot 

easily be controlled. It is possible to remove the effects of these variations by means of 
a device called a liquid gate. Such a device consists of two pieces of glass, each ground 
and polished to be optically flat on one side, between which the transparency and an 
index matching fluid (often oil) can be sandwiched, as illustrated in Fig. 7.5. The flat 
surfaces of the glass are, of course, facing the outside, and the index of refraction of the 
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Index matching // fluid 

FIGURE 7.5 
A liquid gate for removing film 
thickness variations. The thickness 
variations are greatly exaggerated. 

fluid must be chosen as a compromise, for it is impossible to match simultaneously the 
different indices of the base, the emulsion, and the glass. However, with a proper choice 
of fluid, the optical path length through the liquid gate can be made nearly constant, 
allowing the amplitude transmittance of the film and gate to be written 

~A(x ,  Y )  = J m .  (7-5) 

When the phase shifts have been removed, a combination of Eqs. (7-9 ,  (7-2), and 
(7-3) allows the amplitude transmittance to be expressed as 

tA(x.y) = KI-Y'~ = K I u I - ~ ,  (7-6) 

where U is the complex amplitude of the field incident during exposure, K is a constant, 
and y is a positive number for a negative transparency and a negative number for a 
positive transparency. 

As will be seen in many of the examples to be discussed in later sections, it is 
often desirable to have film act as a square-law mapping of complex amplitude. Such 
behavior can be achieved in a number of ways, one of which is to make a positive 
transparency with an overall gamma of -2, as can be seen from (7-6). In order to obtain 
a maximum dynamic range of exposure over which this relation holds, the first gamma 
of the two-step process is often chosen less than unity (for example 1/2), while the 
second gamma is chosen greater than 2 (for example 4), such that their product remains 
equal to 2. 

It is possible, however, to obtain square-law action over a limited dynamic range 
with a transparency of any gamma, be it a positive or a negative. This point is most 
easily seen by abandoning the traditional H&D curve description of film and making 
instead a direct plot of amplitude transmittance vs. exposure (on a linear scale). Such a 
description was advocated at an early stage by Markha1 and was very successfully used 
by Kozma [176] in an analysis of the effects of photographic nonlinearities. Figure 7.6 
shows a plot of amplitude transmittance vs. exposure (the tA-E curve) for a typical 
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FIGURE 7.6 
Typical amplitude transmittance vs. exposure 

E curve. 

negative transparency. If the film is "biased" to an operating point that lies within the 
region of maximum linearity of this curve, then over a certain dynamic range the film 
will provide a square-law mapping of incremental changes in incident amplitude into 
incremental changes of amplitude transmittance. Thus if Eb represents the bias expo- 
sure and tb the corresponding bias amplitude transmittance, we may represent the tA-E 
curve within its region of linearity by 

where /3 is the slope of the curve at the bias point, AU represents the incremental 
amplitude changes, and P '  is the product of and the exposure time. Note that /3 and 
p ' are negative numbers for a negative transparency. 

In general, a high-gamma film has a steeper slope to its tA-E curve than does a low- 
gamma film and therefore is more efficient in transferring small changes of exposure 
into changes of amplitude transmittance. However, this increased efficiency is often ac- 
companied by a smaller dynamic range of exposure over which the tA-E curve remains 
linear. As an additional point of interest, the bias point at which maximum dynamic 
range is obtained is found to lie in the toe of the H&D curve. 

Before closing this section we note that when thin gratings are recorded by interfer- 
ence in a photographic emulsion, as is often the case in the construction of spatial filters 
and in recording holograms, it may often be desirable to achieve the highest possible 
diffraction efficiency, rather than the widest possible dynamic range. It can be shown 
(see [266], p. 7) that, for small modulations, the maximum diffraction efficiency for a 
thin sinusoidal grating recorded photographically will occur for a recording made in 
the region where the magnitude of the slope a, of the t~ vs. logE curve of the emulsion 
is maximum. This curve is yet another description of the properties of photographic 
emulsions that is relevant in some applications. 

7.1.5 The Modulation Transfer Function 

To this point we have tacitly assumed that any variations of exposure, however fine on 
a spatial scale, will be transferred into corresponding variations of silver density ac- 
cording to the prescription implied by the H&D curve. In practice, one finds that when 
the spatial scale of exposure variations is too small, the changes of density induced may 
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be far smaller than would be implied by the H&D curve. We can say in very general 
terms that each given type of film has a limited spatial frequency response. 

The spatial frequency response of an emulsion is limited by two separate phenom- 
ena: 

1. Light scattering within the emulsion during exposure. 
2. Chemical diffusion during the development process. 

Both of these phenomena are linear ones, although the physical quantities with respect 
to which they are linear are different. Light scattering is linear in the variable exposure, 
while chemical diffusion is linear in the variable density. It might be hoped that the lin- 
ear phenomena that limit spatial frequency response could be separated from the highly 
nonlinear behavior inherent in the H&D curve. This in fact can be done by regarding 
the photographic process as a cascade of several separate mappings, as illustrated in 
Fig. 7.7. The first operation in this cascade is a linear, invariant filter representing the 
effects of light scattering and the resulting spread or blur of the exposure pattern E. 
The output of this filter, E', then passes through the H&D curve, which is regarded 
as a zero-spread nonlinearity, analogous to the zero-memory nonlinearities often en- 
countered in the analysis of communications systems. The output of the H&D curve 
is a density D', which is itself subjected to linear spreading and blur by the chemical 
diffusion process to produce a final density D. This model is often referred to as the 
"Kelley model", after D.H. Kelley who originated it. Often the model is simplified to 
include only a single linear filter that precedes the nonlinear H&D curve, thus ignoring 
the linear filter associated with diffusion. 

The effects of the linear filters are, of course, to limit the spatial frequency response 
of the emulsion. If the model is simplified to one with a single linear filter preceding 

Optical 
scattering 

(a) 

Chemical 
diffusion 

E 

-2-{-p-FF Linear 

FIGURE 7.7 
The Kelley model of the photographic process. (a) Full model; 
(b) simplified model. 

D - Linear H&D 
E' D' 

Linear 
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the nonlinear mapping (Fig. 7.7(b)), then it is of some interest to find the transfer func- 
tion of the filtering operation, usually referred to as the modulation transfer function 
(MTF) of the photographic process. To measure the characteristics of the linear filter, a 
cosinusoidal exposure pattern 

E = Eo + El cos 2 7 ~  f x (7-8) 

can be applied (such a pattern is easily generated by interference of two mutually co- 
herent plane waves on the emulsion). The "modulation" associated with the exposure is 
defined as the ratio of the peak variation of exposure to the background exposure level, 
or 

If the variations of density in the resulting transparency are measured, they can be 
referred back to the exposure domain through the H&D curve (assumed known) to 
yield an inferred or "effective" cosinusoidal exposure pattern, as indicated in Fig. 7.8. 
The modulation Meff  of the effective exposure distribution will always be less than the 
modulation Mi of the true exposure distribution. Accordingly the modulation transfer 
function of the film is defined as 

where the dependence on the spatial frequency f of the exposure has been emphasized. 
In most cases encountered in practice, the form of the point-spread function of the scat- 

I Known H&D curve 

, log E 
(Inferred) 
effective 
logarithmic FIGURE 7.8 
exposure Measurement of the MTF by 

, projecting back through the 
I , H&D curve. 



CHAPTER 7 Wavefront Modulation 183 
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FIGURE 7.9 
P Typical measured MTF curve. 

tering process (approximately Gaussian) is circularly symmetric and there are no phase 
shifts associated with the transfer function. The effective exposure distribution applied 
to the nonlinear portion of the film mapping may therefore be written 

E' = Eo + M( f )El cos 2~ f x. (7- 10) 

Figure 7.9 illustrates the typical measured frequency dependence of the MTF of an 
emulsion, plotted vs. radial spatial frequency p. The small hump rising above unity at 
low frequencies is caused by chemical diffusion (the final linear filtering box in our 
model, which was ignored in the procedure for measuring the MTF) and is referred to 
as arising from the adjacency efSect. 

The range of frequencies over which significant frequency response is obtained 
varies widely from emulsion to emulsion, depending on grain size, emulsion thickness, 
and other factors. By way of illustration, Plus-X film has a significant response to about 
50 line-pairs (cycles)lmm, while for Kodak 649F spectroscopic plate it extends to be- 
yond 2000 line-pairslmm. 

7.1.6 Bleaching of Photographic Emulsions 

Conventional photographic emulsions modulate light primarily through absorption 
caused by the metallic silver present in the transparency. As a consequence, significant 
amounts of light are lost when an optical wave passes through such a spatial modulator. 
In many applications it is desired to have a more efficient modulator, one that can 
operate primarily through phase modulation rather than absorption. Such structures 
can be realized with photographic materials, provided they are subjected to chemical 
bleaching. 

The bleaching process is one that removes metallic silver from the emulsion and 
leaves in its place either an emulsion thickness variation or a refractive index variation 
within the emulsion. The chemical processes that lead to these two different phenomena 
are in general different. A thickness variation results when a so-called tanning bleach 
is used, while a refractive index modulation occurs when a nontanning bleach is used. 
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FIGURE 7.10 
A relief image produced by a tanning bleach. (a) Original density 
image. (b) Relief image after bleaching. 

Considering first the tanning bleach, the chemical agents used in this type of 
bleach release certain chemical byproducts as they remove the metallic silver, and 
these byproducts cause a cross-linking of the gelatin molecules within the emulsion 
in regions where the silver concentration was high. As the transparency is dried, the 
hardened areas shrink less than do the unhardened areas, with the result that a relief 
image is formed, with the thickest regions of the emulsion being where the density 
was highest, and the thinnest regions where the density was lowest. Figure 7.10 illus- 
trates the phenomenon for the case of a square-wave density pattern. This phenomenon 
is found to depend strongly on the spatial frequency content of the density pattern, 
and to act as a bandpass filter, with no relief induced at very low spatial frequencies 
and at very high spatial frequencies. For a 15-pm-thick emulsion, the peak thickness 
variations are found to occur at a spatial frequency of about 10 cycles/mm, with a 
maximum relief height in the 1- to 2 -pm range. Using such a bleach it is possible, 
for example, to make an approximately sinusoidal relief grating, which will exhibit 
diffraction efficiencies typical of sinusoidal phase gratings, considerably higher than 
those of sinusoidal amplitude gratings. 

Nontanning bleaches, on the other hand, produce internal refractive index changes 
within the emulsion, rather than relief images. For such bleaches, the metallic silver 
within the developed transparency is changed back by the chemical bleach to a trans- 
parent silver halide crystal, with a refractive index considerably larger than that of the 
surrounding gelatin. In addition, the bleach must remove the sensitizing agents found 
in unexposed silver halide crystals to prevent them from turning to metallic silver due 
to thermal effects and additional exposure to light. The resulting refractive index struc- 
tures constitute a pure phase image. The spatial frequency response of this kind of 
bleached transparency is not a bandpass response, but rather is similar to that of the 
original silver image. Very high-frequency phase structures can be recorded using this 
method. Phase shifts of the order of 27.r radians can be induced in a wavefront passing 
through the bleached emulsion, although this number obviously depends on the emul- 
sion thickness. 

7.2 
SPATIAL LIGHT MODULATORS 

The technology of photographic emulsions has a long history and is extremely well de- 
veloped. However, such materials have one distinct disadvantage when image or signal 
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processing is of concern, namely the long time delays required for chemical processing. 
In the event that the data to be processed is originally in photographic form, this may 
not pose a significant problem. However, if information is being rapidly gathered, per- 
haps by some electronic means, one would prefer a more direct interface between the 
electronic information and the data processing system. For this reason those working 
in the field of optical information processing have explored a large number of devices 
capable of converting data in electronic form (or sometimes in incoherent optical form) 
into spatially modulated coherent optical signals. Such a device is called a spatial light 
modulatol; a term that is abbreviated by SLM. 

There is a broad categorization of SLMs into two classes that can be made at the 
start: (1) electrically written SLMs and (2) optically written SLMs. In the former case, 
electrical signals representing the information to be input to the system (perhaps in 
raster format) directly drive a device in such a way as to control its spatial distribution 
of absorption or phase shift. In the latter case, the information may be input to the 
SLM in the form of an optical image at the start (for example from a CRT display), 
rather than in electrical form. In this case the function of the SLM may be, for example, 
to convert an incoherent image into a coherent image for subsequent processing by a 
coherent optical system. Often a given SLM technology may have two different forms, 
one suitable for electrical addressing and one suitable for optical addressing. 

Optically addressed SLMs have several key properties besides their fast temporal 
response that are very useful for optical processing systems. First, they can convert in- 
coherent images into coherent images, as alluded to above. Second, they can provide 
image amplification: a weak incoherent image input to an optically addressed SLM can 
be read out with an intense coherent source. Third, they can provide wavelength con- 
version: e.g. an incoherent image in the infrared could be used to control the amplitude 
transmittance of a device in the visible. 

SLMs are used not only to input data to be processed, but also to create spatial 
filters that can be modified in real time. In such a case the SLM is placed in the back 
focal plane of a Fourier transforming lens, where it modifies the transmitted amplitude 
of the fields in accord with a desired complex spatial filter. 

Over the history of optical information processing, a great many different SLM 
technologies have been explored. Books have been written on this subject (see, for 
example, [91]). For a review article covering the properties of more types of SLMs 
than will be discussed here, the reader may wish to consult Ref. [220] and its associ- 
ated references. In addition, a series of meeting proceedings on the subject provides 
valuable information [88], [89], [90]. Here we limit ourselves to presenting the barest 
outlines of the principles of operation of what are currently regarded as the most im- 
portant SLM technologies. These include (1) liquid crystal SLMs, (2) magneto-optic 
SLMs, (3) deformable mirror SLMs, (4) multiple-quantum-well (MQW) SLMs, and 
(5) acousto-optic Bragg cells. 

7.2.1 Properties of Liquid Crystals 

The use of liquid crystals in low-cost displays is commonplace. Examples include watch 
displays and screens for laptop computers. In such applications voltages applied to 
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pixelated electrodes cause a change in the intensity of the light transmitted by or re- 
flected from the display. Similar principles can be used to construct a spatial light mod- 
ulator for input to an optical information processing system. 

Background on the optics of liquid crystals can be found in [253], Sections 6.5 and 
18.3. For an additional reference that covers liquid crystal displays in detail, the reader 
can consult [159]. See also Ref. [91], Chapters 1 and 2. 

Mechanical properties of liquid crystals 
Liquid crystal materials are interesting from a physical point-of-view because they 

share some of the properties of both solids and liquids. The molecules composing such 
materials can be visualized as ellipsoids, with a single long axis about which there is 
circular symmetry in any transverse plane. These ellipsoidal molecules can stack next 
to one another in various ways, with different geometrical configurations defining dif- 
ferent general types of liquid crystals. Adjacent molecules are not rigidly bound to one 
another, and can rotate or slide with respect to one another under the application of 
mechanical or electrical forces, thus exhibiting some of the properties of a liquid. How- 
ever, there are constraints on the geometrical organization of collections of molecules, 
and these constraints introduce some properties normally associated with solids. 

There are three different general classes (or phases) of liquid crystals that are of 
general interest in optics: (1) nematic, (2) smectic, and (3) cholesteric. The classes 
are differentiated by the different molecular orders or organizational constraints, as il- 
lustrated in Fig. 7.11. For nematic liquid crystals (NLC), the molecules throughout the 
entire volume of the material favor a parallel orientation, with randomly located centers 
within that volume. For smectic liquid crystals, the molecules again favor parallel align- 
ment, but their centers lie in parallel layers, with randomness of location only within a 
layer. Finally, a cholesteric liquid crystal is a distorted form of a smectic liquid crys- 
tal in which, from layer to layer, the alignment of molecules undergoes helical rotation 
about an axis. Spatial light modulators are based primarily on nematic liquid crystals 
and on a special class of smectic liquid crystals (the so-called smectic-C* phase) called 
ferroelectric liquid crystals (FLC), so our discussions will focus on these types pri- 
marily. 

FIGURE 7.11 
Molecular arrangements for different types of liquid crystals. (a) Nematic liquid 
crystal, (b) smectic liquid crystal, and (c) cholesteric liquid crystal. The layers in 
(b) and (c) have been separated for clarity. 
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t FIGURE 7.12 
Molecular arrangements in a twisted 
nematic liquid crystal. The lines between 
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of molecular alignment at various depths 
within the cell. Only a small column of 
molecules is shown. 

It is possible to impose boundary conditions on the alignment of nematic liquid 
crystal molecules contained between two glass plates by polishing soft alignment lay- 
ers coated on those plates with strokes in the desired alignment direction. The small 
scratches associated with the polishing operation establish a preferred direction of align- 
ment for the molecules that are in contact with the plate, with their long direction par- 
allel with the scratches. If the two alignment layers are polished in different directions 
(for example, in orthogonal directions), then the tendency of the molecules to remain 
aligned with one another (characteristic of the nematic liquid crystal phase) and the 
alignment of the molecules with the direction of polish at the glass plates combine to 
create a twisted nematic liquid crystal, as illustrated in Fig. 7.12. Thus as we move be- 
tween the two plates, the directions of the long axes of the various molecules remain 
parallel to one another in planes parallel to the glass plates, but gradually rotate between 
those planes to match the boundary conditions at the alignment layers. 

The structure of ferroelectric liquid crystals is more complex. Since they are of the 
smectic type, their molecules are arranged in layers. Within a given layer, the molecules 
are aligned in the same direction. For smectic-C* materials, the angle of the molecules 
within a single layer is constrained to lie at a specific declination angle with respect 
to the layer normal, and thus there is a cone of possible orientations for any given layer. 
Figure 7.13 illustrates the structure of the surface stabilized FLC for large cell thickness. 
The directions of orientation between layers form a helical spiral. 

FIGURE 7.13 
Ferroelectric liquid crystal (a) smectic-C* layered structure, and (b) 
allowed molecular orientations. 
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FIGURE 7.14 
Structure of an electrically controlled liquid 

W crystal cell. 

The angular directions of the two layers at the interfaces with the glass plates can 
be stabilized by aligned polishing3 [64]. In practice, the cells are made sufficiently 
thin (typically only a very few microns of thickness) to eliminate the possibility that 
different layers will be in different allowed states. 

Electrical properties of liquid crystals 
Both displays and SLMs exploit the ability to change the transmittance of a liquid 

crystal by means of applied electric fields. Usually those fields are applied between the 
glass plates that contain the liquid crystal material using transparent conductive layers 
(indium tin oxide films) coated on the inside of the glass plates. In order to achieve 
alignment of the liquid crystal at the interface, the conductive layer is covered with a 
thin alignment layer (often polyimide) which is subjected to polishing, as shown in Fig. 
7.14. 

The application of an electric field across such a device can induce an electric dipole 
in each liquid crystal molecule, and can interact with any permanent electric dipoles that 
may be present. If, as is usually the case, the dielectric constant of a molecule is larger 
in the direction of the long axis of the molecule than normal to that axis, the induced 
dipoles have charge at opposite ends of the long direction of the molecule. Under the 
influence of the applied fields, the torques exerted on these dipoles can cause the liquid 
crystal molecules to change their natural spatial orientation. 

For nematic liquid crystals, which do not have the extra constraints of smectic 
and cholesteric materials, a sufficiently large applied voltage will cause the molecules 
that are not in close proximity to the alignment layers to rotate freely and to align 
their long axes with the applied field. Thus the arrangement of the molecules within 
the twisted nematic liquid crystal cell shown previously in Fig. 7.12 will change under 
sufficient applied field to the arrangement shown in Fig. 7.15, in which the vast majority 

'The liquid crystal cell is filled with material at an elevated temperature, where the phase of the liquid crystal 
is smectic-A. Such a phase has no tilt angle, and therefore the molecules align with their long direction 
parallel to the alignment grooves. When the material cools, it is transformed to the smectic-C* state, which 
has the tilt mentioned above. 
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Direction of Electric Field 

FIGURE 7.15 
Twisted nematic liquid crystal with a voltage 
applied. Only a small column of molecules 
is shown. 

of the molecules have their long axis aligned with the field, i.e. pointing in a direction 
normal to the glass plates. As we shall discuss shortly, the change in the orientation of 
the molecules changes the optical properties of the cell as well. To avoid permanent 
chemical changes to the NLC material, cells of this type are driven by AC voltages, 
typically with frequencies in the range of 1 kHz to 10 kHz and with voltages of the 
order of 5 volts. Note that because the dipole moment of a nematic liquid crystal is an 
induced moment rather than a permanent moment, the direction of the moment reverses 
when the applied field reverses in polarity. Thus the direction of the torque exerted by 
the field on the molecules is independent of the polarity of the applied voltage, and they 
align in the same direction with respect to the applied field, regardless of polarity. 

In the case of the ferroelectric liquid crystal cell, the molecules can be shown to 
have a permanent electric dipole (with an orientation normal to the long dimension 
of the molecules), which enhances their interaction with the applied fields, and leads 
to only two allowable orientation states, one for each possible direction of the applied 
field. Figure 7.16 shows the molecules oriented at angle +Or to the surface normal for 
one direction of the applied field and -Or to the surface normal for the other direction 
of applied field. Because of the permanent dipole moment of the FLC molecules, the 
current state is retained by the material even after the applied field is removed. The FLC 
cell is thus bistable and has memory. It is because of the permanent dipole moment that 

FIGURE 7.16 
Ferroelectric liquid crystal molecules align in one of two allowed directions, 
depending on the direction of the field. The angles of orientation in the two 
states are separated by 28,. 
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the direction of the applied field matters. Unlike the case of nematic liquid crystals, DC 
fields of opposite polarity must be applied to the ferroelectric liquid crystal in order to 
switch between states. 

Liquid crystals have high resistivity and therefore act primarily as an electrical 
dielectric material. The electrical response of a liquid crystal cell is predominantly that 
of a simple RC circuit, where the resistance arises from the finite resistivity of the 
transparent electrodes and the capacitance is that of a parallel plate capacitor (the NLC 
cell is typically 5 to 10 p m  thick). For sufficiently small cells, or sufficiently small 
pixels on a large array, the electrical time constant is small by comparison with the 
time constant associated with the mechanical rotation of the molecules. Typical time 
constants for NLC materials are approximately 100 p s  for the molecules to align with 
an applied field, and 20 ms for the molecules to relax back to their original state. The 
permanent dipole moment of the FLC materials makes them considerably faster; cell 
thicknesses are typically in the 1- to 2-pm range, applied voltages are typically in the 
5- to 10-volt range, and switching times of the order of 50 ,us. In some cases even 
submicrosecond response times are observed [65]. 

Optical properties of nematic and ferroelectric liquid crystals 
A quantitative understanding of the behavior of SLMs based on liquid crystals, as 

well as many other types of SLMs that operate by means of polarization effects, requires 
the use of a mathematical formalism known as the Jones calculus. This formalism is 
outlined in Appendix C, to which the reader is referred. The state of polarization of a 
monochromatic wave with X and Y components of polarization expressed in terms of 
complex phasors Ux and Uy is represented by apolarization vector fi with components 
Ux and U y ,  

The passage of light through a linear polarization-sensitive device is described by a 2 X 2 
Jones matrix, such that the new polarization vector c' is related to the old polarization 
vector through the matrix equation 

f i r  = ~ f i  = [ I l l  1121fi. 
121 122 

If we can characterize a given device by specifying its Jones matrix, we will then be 
able to understand completely the effect of that device on the state of polarization of an 
incident wave. 

The elongated structure of liquid crystal molecules causes such materials to be 
anisotropic in their optical behavior, and in particular to exhibit birefringence, or to 
have different refractive indices for light polarized in different directions. The most 
common materials have larger refractive indices for optical polarization parallel to the 
long axis of the crystal (the extraordinary refractive index, n,), and smaller uniform 
refractive index for all polarization directions normal to the long axis (the ordinary 
refractive index, no). One of the highly useful properties of these materials is the very 
large difference between the extraordinary and ordinary refractive indices they exhibit, 
often in the range of 0.2 or more. 
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It can be shown (see [253], pp. 228-230) that for a twisted nematic liquid crystal 
with no voltage applied, having a helical twist of a radians per meter in the right-hand 
sense along the direction of wave propagation and introducing a relative retardation 
p radians per meter between the extraordinary and ordinary polarization components, 
a wave polarized initially in the direction of the long molecular axis at the entrance 
surface of the cell will undergo polarization rotation as the light propagates through the 
cell, with the direction of polarization closely tracking the direction of the long crystal 
axis, provided only that P >> a. The Jones matrix describing such a transformation 
can be shown to be the product of a coordinate rotation matrix Lmtate(-ad) and a wave 
Etarder Lretard(P d), 

where the coordinate rotation matrix is given by 

cosad - s inad 
Lotate(-ad) = s inad cosad 1 ' 

and the retardation matrix is (neglecting constant phase multipliers) 

where p is given by 

Here A, is the vacuum wavelength of light and d is the cell thickness. With the help of 
this Jones matrix, the effects of the twisted nematic cell with no voltage applied can be 
found for any initial state of polarization. 

When voltage is applied to an NLC cell along the direction of wave propagation, 
the molecules rotate so that the long axis coincides with that direction, and no polariza- 
tion rotation occurs. Under this condition both a and P go to zero, and the cell has no 
effect on the incident polarization state. Thus an NLC can be used as a changeable po- 
larization rotator, with rotation experienced in the unexcited state (no voltage applied) 
by an amount determined by the orientation of the alignment layers on the two glass 
plates as well as the thickness of the cell, and no rotation experienced in the excited 
state (voltage applied). 

To consider the case of an FLC cell, a bit of further background is needed. When a 
liquid crystal cell of thickness d has all of its molecules tilted such that the long dimen- 
sion of the molecule lies in the (x, y) plane, but tilted at angle +Of to the y (vertical) 
axis, the effects of the cell on incident light can be represented by a Jones matrix that 
is the sequence of a coordinate rotation with angle Or, which aligns the direction of the 
y axis with the long axis of the molecules, a retardation matrix representing the phase 
shift experienced by polarization components oriented parallel to the long and short 
axes of the liquid crystal molecule, followed by a second rotation matrix with angle 
-O,, which returns the y axis to its original orientation at angle -8, to the long axis of 
the molecule. Taking account of the proper ordering of the matrix product, 
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cos6, -  sin^,] [l 0 ] [ cos6, sine, 
= [sine, cos 0, 0 d B d  - sine, cos R, 1 ' (7- 17) 

where p is again given by Eq. (7- 16). 
The Jones matrix for such an FLC cell has two possible forms, one for each direction 

of the applied field. When the applied field switches the direction of alignment so that 
the long molecular axis is at angle +Ot to the y axis, then from Eq. (7-17) the Jones 
matrix is of the form 

whereas for the field in the opposite direction we have 

A case of special interest is that of a cell thickness d such that the retardation satis- 
fies pd = T (i.e. the cell is a half-wave plate). The reader is asked to verify (see Prob. 
7-3) that the two Jones matrices above can be reduced to the forms 

cos 28, sin 20t 
L+ = [sin 26, - cos 28, 1 

= [ cos 28, - sin 28, 
- sin 26, - cos 26, 1 - 

Furthermore, when the input to the FLC cell is a linearly polarized wave with polariza- 
tion vector inclined at angle +8, to they axis, the output polarization vectors in the two 
respective cases are found to be 

sin Ot 

-. - sin 38, 
ul- = [- cos , 1 .  

Finally we note that, if the tilt angle of the liquid crystal is 22.5', the two vectors above 
are orthogonal, aside from a sign change indicating a 180' phase shift. Thus for this 
particular tilt angle, a wave with linear polarization coincident with the long molecular 
axis in one state of the device is rotated by 90" when the device is switched to the 
opposite state. Such a device is therefore a 90" rotator for this particular direction of 
input polarization. 

Liquid crystal cells are often used to construct intensity modulators, and indeed 
such modulation is important for several different types of SLMs. Consider first the 
case of nematic liquid crystals. If the NLC cell has a polarizer on its front surface and 
a polarization analyzer on its rear surface, it can modulate the intensity of the light it 
transmits. For example, in the case of a 90" twist illustrated previously in Fig. 7.12, 
with a polarizer oriented parallel to the front-surface alignment and an analyzer oriented 
parallel to the rear-surface alignment, light will pass through the exit analyzer when no 
voltage is applied to the cell (a consequence of rotation), but will be blocked due to the 
absence of rotation when the full extinction voltage is applied to the cell. If less than the 
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FIGURE 7.17 
Direction of Direction of Intensity modulation with a reflective 

polish polish NLC cell. 

full extinction voltage is applied, then over a certain range of voltage, partial intensity 
transmission will occur, with a limited dynamic range of analog operation. Similarly, 
an FLC can act as a 90" polarization rotator (as explained above) and therefore can act 
as a binary intensity modulator. 

It is also possible to make a reflection modulator using a liquid crystal cell, as 
illustrated in Fig. 7.17. For NLC materials, an untwisted cell is simplest. Consider a cell 
with the long molecular axis (the "slow" axis) aligned parallel to the y axis throughout 
the cell. Let the thickness of the cell be chosen to assure a 90" relative retardation of 
polarization components oriented along and orthogonal to the slow axis after one pass 
through the cell (i.e. the cell is a quarter-wave plate). The output glass plate on the cell 
is replaced by a mirror, and a polarizer oriented at 45" to the x axis is inserted at the 
front of the cell. 

The operation of this cell can be understood intuitively as follows. The light inci- 
dent on the cell is linearly polarized at +45" to the x axis due to the presence of the 
polarizer. When no voltage is applied across the cell, there is no molecular rotation. 
After the first passage through the cell, the incident linear polarization has been con- 
verted to circular polarization. Reflection from the mirror reverses the sense of circular 
polarization, and a second pass back through the quarter-wave plate results in a linear 
polarization that is orthogonal to the original polarization. Thus the reflected light is 
blocked by the polarizer. 

On the other hand, in the presence of a sufficiently large applied voltage, the long 
axes of the molecules all rotate to alignment with the direction of the applied field, which 
coincides with the direction of propagation of the wave, eliminating the birefringence 
of the cell. The direction of linear polarization is therefore maintained after passage 
through the cell, is unchanged after reflection from the mirror, and is unchanged after 
the second passage through the cell. The reflected light is therefore transmitted by the 
polarizer. 

Application of a voltage that is less than that required to fully rotate the molecules 
will result in partial transmission of the reflected light. 

In a similar fashion, it is possible to show that an FLC cell with tilt angle 22.5" 
will act as a binary reflection intensity modulator if the input polarizer is aligned along 
one of the long molecular orientation axes and the cell thickness is chosen to realize a 
quarter-wave plate. 

This completes the background on liquid crystal cells, and we now turn attention 
to specific spatial light modulators based on these materials. 
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7.2.2 Spatial Light Modulators Based on Liquid Crystals 

Of the SLM technologies that have been explored over a period of many years, the liquid 
crystal devices have survived the longest and remain important devices in practice. 
There are many variants of these devices, some using nematic liquid crystals, and others 
using ferroelectric liquid crystals. We present a brief overview of the most important 
types. 

The Hughes liquid crystal light valve 
The most widely used liquid crystal SLM in optical information processing is the 

Hughes liquid crystal light valve. Unlike the devices discussed in the previous sec- 
tions, which had their states changed by application of an electric field, this device is 
written optically, rather than electrically. However, optical writing results in the estab- 
lishment of certain internal electric fields, and therefore the functioning of this device 
can be understood based on the previous background. A complete description of this 
rather complex device can be found in Ref. [133]. Our description will be somewhat 
simplified. 

A diagram of the structure of the device is shown in Fig. 7.18. The device can be 
written with incoherent or coherent light of any state of polarization, and it is read with 
polarized coherent light. A polarizer and analyzer are external to the device, as will be 
discussed. To understand the operation of the device, we begin with the "write" side 
shown on the right of Fig. 7.18. 

Let an optical image be cast on the right-hand entrance of the device, which can 
consist of a glass plate or, for better preservation of resolution, a fiber-optic faceplate. 
The light passes through a transparent conducting electrode and is detected by a pho- 
toconductor, which in the most common version of the device is cadmium sulfide (CdS). 

electrode 

Spacer 

FIGURE 7.18 
Hughes liquid crystal SLM. 
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FIGURE 7.19 
Electrical model for the optically written SLM. RpS and CpS are the 

'LC resistance and capacitance of the photosensor, CDM is the capacitance 
of the dielectric mirror, and RLC and CLC are the resistance and 

- - capacitance of the liquid crystal layer. 

The photoconductor should have the highest possible resistivity in the absence of write 
light, and the lowest possible resistivity in the presence of strong write light. Thus light 
absorbed by the photoconductor increases its local electrical conductivity in proportion 
to the incident optical intensity. To the left of the photoconductor is a light-blocking 
layer composed of cadmium telluride (CdTe), which optically isolates the write side of 
the device from the read side. An audio frequency AC voltage, with an rms voltage in 
the 5- to 10-volt range, is applied across the-electrodes of the device. 

On the read side of the device, an optically flat glass faceplate is followed to the 
right by a transparent conducting electrode, to the right of which is a thin NLC cell 
with alignment layers on both sides. The alignment layers are oriented at 45" to one 
another, so that with no applied voltage the liquid crystal molecules undergo a 45" twist. 
Following the liquid crystal is a dielectric mirror which reflects incident read light back 
through the device a second time. The dielectric mirror also prevents DC currents from 
flowing through the device, which extends its lifetime. 

From the electrical point-of-view, it is the rms AC voltage applied across the liquid 
crystal layer that determines the optical state of the read side of the device. A simpli- 
fied electrical model [14] for the device is shown in Fig. 7.19. In the off state (no write 
light applied), the two resistances are sufficiently largethat they can be neglected, and 
the values of the capacitances of the photosensor and the dielectric stack must be suf- 
ficiently small (i.e. their impedances at the drive frequency must be sufficiently high) 
compared with the capacitance of the liquid crystal layer that the rms voltage across 
the liquid crystal layer is too small to cause the molecules to depart from their original 
twisted state. In the on state, ideally there is no voltage drop across the photosensor, and 
the fraction of the applied rms voltage appearing across the liquid crystal must be large 
enough to cause significant rotation of the molecules. The capacitances involved can be 
controlled in the design of the device, through appropriate choice of layer thicknesses, 
to satisfy these  requirement^.^ 

Figure 7.20 illustrates the write and read operations. The liquid crystal layer is 
operated in a so-called "hybrid-field-effect" mode, which is explained as follows. The 
polarization of the incident read light is chosen to be in a direction parallel to the long 

41n the real device, operation is complicated by the fact that the photosensor and the light-blocking layer 
together form an electrical diode with asymmetric I - V properties. 
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FIGURE 7.20 
Readout of the Hughes liquid crystal SLM with (a) no write light present, and (b) write light present. 

axis of the aligned liquid-crystal molecules at the left-hand alignment layer. Thus as 
light passes through the liquid crystal layer, the direction of polarization follows the 
twisted direction of the liquid crystal molecules, arriving at the dielectric mirror with a 
45" polarization rotation. After reflection, the light propagates back through the liquid 
crystal a second time, with the direction of polarization again following the alignment 
of the molecules, thus returning to its original state. A polarization analyzer oriented 
at 90" to the direction of incident polarization then blocks the reflected light, yielding 
a uniformly dark output image when there is no write light. If write light is applied to 
the device, a spatially varying AC electric field is established across the liquid crystal 
layer, and the long axis of the liquid crystal molecules begins to tilt away from the plane 
of the electrode. If the electric field were strong enough to fully rotate the molecules, 
then the birefringence of the material would vanish, the device would not change the 
direction of polarization, and again the reflected light would be completely blocked by 
the output analyzer. However, the fields are not sufficient to fully rotate the molecules, 
and hence they only partially tip away from the transverse plane, with an amount of tip 
that is proportional to the strength of the field (and therefore the strength of the write 
image). The partially tipped molecules retain some birefringent effect, and therefore 
the linearly polarized input light is transformed into elliptically polarized light, with a 
degree of ellipticity that depends on the strength of the applied field. The elliptically 
polarized field has a component that is parallel to the direction of the output analyzer, 
and therefore some of the reflected light passes that analyzer. 

Contrast ratios of the order of 100 : 1 can be achieved with this device, and its 
resolution is several tens of line pairs per mm. The write time is of the order of 10 msec 
and the erase time about 15 msec. Due to the optically flat faceplate on the read side, 
the wavefront exiting the device is of good optical quality and the device is therefore 
suitable for use within a coherent optical data processing system. The nonmonotonic 
dependence of reflectance on applied voltage (both no voltage and a very high voltage 
result in the analyzer blocking all or most of the light) allows the device to be operated 
in several different linear and nonlinear modes, depending on that voltage. 
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Liquid crystal TV displays 
The use of liquid crystal displays in small, light-weight portable televisions is wide- 

spread, and the technology of such displays has advanced rapidly in recent years. While 
displays of this type are not made for use in coherent light, nonetheless they can be 
adapted for use in a coherent optical system [132]. 

TV displays of this type are, of course, electrically addressed, and they display on 
the order of 100 to 200 pixels in both the horizontal and vertical dimensions. They are 
made from nematic liquid crystals, usually with either a 90" or a 270" twist. To use 
them in a coherent optical processing system, it is first necessary to remove polarizers 
attached to the display, and to remove any attached diffusing screen. In general the 
quality of the liquid crystal displays manufactured for projection TV are superior to 
those used in small TV sets. 

Displays of this kind have not been manufactured with attention to their optical flat- 
ness, since the TV display application does not require it. As a consequence their optical 
quality is not outstanding, and they are useful mainly for rudimentary demonstrations, 
rather than as the basis for a system of very high performance. Their most important 
attribute is their extremely low cost, as compared with other SLM technologies. 

Ferroelectric liquid crystal spatial light modulators 
Ferroelectric liquid crystals provide the basis for several different approaches to the 

construction of spatial light modulators. SLMs based on these materials are inherently 
binary in nature, but gray scales can be created with the help of half-tone techniques. 
Both optically addressed and electrically addressed FLC SLMs have been reported. An 
excellent reference can be found in [91], Chapter 6. 

Optically addressed FLC SLMs embody some of the same principles used in the 
Hughes liquid crystal light valve, but they also have some significant differences. Their 
general structure is similar to that of Fig. 7.18, but different materials are used and 
different conditions must be satisfied. Unlike NLC based devices, the FLC device must 
operate by reversal of the direction of the electric field across the liquid crystal layer. A 
different photoconductor, hydrogenated amorphous silicon, which has a faster response 
time than CdS, has been used. These devices are driven with audio-frequency square 
waves. The layer thicknesses (and therefore the capacitances in Fig. 7.19) are chosen 
so that the voltages appearing across the liquid crystal layer always remain sufficiently 
negative or sufficiently positive (depending on whether write light is or is not present) 
to drive the FLC material into its appropriate state. The tilt angles of the FLC molecules 
are again 45" apart and the FLC layer thickness is chosen for quarter-wave retardation, 
appropriate for a reflective modulator operating by polarization rotation. 

Unlike the optically addressed SLMs, electrically addressed FLC SLMs are dis- 
crete pixelated devices, i.e. they display sampled images rather than continuous images. 
The FLC SLM is a pixelated version of the FLC intensity modulator described in a 
previous section. Particularly interesting SLMs can be realized when silicon is used as 
the substrate on which the pixelated cells are fabricated. Pixelated metallic electrodes 
can be deposited on the silicon surface, and will also serve as mirror surfaces. These 
electrodes can be matrix addressed on the chip. A variety of electronic devices can 
also be integrated in the silicon substrate. For example, drive electronics and various 
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electronic logic functions can be associated with each pixel of the device. Such an ap- 
proach is often referred to as providing "smart pixels" [ 1571. FLC-on-silicon electrically 
driven light modulators with as many as 256 X 256 pixels have been reported [206]. 
This technology remains in a stage of rapid development. 

7.2.3 Magneto-Optic Spatial Light Modulators 

The SLMs discussed up to this point operate by means of the electrooptic effect, with 
polarization rotation being induced by a changing electric field across the device. We 
turn attention now to a different type of device, one that operates by means of polar- 
ization rotation under the application of a magnetic field, or the Faraday effect. For an 
alternative reference, see [9 11, Chapter 7. 

SLMs of this type were developed by Litton [248] under the name "Light-Mod and 
for some time were marketed by Semetex Corporation under the name "Sight-Mod". 
We shall use the abbreviation "MOSLM" here, standing for Magneto-Optic Spatial 
Light Modulator. 

The MOSLM device consists of a two-dimensional array of magneto-optic ele- 
ments in the form of individually isolated mesas on an epitaxially grown magnetic gar- 
net film, mounted on a transparent nonmagnetic backing substrate. The garnet mesas 
are largely transparent to light, but when fully magnetized, they rotate the polarization 
of incident light as a consequence of the Faraday effect. The direction of rotation de- 
pends on the direction of magnetization of a mesa. When the magnetization direction 
coincides with the direction of propagation of the light, linearly polarized light will be 
rotated in a right-hand screw sense, by an angle +Of that depends on the thickness of 
the garnet film, and when the magnetization is opposite to the direction of propagation, 
the rotation of polarization is by angle --Of. Thus, like the FLC SLMs, the MOSLM is 
a binary device with memory.5 

The magnetization directions of the pixels are controlled by a combination of an 
external magnetic field, supplied by a bias coil, and a magnetic field introduced at the 
corner of each pixel by means of row and column metallic electrodes. Figure 7.21 illus- 

FIGURE 7.21 
MOSLM device with bias coil and row- 
column address lines. 

5There also exists a third, intermediate state of magnetization, in which the pixel consists of a multitude of 
small randomly oriented domains. This state is usually not used. 
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trates the geometry. Surrounding the pixelated garnet film is a bias coil which can be 
driven with current in either of two directions, thereby establishing a strong magnetic 
field in either of two directions, i.e. either parallel to the direction of light propagation, or 
anti-parallel to that direction. In addition, a row-column matrix of metallic conductors is 
deposited by photolithographic techniques such that a row electrode and a column elec- 
trode pass over one another at the comer of each pixel. The row and column electrodes 
are separated in the vertical direction by an insulating film. 

To change the state of an individual pixel, the following sequence of operations 
must take place. First, the bias coil must be driven with current such that it establishes 
a strong magnetic field in the direction of the desired magnetization. Second, current 
pulses must be injected into the row and column electrodes that intersect at the pixel 
of interest, with the direction of those currents being such as to establish a small mag- 
netic field which nucleates a magnetic domain with magnetization in the desired di- 
rection at the comer of the pixel. While all the pixels in the selected row and column 
experience some magnetic field from the current pulses, only where the two electrodes 
overlap is the magnetic field strong enough to nucleate a change of state of the pixel. 
With the arrival of the nucleating field, a change of state of magnetization is initiated 
at the comer of the pixel. The presence of the strong bias field causes this change to 
propagate at high speed across the entire pixel, thus changing the magnetization state 
of that mesa. 

Pixels are written one at a time. Note that if two pixels must be changed to states of 
magnetization that are opposite from one another, two write cycles must be used, with 
a reversal of the current in the bias coil taking place between changes. 

Quantitative analysis of the MOSLM device is aided by use of Jones matrices. 
It can be shown that the origin of Faraday rotation lies in different refractive indices 
experienced by the left-hand and right-hand circularly polarized components of a prop- 
agating wave (see [134], pp. 590-596). For the magnetic field oriented in one direction, 
the left-hand circularly polarized component experiences nl and the right-hand circu- 
larly polarized component experiences n2, whereas, when the direction of the magnetic 
field reverses, the refractive indices also reverse. From this fact it can be shown (see 
Prob. 7-5) that, aside from a phase factor that is common to both, the Jones matrices for 
the two directions of the magnetic field are simply rotation matrices, 

cosOf -sinof 
L+ = [ sin0 cosOf 

cos Of sin Of L- = [ 
I 

-sinof cosOf 

where for a film of thickness d, the rotation angle is given by 

The Faraday rotation angle Of is in general quite small and therefore the total 
amount of polarization rotation that takes place between states of the device is much 
less than 90'. As a consequence, to use the device as an intensity modulator, the output 
polarization analyzer should be oriented orthogonal to the direction of polarization of 
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the light in one of the two states of rotation. One state of the device will then be entirely 
off, and the other will be partially on. When light polarized along the y axis is used 
for illumination and the analyzer is oriented at angle + O f  to the x axis, the intensity 
transmission of the pixel in the "off" state is zero and in the "on" state can be shown to 
be 

where q p  is the combined efficiency of the polarizer-analyzer combination, d is the 
film thickness (pm), a is the loss per p m  of film thickness, and /3 is the rotation per 
p m  of film thickness ( p d  = 0 f). The Faraday rotation angle O f  thus increases with 
the thickness of the garnet film, but at the same time the attenuation of the device, due 
to absorption, also increases with that thickness. Therefore for any given film there is 
an optimum thickness that maximizes the intensity transmission in the "on" state. 

Typical parameters for spatial light modulators of this type operating at 633-nm 
wavelength are [80] [220]: 

Array sizes from 128 X 128 pixels to 256 X 256 pixels 
Faraday rotation parameter P as high as 1.46" per p m  
Absorption coefficient a of 0.086 pm-'  
Film thickness of 6 p m  
Optical efficiency in the "on" state of a few percent 
Frame rate of approximately 1 kHz. 

This technology is relatively mature, but improvements, including the construction of 
high-performance reflective devices, are still taking place [247]. 

7.2.4 Deformable Mirror Spatial Light Modulators 

A variety of devices have been reported that use electrostatically induced mechanical 
deformation to modulate a reflected light wave. Such devices are usually referred to as 
"deformable mirror devices", or DMDs. The most advanced SLMs of this type have 
been developed by Texas Instruments, Inc. Early devices utilized continuous mem- 
branes which deformed under the fields exerted by pixelated driving electrodes. These 
SLMs gradually evolved into deformable mirror devices, in which discrete cantilevered 
mirrors were individually addressed via voltages set on floating MOS (metal oxide 
semiconductor) sources, the entire device being integrated on silicon. The most recent 
versions have used mirror elements with two points of support, which twist under the 
application of an applied field. An excellent discussion of all of these approaches is 
found in [147]. 

Figure 7.22 shows the structures for a membrane device and for a cantilever beam 
device. For the membrane device, a metallized polymer membrane is stretched over a 
spacer grid, the spacers forming an air gap between the membrane and the underlying 
address electrodes. A negative bias voltage is applied to the metallized membrane. 
When a positive voltage is applied to the address electrode under the membrane, it 
deflects downward under the influence of the electrostatic forces. When the address 
voltage is removed, the membrane moves upward to its original position. In this way a 
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FIGURE 7.22 
Deformable mirror pixel structures 
for (a) a membrane SLM and (b) a 
cantilever beam SLM. 

phase modulation is introduced, but that phase modulation can be converted to an in- 
tensity modulation by appropriate optics following the mirror (cf. Probs. 8-2 and 8-3). 

For the cantilever beam device, the structure is quite different. The metallized 
beam, which is biased to a negative voltage, is attached to a spacer post through a 
thin metal hinge. When the underlying address electrode is activated with a positive 
voltage, the cantilever rotates downward, although not far enough to touch the address 
electrode. An incident optical beam is thus deflected by the tilted pixel, and will not 
be collected by an optical system that follows. In this way an intensity modulation is 
induced at each pixel. 

The most advanced DMD structures are based on a geometry related to that of the 
cantilever beam, but instead use a torsion beam which is connected at two points rather 
than through a single metal hinge. Figure 7.23 shows a top view of the metallized pixel. 
As shown in part (a) of the figure, the torsion rod connects the mirror to supports at the 
ends of one diagonal. Again the mirror is metallized and connected to a negative bias 
voltage. 

As shown in part (b) of the figure, two address electrodes exist for each such pixel, 
one on either side of the rotation axis. When one address electrode is activated with 
a positive voltage, the mirror twists in one direction, and when the other electrode is 
activateq, the mirror twists in the opposite direction. Under each mirror element are two 
landing glectrodes, held at the bias voltage, so that when the mirror tip twists so far as to 
hit the utderlying landing electrode, there is no electrical discharge. The light incident 
on each Bixel is deflected in either of two directions by the mirror when it is activated, 
and is nqt deflected when it is not activated. The device can be operated in either an 
analog mode, in which twist is a continuous function of applied address voltage, or in 
a digital mode, in which the device has either two stable states or three stable states, 
depending on the bias voltage applied [147]. 
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Torsion beam DMD: (a) Top view, and 
(b) (b) side view. 

A major advantage of this type of SLM technology is that it is silicon-based and 
compatible with the use of CMOS (complementary metal oxide silicon) drivers on 
the same substrate used for the SLM pixels. Both line-addressed DMDs and frame- 
addressed DMDs have been reported in sizes 128 X 128 and above. Devices of this 
type with as many as 1152 x 2048 pixels have been reported for use as high-definition 
TV (HDTV) displays. A second advantage is the ability of the device to operate at any 
optical wavelength where good mirrors can be fabricated in integrated form. 

Measurements of the electrical and optical properties of this type of DMD have 
been reported in the literature [278]. Maximum deflection angles approaching 10' are 
measured with applied voltages of about 16 volts. Deflection times of about 28 psec 
were measured for an individual pixel, but this number depends on pixel size and can 
be shorter for smaller pixels. The resonant frequency of a pixel was found to be of the 
order of 10 kHz. 

7.2.5 Multiple Quantum Well Spatial Light Modulators 

The use of molecular beam epitaxy to fabricate sophisticated electronic and opto- 
electronic devices consisting of large numbers of extremely thin layers of different 
semiconductor materials has led to new approaches to the construction of spatial light 
modulators. A typical material system for such structures would involve alternating 
layers of GaAs and AlGaAs with thicknesses of the order of 10 nm. The small thickness 
of these layers, known as quantum wells, results in certain quantum-mechanical effects, 
in particular new absorption peaks associated with structures known as excitons. Such 
structures consist of an electron-hole pair for which the electron and hole are normally 
separated by a distance that is larger than the thickness of a single layer, but which are 
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FIGURE 7.24 
Shift of the exciton resonance in a multiple quantum well p-i-n diode. (a) Circuit 
schematic, and (b) absorption spectra at various applied voltages. 

brought closer together by the constraints imposed by the thin layers of the device. The 
structure introduces constraints on the movement of the excitons (known as "quantum 
confinement") and the emergence of sharp absorption peaks that would not normally be 
observed in structures with thicker layers. Structures of this type are usually referred to 
as multiple quantum well (MQW) structures. For a survey of the use of such structures 
in spatial light modulators, see [91], Chapter 5. 

A further consequence of quantum confinement is a dependence of the spectral lo- 
cation of the absorption peak on an electric field applied normal to the quantum wells in 
the structure, which is explained by a mechanism known as the quantum confined Stark 
effect (QCSE) [214]. When an electric field is applied across the structure, the exciton 
resonances move to lower photon energies, or to longer wavelengths. As a consequence, 
if an MQW device is illuminated by light with a properly chosen wavelength, the ap- 
plication of an applied field to the device can change the absorption experienced by that 
light as it passes through the structure, an effect that can serve as the basis for realizing 
an optical intensity modulator6 [303]. Any method for modulating the intensity of light 
is also a candidate technology for the construction of a spatial light modulator. Figure 
7.24 illustrates typical absorption curves for a quantum well p-i-n diode [212]. Note 
the shift of the absorption peak as the applied voltage increases, as well as the gradual 
reduction in the strength of that peak. Note also that a source having wavelength 850 
nm, as indicated by the vertical dashed line, will experience decreasing absorption as 
the voltage is increased. 

Modulators of the type above can be fabricated in modest size arrays and addressed 
electrically to produce a discrete, pixelated SLM. The size of an individual active pix- 
els can be in the range of 10 p m  to 100 p m  on a side. Modest contrast ratios can be 
achieved (e.g. 3 : 1 on to off). The speeds of the modulators can be quite fast, depend- 
ing on the size of the pixels and their related capacitance, with modulation bandwidths 

6The electroabsorption effect (i.e. the change of absorption with an applied electric field) in MQW devices 
is approximately 50 times greater than the same effect in bulk GaAs. 
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of tens of GHz having been demonstrated in waveguide devices. The inclusion of a 
dielectric mirror stack on the back of the device, made during the same molecular beam 
epitaxy (MBE) process used for the rest of the device, leads to a double pass of light 
through the device and improvement of onloff contrast. Devices of this kind can also 
be made within a Fabry-Perot Ctalon structure, yielding even better contrast at the price 
of narrower optical bandwidth. Other approaches to MQW SLM construction are also 
possible (cf. [12], [92], and [30]). 

The self-electro-optic effect device 
The MQW modulator arrays discussed above are electrically addressed. It is also 

possible to utilize the optical absorption and current generation associated with back- 
biased p-i-n structures to create pixelated arrays of devices that can have their states 
changed by the application of optical signals. The most common type of such a device is 
known as the self-electro-optic effect device (the SEED). As will be seen, such devices 
typically exhibit bistability. 

The simplest SEED structure is actually that shown in Fig. 7.24(a), which is known 
as the resistor-biased SEED, or R-SEED. In this case the diode structure is used simul- 
taneously as a detector and a modulator. Suppose that initially there is no light incident 
on the diode, and as a result there is no current flowing in the circuit. In such a case, 
all of the applied voltage must appear across the MQW device, and none across the 
resistor. As Fig. 7.24(b) indicates, when the full voltage exists across the device, the 
absorption is low but still significant. If light at a wavelength indicated by the dashed 
line is now incident on the device, some of it will be absorbed, and the back-biased 
diode, acting as a photodetector, will generate current. That current will cause a por- 
tion of the applied voltage to appear across the resistor, and less of the voltage to fall 
across the diode. Referring again to Fig. 7.24(b), less voltage across the diode results 
in higher absorption by the device, more current generation, and an even lower voltage 
across the diode. This positive feedback action results in the MQW modulator switch- 
ing to its highest possible absorption under the application of light to the device (i.e. its 
"absorptive" state). If the incident optical power is now decreased, the current will de- 
crease, the voltage across the diode increases, the absorption drops, and again a positive 
feedback mechanism switches the device back to its "transparent" initial state. 

The action of the R-SEED described above does not lead to a very useful device in 
itself. Each pixel that is written with light becomes maximally absorbing, thereby trans- 
mitting little or no light, and each pixel that is not written by light remains maximally 
transparent. More complex structures are needed to produce a useful SLM. 

A wide variety of different SEED structures have been conceived of. We will ex- 
plain the operation of one more of these structures, the symmetric SEED, or S-SEED, 
even though it is primarily of interest for digital logic rather than analog processing. A 
typical transmissive S-SEED structure is shown in Fig. 7.25. In this case, two MQW 
diodes are integrated into a single pixel and electrically interconnected with one another, 
as shown. The device pair operates with a complementary set of inputs and produces a 
complementary set of outputs. It is the ratio of the intensities in the two complementary 
light beams that carries the information of interest. 

Suppose that initially, in the absence of light, the voltage V is equally divided across 
the two diodes. Imagine now that a complementary pair of beams is applied to the inputs 
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FIGURE 7.25 
Symmetric SEED or S-SEED. 

of the two diodes, with bright on top and dark on the bottom. The top diode will absorb 
light, generate current, and the voltage will drop across that diode and rise across the 
lower diode, which was not illuminated. A rise in voltage across the lower diode makes 
it less absorptive, which means that its voltage will rise further, while at the same time 
a drop in voltage across the upper diode will make it more absorptive, generate more 
current, and so forth. Thus the diode pair switches into a stable state in which the top 
diode is maximally absorptive and the bottom diode is maximally transmissive. 

If the beams applied to the diode pair had been the complement of that assumed, 
i.e. had been dark on top and bright on the bottom, the device pair would have gone 
to a complementary state, namely maximally absorptive on the bottom and maximally 
transmissive on the top. Thus the two stable states of the device are represented by the 
two possible combinations of transmissions for the top and bottom diodes. 

Once the state of the device has been set by the applied optical beams, it is 
possible to read out that state nondestructively and pass it on to a subsequent S-SEED 
pair. Let the diodes in the pair be illuminated by a pair of equally bright read-out 
spots. Since the illuminations on the two diodes are equal, there is no imbalance that 
would cause the diode pair to change its state. Thus the pair of beams transmitted by 
the diode pair will carry with it the state of the device, but with a brightness inversion 
compared with the pair of beams that set the state of the diode pair. 

In practice, S-SEED arrays are made with reflective devices such that the beams 
traverse a given device twice, with the result that the contrast between the two beams is 
increased. Arrays with as many as 5 12 X 256 S-SEED pairs have been made by AT&T. 

Research continues at a rapid pace on this technology. One new device type is the 
FET-SEED, in which field effect transistor (FET) devices are integrated with the diode 
detector/modulators, allowing logic of considerable complexity to be performed elec- 
trically on the chip at each pixel [192], another example of "smart pixel" technology. 
An additional development of considerable interest is the report of arrays of SEED de- 
vices that are not bistable and can operate as analog modulators, suitable for continuous 
gray-scale SLMs [2 1 31. 

7.2.6 Acousto-Optic Spatial Light Modulators 

The SLMs considered in the above sections are capable of modulating a two-dimen- 
sional wavefront, either in a continuous fashion or with a discrete two-dimensional 
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FIGURE 7.26 
Acousto-optic cells operating in the (a) Raman-Nath regime 
and the (b) Bragg regime. 

array of elements. We turn now to an SLM technology that is most commonly one- 
dimensional, but which has been developed over a period of many years into a highly 
mature technology. This approach to wavefront modulation uses the interaction of a 
column of traveling acoustic waves with an incident coherent optical beam to modulate 
the properties of the transmitted optical wavefront. For alternative references that treat 
acousto-optic interactions and their applications in coherent optical systems, see, for 
example, [17 I], [2 11, and [293]. 

Figure 7.26 illustrates two versions of acousto-optic SLMs, each operating in a 
different physical regime. In both cases, the acousto-optic cell consists of a transpar- 
ent medium (e.g. a liquid or a transparent crystal) into which acoustic waves can be 
launched by a piezoelectric transducer. The transducer is driven by an RF voltage source 
and launches a compressional wave (or, in some cases, a shear wave) into the acoustic 
medium. The acoustic wave propagates in the medium through small local displace- 
ments of molecules (strain). Associated with these strains are small changes of the local 
refractive index, a phenomenon known as the acousto-optic or the photo-elastic effect. 
The driving voltage has an RF spectrum that is centered at some center frequency f, 
with a bandwidth B about that center frequency. 

A CW drive voltage 
For a perfectly sinusoidal drive voltage of frequency f, (i.e. a CW voltage), the 

transducer launches a sinusoidal traveling acoustic wave in the cell, which moves with 
the acoustic velocity V characteristic of the medium. This traveling wave induces a 
moving sinusoidal phase grating with period A = Vlf,, and interacts with the incident 
optical wavefront to produce various diffraction orders (cf. Section 4.4). However, there 
are two different regimes within which the acousto-optic interaction exhibits different 
properties, the Raman-Nath regime and the Bragg regime. 

In the Raman-Nath regime, which is typically encountered for center frequencies 
in the range of several tens of MHz in cells that use liquid as the acoustic medium, 
the moving grating acts as a thin phase sinsusoidal grating exactly as described in the 
example of Section 4.4, with the one exception that, as a consequence of the grating mo- 
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tion through the cell, the various diffraction orders emerge from the cell with different 
optical frequencies. If the cell is illuminated normal to the direction of acoustic wave 
propagation, as shown in Fig. 7.26(a), the zero-order component remains centered at 
frequency v, of the incident light, but higher-order components suffer frequency trans- 
lations, which can be interpreted as Doppler shifts due to the motion of the grating. 
Since the period of the grating is A, the qth diffraction order leaves the cell with angle 
eq with respect to the incident wave, where 

h 
sin 8, = q-, 

A 

h being the optical wavelength within the acousto-optic medium. The optical frequency 
of the qth diffraction order can be determined from the Doppler-shift relation 

vq = v, 1 + - sin eq = v, + q f,. ( 3 
Thus the optical frequency of the qth diffraction order is translated by q times the RF 
frequency, where q can be a positive or a negative number. q is a positive integer for 
diffraction orders with components of direction parallel to the direction of motion of the 
acoustic wave (i.e. downwards in Fig. 7.26), and negative for diffraction orders with 
components of direction opposite to that of the motion of the acoustic wave (i.e. upwards 
in Fig. 7.26). As for any thin sinusoidal phase grating, the intensities associated with 
the various diffraction orders are proportional to the squares of the Bessel functions of 
the first kind, J,Z(A&), where A& is the peak-to-peak phase modulation, as shown in 
Fig. 4.13. 

For RF frequencies in the hundreds of MHz to the GHz range, and in acoustic media 
consisting of crystals, the thickness of the acousto-optic column compared with the 
acoustic wavelength introduces a preferential weighting for certain diffraction orders, 
and suppresses others. This effect is known as the Bragg efect and will be discussed at 
greater length in Chapter 9. For the moment it suffices to point out that in this regime the 
dominant diffraction orders are the zero order and a single first order. Strong diffraction 
into a first diffraction order occurs only when the angle of the incident beam, with 
respect to plane of the acoustic wavefronts, has the particular value O B  satisfying 

(cf. Fig. 7.26(b)), where again A is the optical wavelength within the acoustic medium. 
An angle satisfying the above relation is known as a Bragg angle. Equivalently, if is 
the wave vector of the incident optical wave ( ~ b l  = 2 d A )  and k is the wave vector of 
the acoustic wave ( [e l  = 27~/A), then 

1 % 1  sin tlB = 2-. 
2141 

The frequency of the first-order diffracted component is v, + f, for the geometry shown 
in Fig. 7.26(b). The strength of the first-order component can be far greater than in the 
Raman-Nath regime, as discussed in more detail in Chapter 9. 
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FIGURE 7.27 
yave vector diagram for Bragg interaclion. - -44  

K k, = ki + K k; is the incident optical wave vector, kl is 
the optical wave vector of the component 
diffracted into the first diffraction order, and 

is the acoustical wave vector. 

An aid for visualizing the relations between the optical and acoustical wave vectors 
is a wave vector diagram, as shown in Fig. 7.27. For strong Bragg diffraction, the wave 
vector diagram must close as shown, a property that can be viewed as a statement of 
conservation of momentum. 

The boundary between the Raman-Nath regime and the Bragg regime is not a sharp 
one, but is often described in terms of the so-called Q factor given by 

where d is the thickness of the acoustic column in the z direction, n is the refractive index 
of the acousto-optic cell, and A, is the vacuum wavelength of the light. If Q < 27r, 
operation is in the Raman-Nath regime, while if Q > 27r, operation is in the Bragg 
regime. 

A modulated drive voltage 
Until now the voltage driving the acousto-optic cell has been assumed to be a per- 

fect CW signal. We now generalize by allowing the voltage to be an amplitude and 
phase-modulated CW signal, of the form 

where A(t) and +(t) are the amplitude and phase modulations, respectively. The refrac- 
tive index disturbance generated by this applied voltage then propagates through the 
cell with velocity V. With reference to Fig. 7.26, if y is a coordinate running opposite 
to the direction of travel of the acoustic wave and is centered in the middle of the cell 
(as indicated in Fig. 7.26), and x is normal to the page of that figure, then at any instant 
of time t the distribution of refractive index perturbation in the cell can be written 

where a is a proportionality constant, 7, = Ll2V is the time delay required for acoustic 
propagation over half the length L of the cell, and we neglect the x dependence because 
it plays no role here or in what follows. 

In the Raman-Nath regime, the optical wavefront is simply phase modulated by 
the moving refractive index grating, yielding a complex amplitude of the transmitted 
signal given by 

U, exp { j-  'yd~($ + t - ) s i n (  + t - ,)- ( + t - 7,)]} rect ,, Y 
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where U, is the complex amplitude of the incident monochromatic optical wave. Now 
the expansion 

can be applied to the expression for U(y;t). In addition, the peak phase modulation 
suffered by the optical wave as it passes through the cell is usually quite small, with 
the result that the approximation 

holds for the first diffraction orders, which are the orders of main interest to us. As a 
result the complex amplitudes transmitted into the two first orders, represented by U* 1, 

are given approximately by 

U,A - + t - T, e (i: ) T j ~ ( y l V + r - ~ ) e +  j27rylAe+ j27r fC(t-ro) Y U21 = ?- rect -, (7-34) 
A0 L 

where the top sign corresponds to what we will call the "+1" diffraction order 
(diffracted downwards in Fig. 7.26) and the bottom sign corresponds to the "- 1" 
order (diffracted upwards). 

From Eq. (7-34) we see that the + 1 diffracted order consists of a wavefront that 
is proportional to a moving version of the complex representation A ( ~ I V ) ~ ~ * ( Y I " )  of 
applied voltage, while the - 1 diffracted order contains the complex conjugate of this 
representation. The spatial argument of the moving field is scaled by the acoustic veloc- 
ity V. A simple spatial filtering operation (see Chapter 8) can eliminate the unwanted 
diffraction orders and pass only the desired order. Thus the acousto-optic cell has acted 
as a one-dimensional spatial light modulator, transforming an electrical voltage modu- 
lation applied to the cell into an optical wavefront exiting the cell. 

The discussion above has been framed in terms of Raman-Nath diffraction, but a 
similar expression for the + 1 diffraction order is found in the case of Bragg diffraction, 
the primary difference lying in the strengths of the various orders. As mentioned earlier, 
the diffraction efficiency into one first order is generally considerably larger in the 
Bragg regime than in the Raman-Nath regime, and other orders are generally strongly 
suppressed by the diffraction process itself. Thus an acousto-optic cell operating in 
the Bragg regime again acts as a one-dimensional spatial light modulator, translating 
the applied voltage modulation into a spatial wavefront, albeit more efficiently than 
in the case of Raman-Nath diffraction. 

7.3 
DIFFRACTIVE OPTICAL ELEMENTS 

The vast majority of optical instruments in use today use refractive or rejective optical 
elements (e.g. lenses, mirrors, prisms, etc.) for controlling the distribution of light. 
In some cases it is possible to replace refractive or reflective elements with diflrac- 
tive elements, a change that can lead to some significant benefits in certain applications. 
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Diffractive optics can be made to perform functions that would be difficult or impossi- 
ble to achieve with more conventional optics (e.g., a single diffractive optical element 
can have several or many different focal points simultaneously). Diffractive optical 
elements also generally have much less weight and occupy less volume than their re- 
fractive or reflective counterparts. They may also be less expensive to manufacture and 
in some cases may have superior optical performance (e.g. a wider field of view). Ex- 
amples of applications of such components include optical heads for compact disks, 
beam shaping for lasers, grating beamsplitters, and reference elements in interferomet- 
ric testing. 

Along with these several advantages comes one significant difficulty with diffrac- 
tive optical components: because they are based on diffraction, they are highly disper- 
sive (i-e. wavelength sensitive). For this reason they are best applied in problems for 
which the light is highly monochromatic. Such is the case for most coherent optical 
systems. However, diffractive optics can be used together with either refractive optics 
or additional diffractive elements in such a way that their dispersive properties partially 
cancel (cf. [274], [217], [99]), allowing their use in systems for which the light is not 
highly monochromatic. 

For additional background on diffractive optics, the reader may wish to consult 
review articles [279],[98], and Vol. 2, Chapter 8 of [17]. 

Our discussion of the subject will consider in detail only one approach to the con- 
struction of diffractive optics, known as binary optics. This approach is well developed 
and applicable to a broad range of different applications. 

7.3.1 Binary Optics 

The term binary optics has come to have different meanings to different people, but 
there are certain threads that are common and which can serve to define the field. First 
and foremost is the fact that binary optical elements are manufactured using VLSI fab- 
rication techniques, namely photolithography and micromachining. Second, binary op- 
tical elements depend solely on the surface relief profile of the optical element. They 
are usually thin structures, with relief patterns on the order of one to several microns in 
depth, and as such they can be inexpensively replicated using well-established methods 
of embossing. Surprisingly, the relief patterns utilized are often not binary at all, and 
therefore in a certain sense these elements are misnamed. However, such elements are 
usually defined through a series of binary exposure steps, and this fact has provided the 
rationale for retention of the name. 

Approximation by a stepped thickness function 
Binary optical elements have stepped approximations to ideal continuous phase 

distributions. We briefly discuss the approximation process here, and then turn to the 
most common methods of fabrication. 

We suppose that a certain thickness function A(x, y) is desired for the element (as 
usual, x and y are the transverse coordinates on the face of the element). Presumably this 
function has been derived from a design process, which may have been simple or may 
have been quite complex itself. As an example of a simple case, the element may be a 
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FIGURE 7.28 
Ideal sawtooth thickness profile for a blazed grating, and binary optic 
approximation to that profile (N = 2) .  

grating of constant spatial frequency, the purpose of which is to deflect the incident light 
through a certain angle with the highest possible optical efficiency. An example of a 
more complex case might be a focusing element which generates an aspheric wavefront 
such that certain aberrations are reduced or eliminated. We shall assume that the desired 
thickness function A(x, y) is known and that the problem at hand is how to fabricate a 
thin relief element that closely approximates this desired thickness function. 

An approximation to the desired thickness function is made by quantizing that func- 
tion to a set of 2N discrete levels (usually equally spaced). Figure 7.28 shows an ideal 
phase grating profile with a perfect sawtooth period, and a quantized version of that 
grating with 2N levels. The continuous blazed grating has the property that, if the peak- 
to-peak phase variation it introduces is exactly 2 7 ~  radians, 100% of the incident light 
will be diffracted into a single first diffraction order (cf. Prob. 4-15). The binary op- 
tic approximation to the grating is a quantized version with 4 discrete levels. More 
generally 2N quantization levels can be realized through a series of N exposure and 
micromachining operations, as described below. The peak-to-peak thickness change 
of the quantized element is times the peak-to-peak thickness of the unquantized 
element.7 

The diffraction efficiency of the step approximation to the sawtooth grating can 
be obtained by expanding its periodic amplitude transmittance in a Fourier series. A 
straightforward but tedious calculation shows that the diffraction efficiency of the 9th 
diffraction order can be expressed by [79] 

where 4, is the peak-to-peak phase difference of the continuous sawtooth grating, and 
is related to the peak-to-peak thickness variation (again, of the continuous grating) 
through 

'These ideal and quantized gratings may be considered to be local approximations to more general gratings 
for which the local period, and therefore the angle of deflection, change across the grating. 
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n2 being the refractive index of the substrate and nl that of the surround, and A, being 
the vacuum wavelength of the light. 

Of special interest is the case of a quantized approximation to the blazed grating 
with a peak-to-peak phase difference of 4, = 27~.  Substitution in Eq. (7-35) yields 

Consider for the moment only the last factor, consisting of the ratio of two sinc functions. 
The numerator is zero for all integer q except q = 1, when it is unity. The denominator 
is also unity for q = 1, and is nonzero except when 

where p is any integer other than zero. For values of q for which the numerator and 
denominator vanish simultaneously, l'H8pital's rule can be used to show that the ratio 
of the two factors is unity. Thus the factor in question will be zero except when 

in which case it is unity. The diffraction efficiency therefore is given by 

As the number, 2N,  of phase levels used increases, the angular separation between 
nonzero diffraction orders increases as well, since it is proportional to 2 N .  The primary 
order of interest is the + 1 order ( p  = O ) ,  for which the diffraction efficiency is 

Figure 7.29 shows the diffraction efficiencies of various nonzero orders as a function 
of the number of levels. It can be seen that, as N + m, all diffraction orders except the 

FIGURE 7.29 
Diffraction efficiencies of various 
orders of a stepped approximation 
to a sawtooth grating. The 
parameter p determines the 
particular diffraction order, with 
the order number given by ~2~ + 1, 
and the number of discrete levels 

1 2 3 * N i ~ 2 ~ .  
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+ 1 order vanish, and the diffraction efficiency of that nonvanishing order approaches 
loo%, identical with the case of a continuous blazed grating with the same peak-to-peak 
phase shift. Thus the properties of stepped approximation to the continuous blazed grat- 
ing do indeed approach those of the continuous grating as the number of steps increases. 

The fabrication process 
Figure 7.30 illustrates the process by which a four-level binary optic approxima- 

tion to a sawtooth thickness function is generated. The process consists of a number of 
discrete steps, each of which consists of photoresist application, exposure through one 
of several binary masks, photoresist removal, and etching. Masks are usually made by 
electron-beam writing. For a binary optic element with 2N levels, N separate masks 
are required. Part (a) of the figure shows a substrate overcoated with photoresist, which 
is exposed through the first binary mask, having transparent cells of width equal to 
1/2Nth of the period of the desired final structure. After exposure, the photoresist is 
developed. For a positive photoresist, the development process removes the exposed 
areas and leaves the unexposed areas, while for a negative photoresist the opposite is 
true. We will assume a positive photoresist here. Following the photoresist development 
process, micromachining is applied to remove material from the uncovered portions of 
the substrate, as illustrated in part (b) of the figure. The two most common microma- 
chining methods are reactive ion etching and ion milling. This first micromachining 
step removes substrate material to a depth of 1/2Nth of the desired peak-to-peak depth 
of the grating. Now photoresist is spun onto the substrate a second time and is exposed 
through a second mask which has openings of width equal to 1/2N-1th of the desired 

Expose Expose 

Mask &4&4&k 
Resist 

Substrate I I 

Micromachine Micromachine 

FIGURE 7.30 
Steps in the fabrication of a four-level binary optic element. 
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final period, as shown in part (c) of the figure. Micromachining again removes the ex- 
posed portions of the substrate, this time with an etch depth 112~-'th of the final desired 
maximum depth, as illustrated in part (d) of the figure. For the case of a 4-level ele- 
ment, the fabrication process now terminates. If there are 2N levels desired, N different 
masks, exposures, development, and etching processes are required. The last etch pro- 
cess must be to a depth that is 112 of the total desired peak-to-peak depth. A variety of 
different materials can be used for the substrate of such elements including silicon and 
glass. It is also possible to make reflective optical devices by overcoating the etched 
profile with a thin layer of metal. With the use of electron beam writing, it is possible 
to control the accuracy of the masks to about one-tenth of a p m .  When the profile is 
more complex than binary, alignment of several masks is required, and the accuracy 
is reduced. 

Diffraction efficiencies of 80 to 90 percent are quite common for these types of 
elements. 

7.3.2 Other Types of Diffractive Optics 

Attention has been focused above on binary diffractive optics, which are fabricated 
by the techniques widely used in the semiconductor industry. Many other approaches 
to fabricating diffractive optical elements exist. Some methods use similar substrates 
to those mentioned above, but use different methods of micromachining, for exam- 
ple diamond turning or laser ablation. Some differ through their use of photographic 
film, rather than etchable substrates, as the means for creating the element. Computer- 
generated holographic optical elements are an example that will be discussed in more 
detail in Chapter 9. Some depend on more conventional methods for recording holo- 
grams. 

For an overview of the field, including examples of many different approaches, the 
reader is referred to the proceedings of a series of meetings held on this general subject 
[591, [601, [611, [621, [631. 

7.3.3 A Word of Caution 

The capability of semiconductor fabrication techniques to make structures of ever 
smaller physical size has led already to the construction of diffractive optical elements 
with individual feature sizes that are comparable with and even smaller than the size of 
a wavelength of the light with which the element will be used. Such small structures lie 
in the domain where the use of a scalar theory to predict the properties of these optical 
elements is known to yield results with significant inaccuracies. It is therefore impor- 
tant to use some caution when approaching the analysis of the properties of diffractive 
optical elements. If the minimum scale size in the optical element is smaller than a 
few optical wavelengths, then a more rigorous approach to diffraction calculations will 
probably be needed, depending on the accuracy desired from the computation. For a 
discussion of such issues, see, for example, Ref. [232]. 
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PROBLEMS-CHAPTER 7 

7-1. A low-contrast intensity distribution 

exposes a photographic plate, and a negative transparency is made. Assuming that To is 
fixed and biases the film in the linear region of the H&D curve, show that, when the contrast 

is sufficiently low, the contrast distribution transmitted by the transparency is linearly 
related to the exposing contrast distribution. 

7-2. The interference between two plane waves of the form 

UI(X, Y) = Aexp(j2.rrPly) 

U ~ ( X  Y) = B exp(j2.rrPzy) 

is recorded on a photographic film. The film has an MTF of known form M( f) ,  and it 
is processed to produce a positive transparency with a gamma of -2. This transparency 
(dimensions L X L) is then placed in front of a positive lens with focal length f ,  is illuminated 
by a normally incident plane wave, and the distribution of intensity across the back focal 
plane is measured. The wavelength of the light is A. Assuming that the entire range of 
exposure experiences the same photographic gamma, plot the distribution of light intensity 
in the rear focal plane, labeling in particular the relative strengths and locations of the 
various frequency components present. 

7-3. Show that, for a retardation of Pd = .rr, the Jones matrices of Eqs. (7-1 8) and (7- 19) reduce 
to those of Eq. (7-20). 

7-4. A ferroelectric liquid crystal cell has a tilt angle of 22.5". The input of the cell has a polarizer 
oriented parallel to the long molecular axis when the cell is in one of its two states, and the 
rear of the cell is a mirror. Using Jones matrices, show that if the retardation of the cell is 
one-quarter of a wave, the FLC cell can be used as a binary intensity modulator. 

7-5. Consider a linear polarized wave with polarization direction at angle +8 to the x axis. 

(a) Show that such a wave can be expressed as a linear combination of a left-hand circularly 
polarized wave and a right-hand circularly polarized wave, and find the coefficients of 
that expansion. 

(b) Given that, for Faraday rotation, with the magnetic field pointing in the direction of 
wave propagation, the left-hand circularly polarized component experiences a refrac- 
tive index nl and the right-hand circularly polarized component experiences refractive 
index nz,  show that the Jones matrix describing this polarization transformation is given 
by 

L+ = [COS M - sin A/2] 
sin A12 cos A/2 ' 

where d is the thickness of the magnetic film, A, is the vacuum wavelength, and 
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(c) Given that when the magnetic field reverses, the roles of nl and n;? reverse, show that 
the Jones matrix for the device when the magnetic field points in the direction opposite 
to the direction of wave propagation is 

L- = [ cos A/2 sin A/2] 
- sin A/2 cos A/2 ' 

7-6. Show that if a Faraday-rotating magnetic film is illuminated by light polarized in the y 
direction and the film is followed by an analyzer oriented in the x direction, a reversal of 
the direction of the magnetic field results in a change of the phase of the transmitted light by 
180°, with no change in the transmitted intensity. Thus in this configuration the MOSLM 
can be used as a binary phase SLM. 

7-7. A magneto-optic film has a Faraday rotation coefficient of 1.46"/pm and an absorption 
coefficient of 0.086 pm- ' .  Find the thickness of the film that will maximize the light ef- 
ficiency of the device in the "on" state, given that the polarization analyzer is oriented to 
assure complete extinction in the "off" state. 

7-8. An ideal grating has a profile that is illustrated by the triangular curve in Fig. W.8. This 
ideal profile is approximated by a four-level quantized grating profile also shown in the 
figure. The peak-to-peak phase difference introduced by the continuous grating is exactly 
2.rr radians. 

f 
25c 
i 

FIGURE W.8 
Profiles of ideal and quantized + L -I gratings. 

(a) Find the diffraction efficiencies of the +4, +3, +2, + 1, and 0 orders of the continuous 
grating. 

(b) Find the diffraction efficiencies of the same orders for the quantized grating. 
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Analog Optical Infomation Processing 

T h e  broad utility of linear systems concepts in the analysis of imaging systems is ev- 
ident from the preceding chapters. However, if these concepts were useful only for 
analysis purposes, they would occupy a far less important position in modern optics 
than they in fact enjoy today. Their true importance comes into full perspective only 
when the exciting possibilities of system synthesis are considered. 

There exist many examples of the benefits reaped by the application of linear sys- 
tems concepts to the synthesis of optical systems. One class of such benefits has arisen 
from the application of frequency-domain reasoning to the improvement of various 
types of imaging instruments. Examples of this type of problem are discussed in their 
historical perspective in Section 8.1. 

There are equally important applications that do not fall in the realm of imaging 
as such, but rather are more properly considered in the general domain of information 
processing. Such applications rest on the ability to perform general linear transforma- 
tions of input data. In some cases, a vast amount of data may, by its sheer quantity, 
overpower the effectiveness of the human observer. A linear transformation can then 
play a crucial role in the reduction of large quantities of data, yielding indications of 
the particular portions of the data that warrant the attention of the observer. An example 
of this type of application is found in the discussion of character recognition (Section 
8.6). In other cases, a body of data may simply not be in a form compatible with a 
human observer, and a linear transformation of the data may place it in a compatible 
form. An example of this type of application is found in the discussion of processing 
synthetic-aperture radar data (Section 8.9). 

The entire subject of optical information processing is too broad to be fully treated 
in any single chapter; in fact, many books devoted exclusively to the subject already 
exist (e.g. see Refs. [231], [284], [182], [47], [21], [148], and [293]). We shall limit 
our goals here to a presentation of the most important and widely used analog opti- 
cal information processing architectures and applications. We explicitly exclude from 
consideration the subject of "digital" or "numerical" optical computing, since this field 
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is not yet well developed. The reader interested in the digital domain can consult, for 
example, Refs. [loo], [297], [218], [204], [160], or [156]. 

8.1 
HISTORICAL BACKGROUND 

The history of Fourier synthesis techniques can be said to have begun with the first 
intentional manipulations of the spectrum of an image. Experiments of this type were 
first reported by Abbe in 1873 [ l ]  and later by Porter in 1906 [233]. In both cases 
the express purposes of the experiments were verification of Abbe's theory of image 
formation in the microscope and an investigation of its implications. Because of the 
beauty and simplicity of these experiments, we discuss them briefly here. 

8.1.1 The Abbe-Porter Experiments 

The experiments performed by Abbe and Porter provide a powerful demonstration of 
the detailed mechanism by which coherent images are formed, and indeed the most 
basic principles of Fourier analysis itself. The general nature of these experiments is 
illustrated in Fig. 8.1. An object consisting of a fine wire mesh is illuminated by colli- 
mated, coherent light. In the back focal plane of the imaging lens appears the Fourier 
spectrum of the periodic mesh, and finally in the image plane the various Fourier com- 
ponents passed by the lens are recombined to form a replica of the mesh. By placing 
various obstructions (e.g. an iris, a slit, or a small stop) in the focal plane, it is possible 
to directly manipulate the spectrum of the image in a variety of ways. 

Figure 8.2(a) shows a photograph of the spectrum of the mesh; Fig. 8.2(b) is the full 
image of the original mesh. The periodic nature of the object generates in the focal plane 
a series of isolated spectral components, each spread somewhat by the finite extent of the 
circular aperture within which the mesh is confined. Bright spots along the horizontal 
axis in the focal plane arise from complex-exponential components of the object that 
are directed horizontally (cf. Fig. 2.1); bright spots along the vertical axis correspond 
to vertically directed complex-exponential components. Off-axis spots correspond to 
components directed at corresponding angles in the object plane. 

The power of spatialjltering techniques is well illustrated by inserting a narrow 
slit in the focal plane to pass only a single row of spectral components. Figure 8.3(a) 

FIGURE 8.1 
The Abbe-Porter experiment. 
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(a) 

FIGURE 8.2 
Photograph of (a) the spectrum of mesh and (b) the original mesh. 

shows the transmitted spectrum when a horizontal slit is used. The corresponding im- 
age, seen in Fig. 8.3(b), contains only the vertical structure of the mesh; it is precisely 
the horizontally directed complex-exponential components that contribute to the struc- 
ture in the image that is uniform vertically. The suppression of the horizontal structure 
is quite complete. 

When the slit is rotated by 90' to pass only the spectral column of Fig. 8.4(a), 
the image in part (b) of the figure is seen to contain only horizontal structure. Other 
interesting effects can also be readily observed. For example, if an iris is placed in the 
focal plane and stopped down to pass only the on-axis Fourier component, then with 
a gradual expansion of the iris the Fourier synthesis of the mesh can be watched step 
by step. In addition, if the iris is removed and a small central stop is placed on the optical 

(b) 

FIGURE 8.3 
Mesh filtered with a horizontal slit in the focal plane. (a) Spectrum, (b) image. 
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(a) 

FIGURE 8.4 
Mesh filtered with a vertical slit in the focal 
plane. (a) Spectrum, (b) image. 

axis in the focal plane to block only the central order or "zero-frequency" component, 
then a contrast reversal can be seen in the image of the mesh (see Prob. 8-1). 

8.1.2 The Zernike Phase-Contrast Microscope 

Many objects of interest in microscopy are largely transparent, thus absorbing little or 
no light (e.g. an unstained bacterium). When light passes through such an object, the 
predominant effect is the generation of a spatially varying phase shift; this effect is 
not directly observable with a conventional microscope and a sensor that responds to 
light intensity. A number of techniques for viewing such objects have been known for 
many years; these include interferometric techniques, the central dark ground method 
in which a small stop is used on the optical axis in the focal plane to block only the 
zero-frequency spectral component (see Prob. 8-2), and the schlieren method in which 
all spectral components to one side of the zero-frequency component are excluded (see 
Prob. 8-3). All these techniques suffer from a similar defect-the observed intensity 
variations are not linearly related to the phase shift and therefore cannot be taken as 
directly indicative of the thickness variations of the object. 

In 1935, Frits Zernike [305] proposed a new phase contrast technique which rests 
on spatial filtering principles and has the advantage that the observed intensity is (under 
certain conditions to be discussed) linearly related to the phase shift introduced by the 
object.' This development represents an early success of synthesis ideas and therefore 
will be treated in some additional detail. 

'For a discussion of the history of the phase contrast technique, as well as the scientific life of Frits Zernike, 
see [loll. 
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Suppose that a transparent object, with amplitude transmittance 

is coherently illuminated in an image-forming system. For mathematical simplicity we 
assume a magnification of unity and neglect the finite extent of the entrance and exit 
pupils of the system. In addition, a necessary condition to achieve linearity between 
phase shift and intensity is that the variable part of the object-induced phase shift, A4, 
be small compared with 277 radians, in which case the crudest approximation to ampli- 
tude transmittance might be 

In this equation we have neglected terms in (A4)2 and higher powers, assuming them 
to be zero in our approximation, and the quantity 4, represents the average phase shift 
through the object, so A&[, q )  by definition has no zero-frequency spectral component. 
Note that the first term on the right of Eq. (8-2) represents a strong wave component 
that passes through the sample suffering a uniform phase shift +,, while the second 
term generates weaker diffracted light that is deflected away from the optical axis. 

The image produced by a conventional microscope could be written, in our approx- 
imation, as 

where, to remain consistent with our approximation, the term has been replaced 
by zero, Zernike realized that the diffracted light arising from the phase structure is 
not observable in the image plane because it is in phase quadrature with the strong 
background, and that if this phase-quadrature relation could be modified, the two terms 
might interfere more directly to produce observable variations of image intensity. Rec- 
ognizing that the background is brought to focus on the optical axis in the focal plane 
while the diffracted light, arising from higher spatial frequencies, is spread away from 
the optical axis, he proposed that a phase-changing plate be inserted in the focal plane 
to modify the phase relation between the focused and diffracted light. 

The phase-changing plate can consist of a glass substrate on which a small trans- 
parent dielectric dot has been d e p ~ s i t e d . ~  The dot is centered on the optical axis in the 
focal plane and has a thickness and index of refraction such that it retards the phase of 
the focused light by either ~ 1 2  radians or 3 ~ 1 2  radians relative to the phase retardation 
of the diffracted light. In the former case the intensity in the image plane becomes 

while in the latter case we have 

*In practice, phase-contrast microscopes usually have a source that is a circular ring and a phase-shifting 
structure that is also a circular ring, placed over the image of the source in the focal plane. However, the 
explanation based on the assumption of point-source illumination is somewhat simpler to explain and to 
understand. 



222 Introduction to Fourier Optics 

Thus the image intensity has become linearly related to the variations of phase shift A+. 
The case of Eq. (8-3) is referred to as positive phase contrast while the case of Eq. (8-4) 
is referred to as negative phase contrast. It is also possible to improve the contrast of 
the phase-induced variations of intensity in the image by making the phase-shifting dot 
partially absorbing (see Prob. 8-4). 

The phase-contrast method is one technique for converting a spatial phase 
modulation into a spatial intensity modulation. The reader with a background in 
communications may be interested to note that one year after Zernike's invention a 
remarkably similar technique was proposed by E.H. Armstrong [8] for converting 
amplitude-modulated electrical signals into phase-modulated signals. As we have seen 
in Chapter 6 and will continue to see in this chapter, the disciplines of optics and 
electrical engineering were to develop even closer ties in the years to follow. 

8.1.3 Improvement of Photographs: MarCchal 

In the early 1950s, workers at the Institut d'optique, UniversitC de Paris, became ac- 
tively engaged in the use of coherent optical filtering techniques to improve the quality 
of photographs. Most notable was the work of A. Marechal, whose success with these 
techniques was to provide a strong motivation for future expansion of interest in the 
optical information processing field. 

Marbchal regarded undesired defects in photographs as arising from corresponding 
defects in the optical transfer function of the incoherent imaging system that produced 
them. He further reasoned that if the photographic transparencies were placed in a co- 
herent optical system, then by insertion of appropriate attenuating and phase-shifting 
plates in the focal plane, a compensatingJilter could be synthesized to at least partially 
remove the undesired defects. While the optical transfer function of the initial imaging 
system might be poor, the product of that transfer function with the (amplitude) trans- 
fer function of the compensating system would hopefully yield an overall frequency 
response that was more satisfactory. 

A variety of types of improvements to photographs were successfully demonstrated 
by Markcha1 and his co-workers. For example, it was shown that small details in the 
image could be strongly emphasized if the low-frequency components of the object 
spectrum were simply attenuated. Considerable success was also demonstrated in the 
removal of image blur. In the latter case, the original imaging system was badly defo- 
cused, producing an impulse response which (in the geometrical-optics approximation) 
consisted of a uniform circle of light. The corresponding optical transfer function was 
therefore of the form 

where a is a constant and p = ,/=. The compensating filter was synthesized 
by placing both an absorbing plate and a phase-shifting plate in the focal plane of 
the coherent filtering system, as shown in Fig. 8.5(a). The absorbing plate attenuated 
the-large low-frequency peak of X, while the phase-shifting plate shifted the phase of 
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FIGURE 8.5 
Compensation for image blur. (a) Focal-plane filter; (b) transfer functions. 

the first negative lobe of 7-l by 180". The original and compensated transfer functions 
are illustrated in Fig. 8.5(b). 

As an additional example, it was shown that the periodic structure associated with 
the halftone process used in printing photographs, for example, in newspapers, could be 
suppressed by a simple spatial filter. The halftone process is, in many respects, similar 
to the periodic sampling procedures discussed in Section 2.4. The spectrum of a picture 
printed in this fashion has a periodic structure much like that illustrated in Fig. 2.5. By 
inserting an iris in the focal plane of the filtering system, it is possible to pass only the 
harmonic zone centered on zero frequency, thereby removing the periodic structure of 
the picture while passing all of the desired image data. 

Notice a common requirement in all the applications mentioned above: a picture 
or photograph taken in incoherent light is filtered in a system that uses coherent light. 
To assure that linear systems are used, and therefore that transfer function concepts 
remain valid, it is necessary that the amplitude introduced into the coherent system be 
proportional to the intensity of the image we wish tojlter. 

8.1.4 The Emergence of a Communications Viewpoint 

In the early 1950s it became evident that an exchange between the disciplines of 
communications and optics could reap high profits. Many of the problems facing 
those working in optics bore strong resemblances to the optimum filtering, detection, 
and estimation problems of communications theory. Much initial stimulus toward an 
exchange was provided by a communication theorist, Peter Elias, and his associates 
D.S. Gray and D.Z. Robinson, with the publication of a paper in 1952 entitled "Fourier 
treatment of optical processes" [95], and again by Elias with the publication of the paper 
"Optics and communication theory" [94] in 1953. However, the most complete wed- 
ding between the two viewpoints was provided by a physicist, E.L. O'Neill, with the 
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publication of his paper "Spatial filtering in optics" in 1956 [222], and more generally 
through the great impact of his research and teaching. 

Since the time of this early work, the merger of the two points of view has become 
so complete that it is sometimes difficult to judge whether a particular piece of work 
should be published in an optics journal or an electrical engineering journal. 

8.1.5 Application of Coherent Optics to More General Data Processing 

While the early 1950s were characterized by a growing realization on the part of physi- 
cists that certain aspects of electrical engineering were of particular relevance to optics, 
the late fifties and early sixties saw a gradual realization on the part of electrical engi- 
neers that spatial filtering systems might be usefully employed in their more general 
data-processing problems. The potentials of coherent filtering were particularly evi- 
dent in the field of radar signal processing and were exploited at an early stage by L.J. 
Cutrona and his associates at the University of Michigan Radar Laboratory. The publi- 
cation of the paper "Optical data processing and filtering systems" [73] by the Michigan 
group in 1960 stimulated much interest in these techniques among electrical engineers 
and physicists alike. One of the most successful early applications of coherent filtering 
in the radar realm has been to the processing of data collected by synthetic aperture 
radar systems [74], a subject that will be briefly treated in Section 8.9. A survey of 
the literature from the mid- 1960s shows application of coherent processing techniques 
in such widely diverse fields as, for example, Fourier spectroscopy [276] and seismic- 
wave analysis [153]. 

8.2 
INCOHERENT OPTICAL INFORMATION PROCESSING SYSTEMS 

The use of spatially incoherent light in optical information processing provides certain 
advantages, but also certain disadvantages. Important advantages include the general 
freedom of incoherent systems from coherent artifacts, for example, those associated 
with dust specks on the optical components and those that arise from the speckle phe- 
nomenon. These advantages can be attributed to a certain redundancy found in incoher- 
ent systems, namely the fact that light from a single pixel or resolvable spot of an input 
passes through the system via many spatially separate channels, due to the extended na- 
ture of the incoherent source. In addition, incoherent systems allow the introduction of 
data into the system by means of light-emitting diode arrays or cathode-ray tube (CRT) 
displays, and do not require the more complex and expensive SLMs discussed in the 
previous chapter. Generally speaking, incoherent systems are somewhat more simple 
than coherent systems in their physical realization. For a historical perspective on the 
field of incoherent optical processing, see Ref. [246]. 

However, the above advantages are accompanied by some serious disadvantages 
as well. An incoherent optical processing system has no "frequency plane", as is found 
in the focal plane of a coherent optical system, and the manipulation of the spectrum 
of an input must therefore resort to less direct methods than simply modifying the fields 
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in the Fourier plane in proportion to a desired transfer function. Second, the intensity of 
light is fundamentally a nonnegative and real physical quantity, and the representation 
of data by intensity places limits on the type of data manipulations that can be carried 
out in purely optical form. For example, there is no natural optical way to subtract two 
intensity patterns, whereas complex amplitude patterns can in principle be subtracted 
by adding them with a T radian phase shift between them. The fact that an incoherent 
image always has its maximum spectral content at the origin often leads to problems 
of low contrast at the output of incoherent processing systems. As a consequence, inco- 
herent systems often must have a heavy intrusion of electronics at their output in order 
to achieve a flexibility comparable with that of coherent systems. 

Incoherent data processing systems can be broadly divided into three separate cat- 
egories: (1) systems based on geometrical optics, (2) systems based on diffraction, and 
(3) discrete systems. The first two categories of systems are designed to accommodate 
spatially continuous inputs; both will be discussed here. The third category, discrete 
systems, will be deferred to a subsequent section of this chapter. 

8.2.1 Systems Based on Geometrical Optics 

A variety of methods are known for designing optical information processing sys- 
tems based purely on geometrical optics. Such approaches ignore the diffraction phe- 
nomenon, and as will be pointed out later, suffer from limitations on the achievable 
space-bandwidth product. 

Systems based on image casting 
Systems based on geometrical optics almost invariably use one form or another of 

what could be called "image casting" or "shadow casting", namely the geometrical 
projection of one image onto another. Such a system was proposed as early as 1927 by 
Emanual Goldberg of Dresden, Germany, in a patent application. Goldberg, who was 
granted a U.S. patent in 1931 [I 181, fully recognized the potential application of his 
invention to the field of character recognition. 

The principles underlying the most simple image-casting system, namely a system 
that performs a spatial integration of the product of two functions, are straightforward. 
If a transparency with intensity transmittance T I  is imaged onto a second transparency 
with intensity transmittance 72, then according to geometrical optics the intensity at 
each point immediately behind the second transparency is 71 72. A photodetector can be 
used to measure the total intensity transmitted through the pair, yielding a photocurrent 
I given by3 

3As usual, in writing infinite limits of integration, we have assumed that the finite sizes of the transparencies 
are incorporated in the functions 71 and 72 .  
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Two means of achieving this operation are illustrated in Fig. 8.6. For the technique 
(a), the lens L1 casts a magnified image of the uniform incoherent source onto the two 
transparencies which are placed in direct contact. The lens L2 then casts a demagnified 
image of the light transmitted by 7 2  onto the photodetector D. The photocurrent is then 
given by Eq. (8-5). 

In some cases it may be desired to change one of the inputs rapidly, in which case 
physical separation of the two transparencies may be advantageous. Such separation can 
be achieved with the geometry shown in Fig. 8.6(b). The lens L1 again casts a magnified 
image of the source onto 71. Lens L2 images 71 onto 72, and lens L3 casts a demagnified 
image of the light transmitted by 7-2 onto the detector. Note that the transparency 71 

must be inserted in an inverted geometry to compensate for the inversion introduced by 
the imaging operation performed by L2. Again the photocurrent is given by Eq. (8-5). 

While the operation described above is a useful one in a number of applications, 
including character recognition, it is often desired to realize the related but more gen- 
eral operation of convolution. A one-dimensional convolution of two functions can 
be realized with either of the above systems by moving one of the transparencies with 

FIGURE 8.6 
Systems for realizing the integral of a product of two functions. 
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uniform velocity and measuring the photodetector response as a function of time. More 
specifically, with reference to Fig. 8.6(b), let the transparency 71 be introduced without 
the inversion referred to earlier, so that the operation (8-5) becomes 

If the transparency 71 is moved in the negative x direction with speed v, the detector 
response as a function of time will be given by 

If the scans are repeated sequentially, each for a different y displacement - y,, then the 
detector responses will be 

The array of functions I,( t)  represents a full two-dimensional convolution, albeit sam- 
pled in the y displacement. 

Convolution without motion 
The preceding technique for performing convolutions is extremely awkward and 

time-consuming due to the mechanical scanning required. It is possible to perform the 
same operation without relative motions if the optical configuration is modified [175]. 
Referring to Fig. 8.7, let the distributed incoherent source S be placed in the front focal 
plane of the lens L 1 .  Immediately behind L1 is placed a transparency with intensity 
transmittance T I ( - X ,  - y ) .  At a distance d from 71 and immediately in front of lens 
L2 the transparency r2(x, y) appears. The intensity distribution across the back focal 

L1 L2 

FIGURE 8.7 
Systems for performing convolution without motion. 
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plane of L2 is then measured, perhaps with film, although the use of a two-dimensional 
electronic detector, such as a vidicon, is also possible. 

To understand the operation of this system, consider first the light generated by a 
particular point with coordinates (-x,, -y,) on the source. The rays from that point 
emerge from L1 (and from 71) parallel with each other and illuminate 72 with an inten- 
sity distribution proportional to 71 [-x + (dl f )xs, - y + (dl f )y,]. After passing through 
72 the rays are focused onto the detector at coordinates (x,, y,), where we have assumed 
that the two lenses have identical focal lengths. Thus the intensity distribution across 
the detector may be written 

which is the desired convolution. 

Impulse response synthesis with a misfocused system 
Direct synthesis of a desired impulse is possible, within the confines of geomet- 

rical optics, by means of the "misfocused" system illustrated in Fig. 8.8. While this 
system is nearly identical with that of Fig. 8.7, the point of view is sufficiently differ- 
ent to warrant a separate discussion. The lens L1 again serves to illuminate the "input" 
transparency (intensity transmittance 71) with uniform light from the extended source 
S. Lens L2 forms an image of 71 across the plane P'. For simplicity we assume that 71 
and P' are each at distance 2 f from the lens L2, thus yielding magnification unity in 
the proper image plane. The transparency 72, having an intensity transmittance equal 
in form to that of the desired impulse response, is inserted directly against lens L2; 
the system output is found across the plane P,  located distance A from the ideal image 
plane P'. 

The operation of this system is most easily understood by applying a unit-intensity 
point source at coordinates (x, y) on 71 and finding the resulting intensity distribution 
across P. In the geometrical-optics approximation, the rays passing through 72 converge 

- A - 
FIGURE 8.8 
Impulse response synthesis with a misfocused system. 



CHAPTER 8 Analog Optical Information Processing 229 

to an ideal point in plane P', and then diverge to form a demagnified projection of 72 in 
plane P. The projection is centered at coordinates 

and the demagnification of 72 is A12 f .  Taking into account the reflection of 72 when 
projected, the response to the point source may be written 

The intensity at output coordinates (-xd, -yd) can then be written as the convolution 
integral 

where Eq. (8-8) must be substituted after the change to arguments (-xd, -yd). Except 
for the scaling factor A12 f that precedes x and y, the resulting form is a convolution. 
By properly scaling 72 this scaling factor can be removed and a true convolution can be 
obtained. 

Limitations 
All systems designed on the basis of geometrical optics must satisfy a common 

constraint: the geometry of the system must be chosen in such a way that diffraction 
effects are entirely negligible. This requirement is readily satisfied with the system 
of Fig. 8.6(a), but is difficult to meet in all the other systems presented, to varying 
degrees. 

A measure of the power of an optical information processing system is the space- 
bandwidth product of the input function that it will accept. To maximize the input space- 
bandwidth product, we would attempt to place as many independent data points as 
possible on the transparencies. But as the structure on the input transparencies gets 
finer and finer, more and more of the light passing through them will be diffracted, with 
less and less of the light obeying the laws of geometrical optics. Thus the methods used 
in the analyses of these systems become less and less accurate, and the system outputs 
will depart more and more severely from their predicted forms. 

While we have considered only a few specific examples of systems based on geo- 
metrical optics, a fundamental fact is clear: if large quantities of data are to be squeezed 
into an aperture of a given size, ultimately diffraction effects must be taken into account. 
It is therefore extremely important to be sure that when a system is designed on the basis 
of geometrical optics, it is used in a way that assures accuracy of the laws of geometrical 
optics. 
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8.2.2 Systems That Incorporate the Effects of Diffraction 

It is possible to design incoherent optical information processing systems that take full 
account of the laws of diffraction. When considering such systems, some of the other 
difficulties associated with the use of incoherent light become more evident. The two 
major difficulties encountered in attempting to perform general filtering operations with 
incoherent light are (1) the point-spread functions that can be synthesized must be non- 
negative and real, since they are intensity distribution~, a constraint that restricts the 
generality of the operations that can be directly achieved, and (2) there are many dif- 
ferent pupil-plane masks that will generate the same intensity point-spread function, 
but no known method for finding the simplest such mask. 

Nonetheless, interesting operations can be performed even under the constraints 
mentioned. We illustrate here with one particular approach introduced by Rhodes [244] 
called two-pupil OTF synthesis. This approach provides a means for performing band- 
pass filtering using incoherent light for at least part of the processing operation. For 
an alternative example of a system that uses incoherent processing in a portion of its 
operation and is consistent with the laws of diffraction, see Prob. 8-10 [7]. 

Bandpass filtering is an operation that fundamentally requires subtraction, for the 
large low-frequency components that are always present in incoherent images must be 
removed by the processing operations. While some nonlinear optical phenomena allow 
the light from one strong incoherent image to suppress the strength of a second, weaker 
incoherent image, there is no optical operation, linear or nonlinear, that can produce 
a negative intensity, so true subtraction is not possible with purely optical operations. 
For this reason, incoherent processing must be supplemented with some other form of 
processing, either electronic processing or coherent optical processing, to achieve the 
desired bandpass operation. 

As the name "two-pupil OTF synthesis" implies, this method accounts for the laws 
of diffraction by manipulating the OTFs of the optical systems used. The OTF of an 
optical system is found from the (normalized) Fourier transform of the point-spread 
function of the system, and the calculation of a point-spread function is a calculation 
that is based on the laws of diffraction. 

If we collect an incoherent image using an optical system with the pupil shown 
in Fig. 8.9(a), the resulting OTF of the system is as shown in part (b) of the same 
figure. We have eliminated some midfrequency components and have emphasized the 
spatial frequencies present in the passband of interest, but the low frequencies remain 
very prominent. Suppose that we now place a phase plate over one of the two apertures 
in the pupil, a phase plate that introduces a 180' phase shift, which we assume to be 
approximately constant over the narrow band of optical wavelengths used in this ex- 
periment. The autocorrelation function of this new pupil yields an OTF as shown in 
part (c) of the figure, with the sign of the bandpass regions of the OTF reversed, but 
with the low-frequency part of the OTF left unchanged. Finally, suppose that the two 
image intensities collected with the OTFs shown in parts (b) and (c) of the figure are 
subtracted, perhaps by an electronic system. The effective transfer function for the dif- 
ference image is the difference of the two OTFs used in collecting those images, or the 
transfer function shown in part (d) of the figure, which indeed provides a true bandpass 
filter. 
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No phase shift 
With phase shift 

FIGURE 8.9 
(d) f~ Two-pupil OTF synthesis. 

Many variations on this theme are possible. The phase plate can be replaced by 
a phase modulator that shifts the temporal frequency of the light passing through one 
of the two apertures, and the detector can select only the difference frequency in order 
to eliminate the unmodulated low-frequency portions of the spectrum. Alternatively 
the two incoherent images can be translated by spatial light modulators into coherent 
images, and the amplitudes of those can be added with a 180' phase difference in an 
interferometer to achieve subtraction (the result is an intensity distribution represent- 
ing the squared-magnitude of the difference image). In addition, synthesis of transfer 
functions more general than a simple bandpass filter are possible. For a more complete 
discussion, together with more references, see Ref. [182], Chapter 3. 

By considering incoherent filtering systems that include the effects of diffraction, 
we have focused on the remaining serious problem that arises in such filtering, namely 
the nonnegativity of optical intensity and the lack of a convenient method for subtract- 
ing intensities. Even with electronic subtraction, it is often found that the low-frequency 
components being subtracted are very strong compared with the high-frequency in- 
formation of interest, and imperfections in the subtraction operation may leave image 
artifacts or noise of serious proportions. 

In summary, incoherent optical information processing is often simpler than coher- 
ent optical processing (particularly in the forms that use image casting), but in general 
is much less flexible in terms of the operations that can be achieved. We therefore turn 
to a consideration of information processing using coherent light. 
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8.3 
COHERENT OPTICAL INFORMATION PROCESSING SYSTEMS 

When coherent illumination is used, filtering operations can be synthesized by direct 
manipulation of the complex amplitude appearing in the back focal plane of a Fourier 
transforming lens. Examples of this type of processing have already been seen in the 
discussion of the phase-contrast microscope (Zernike) and the filtering of photographs 
(Markchal). In this section we outline the system architectures used for coherent optical 
information processing, and point out some of the difficulties encountered in attempting 
to synthesize general complex filters. 

8.3.1 Coherent System Architectures 

Coherent systems, being linear in complex amplitude, are capable of realizing opera- 
tions of the form 

There are many different system configurations that can be used to realize this opera- 
tion, three of which are shown in Fig. 8.10. 

The system shown in part (a) of the figure is conceptually the most straightfor- 
ward and is often referred to as a "4f" filtering architecture, due to the fact that there 
are four separate distances of length f separating the input plane from the output 
plane. Light from the point source S is collimated by lens L l .  In order to minimize the 
length of the system, the input transparency, having amplitude transmittance g(xl,  yl), 
is placed against the collimating lens in plane P1. One focal length beyond the input 
is a Fourier transforming lens L2, in the rear focal plane (P2) of which is placed a 
transparency to control the amplitude transmittance through that plane. An amplitude 
klG(x2/A f ,  y2/A f )  is incident on this plane, where G is the Fourier transform of g 
and kl is a constant. A filter is inserted in plane P2 to manipulate the spectrum of g. 
If H represents the desired transfer function, then the amplitude transmittance of the 
frequency-plane filter should be 

The field behind the filter is thus GH. After one additional focal length, lens L3 is 
placed, the purpose of which is to again Fourier transform the modified spectrum of the 
input, producing a final output in its rear focal plane, P3. Note that the output appears 
inverted in plane P3 due to the imaging operation, or equivalently due to the fact that a 
sequence of two Fourier transforms has been used, rather than one transform followed 
by its inverse. This awkwardness can be remedied by reversing the final coordinate sys- 
tem (x3, y3), as shown in the figure, in which case the output in plane P3 is as described 
by Eq. (8-10). For simplicity, the focal lengths of all three lenses have been assumed 
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FIGURE 8.10 
Architectures for coherent optical information processing. 

to be f ,  and the total length of the system is seen to be 5f. This architecture has the 
disadvantage that vignetting can occur during the first Fourier transform operation. 

The system shown in part (b) of the figure has the same length as the previous 
system, but uses one fewer lens. Again lens L1 collimates the light from the point source 
S, and again the input transparency is placed against L I  to minimize the length of the 
system. Placed at distance 2 f from the input, lens L2 now performs both the Fourier 
transforming and the imaging operations, with the spectrum of the input appearing in 
the rear focal plane P2 (where the Fourier filter transparency is placed) and the filtered 
image appearing one additional focal length beyond the focal plane, in plane P3. Since 
the object and image distances are both 2 f ,  the magnification of the system is unity. 
Note that in this geometry, the spectrum of the input has associated with it a quadratic 
phase factor of the form exp [ - j&=(x: + y i ) ] ,  since the input is not in the front focal 
plane of the lens (cf. Eq. (5-19)). This phase factor is not of concern and is indeed 
needed in order to produce an image at distance 2 f behind lens L2. The length of this 
system remains 5f, as before. 

There are two practical disadvantages of this second geometry. First, as com- 
pared with system (a), the input is now twice the distance from lens L2, and therefore 
the vignetting will be even worse than that encountered with system (a). A second 
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disadvantage arises from the approximations that led to Eq. (5-30) in the analysis of the 
coherent imaging properties of a thin lens. In that formulation, we found it necessary 
to assume that the amplitude of the image at any particular point consisted of contribu- 
tions from only a small region surrounding the geometrical object point. If the filtering 
operation represented by the transfer function H is of high space-bandwidth product, 
then the impulse response h will extend over a sizable area, and the output of this sys- 
tem must be regarded as a filtered version of the function g(xl, y l )  exp [ j&x: + y:)] 
rather than simply of g(xl, yl). This problem is not encountered with system (a), which 
casts an image of plane PI onto a plane P3, rather than of a sphere onto a sphere. This 
difficulty can be corrected by adding an additional positive lens with focal length 2 f 
in contact with the object, thus canceling the troubling quadratic phase factor. This ad- 
ditional lens also results in movement of the frequency plane from f behind lens L2 to 
coincidence with that lens, but the location of image plane P3 is not affected. 

As a final example which has merit (but by no means the only other system ge- 
ometry possible), consider the system shown in part (c) of the figure. Again only two 
lenses are used. Lens L1 now serves as both a lens for collecting the light from the point 
source S and as a Fourier transforming lens. The input is placed in plane PI in contact 
with lens L1. This lens images the source onto the frequency plane P2, where the filter 
transparency is placed. The magnification of this imaging operation as shown is unity. 
The second lens, L2, is also placed in this plane, and images the input onto the output 
plane P3 with unity magnification. Note that this system has no vignetting problems, 
and the quadratic phase factor across the input plane (mentioned above) is canceled by 
the converging illumination. The disadvantage is that the system is now of length 6 f 
rather than 5 f .  

Finally we mention that it is also possible to arrange a coherent system to process 
a stacked array of one-dimensional inputs, rather than a single two-dimensional input. 
An example of these so-called anamorphic processors4 is shown in Fig. 8.1 1. The col- 
limating lens L1 is followed by the input data in plane PI. The input data consists of an 
array of one-dimensional transmittance functions each running horizontally. A cylin- 
drical lens L2 follows, placed one focal length f from PI and having power only in 
the vertical dimension. At distance 2 f beyond L2 is placed a spherical lens L3 which 
again has focal length f .  The "frequency plane" now appears at P2, where an array of 
one-dimensional spectra is found. The lens combination L2, L3 has performed a double 
Fourier transformation in the y direction, thus imaging in the vertical direction. Since 
L2 exerts no power in the x direction, the spherical lens L3 Fourier transforms in the hor- 
izontal dimension, up to a phase factor exp (-  j $ x : )  across P2. This phase factor can be 
removed by placing a negative cylindrical lens of focal length f /2  immediately in front 
of P2, thus canceling the phase curvature. If the input array is the set of transmittance 
functions gk(xl), k = 1,2, . . . , K, then across P2 we find displayed the correspond- 
ing set of transforms Gk(x2), k = 1,2, .  . . , K. with the vertical order inverted by the 
imaging operation. 

4An optical system is called anamorphic if the focusing powers of the system in two orthogonal directions 
are unequal. 



FIGURE 8.11 
Example of an anamorphic processor. 
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A linear array of one-dimensional filters may now be introduced in plane Pz. The 
lens pair L5, L6 again images in the y direction and Fourier transforms in the x direc- 
tion, thus retaining the array structure but returning the original functions to the "space 
domain". The phase factor associated with the final Fourier transform is generally of 
no concern. 

8.3.2 Constraints on Filter Realization 

While coherent systems are in general more flexible and have greater data-handling 
capacity than most incoherent systems, nonetheless there are limitations to the types of 
operations that can be realized with simple frequency plane filters of the kind used ear- 
lier by Marbchal. More sophisticated techniques for realizing frequency-plane masks, 
based on interferometric recording, are free from some of these limitations, as will be 
discussed in the section to follow. 

Before 1963, the conventional means for realizing a given transfer function had 
been the insertion of independent amplitude and phase masks in the frequency plane. 
The amplitude transmittance was controlled by a photographic plate, presumably im- 
mersed in a liquid gate. The phase transmittance was controlled by insertion of a trans- 
parent plate with an appropriately varying thickness. Such plates could be ruled on 
a substrate, much as diffraction gratings are ruled, or deposited on a flat plate using 
thin-film coating techniques. All such methods are rather cumbersome, and could be 
successfully employed only when the desired pattern of phase control was rather sim- 
ple, e.g. binary and of simple geometric structure. 

Figure 8.12 shows the regions of the complex plane that can be reached by the trans- 
fer functions of coherent optical systems under different constraints on the frequency- 
plane transparency. As shown in (a), when only an absorbing transparency is used, the 
reachable region is limited to the positive real axis between 0 and 1. If binary phase 
control is added to this absorbing transparency, then the reachable region is extended 
to the region - 1 to 1 on the real axis, as shown in (b). If a pure phase filter is used, with 
arbitrary achievable values of phase, then the values of the transfer function would be 
restricted to the unit circle, as shown in (c). Finally part (d) of the figure shows the 
region of the complex plane that one would generally desire to reach if there were no 
constraints, namely the entire unit circle. 

It should be noted that, for even a very simple impulse response (such as one in the 
shape of the character " P ,  for example), the corresponding transfer function was (I)  
difficult to calculate (prior to the development of the fast Fourier transform algorithm 
for digital computation of spectra) and (2) far too complicated to be synthesized by 
these rather simple techniques. 

In summary, the most severe limitation to the traditional coherent processor (prior to 
the invention of the methods to be discussed in the next section) arose from the difficulty 
of simultaneously controlling the amplitude and phase transmittances in any but very 
simple patterns. Thus coherent optical filters were limited to those that had very simple 
transfer functions. It was not until 1963, with the invention of the interferometrically 
recorded filter, that this serious limitation was largely overcome, extending the domain 
of complex filters that could be realized to those with simple impulse responses. 
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FIGURE 8.12 
Reachable regions of the frequency plane for (a) a purely absorbing 
filter, (b) an absorbing filter and binary phase control, (c) a pure phase 
filter, and (d) a filter that achieves arbitary distributions of absorbtion 
and phase control. 

8.4 
THE VANDERLUGT FILTER 

In 1963, A.B. VanderLugt of the University of Michigan's Radar Laboratory proposed 
and demonstrated a new technique for synthesizing frequency-plane masks for coher- 
ent optical processors [290], [2911.~ The frequency-plane masks generated by this tech- 
nique have the remarkable property that they can effectively control both the amplitude 
and phase of a transfer function, in spite of the fact that they consist only of patterns 
of absorption. By means of this technique, it is possible to largely overcome the two 
limitations to coherent processing systems mentioned above. 

SHistorically. this type of filter had been preceded by a related but less general technique, known as the 
hard-clippedjlrer, which was a filter generated by computer and is the first example of what now might 
be called a phase-only filter. While the hard-clipped filter was used in radar signal processing as early as 
1961, due to classification it did not appear in the open literature until 1965 [179]. The fundamental idea 
that an interferometric recording of the Fourier transform of the impulse response could realize a complex 
filter with a desired transfer function or its conjugate is attributable to C. Palermo (private communication, 
E.N. Leith). 
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FIGURE 8.13 
Recording the frequency-plane 

L1 P1 L2 "2 mask for a VanderLugt filter. 

8.4.1 Synthesis of the Frequency-Plane Mask 

The frequency-plane mask of the VanderLugt filter is synthesized with the help of an in- 
terferometric (or holographic-see Chapter 9) system, such as that shown in Fig. 8.13. 
The lens L1 collimates the light from the point source S.  A portion of this light strikes 
the mask P I ,  which has an amplitude transmittance that is proportional to the desired 
impulse response h. The lens L2 Fourier transforms the amplitude distribution h, yield- 
ing an amplitude distribution &H ($, $) incident on the recording medium? usually 
film. In addition, a second portion of the collimated light passes above the mask P 1 ,  
strikes a prism P, and is finally incident on the recording plane at angle 8 ,  as shown. 

The total intensity incident at each point on the recording medium is determined 
by the interference of the two mutually coherent amplitude distributions present. The 
tilted plane wave incident from the prism produces a field distribution 

where the spatial frequency a is given by 

sin 8 a = -  
h ' 

The total intensity distribution may therefore be written 

6Here and frequently in what follows, we drop a multiplicative factor l l j  associated with the optical Fourier 
transform, with the justification that we can always change the phase reference for convenience. 
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Note that if the complex function H has an amplitude distribution A and a phase 
distribution $, that is, if 

then the expression for Z can be rewritten in the form 

This form illustrates the means by which the interferometric process allows the record- 
ing of a complex function H on an intensity-sensitive detector: amplitude and phase 
information are recorded, respectively, as amplitude and phase modulations of a high- 
frequency carrier that is introduced by the relative angular tilt of the "reference" wave 
from the prism. 

There are, of course, other optical systems that will produce the same intensity 
distribution as that of Eq. (8-15). Figure 8.14 illustrates two additional possibilities. 
System (a) consists of a modified Mach-Zehnder interferometer. By tilting the mirror 
M I ,  a tilted plane wave is produced at the film plane. In the lower arm of the interfer- 
ometer, the lens L2 again Fourier transforms the desired impulse response. The final 
beam splitter allows the addition of these two waves at the recording plane. 

System (b), which is a modified Rayleigh interferometer, provides a third means 
for producing the same intensity distribution. The collimating lens L1 is followed by 
a smaller lens L2, which focuses a portion of the collimated light to a bright spot in 
the front focal plane of lens L3. When the spherical wave generated by this "reference 
point" passes through L3, it is collimated to produce a tilted plane wave at the recording 
plane. The amplitude transmitted by the impulse response mask is Fourier transformed 
in the usual fashion. Thus an intensity distribution similar to Eq. (8-15) is again pro- 
duced at the recording plane. 

As a final step in the synthesis of the frequency-plane mask, the exposed film is 
developed to produce a transparency which has an amplitude transmittance that is pro- 
portional to the intensity distribution that was incident during exposure. Thus the am- 
plitude transmittance of the filter is of the form 

Note that, aside from the simple complex-exponential factor, the third term of the am- 
plitude transmittance is proportional to H and therefore exactly the form required to 
synthesize a filter with impulse response h. It remains to be demonstrated how that 
particular term of the transmittance can be utilized and the other terms excluded. 



240 Introduction to Fourier Optics 

Beam' splitter 

Reference 
LI L2 point L3 

I\ Desired Film 

impulse response 

FIGURE 8.14 
Two alternative systems for producing the frequency-plane 
transparency (a) Modified Mach-Zehnder interfereometer; (b) 
modified Rayleigh interferometer. 

8.4.2 Processing the Input Data 

Once the frequency-plane mask has been synthesized, it may be inserted in any of the 
processing systems shown previously in Fig. 8.10. To be specific, we focus on the sys- 
tem shown in part (a) of that figure. If the input to be filtered is g ( x l ,  yl), then incident on 

the frequency-plane mask is a complex amplitude distribution given by h G (9, 3). 
The field strength transmitted by the mask then obeys the proportionality 
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The final lens L3 of Fig. 8.10(a) optically Fourier transforms U2. Taking note of the 
reflected coordinate system in plane P3 as well as the scaling constants present in the 
Fourier transform operation, the field strength in that plane is found to obey the propor- 
tionality 

The third and fourth terms of this expression are of particular interest. Noting that 

we see that the third output term yields a convolution of h and g, centered at coordinates 
(0, -ah f )  in the (x3, y3) plane. Similarly, the fourth term may be rewritten as 

which is the crosscorrelation of g and h, centered at coordinates (0, ah f )  in the (x3, y3) 
plane. 

Note that the first and second terms of Eq. (8-17), which are of no particular utility 
in the usual filtering operations, are centered at the origin of the (x3, y3) plane. Thus 
it is clear that if the "carrier frequency" a is chosen sufficiently high, or equivalently 
if the reference wave is introduced at a sufficiently steep angle, the convolution and 
crosscorrelation terms will be deflected (in opposite directions) sufficiently far off-axis 
to be viewed independently. To find the convolution of h and g, the observer simply 
examines the distribution of light centered about the coordinates (0, -ah f) .  To find 
the crosscorrelation of h and g, the observation is centered at coordinates (0, ah f ). 

To illustrate the requirements placed on a more precisely, consider the widths of 
the various output terms illustrated in Fig. 8.15. If the maximum width of h in the y 
direction is Wh and that of g is W,, then the widths of the various output terms are as 
follows: 

4- 9 [h*(-x3, - ~ 3 )  @ g ( ~ 3 ,  y3) 8 S(x3, y3 - ah f ) ]  + Wh + We 
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FIGURE 8.15 
Locations of the various terms of the 
processor output. 

From the figure it is clear that complete separation will be achieved if 

or equivalently, if 

where the small-angle approximation sin 8 - 0 has been used. 

8.4.3 Advantages of the VanderLugt Filter 

The use of a VanderLugt filter removes the two most serious limitations to conventional 
coherent optical processors. First, when a specified impulse response is desired, the task 
of finding the associated transfer function is eliminated; the impulse response is Fourier 
transformed optically by the system that synthesizes the frequency-plane mask. Second, 
the generally complicated complex-valued transfer function is synthesized with a single 
absorbing mask; the phase transmittance through the frequency plane need no longer 
be controlled in a complicated manner. The absorbing mask is simply immersed in a 
liquid gate to eliminate all relative phase shifts. 

The VanderLugt filter remains very sensitive to the exact position of the frequency- 
plane mask, but no more sensitive than the conventional coherent processor. The record- 
ing of the modulated high-frequency carrier requires a higher-resolution film than might 
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otherwise be used to synthesize the mask, but films with adequate resolution are readily 
available (e.g. Kodak Spectroscopic Plates) and this requirement poses no particular 
problem. 

Note that the VanderLugt technique offers an important new flexibility to coherent 
processing. Whereas previously the realization of the frequency-plane mask was the 
major practical problem, the difficulties are now transferred back to the space domain. 
The difficulties are in general much less severe in the space domain, for the impulse 
responses required are often simple, and the necessary masks can be constructed by 
conventional photographic techniques. Thus the VanderLugt filter extends the use of 
coherent processors to an otherwise unattainable realm of operations. Many of the most 
promising applications fall in this realm. 

8.5 
THE JOINT TRANSFORM CORRELATOR 

Before considering applications of coherent optical processing, an alternative method 
for performing complex filtering using a spatial carrier for encoding amplitude and 
phase information is considered. This method is due to Weaver and Goodman [295], 
and has become known as the joint transform correlator, although like the VanderLugt 
filter, it is equally capable of performing convolutions and correlations. 

This type of filter differs from the VanderLugt filter in that both the desired impulse 
response and the data to be filtered are presented simultaneously during the recording 
process, rather than just presenting the desired impulse response. The transparency so 
constructed is then illuminated with a simple plane wave or spherical wave to obtain 
the filter outputs. 

Consider the recording in Fig. 8.16(a). Lens L1 collimates the light from the point 
source S. This collimated light then illuminates a pair of transparencies residing in the 
same plane, designated in the figure by their amplitude transmittances, h for the desired 
impulse response and g for the data to be filtered. For simplicity this input plane is taken 
to be the front focal plane of the Fourier transforming lens L2, but in fact this distance 
is arbitrary (vignetting will be eliminated if the inputs are placed in contact with lens, 
rather than in front of it). The Fourier transform of the composite input appears in the 
rear focal plane of L2, where the incident intensity is detected by either a photographic 
medium or a photosensitive spatial light modulator. 

The field transmitted through the front focal plane is given by 

where the separation between the centers of the two inputs is Y. In the rear focal plane 
of the lens we find the Fourier transform of this field, 

Taking jhe squared magnjjude of fhjs field, the jn~ensjp jncjdent on fhe recordjngpJme 
is found to be 
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FIGURE 8.16 
The joint transform correlator. (a) Recording the filter, (b) obtaining 
the filtered output. 

* ( 2  2  ) (I? y 2 )  + j 2 ~ y 2 Y / A f ]  + H  - - G - - e  
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The transparency that results from this recording is assumed to have an amplitude 
transmittance that is proportional to the intensity that exposed it. After processing, this 
transparency is illuminated by collimated light and the transmitted field is Fourier trans- 
formed by a positive lens L4, assumed to have the same focal length f as the lens used 
in the recording process (see Fig. 8.16(b)). The field in the front focal plane of this final 
Fourier transforming lens L4 consists of four terms, each of which is proportional to one 
of the terms in Eq. (8-21). Taking account of scaling factors and coordinate inversions, 
the field in the rear focal plane of L4 is 
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Again it is the third and fourth terms of the expression for the output that are of 
most interest. We can rewrite them as 

and 

Both of these expressions are crosscorrelations of the functions g and h. One output is 
centered at coordinates (0, - Y) and the other at coordinates (0, Y). The second output 
is a mirror reflection of the first about the optical axis. 

To obtain a convolution of the functions h and g, it is necessary that one of them (and 
only one) be introduced in the processor of Fig. 8.16(a) with a mirror reflection about 
its own origin.7 For example, if originally we introduced the function h(xl, yl - Yl2), 
this input should be changed to h(-xl, - yl + Yl2), which is again centered at Y12 but 
now is reflected about its own origin. The result will be two output terms, centered at 
(0, Y) and (0, -Y) in the output plane, each of which is a convolution of g and h. One 
term is identical with the other, but reflected about the optical axis. 

Separation of the correlation (or convolution) terms from the uninteresting on-axis 
terms requires adequate separation of the two inputs at the start. If Wh represents the 
width of h and W ,  is the width of g, both measured in the y direction, then separation 
of the desired terms can be shown to occur if 

as is to be shown in Prob. 8-13. 
The joint transform correlator is in some cases more convenient than the VanderLugt 

geometry, although both are widely used. Precise alignment of the filter transparency 
is required for the VanderLugt geometry, while no such alignment is necessary for the 

'Strictly speaking, the function should also be conjugated, but in practice the functions g and h are usually 
real. 
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joint transform correlator. In addition, the joint transform approach has been found ad- 
vantageous for real-time systems, i.e. systems that are required to rapidly change the 
filter impulse response. The price paid for the joint transform geometry is generally a 
reduction of the space-bandwidth product of the input transducer that can be devoted 
to the data to be filtered, since a portion of that space-bandwidth product must be as- 
signed to the filter impulse response. See Ref. [201] for further comparison of the two 
approaches. 

8.6 
APPLICATION TO CHARACTER RECOGNITION 

A particular application of optical information processing that has been of interest for 
many years is found in the field of character recognition. As we shall see, this ap- 
plication affords an excellent example of desired processing operations with simple 
impulse responses but not necessarily simple transfer functions. The carrier-frequency 
filter synthesis methods are therefore particularly well suited for this application. 

8.6.1 The Matched Filter 

The concept of the matchedjlter plays an important role in pattern recognition prob- 
lems. By way of definition, a linear space-invariant filter is said to be matched to a 
particular signal s(x, y) if its impulse response h(x, y) is given by 

If an input g(x, y) is applied to a filter matched to s(x, y), then the output v(x, y) is found 
to be 

which is recognized to be the crosscorrelation function of g and s. 
Historically the concept of the matched filter first arose in the field of signal de- 

tection; if a signal of known form, buried in "white" noise, is to be detected, then a 
matched filter provides the linear operation which maximizes the ratio of instantaneous 
signal power (at a particular time) to average noise power [286]. However, in the present 
application, the input patterns or characters will be assumed noiseless, and the use of a 
particular filtering operation must be justified on other grounds. 

Considerable insight into the matched filtering operation is provided by an opti- 
cal interpretation, as illustrated in Fig. 8.17. Suppose that a filter, matched to the input 
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L3 Output Optical interpretation of the 
S(X,Y) s*(fxfv) matched-filtering operation. 

signal s(x, y), is to be synthesized by means of a frequency-plane mask in the usual 
coherent processing geometry. Fourier transformation of the impulse response (8-26) 
shows that the required transfer function is 

Wfx,  f ~ )  = S*(fx, fy), (8-28) 

where H = F{h}  and S = F{s). Thus the frequency plane filter should have an am- 
plitude transmittance proportional to S* . 

Consider now the particular nature of the field distribution transmitted by the mask 
when the signal s (to which the filter is matched) is present at the input. Incident on 
the filter is a field distribution proportional to S, and transmitted by the filter is a field 
distribution proportional to SS*. This latter quantity is entirely real, which implies that 
the frequency-plane filter exactly cancels all the curvature of the incident wavefront S. 
Thus the transmitted field consists of aplane wave (generally of nonuniform intensity), 
which is brought to a bright focus by the final transforming lens. When an input signal 
other than s(x, y) is present, the wavefront curvature will in general not be canceled 
by the frequency-plane filter, and the transmitted light will not be brought to a bright 
focus by the final lens. Thus the presence of the signal s can conceivably be detected 
by measuring the intensity of the light at the focal point of the final transforming lens. 

If the inputs is not centered on the origin, the bright point in the output plane simply 
shifts by a distance equal to the misregistration distance, a consequence of the space 
invariance of the matched filter (cf. Prob. 8-12). 

8.6.2 A Character-Recognition Problem 

Consider the following character-recognition problem: The input g to a processing sys- 
tem may consist of any one of N possible alphanumeric characters, represented by 
sl, s2, . . . , SN, and the particular character present is to be determined by the processor. 
As will now be demonstrated, the identification process can be realized by applying the 
input to a bank of N filters, each matched to one of the possible input characters. 

A block diagram of the recognition machine is shown in Fig. 8.18. The input is 
simultaneously (or sequentially) applied to the N matched filters with transfer func- 
tions ST, S;, . . . , Si. The response of each filter is normalized by the square root of the 
total energy in the character to which it is matched. This normalization, which can be 
accomplished electronically after detection of the filter outputs, takes account of the 
fact that the various input characters will generally not be of equal energy. Finally, the 
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Outputs - 

FIGURE 8.18 
Block diagram of a character-recognition system. 

S(X,Y) 
0 

Input 

squared moduli of the outputs Ivl 12, Iv2I2, . . . , lvNI2 are compared at the particular points 
where their maximum outputs would be anticipated (assuming that the character to 
which they are matched is present in each case). As will now be demonstrated, if the 
particular character 

s 2  O v2 

* 
Sk O Vk 

O "N 

is actually present at the input, then the particular output lvk12 will be the largest of the 
N responses. 

To prove this assertion, first note that, from Eq. (8-27), the peak output (vxI2 of the 
correct matched filter is given by 

On the other hand, the response Iv,12 (n # k) of an incorrect matched filter is given by 
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However, from Schwarz's inequality, we have 

It follows directly that 

with equality if and only if 

From this result it is evident that the matched filter does provide one means of recog- 
nizing which character, of a set of possible characters, is actually being presented to the 
system. It should be emphasized that this capability is not unique to the matched filter. 
In fact it is often possible to modify (mismatch) all the filters in such a way that the dis- 
crimination between characters is improved. Examples of such modifications include: 
(1) overexposing the low-frequency portion of a VanderLugt filter transparency so as 
to suppress the influence of those frequencies in the decision process (see, for example, 
Ref. [284], pp. 130-133); (2) eliminating the amplitude portion of the transfer functions 
of the matched filters and retaining only phase information [149]; and (3) modifying the 
nonlinearity of the normally square-law detection process in the joint-transform corre- 
lator to enhance discrimination between patterns [154], [155]. 

Not all pattern-recognition problems are of the type described above. For example, 
rather than trying to distinguish between several possible known patterns, we may wish 
simply to detect the presence or absence of a single known object in a larger image. 
Such a problem is closer to what the matched filter is known to do well, namely detect 
a known pattern in the presence of background noise, but has the added difficulty that 
the orientation and possibly the scale size of the target may not be under the same 
level of control that is present in the character recognition problem. We return in a later 
subsection to discussing some of the difficulties of the matched filter approach to such 
problems. 

8.6.3 Optical Synthesis of a Character-Recognition Machine 

The matched filter operation can readily be synthesized by means of either the 
VanderLugt technique or the joint transform technique discussed earlier. Our discussion 
here is directed at the VanderLugt-type system, but the reader may wish to contemplate 
how the equivalent system could be realized with the joint transform geometry. 

Recall that one of the outputs of the VanderLugt filtering operation is itself the 
crosscorrelation of the input pattern with the original pattern from which the filter 
was synthesized. By restricting attention to the proper region of the output space, the 
matched filter output is readily observed. 
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(a) 

FIGURE 8.19 
Photographs of (a) the impulse response of a VanderLugt filter, and (b) the response of 
the matched filter portion of the output to the letters Q, W, and P. 

Figure 8.19(a) shows a photograph of the impulse response of a VanderLugt filter 
which has been synthesized for the character P. The upper portion of response will 
generate the convolution of the input data with the symbol P, while the lower response 
will generate the crosscorrelation of the input with the letter P. The central portion of 
the response is undesired and not of interest. 

Figure 8.19(b) shows the response of the matched filter portion of the output to the 
letters Q, W, and P. Note the presence of the bright point of light in the response to 
P, indicating the high correlation between the input letter and the letter to which it is 
matched. 

To realize the entire bank of matched filters illustrated in Fig. 8.18, it would be 
possible to synthesize N separate VanderLugt filters, applying the input to each filter se- 
quentially. Alternatively, if N is not too large, it is possible to synthesize the entire bank 
of filters on a single frequency-plane filter. This can be done by frequency-multiplexing, 
or recording the various frequency-plane filters with different carrier frequencies on a 
single transparency. Figure 8.20(a) illustrates one way of recording the multiplexed fil- 
ter. The letters Q, W, and P are at different angles with respect to the reference point, 
and as a consequence, the crosscorrelations of Q, W, and P with the input character 
appear at different distances from the origin, as illustrated in Fig. 8.20(b). 

The number of different filters that can be realized by this technique is limited by 
the dynamic range that can be achieved in the frequency-plane filter. Synthesis of nine 
separate impulse responses in a single mask was demonstrated by VanderLugt at an 
early date (see Ref. [284], pp. 133-139). 
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of Q with input 
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of W with input 

4 Crosscorrelation 
of P with input 

FIGURE 8.20 
Synthesis of a bank of matched filters with a single frequency-plane filter. (a) 
Recording the frequency-plane filter; (b) format of the matched filter portion of the 
output. 

8.6.4 Sensitivity to Scale Size and Rotation 

The coherent optical pattern-recognition technique described above suffers from certain 
deficiencies that are shared by all matched-filter approaches to the pattern recognition 
problem. Specifically, such filters are too sensitive to scale size changes and rotations 
of input patterns. When an input pattern is presented with an angular orientation or 
a scale size that is different from those of the pattern to which the filter is matched, 
the response of the correct matched filter is reduced, and errors arise in the pattern 
recognition process. The degree of sensitivity of a matched filter to rotation and scale- 
size depends to a large extent on the structure of the pattern to which it is matched. For 
example, a matched filter for the character L is obviously much more rotation-sensitive 
than that for the letter 0. One solution that has been used is to make a bank of matched 
filters, each of which is matched to the pattern of interest with a different rotation andlor 
scale size. If any of these matched filters have a large output, then the pattern of interest 
is known to have been presented to the input. 

We turn attention in the next section to a few of the many other techniques that have 
been explored as possible solutions to scale-size and rotation variations of the object. 
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8.7 
OPTICAL APPROACHES TO INVARIANT PATTERN RECOGNITION 

There exists a vast number of different pattern-recognition approaches that are aimed 
at reducing or eliminating sensitivity to extraneous parameters, such as scale size, and 
rotation. Note that the classical matched filtering approach is insensitive to one ex- 
traneous parameter, translation, in the sense that wherever the object may be in the 
input field, a bright spot will appear at its corresponding location in the output plane. 
The strength of that spot is not affected by pure translation. This is a property that one 
would like to preserve in any approach to reducing sensitivity to other types of object 
variation. 

One approach to handling patterns with different scale sizes and rotations is to syn- 
thesize a matched filter for an object of fixed size and rotation, and to perform a mechan- 
ical search, rotating and magnifyingldemagnifying the input to the system. Mechanical 
searches are awkward and time-consuming, and therefore are not considered further 
here. 

Note that many methods for achieving invariance have been developed for digi- 
tal processing of images, and only some of these are naturally well suited for optical 
implementation. In some cases there must be a heavy intrusion of electronic digital pro- 
cessing, a process that can slow down the natural speed (obtained from parallelism) of 
a purely optical solution. In the end, the complexity of digital and optical solutions to a 
given approach must be carefully and critically assessed to determine whether there is 
really a practical motivation to pursue the optical solution. 

In what follows we will only briefly touch on three different approaches to invari- 
ant pattern recognition that have received considerable attention in the literature. Space 
limitations do not allow a complete discussion of these methods, so our goal is to intro- 
duce the reader to the basic underlying ideas. 

8.7.1 Mellin Correlators 

While Fourier-based correlators such as discussed above are extremely sensitive to both 
magnification and rotation of the object, there exists a different transform, closely re- 
lated to the Fourier transform, that exhibits a certain invariance to object magnifica- 
tion. We refer to the Mellin transform (see [32], p. 254). For simplicity we introduce 
the Mellin transform in one-dimensional form, although it is easily generalized to two 
dimensions. 

The Mellin transform of a function g( t )  is defined by 

where in the most general case, s is a complex variable. A simple relation between the 
Fourier transform and the Mellin transform can be discovered if the complex variable s 
is restricted to the imaginary axis, i.e. s = j 2 7 ~  f .  A substitution of variables 8 = e-X 
yields the following expression for the Mellin transform of g, 
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m 

M ( j 2 7 ~  f )  = im g(e-x) e-jzTfX dx. 

which we see is nothing but the Fourier transform of the function g(e-I). We conclude 
that it is possible to perform a Mellin transform with an optical Fourier transforming 
system provided the input is introduced in a "stretched" coordinate system, in which 
the natural space variable is logarithmically stretched (x = - In 5). Such a stretch can 
be introduced, for example, by driving the deflection voltage of a cathode ray tube 
through a logarithmic amplifier and writing onto an SLM with the resulting stretched 
signal. There also exist optical methods for coordinate distortion that can be used for 
this task [42]. 

The particular interest in the Mellin transform arises because its magnitude is in- 
dependent of scale-size changes in the input. To prove this fact, let MI represent the 
Mellin transform of g( t )  and let Ma represent the Mellin transform of g(at),  where 
0 < a < m. A value of a greater than unity implies a demagnification of g and a value 
of a between zero and unity implies a magnification. The Mellin transform of g(a6) can 
now be found as follows: 

where the change of variables 5' = a t  was made. Taking the magnitude of Ma and 
noting that the term la-j2"f / = 1 proves that [Ma[ is independent of scale size a. The 
independence of the Mellin magnitude with respect to object scale size, coupled with 
the fact that the Mellin transform can be performed as a Fourier transform of a stretched 
input, will be shown to suggest one way to achieve independence from scale size. 

The second parameter we wish to eliminate is rotation of the object. As the basis 
for this elimination, we note that rotation of an object by a certain angle is equivalent to 
translation in one dimension if the object is presented in polar coordinates, provided that 
the center chosen for the polar coordinate system coincides with the center of rotation of 
the object. There is a subtlety that arises from the fact that on a scale that varies from 0 to 
2 7 ~  radians, rotation by angle 8 may result in portions of the object shifting by 8 ,  while 
other portions of the object may "wrap around the angular coordinate and appear at a 
position corresponding to 27r - 8. This problem can be removed if the angle coordinate 
is allowed to cover two or more periods of length 2 7 ~ ,  in which case the "wrap around" 
problem can be minimized or eliminated. 

The approach to achieving simultaneous scale and rotation invariance, which was 
pioneered by Casasent and Psaltis (see [50] and references therein), can now be de- 
scribed. A two dimensional object g(t,17) is entered into the optical system in a distorted 
polar coordinate system, the distortion arising from the fact that the radial coordinate is 
stretched by a logarithmic transformation. The optical system that follows is a matched 
filtering system, for which the filters have been made under the same coordinate trans- 
formations to which the input was subjected. The output intensity will translate with 
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rotation, but will not drop in strength under either scale-size or rotational changes of 
the input. 

Unfortunately the achievement of scale-size and rotation invariance by the method 
described above leads to a loss of the original translation invariance that characterized 
the conventional matched filter. To achieve simultaneous invariance to all three param- 
eters, it is possible to replace the input function g by the magnitude of its Fourier trans- 
form IGl, which is invariant to translation of g [50]. This magnitude function is subjected 
to the same coordinate changes discussed above, and the filter should be matched to the 
magnitude of the Fourier transform of the pattern of interest, again subject to the coor- 
dinate transformations outlined. Some loss of correlator performance can be expected 
due to the fact that the phase of the Fourier transform of the input and the matched filter 
transfer function have both been discarded. 

8.7.2 Circular Harmonic Correlation 

An approach that focuses on the problem of invariance to object rotation is based on a 
circular harmonic decomposition of the object [15 11, [150]. For an excellent overview, 
see Ref. [9]. 

The circular harmonic expansion rests on the fact that a general two-dimensional 
function g(r, 8), expressed in polar coordinates, is periodic in the variable 8, with pe- 
riod 27r. As a consequence it is possible to express g in a Fourier series in the angular 
variable, 

m 

g(r. 0) = 1 gm(r) ejmR, (8-35) 
m =  -m 

where the Fourier coefficients are functions of radius, 

Each term in Eq. (8-35) is referred to as a "circular harmonic" of the function g. Note 
that if the function g(r, 8)  undergoes a rotation by angle a to produce g(r, I3 - a), the 
circular harmonic expansion becomes 

and thus the mth circular harmonic is subjected to a phase change of -ma radians. 
Consider now the crosscorrelation of the functions g and h, which in rectangular 

coordinates is written 

Of particular interest is the value of the crosscorrelation at the origin, which in rectan- 
gular and polar coordinates can be written 
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The particular case of the crosscorrelation between the function g(r, 8 )  and an angularly 
rotated version of the same function, g(r, 8 - a), yields 

which, when the function g*(r, 8 )  is expanded in a circular harmonic expansion, is 
equivalently expressed as 

R = lom r [ ) l o2  ( r ,  8 - a)  e - ~ ~ '  d8 dr. 
m =  -m I 

But 

and therefore 

From this result we see that each of the circular harmonic components of the cross- 
correlation undergoes a diflerent phase shift - ma.  

If a particular circular harmonic component of R,, say the Mth, is extracted dig- 
itally, then from the phase associated with that component it is possible to determine 
the angular shift that one version of the object has undergone. Of more relevance to us 
here, if an optical filter that is matched to the Mth circular harmonic component of a 
particular object is constructed, perhaps using digital techniques, and placed in an opti- 
cal correlation system, then if that same object is entered as an input to the system with 
any angular rotation, a correlation peak of strength proportional to r lgM(r)12 dr will 
be produced, independent of rotation. Hence an optical correlator can be constructed 
that will recognize that object independent of rotation. 

The price paid for rotation invariance is that the strength of the correlation peak is 
smaller than what would be obtained for the crosscorrelation with an unrotated version 
of the object when all of the circular harmonics are used simultaneously. The reduc- 
tion in peak correlation intensity incurred by use of only the Mth circular harmonic 
component is easily shown to be given by 

It should be mentioned that the circular harmonic expansion of a function depends 
on the particular point chosen for the center of that expansion, and the quality of the 
correlation peaks obtained depends on making a "good choice of center. This problem 
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has been addressed and procedures for determining an appropriate center have been 
found (see Ref. [9]). 

8.7.3 Synthetic Discriminant Functions 

The final method we will discuss for achieving invariant pattern recognition is through 
the use of what are known as "synthetic discriminant functions" (SDF). This method 
has its roots in a number of earlier ideas, particularly in the work of Braunecker and 
Lohmann [36], [35] and in the ideas of Caulfield and Haimes [54]. However, it has been 
carried to its present state by D. Casasent and his students (e.g. see [48] and [49]). 

The SDF approach is a method for constructing a single pattern-recognition filter 
that has its correlation properties tailored in advance by means of a certain "training set" 
of images, whose desired correlations with the reference filter are known in advance. 
The members of the training set may be distorted versions of a single object, where 
the distortions correspond to scale change and rotation, they may be more generally 
distorted versions of that object, or they may be examples of other objects for which 
we desire to have zero filter output. Let the training set of N images be represented 
by {gn(x, y)} where n = 1,2, . . . , N. For a particular training image, we may want 
the correlation with our filter's impulse response h(x, y) to be unity (i.e. that particular 
training image is a distorted version of the ideal image), and in some cases we may 
wish it be zero (i-e. that particular training image represents a distorted version of an 
entirely different ideal image). We will divide the set {gn) into two subsets, {g;) for 
which we wish the correlation to be unity, and {g,) for which we wish the correlation 
to be zero. Thus we have the constraints 

To obtain a filter impulse h(x, y) that will have the desired correlations with the 
training set, we first expand (symbolically) that impulse response in a series using the 
training images as basis functions, 

where the an are for the moment unknown. Now consider the correlation of any one 
member of the training set, say gk(x, y) with the filter function h(x, y), 

where we have substituted the previous expansion for h(x, y), and c k  is known to be 
either zero or unity, depending on which class of inputs gk is drawn from. Letting p k ,  

represent the correlation between gk and g,, we see that 
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Now by considering all N members of the training set, we establish a total set of N 
linear equations in the N unknowns an, each similar to Eq. (8-47), but for a different 
value of k. The entire collection of these equations can be expressed in a single matrix 
equation 

where a' and c' are column vectors of length N, and P is an N x N matrix of correlations 
between the training images, 

Note that the vector Z is a column vector of known values (each element is zero or one 
in the case we are considering, but clearly they can also have more general values), 
the matrix P contains known elements (calculated in advance), and we seek knowledge 
of the vector a', for this will allow us to specify the desired impulse response of our 
filter according to Eq. (8-45). This unknown vector can be found by inverting the ma- 
trix P and multiplying the inverse by the vector c' (using a digital computer for these 
calculations) 

Thus we have described a method for constructing a filter which will produce pre- 
scribed correlations between a group of images in a training set. The theory does not 
directly indicate what the response might be to an image that is not a member of the 
training set, but the method still provides a useful design procedure to obtain filters with 
a significant degree of invariance to various image parameters. The theory presented 
here can clearly be generalized in many ways, but space constraints prevent us from 
delving further into this subject. 

8.8 
IMAGE RESTORATION 

A common problem in image processing, and one that has been studied extensively in 
the context of optical information processing, is image restoration, by which we mean 
the restoration of an image that has been blurred by a known linear, invariant point- 
spread function. In this section we summarize some of the past work on this problem. 
The reason for doing so is only partly because of the extensive past work. Equally 
important, there are lessons that have been learned in this application, particularly about 
clever use of the properties of wavefront modulation devices, that can be applied to other 
unrelated problems. 
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8.8.1 The Inverse Filter 

Let o(x, y) represent the intensity distribution associated with an incoherent object, 
and let i(x, y) represent the intensity distribution associated with a blurred image of 
that object. For simplicity we assume that the magnification of the imaging system is 
unity and we define the image coordinates in such a way as to remove any effects of 
image inversion. 

We assume that the blur the image has been subjected to is a linear, space-invariant 
transformation, describable by a known space-invariant point-spread function s(x, y). 
Thus, in the simplest description of the problem, the object and image are related by 

We seek to obtain an estimate B(x, y) of o(x, y), based on the measured image intensity 
i(x, y) and the known point-spread function s(x, y). In other words, we wish to invert 
the blurring operation and recover the original object. 

An unsophisticated solution to this problem is quite straightforward. Given the re- 
lationship between object and image in the frequency domain, 

it seems obvious that the spectrum of the original object can be obtained by simply 
dividing the image spectrum by the known OTF of the imaging system, 

An equivalent statement of this solution is that we should pass the detected image i(x, y) 
through a linear space-invariant filter with transfer function 

Such a filter is commonly referred to as an "inverse filter", for obvious reasons. 
This straightforward solution has several serious defects: 

1. Diffraction limits the set of frequencies over which the transfer function S( fx, fy) 
is nonzero to a finite range. Outside this range, S = 0 and its inverse is ill defined. 
For this reason, it is necessary to limit the application of the inverse filter to those 
frequencies lying within the diffraction-limited passband. 

2. Within the range of frequencies for which the diffraction-limited transfer function 
is nonzero, it is possible (indeed likely) that transfer function S will have isolated 
zeros. Such is the case for both a serious defocusing error and for many kinds of 
motion blur (see Prob. 8-14). The value of the restoration filter is undefined at the 
frequencies where these isolated zeros occur. Another way of stating this problem is 
that the restoration filter would need a transfer function with infinite dynamic range 
in order to properly compensate the spectrum of the image. 
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3. The inverse filter takes no account of the fact that there is inevitably noise present 
in the detected image, along with the desired signal. The inverse filter boosts the 
most those frequency components that have the worst signal-to-noise ratios, with 
the result that the recovered image is usually dominated by noise. 

The only solution to the last of the problems raised above is to adopt a new approach 
to determining the desired restoration filter, an approach that includes the effects of 
noise. One such approach is described in the following, and it will be seen to solve the 
first two problems as well. 

8.8.2 The Wiener Filter, or the Least-Mean-Square-Error Filter 

A new model for the imaging process is now adopted, one that takes into account ex- 
plicitly the presence of noise. The detected image is now represented by 

where n(x, y) is the noise associated with the detection process. In addition to the pres- 
ence of the noise term, which must be regarded as a random process, we also treat the 
object o(x, y) as a random process in this formulation (if we knew what the object is, 
we would have no need to form an image of it, so the object that is present is regarded 
as one realization of a random process). We assume that the power spectral densities8 

(i.e. the distributions of average power over frequency) of the object and the noise are 
known, and are represented by.@,(fx, fy) and @,(fx, fy). Finally, the goal is to pro- 
duce a linear restoration filter that minimizes the mean-square difference between the 
true object o(x, y) and the estimate of the object B(x, y), i.e. to minimize 

e2 = Average [ l o  - 61'1. 

The derivation of the optimum filter would take us too far afield, so we content 
ourselves with presenting the result and referring the reader to another source [119]. 
The transfer function of the optimum restoration filter is given by 

This type of filter is often referred to as a WienerBlter, after its inventor, Norbert Wiener. 
Note that at frequencies where the signal-to-noise ratio is high (@,I@, << I ) ,  the 

optimum filter reduces to an inverse filter, 

while at frequencies where the signal-to-noise ratio is low (@,/<Do >> I), it reduces to 
a strongly attenuating matched filter, 

8For a detailed discussion of the concept of power spectral density, see [123], Section 3.3. 
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FIGURE 8.21 
Magnitudes of the transfer function of a Wiener filter. The 
image is assumed to have been blurred by a point-spread 
function consisting of a circular disk of radius w. The 
signal-to-noise ratio is varied from 1000 to 1. The phase 
of the filter changes between 0 and rr radians between 
alternate zeros of this transfer function. 

Figure 8.21 shows plots of the magnitude of the transfer function of the restoration filter 
under the assumption of a severe focusing error and white (i.e. flat) power spectra for 
the signal and the noise. Several different signal-to-noise ratios are represented. Note 
that at high signal-to-noise ratio, the Wiener filter reduces the relative strength of the 
low frequencies and boosts the relative strength of the high frequencies. At low signal- 
to-noise ratio, all frequencies are reduced. 

Note that at frequencies outside the diffraction-limited passband of the imaging 
system, no object information is present, and therefore the noise-to-signal ratio is infi- 
nite. Hence the Wiener filter makes no attempt to restore object frequency components 
that are simply not present in the image, a very sensible strategy. 

8.8.3 Filter Realization 

Many methods exist for optically realizing inverse and Wiener restoration filters. We 
discuss only two such methods, one relatively obvious, the other not at all obvious. 
Both depend on the use of VanderLugt-type filters. In both cases we suppose that there 
is available a transparency that has recorded the known impulse response of the blurred 
system. This transparency could have been obtained by imaging a point source through 
the blurred system, or could have been generated by computer. We also assume that 
this transparency has been made in such a way that its amplitude transmittance, t ~ ,  is 
proportional to s(x, y) .  
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Inverse filter 
The first method is one that attempts to realize an inverse filter [275]. Using the 

recording of the blur, we record two transparencies which will be sandwiched (i.e. 
placed in close contact) to form the frequency plane filter. Referring back to Fig. 8.20(a), 
one component of the filter is of the VanderLugt type, recorded interferometrically as 
shown, but with an input that consists only of the known blur function s. This filter cap- 
tures both the amplitude and phase associated with the transfer function of the blur, S. 
A second transparency is recorded in the same geometry, but with the reference point 
source blocked, thus capturing information only about the intensity 1 ~ 1 ~ .  

The transmittance of the VanderLugt filter consists of four terms, as before, and 
only one of these is of interest in this problem. We again focus on the term proportional 
to S*, the same term that was of interest in the case of the matched filter. With exposure 
in the linear region of the t~ VS. E curve and with proper processing, this component of 
amplitude transmittance can be written 

The second transparency is exposed in the linear region of the H&D curve and processed 
with a photographic y equal to 2. The result is an amplitude transmittance 

When these two transparencies are placed in close contact, the amplitude transmittance 
of the pair is 

which is the transfer function of an inverse filter. 
In addition to all the difficulties associated with an inverse filter that were men- 

tioned earlier, this method suffers from other problems related to the photographic 
medium. The dynamic range of amplitude transmittance over which this filter can func- 
tion properly is quite limited. The problem is evident if we consider only the second 
filter, which was recorded in the linear region of the H&D curve. If we wish this filter 
to behave as desired over a 10 : 1 dynamic range of IS[, this requires proper behavior 
over a 100 : 1 range of 111~1~. But since the amplitude transmittance of this filter is 
proportional to 1/)SI2, the intensity transmittance is proportional to 1/)SI4, and a 10 : 1 
change of S  implies a 10,000 : 1 change of intensity transmittance. To properly control 
this filter over the range of interest would require controlling the density accurately over 
a range of 0 to 4. Densities as high as 4 can seldom be achieved in practice, and even a 
density of 3 requires some special effort. For this reason, the dynamic range of IS1 over 
which the filter functions properly is severely limited in practice. 

Wiener filter 
A superior approach to realizing an image restoration filter is one that generates 

a Wiener filter, and does so with considerably more dynamic range than the previous 
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method afforded. Such a method was introduced by Ragnarsson [239]. There are several 
novel aspects to this approach to filter realization: 

1. Diffraction, rather than absorption, is used to attenuate frequency components. 
2. Only a single interferometrically generated filter is required, albeit one with an un- 

usual set of recording parameters. 
3. The filter is bleached and therefore introduces only phase shifts in the transmitted 

light. 

Certain postulates underlie this method of recording a filter. First, it is assumed that 
the maximum phase shift introduced by the filter is much smaller than 27.r radians, and 
therefore 

In addition, it is assumed that the phase shift of the transparency after bleaching is 
linearly proportional to the silver density present before bleaching, 

This assumption is true to a very good approximation if a nontanning bleach is used, 
for such a bleach returns metallic silver to a transparent silver salt, and the density of 
that transparent material determines the phase shift introduced by the bleached trans- 
parency. Finally, it is assumed that the filter is exposed and processed such that opera- 
tion is in the linear part of the H&D curve, where density is linearly proportional to the 
logarithm of exposure, i.e. where 

Note that this is not the usual region of operation used for other interferometrically 
generated filters, which are typically recorded in the linear portion of the t~ vs. E curve. 

The three postulates above lead to certain conclusions regarding the mathematical 
relationship between changes of exposure and resulting changes of amplitude trans- 
mittance. To discover this relationship, first note that a change of logarithmic exposure 
induces a proportional change of amplitude transmittance, as evidenced by the chain 

AtA 0: A 4  0: AD 0: A(10g E),  

which is implied by the above hypotheses. In addition, if the exposure pattern consists 
of a strong average exposure l? and a weaker varying exposure AE, then 

making 

With the above information as background, attention is turned to the process of 
recording the deblurring filter. The recording geometry is that of a VanderLugt filter, ex- 
actly as illustrated previously in Fig. 8.20(a), but with only the function s(x, y) present 
in the input transparency. The exposure produced by this interferometric recording is 
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+ 2Aa ( )  s - - cos [ 27rax + C#I ( ; ; ) I J  - - (8-59) 

where A is the square root of the intensity of the reference wave at the film plane, a is 
the square root of the intensity of the object wave at the origin of the film plane,g a is 
again the carrier frequency introduced by the off-axis reference wave, C#I is the phase 
distribution associated with the blur transfer function S, and T is the exposure time. 

An additional unusual attribute of the Ragnarsson filter is the fact that it is recorded 
with the object wave much stronger at the origin of the film plane than the reference 
wave, i.e. 

<< a2. 

Because of this condition, we make the following associations with the average expo- 
sure I? and the varying component of exposure AE, 

Choosing the term of transmittance of the processed transparency that is proportional 
to S*, we have 

where 

(often called the beam ratio), which is precisely the amplitude transmittance required 
for a Wiener filter when the signal and noise have flat power spectra with a ratio of 
noise power to signal power of K at all frequencies. 

Both Ragnarsson [239] and Tichenor and Goodman [283] have demonstrated 
restorations with dynamic ranges of 100 : 1 in IS1 using this technique. Figure 8.22 
shows photographs of the blur impulse response, the magnitude of the deblur impulse 
response, and the impulse response of the cascaded blur and deblur filters, illustrat- 
ing the restoration of a blurred point source. The deblurring operation becomes highly 

gFor simplicity, we have assumed that the transfer function S has been normalized to unity at the origin. 
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(a) (b) (c) 

FIGURE 8.22 
Deblurring of the blur point-spread function. (a) The original blur, (b) the magnitude of the 
deblur point-spread function, and (c) the point-spread function of the blur-deblur sequence. 
[Courtesy of D.A. Tichenor] 

sensitive to optical noise at the input of the processor as the dynamic range of the de- 
blurring operation increases. For example, dust specks and small phase perturbations 
on the input transparency generate deblur impulse responses in the output image which 
eventually mask the desired image detail [122]. 

8.9 
PROCESSING SYNTHETIC-APERTURE RADAR (SAR) DATA 

One of the most successful applications of optical information processing during the 
1960s and 1970s was to processing of data gathered by synthetic-aperture radars. 
While optical processing techniques have been largely replaced by digital processing 
for these problems since the 1970s, nonetheless the ideas developed for optical process- 
ing of such data form an important intellectual heritage in the field of optical information 
processing. Many excellent discussions of SAR can be found in the literature, includ- 
ing several books (see, for example, [I171 and [102]). See also [74], on which the early 
parts of this discussion are based. 

8.9.1 Formation of the Synthetic Aperture 

With reference to Fig. 8.23, consider a side-looking radar system carried by an aircraft 
flying with constant speed v, along a linear flight path in the x direction. Suppose that 
the function of the radar is to obtain a high-resolution map of the microwave reflec- 
tivity of the terrain across an area adjacent to the flight path. Resolution in slant range 
from the flight path is obtained by transmitting pulsed radar signals and recording the 
returned signals as a function of time, i.e. by pulse-echo timing. Resolution in azimuth, 
or equivalently, along the direction of the flight path, could in principle be obtained 
by using a radar beam of extremely narrow azimuthal extent. However, the azimuthal 
resolution obtainable at range R from an antenna of linear extent D is roughly &RID. 
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FIGURE 8.23 

' / / / 
Synthetic-aperture radar 
geometry. 

Since the microwave wavelength A, is typically four or five orders of magnitude 
larger than an optical wavelength, antennas so large as to be impractical would be 
required to obtain resolutions comparable with those of optical photo-reconnaissance 
systems. 

A solution to this problem is offered by the synthetic-aperture technique. Let the 
aircraft carry a small, broadbeam antenna which points in a fixed side-looking direc- 
tion with respect to the aircraft. Radar pulses are transmitted from a uniformly spaced 
sequence of positions along the flight path, and the time records of both the amplitude 
and the phase of the radar returns received at these positions are recorded. Each such 
signal may be regarded as the signal that would be obtained from a single element of 
a large antenna array, and the various recorded waveforms need only be properly com- 
bined to synthesize an effective aperture that may be hundreds or even thousands of 
meters long. 

In order to maintain coherence across the various elements of the synthetic array, 
it is necessary that there be a common phase reference for the signals measured at 
all positions along the flight path. This reference is provided by a highly stable lo- 
cal oscillator carried in the aircraft which is used in the detection of all received sig- 
nals. 

Note that to realize the longest possible synthetic array, the radar antenna must 
illuminate a given point on the terrain for the longest possible portion of the flight path. 
Thus the broader the beamwidth of the radar antenna, the higher the resolution that 
can potentially be obtained from the received data. It is possible to show that the best 
resolution obtainable in the final map of the terrain reflectivity is approximately equal 
to one-half the dimension of the antenna carried by the aircraft (see Prob. 8- 17). 

8.9.2 The Collected Data and the Recording Format 

To examine the signal-collecting process in more detail, consider the geometry illus- 
trated in Fig. 8.24. The distance along the flight path is represented by the coordinate x. 
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FIGURE 8.24 
Flight-path geometry. 

For simplicity, we assume that a simple point scatterer exists at coordinate xl, which 
lies at a perpendicular distance rl from the flight path. r is the distance of the air- 
craft from this point scatterer, a function of time. For additional simplicity, we assume 
that the waveform transmitted by the radar is a steady sinusoid of frequency fr. The 
pulsed nature of the actual signal transmitted results simply in a periodic sampling 
of the signals predicted under the sinusoidal assumption. While the pulsed nature of 
the transmitted signal must be taken into account when considering imaging in range, 
it is not important when considering only imaging in azimuth, and for the moment 
azimuthal imaging (the direction in which the aperture is synthesized) is of primary 
concern. 

The signal returned to the aircraft from the point scatterer under consideration can 
be represented by the time-varying phasor 

sl(t) = a, exp - j2nfr  t - - [ i 911 
where fr is the RF frequency of the radar, c is the velocity of light, and a1 is a complex 
amplitude factor which depends on such parameters as transmitted power, target reflec- 
tivity and phase shift, and inverse fourth-power propagation attenuation. The distance 
r may be expressed in terms of rl ,  xl,  and x (the flight-path coordinate) by 

yielding a signal 

4 n r l  2n(x - ~ 1 ) ~  
sl(t) = u l ( x l , r l )  exp 

Arrl 
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The motion of the aircraft links the variable x to the time variable t through the pre- 
scription 

If the terrain at slant range rl along the flight path is regarded as consisting of a 
collection of many scatterers, the total returned signal can be written 

where each sn(t)  is the signal received from a different scatterer. The returned signal 
is synchronously demodulated, using the stable internal local oscillator referred to ear- 
lier. This operation translates the center frequency of the return from the microwave 
frequency f, to a new lower frequency fi, yielding 

, . .  \'I , . r, 4nr1 277 . , . 1 .- **. 

where 4, is the phase associated with the complex quantity a,, and we have abandoned 
the phasor notation in favor of real notation. 

Note that the signal received from a given point scatterer is in fact a sinusoidal one 
with a phase that varies quadratically with time. Equivalently, the instantaneous fre- 
quency of this signal is "chirping", with a chirp rate that depends on the aircraft speed 
as well as the distance of the scatterer from the flight path. The chirping frequency is 
caused by doppler shifts experienced as the aircraft approaches, passes, and recedes 
from the scatterer. The received signal starts at a high frequency when the aircraft ve- 
locity is nearly directly towards the scatterer, the frequency drops as the component of 
the velocity vector pointing towards the scatterer grows smaller, and the frequency shift 
vanishes when the velocity of the aircraft has no component towards the scatterer. The 
aircraft then begins to recede from the scatterer, with a component of velocity away 
from the scatterer that increases with distance. This, then, is the origin of the doppler 
shifts that cause the chirping received signal. It is the entire received doppler history 
that must be operated on to form an azimuthal image of the scatterer. 

In the early days of optical processing of SAR data, it was common to record the 
received signals on photographic film in a format suitable for optical processing. Film 
was thus used both as a medium for high-density storage of the received radar data and 
later as a means for inserting the data into a coherent optical processor. The demodu- 
lated signal was used to intensity-modulate a cathode-ray tube (CRT), with the electron 
beam swept vertically during the time interval of interest after each transmitted pulse. 
If film is drawn past the CRT face with horizontal velocity vf in a direction normal to 
the sweeping electron beam, the recording format shown in Fig. 8.25 is obtained (the 
electron beam is blanked as it returns for the next range sweep). The vertical lines rep- 
resent successive range sweeps, while the azimuthal position of a given scatterer with 
respect to the radar varies along the horizontal direction. 
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f \ 

I Image of Range 
1 intensity- ))( CRT modulated trace Azimuth 

FIGURE 8.25 
J Recording format. 

8.9.3 Focal Properties of the Film Transparency 

The photographic recording serves as the input to a coherent optical processor with a 
special architecture to be discussed. For the moment we limit attention to the focusing 
properties of the film when illuminated with coherent light, turning later to considera- 
tion of the proper processing architectures for obtaining an image of the terrain. 

Again limit attention to a single slant range rl ,  thus considering only the data 
recorded along a line rl = ql on the film, and again neglect the pulsed nature of the 
transmitted signal. With proper care in exposure and chemical processing, the azimuthal 
history of the received signal can be made to generate a photographic record with am- 
plitude transmittance given by 

where tb  is a bias transmittance introduced to allow the recording of the bipolar radar 
signals, 6 is the horizontal coordinate on the film, and ,y is a constant that is proportional 
to the slope of the tA vs. E curve of the photographic film. In writing Eq. (8-67), use 
has been made of the relation 

from which it follows that the carrier frequency fx on the film is given by 
C' 

It is also worth noting that the vertical coordinate 1 where the azimuthal signal from a 
particular point scatterer is recorded, and slant range rl of that scatterer from the flight 
path are related through 

where v, is the vertical speed of the CRT spot during the recording process. This relation 
is easily proven by equating the position of the vertically scanning spot and the range 
from which a signal is being received at any particular chosen time t.  
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By decomposing the cosine of Eq. (8-67) into two complex-exponential factors, the 
transmittance may be expressed as the sum of the bias and two additional terms of the 
form 

and 

where the constant phase 4 ~ r ~ l A , ,  as well as the phases &, have been absorbed into 
the definition of the a;. 

Restricting attention to only one of the point scatterers, say the one with index 
n = N, the appropriate component oft, is 

The first exponential term, having a linear phase dependence, introduces a simple tilt of 
the phase front of this component of light. The angle 9 of the tilt from the transparency 
plane may be determined from the relation 

sin 8 = A, fx (8-72) 

where A, is the wavelength of the light. 
Turning to the second exponential factor, we note its close resemblance to the 

amplitude transmittance function of a positive cylindrical lens, centered at coordinate 
5 = 60, 

where fl  is the focal length. Equating the last term of (8-71) with (8-73), we find that 
this component of t ,  behaves like a positive cylindrical lens with focal length 

and with lens center (axis) located at coordinate 
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Azimuthal distribution 
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of scatterers imaged 
across these planes 
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FIGURE 8.26 
Light transmitted by the line q = ql of the film transparency. 

In a similar fashion, the Nth component of tp, 

[ ? - ? T i  vf  r], x exp j- - 6 -  U o x ~  (8-76) 
hrrl V f  

has an exponential factor which introduces a wavefront tilt in the opposite direction, 
i.e. at angle -8, and a second exponential factor which is identical with the amplitude 
transmittance of a negative cylindrical lens, again centered at 6 = ( v f  lva)xN and with 
a focal length given by the negative of Eq. (8-74). 

Figure 8.26 illustrates the three components of light transmitted by this slit-segment 
of film for the case of a single point scatterer. The bias transmittance tb allows the inci- 
dent optical wave to pass through the transparency, uniformly attenuated but otherwise 
unchanged in the 6 direction.I0 The components tiN) and t r )  of the transmittance may 
be regarded as generating a pair of "images" of the point scatterer in the following 
sense: the component tiN) focuses light to a bright line focus (rising out of the page in 
Fig. 8.26) to the right of the transparency, while the component t r )  produces a wave 

loOf course the transmitted optical wave is expanding in the q direction (i.e. out of the paper in Fig. 8.26) 
due to diffraction by the narrow slit of film being considered. However, we ignore the q behavior for the 
moment, returning to it later. 
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that appears to originate from a line source to the left of the transparency (see Fig. 8.26). 
If a multitude of point scatterers is present at various locations along the flight path at 
range rl ,  each generates its own pair of real and virtual line foci when illuminated with 
coherent light. The relative azimuthal positions of the point scatterers determine the 
relative positions of the centers of the lens-like structures on the film, and therefore are 
preserved in the relative positions of the corresponding line foci. Thus an entire image 
of the azimuthal distribution of scatterers at range rl is recreated across appropriate 
planes in front of and behind the transparency. We emphasize again that this image is 
spread in the q direction, since the film exerts no focal power in that direction. 

8.9.4 Forming a Two-Dimensional Image 

We ultimately wish to form an image, not only of the azimuthal distribution of scatterers, 
but also of their distribution in range. The azimuth history we have been discussing 
above (corresponding to the particular range r l )  resides at a particular q1 coordinate 
on film corresponding to a scaled version of its actual range from the flight path (see 
Eq. (8-68)). Thus it is necessary to image the q variations of film transmittance directly 
onto the plane of focus of the azimuthal signals. This task is complicated by the fact that 
the focal length of the azimuthal variations on film is a function of the particular range 
rl under consideration. To construct the final radar image, it is evidently necessary to 
image the q variations onto a tilted plane in which the azimuthal foci occur. 

This task can be accomplished with the optical system of Fig. 8.27. A positive 
conical lens (called an "axicon" - cf. Prob. 5-3) is inserted immediately behind the 
transparency. The transmittance function of this lens is 

and its focal length depends linearly on the q coordinate (or equivalently on the range 
coordinate through Eq. (8-68)) according to 

Output 

Conical Cylindrical slit 
Spherical 

- f -  
Film 
input 

- f- I 
Film 
output 

FIGURE 8.27 
Optical system for recording an image. A slit is used in the output plane. 
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Because the focal length of the conical lens varies linearly with the range coordinate, it 
removes all the virtual line sources (for all ranges) to infinity, i.e. the quadratic-phase 
factor of the lens cancels the quadratic-phase factors of all of the azimuthal histories of 
signals received from all ranges. Thus the entire tilted plane of the azimuthal image is 
moved to infinity. Azimuthal information is retained through the angles at which the 
infinitely distant virtual line sources lie. 

Next a cylindrical lens with power only in the vertical or range dimension is placed 
one focal length from the film. This lens creates an image of the vertical (7) structure 
on the film, i.e. the range information, at infinity. The azimuthal and range images now 
coincide at infinity, and must be brought back from infinity to form a real image in a 
single plane. This is accomplished by a positive spherical lens, following the cylindrical 
lens, placed one focal distance from the final observation plane. A single real image, 
with both range information and azimuthal information in focus, now lies in the back 
focal plane of the spherical lens. However, this image has one serious defect. The focal 
powers exerted by the optical system on azimuthal records corresponding to different 
ranges are all different. As a consequence, the azimuthal magnification of the final 
image varies with range, with greater magnification at ranges where the focal length of 
the axicon was shorter. The result is a seriously distorted image in the output plane. To 
overcome this distortion, a vertical slit is inserted in the output plane, and the output 
film strip is moved linearly past this slit in synchronism with the motion of the input 
film strip (but in general with a different speed). Since only a vertical range strip is 
being recorded at one time, the varying azimuthal magnifications have no effect, and 
an undistorted image of the terrain is recorded on the film strip. 

Thus through the use of a reasonably sophisticated optical system, a full image of 
the microwave reflectivity of the ground strip has been recorded by the optical process- 
ing system. The primary deficiency of the system is that, at any one time, it provides 
only a linear strip image, rather than a full two-dimensional image, so the full two- 
dimensional processing power of the optical system has not been utilized. This defect 
is remedied by a second, even more sophisticated optical processing system, to be dis- 
cussed next. 

8.9.5 The Tilted Plane Processor 

The tilted plane processor [I801 overcomes the chief deficiency of the simpler pro- 
cessor described above, namely its inability to use the full two-dimensional output of 
the optical processing system. The tilted plane processor is arguably one of the most 
sophisticated optical information processing systems yet constructed. 

The nature of the problem to be solved is clarified with the help of Fig. 8.28, show- 
ing the tilted azimuthal image planes and the untilted range plane. The goal is to bring 
one of the tilted azimuthal planes into coincidence with the range plane, and to do so 
in such a way that both range and azimuthal magnification are constant across the out- 
put. To understand how this is done with the tilted plane processor, it is necessary to first 
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Film 

Azimuth Range Azimuth Tilted azimuth planes and untilted range 
image image image plane. 

digress into a short discussion of the three-dimensional imaging properties of telescopic 
systems. 

Three-dimensional imaging properties of telescopic systems 
Consider a simple telescopic system such as shown in Fig. 8.29. Lens LI  is spheri- 

cal with focal length fi and lens L2 is spherical with focal length f2. An object is placed 
in the front focal plane of L1 and an image is observed at the rear focal plane of LZ.  

The transverse magnification m, from object to image plane for this system is easily 
shown to be 

where the minus sign accounts for image inversion. Of equal interest to us here is the 
axial magnification, ma, which applies for displacements along the optical axis. It is 
straightforward to show that the axial magnification of a telescopic system is given by 

The transverse magnification is independent of the transverse coordinates of the object 
point in question, and the axial magnification is independent of the axial position of 
the object point. As a consequence, as illustrated in Fig. 8.30 any rectangular paral- 
lelepiped in object space is transformed into a parallelepiped having a different shape 
in the image space. As illustrated in the figure, with a magnification less than unity, the 

FIGURE 8.29 
Two-lens telescopic system. 
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"'tb FIGURE 8.30 

Demagnification of a tilted plane for 
C mt2 c h > fi. 

tilt of an object plane is reduced, and it is made more upright in the image plane, while 
preserving a constant transverse magnification. This property can be used to bring one 
of the azimuthal image planes into a nearly vertical position, in which case a slightly 
tilted range plane can be made coincident with it. 

An anamorphic telescope 
In order to bring the azimuthal and range image planes into a common plane of 

focus, a telescope with different focal properties in the two transverse dimensions is 
required. Such a telescope is called anamorphic, and can be constructed with combi- 
nations of spherical and cylindrical lenses. Figure 8.31 shows one such system from 
the side and from the top. For both views, the lens Lo is simply a collimating lens that 
provides plane-wave illumination for the optical system that follows. 

Considering first the top view, the only lenses with power in the range direction 
are the spherical lenses L1 and L3, which form a telescope with fi = f3. The input film 

'-4 
Range plane and 

Azimuth one azimuth plane 
planes 

(a) 

FIGURE 8.31 
Anamorphic telescope comprising a tilted plane processor. (a) 
Side view (range direction is vertical), and (b) top view (azimuth 
direction is vertical). 
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is seen to be tilted through angle a in the input plane, and due to the demagnification 
of the two spherical lenses, tilted by a smaller angle a' in the output plane. Thus the 
system images in the range dimension from one tilted plane onto a second plane with 
reduced tilt. The output film is tilted to coincide with this tilted plane. Considering next 
the side view, all four lenses have power in the azimuth dimension and they form a 
system that images (for fixed range) any azimuthal focal point (remember such points 
do not lie in the film plane) onto the recording film. The input and output are not tilted 
when viewed from this perspective. By properly choosing the parameters of the system 
(i.e. fi, f2, f3, and f4 and the tilts of the input and output films) [180], it is possible 
to achieve equal magnifications in the range and azimuth dimensions at all points in 
the output aperture. Thus the entire two-dimensional processing ability of the system 
is utilized; much more light is brought to the image plane than for the system with the 
slit, which in turn means that film can be moved through the system faster. Finally, the 
use of the full two-dimensional aperture results in the reduction of coherent artifacts 
that often arise from dust specks on lenses and other imperfections in a coherent optical 
system. 

Other forms of the tilted plane processor are also possible. For details the reader 
should consult Ref. [180]. Figure 8.32 shows a processed synthetic-aperture radar im- 
age obtained from a tilted plane processor. The image shows the Huron river near Ann 
Arbor, Michigan, with a ground resolution of 5 ft by 7 ft. 

FIGURE 8.32 
Synthetic-aperture radar image obtained from a tilted plane processor. The image shows a 
portion of the Huron river and surrounding farmland near Ann Arbor, Michigan. [Courtesy of 
the Environmental Research Institute of Michigan.] 
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8.10 
ACOUSTO-OPTIC SIGNAL PROCESSING SYSTEMS 

The means by which a temporal electrical signal can be converted into a moving spa- 
tial optical signal with the help of an acousto-optic cell was discussed in Section 7.2.6. 
Attention is turned here to the use of such cells as input transducers for various types 
of signal processing systems. Since virtually all modern work in this area utilizes mi- 
crowave signals in crystals, we focus attention exclusively on Bragg cells as the input 
transducers. While systems based on Raman-Nath diffraction were important in the 
early days of acousto-optic signal processing [264], [6], they are virtually non-existent 
today. 

Our discussion is of necessity brief, but we will describe three different system ar- 
chitectures. One, the Bragg cell spectrum analyzer, can be used to analyze the spectrum 
of broadband microwave signals. Attention is then turned to two types of acousto-optic 
correlators, the space-integrating correlator and the time-integrating correlator. 

8.10.1 Bragg Cell Spectrum Analyzer 

The ease with which Fourier transforms can be performed in coherent light suggests 
that a system that combines an acousto-optic input transducer with a coherent optical 
Fourier transform system can function as a spectrum analyzer for wideband and high- 
frequency electrical signals. Figure 8.33 shows the basic structure of such a spectrum 
analyzer. 

Consider a high-frequency signal represented by the electrical voltage 

where s(t) = A(t) ej*(') is the complex representation of signal. 
With reference to Eq. (7-34) and Fig. 8.33, let the coordinate yl refer to the plane 

where the transmitted field exits the Bragg cell, and let the coordinate y2 refer to the 
plane in the rear focal plane of the Fourier transforming lens. When the above signal 
is applied to an acousto-optic cell, and the cell is illuminated at the Bragg angle by 
a collimated, monochromatic wave, there results a transmitted wavefront into the +1 
diffracted order given by 

1 Output 

f f I Bragg cell spectrum analyzer. 
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Y 1 U ( y l  ; t )  = C s e-j2ay1'A rect- 
L 

where C is a constant and we have neglected the temporal frequency shift by fc, since 
it has no impact on our calculations. 

This optical signal now passes through a positive lens tilted at the Bragg angle, as 
shown in Fig. 8.33. Noting that the linear phase factor in yl is canceled by the tilt of 
the lens, the spatial distribution of fields appearing in the back focal plane of the lens 
will be (aside from quadratic-phase factors in y2 which we can neglect) 

yl + Vt - VrO ) rect f exp (- ' 7 ~ ~ )  d Y l  (8-82) 

This is a Fourier transform of a product of two functions, so the convolution theorem 
will apply, and we consider each of the two spectra individually. Consider the Fourier 
transform of the scaled signal first; we have 

where S = F { s } .  The presence of the term depending on time t in this result is an 
indication that every spatial frequency component is oscillating with a diflerent optical 
frequency. Considering the rect function next, we have 

F rect- = LsincLfy. { :I 
For the moment, neglect the finite length of the Bragg cell, allowing L to become 

arbitrarily large, in which case the sinc function approaches a S function. The optical 
intensity incident in the focal plane will then be (neglecting multiplicative constants) 

The intensity distribution measured by an array of time-integrating detectors will there- 
fore be proportional to the power spectrum of the input signal, and the acousto-optic 
system acts as a spectrum analyzer. 

The relationship between position y2 in the focal plane and temporal frequency 
f ,  of the input signal can be found by first noting that the center frequency f, of the 
electrical signal corresponds to the origin of the y2 plane (we choose the origin to make 
this true). As we move in the positive y:! direction, we are moving to lower temporal 
frequencies (zero temporal frequency corresponds to the direction of the zero order of 
the acoustic grating). From the scaling factors present in the equation above we find 
that the temporal input frequency corresponding to coordinate y2 is 

Vy2 
f ,  = f c-  -- 

A f 
However, when only the time integrated intensity of the light is detected, the temporal 
frequency of the light is of no consequence. 
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When the length of the Bragg cell is not infinite, convolution with the sinc func- 
tion in the spectral domain cannot be neglected. This convolution in effect smooths the 
measured spectrum, establishing the frequency resolution obtainable. The minimum 
resolvable difference in temporal frequency is readily shown to be approximately the 
reciprocal of the total time delay stored in the Bragg cell window, i.e. 

Aff = VIL. 

The technology of high-performance Bragg cell spectrum analyzers is well devel- 
oped. Center frequencies lie in the hundreds of MHz to the 1- to 3-GHz range, and 
time-bandwidth products (equal to the number of resolvable spectral elements) from 
several hundred to more than 1,000 have been reported. 

8.10.2 Space-Integrating Correlator 

Bragg cells can also be used as real-time inputs to convolvers and correlators. Histor- 
ically the first such systems were based on what is now called a space-integrating ar- 
chitecture. Consider the acousto-optic system shown in Fig. 8.34. This system contains 
one Bragg cell, which is used for converting a temporal voltage vl(t) into a complex 
distribution of field sl (f! + t - 7,). Here sl is the complex representation of an ampli- 
tude and phase modulated voltage, analogous to the representation of Eq. (8-81). Due 
to the Bragg effect, the cell is assumed to transmit only the zero order and the + I  order. 

The second input is provided by a fixed transparency which contains an ampli- 
tude and phase modulated grating. If s2 = B exp(jx) represents the second signal, with 
which sl is to be correlated, then the amplitude transmittance of the transparency should 
ideally be chosen to be 

Such a grating could be computer generated. Alternatively a transparency with the same 
two first-order grating components could be recorded interferometrically, in a manner 

FIGURE 8.34 
Acousto-optic space-integrating correlator. 
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analogous to that used for the VanderLugt filter. It is assumed to be a thin grating, so a 
zero order and two first orders are generated. 

The optical system following the Bragg cell contains a stop in the spatial frequency 
domain that blocks the zero-order transmitted component and passes the first-order 
diffracted component. Lenses L1 and L2 together image the amplitude distribution cor- 
responding to the first diffraction order onto the fixed transparency, with inversion. The 
y2 coordinate system is inverted to account for the inversion associated with the imag- 
ing operation. Lens L3 is used to bring the - 1 order component diffracted by the fixed 
grating to focus on a pinhole, which is followed by a nonintegrating photodetector. 

The operation performed by lens L3, the pinhole, and the detector can be expressed 
as a spatial integration of the product of the two complex functions of interest. The 
current generated by the detector is therefore (up to multiplicative constants) 

where L is again the length of the Bragg cell, and the complex conjugate of s2 occurs be- 
cause we have chosen the - 1 diffraction order of the fixed grating. As time progresses, 
the scaled signal sl slides through the Bragg cell and the relative delay between sl and 
s 2  changes, thus providing the values of the correlation between the two signals for dif- 
ferent delays. The correlation operation takes place only within the window provided 
by the finite length of the Bragg cell. 

The distinguishing characteristics of the space-integrating correlator are that the 
correlation integration is over space and the various values of relative delay occur se- 
quentially in time. 

8.10.3 Time-Integrating Correlator 

An entirely different approach to realization of an acousto-optic correlator is provided 
by a system that interchanges the roles of time and space vis-h-vis the space-integrating 
correlator. Such an approach was first conceived of by Montgomery [216]. A different 
architecture that accomplishes a similar operation was demonstrated by Sprague and 
Koliopoulis [272]. This general approach to correlation is known as "time-integrating 
correlation". 

Figure 8.35 shows one architecture of such a correlator. Two RF voltages vl(t) 
and u2(t) are applied to different Bragg cells in close proximity, arranged so that the 
resulting acoustic signals propagate in opposite directions. The lenses L1 and L2 form a 
standard double Fourier transform system. A light ray entering the first Bragg cell exits 
as a zero-order ray and a - 1 order ray.ll Both the zero order and the - 1 order transmit- 
ted by the first Bragg cell are split by the second cell, which itself applies zero-order and 

"When the voltage is applied at the top of the cell, downwards deflection corresponds to the + 1 order and 
upwards deflection to the - 1 order. When the voltage is applied to the bottom of the cell, the opposite is 
true. 
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FIGURE 8.35 
Time-integrating correlator. 

- 1 order diffraction to each of those incident rays. A stop in the rear focal plane of 
L1 passes only rays that have undergone the sequence 0 + - 1 order diffractions or 
- 1 + 0 order diffractions, blocking the rays that have undergone two zero-order or 
two - 1 order diffractions. Note that the optical frequencies of the two beams passed 
are identical because they have undergone the same diffractions, although in opposite 
order. The two optical signals passed by the aperture-stop are then brought back together 
on an array of time-integrating detectors, which is situated in a plane where the product 
of the amplitude transmittances of the two Bragg cells is imaged. 

Note that each element of the detector array measures the intensity associated with 
a different vertical location on the two Bragg cells, and as a consequence, for each de- 
tector element there is a different relative time delay between the two signals driving 
the cells, due to the opposite directions of acoustic wave propagation. If s l (y l )  repre- 
sents the complex representation of the signal in the first cell, and s2(yl) is the complex 
representation of the signal in the second cell, a detector at location y2 measures the 
finite time integral of the squared magnitude of the sum of the two fields that have 
traveled the two different paths to the detector. Neglecting multiplicative constants, the 
integral in question is given by 

where the linear exponential terms of opposite sign account for the opposite angles with 
which the two components arrive at the detector plane, and AT is the finite integration 
time. 

Considering the various parts of this integral, the terms 

will approach constants as the integration time AT grows large. The remaining term is 



CHAFTER 8 Analog Optical Information Processing 28 1 

where a simple change of variables has been made in the last line, AT' is of the same 
duration as AT, but shifted in accord with the variable change, and cc stands for the 
complex conjugate of the previous term. 

Let the complex function C(T) represent the complex finite-time crosscorrelation of 
s1 and s2, 

C(T) = 1 sl (fl) s;(t' + I) dft = Ic(I)~ ej+(T). 
AT' 

Then the last line of Eq. (8-88) becomes 

If the detectors are small compared with the period & of the spatial carrier frequency, 
the fringe pattern incident on the detector will be sampled at or above the Nyquist 
rate, and the complex correlation information will be captured by the detector array. 
Since the detector array is of the charge-coupled-device (CCD) type, the measured 
intensities are read out serially from the array. As a result there is an AC output from 
the CCD array, which can be isolated from the DC output components with a highpass 
or bandpass filter. The amplitude of the AC component represents the magnitude of the 
complex correlation coefficient, and the phase is the phase of that coefficient. By using 
an envelope detector, the magnitude of the complex correlation can be measured. To 
measure the phase, synchronous detection must be used. Generally it is the magnitude 
information that is of most interest. 

Note that for this architecture, each detector element measures the correlation for 
a different relative delay 2y2/V between the two signals. The time-bandwidth product 
of the correlation measurement is determined by the integration time of the detector 
array, and is no longer limited to the delay time of the acoustic cell; rather, the delay 
time determines the range of relative delays that can be explored. In practice the inte- 
gration time is limited by accumulation of dark current and by detector saturation that 
is ultimately introduced by the constant terms El and E2. 

The architecture described above is that of Montgomery [216]. The architecture of 
Sprague and Koliopoulis [272] differs in that only a single Bragg cell is used and the 
second signal is introduced by temporal modulation of the optical source. The reader 
should consult the reference for details. 
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8.10.4 Other Acousto-Optic Signal Processing Architectures 

A multitude of other acousto-optic signal processing architectures exist, but they will 
not be covered here. We mention in particular various extensions of acousto-optic sys- 
tems to two-dimensional processing (see [293], Chapter 15, for examples). Applica- 
tions of acousto-optic processing to numerical or digital computation are omitted here. 
An application of Bragg cells to discrete processing is described in the section to follow. 

8.11 
DISCRETE ANALOG OPTICAL PROCESSORS 

Until now, we have considered only optical systems that process continuous analog op- 
tical signals. Attention is now turned to another class of systems, namely those that 
process discrete analog optical signals. Discrete signals arise in many different appli- 
cations. For example, an array of sensors collects a discrete set of measurements. Those 
measurements may be changing continuously with time, but because there is a discrete 
array of sensors, only a discrete array of data is available at any one time. In addition, 
it is often necessary to discretize continuous data in order to subject it to processing. 
Thus discrete data can arise in a multitude of different ways. 

The discreteness does not imply that the data is digital. Quite the contrary, the data 
of interest here has analog values, which have not been quantized, but there is a finite 
set of such data to be processed. All of the optical processing systems we shall describe 
are analog processing systems, in keeping with our earlier restrictions. 

8.11.1 Discrete Representation of Signals and Systems 

Any continuous signal s dependent on a time coordinate t andlor space coordinates (x ,  y) 
can be sampled in a discrete array of data representable by a vector of values 

If the sample values are taken sufficiently close together and if the function s is band- 
limited or nearly bandlimited, we know that it would be possible to reconstruct s either 
exactly (in the bandlimited case) or with high accuracy (in the almost bandlimited case). 
Therefore the vector s' is a suitable representation of the original data. Note that if the 
signal s arose from a discrete array of sensors, then each component of s' may be a 
function of time. 

For discrete signals, the superposition integral becomes a matrix-vector product 
(see [182], Chapter 6). Thus the output 2 (M samples) of a linear system having s' at the 
input (N samples) is represented by 
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where H is a matrix with M rows and N columns, 

and 

Note that there are M X N analog multiplications and M X N analog additions12 needed 
to perform the above computation. 

Thus in discrete signal processing, the matrix-vector product is as fundamental as 
the superposition integral, or as its special case, the convolution integral. It is therefore 
of great interest to devise methods for performing such operations optically, preferably 
using the parallelism of optical systems to full advantage. 

8.11.2 A Serial Matrix-Vector Multiplier 

The first important optical processor directed at the problem of processing discrete data 
was the serial incoherent matrix-vector processor of Bocker [23], [38]. As the name 
implies, this processor was aimed at serially processing samples of data, and used the 
parallelism of the optical system to perform the M analog multiplications in parallel. A 
description of its operation now follows. 

Figure 8.36 illustrates the operation of this system. For simplicity we assume ini- 
tially that all elements of the input vector ;and all elements of the system matrix H are 
nonnegative real numbers. Methods of generalization will be discussed later. Discrete 
analog data is entered into the system as a sequential set of current pulses applied to a 
light-emitting diode (LED). Each such current pulse has an amplitude that is propor- 
tional to the amplitude of one of the elements of the vector s'. In response the LED emits 
a series of light pulses, each with an intensity proportional to an element of the signal 
vector. These light pulses are allowed to diverge and flood a two-dimensional matrix 
mask, each element of which has an intensity transmittance proportional to one of the 
elements of the system matrix. Transmitted by that mask is an intensity proportional 
to the product of the applied signal pulse sk and all the elements of the system matrix, 
i.e. a matrix of light intensities proportional to sk H. 

'2Strictly speaking, only (M - 1) X (N - 1) additions are needed, but we count generation of the first 
component of a sum as addition with zero. 
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FIGURE 8.36 
t Serial incoherent matrix-vector multiplier. 

The light transmitted by the matrix mask falls upon a two-dimensional charge- 
coupled-device (CCD) detector, which is operated in an unusual mode. The light pulses 
transmitted by the matrix mask are converted to charge packets residing in the wells 
associated with each of the discrete detectors. Before the arrival of the next light pulse, 
all charges in every row are shifted (or clocked) in parallel to the right by one well. The 
next signal pulse then illuminates the matrix mask, and the CCD detector array detects 
a new set of signals, which in turn generate charges that are added to the charge packets 
already residing in the wells. The charges are clocked to the right again and the process 
repeats until the last signal pulse has been processed. 

Concentrate attention on the column of charges which starts initially on the far 
left of the detector array and ends up after the last signal pulse on the far right of the 
array. After detection of the first pulse, the cell in the jth row of this first column has 
accumulated charge proportional to gjl = hj l  s l .  This charge is clocked to the right one 
cell, and after detection of the signal pulse s2 the total charge accumulated is the sum of 
the first and second charge packets, gj2 = h j l  sl + hj2 s2. The process continues, until 
after N cycles the charge column on the right contains a set of M charges proportional 
to the elements of the vector g .  

Thus the parallelism of the system arises through the generation of M useful analog 
products simultaneously on the CCD array. Many more charge packets are generated 
per cycle, but only M of them will ultimately be used. In addition, M useful electri- 
cal analog additions take place per cycle. After N cycles the entire vector has been 
accumulated, and it can be read out of the CCD serially. 

The distinguishing characteristics of this system are that it accepts discrete data 
serially, it produces discrete results serially, and it performs M optical multiplications 
and M electrical additions in parallel. 

8.11.3 A Parallel Incoherent Matrix-Vector Multiplier 

A fully parallel incoherent matrix-vector processor is illustrated in Fig. 8.37 [I241 
which temporarily omits the details of the optical elements used. This architecture has 
come to be known as the "Stanford matrix-vector multiplier" and its use is now nearly 
as wide-spread as the VanderLugt filter in optical signal processing. This system is fun- 



CHAPTER 8 Analog Optical Information Processing 285 

FIGURE 8.37 

array 
A fully parallel incoherent matrix- 

mask vector multiplier. 

damentally faster than the previous serial one, due to the entry of all elements of the 
signal vector S simultaneously, in one clock cycle. 

The optics before the mask are arranged so that the light from any one input source, 
which may be an LED or a laser diode, is spread vertically and imaged horizontally, so 
that it fills a single vertical column of the mask. Each source thus illuminates a different 
column. The optics following the mask are arranged so that light from each row of the 
matrix mask is focused horizontally and imaged vertically, so that it falls upon a single 
detector element in the output detector array. Thus the light transmitted by each row of 
the mask is summed optically on a unique detector element. The detectors used here 
do not integrate charge, but rather respond as fast as possible, generating output signals 
that vary in unison with the variations of the light intensities falling upon them. 

In effect, the input vector s' is spread vertically so that each output detector can 
measure an inner product of that vector with a different row vector stored in the matrix 
mask. For this reason, such a processor is sometimes called an "inner product proces- 
sor". 

There are several different ways to construct an optical system that will achieve the 
operations indicated diagramatically in Fig. 8.37. Figure 8.38 shows one such arrange- 
ment of elements. Note that because different operations are desired in the horizontal 
and vertical dimensions, both before and after the matrix mask, the optical system must 
be anamorphic, with combinations of spherical and cylindrical lenses. The operation of 
this optical system is as follows. Each of the lenses, whether spherical or cylindrical, 
has a focal length f .  The combination of a spherical and cylindrical lens in close contact 
has a focal length that is f 12 in the direction for which the cylinder has power, and f in 
the direction for which the cylinder has no power. Thus such a pair will collimate light 
diverging in the direction with weaker power, and image light diverging in the direction 
of stronger power. As a result, the lens combination L1,  L2 collimates the light diverging 
vertically from an input source, but images in the horizontal direction, thereby illumi- 
nating a column of the matrix mask. Similarly, the lens combination L3, L4 images a 
row of the mask onto the vertical position of a single detector element, but collimates or 
spreads the light from a single column of the matrix mask. Ideally the detector elements 
should be long in the horizontal direction, allowing detection of most of the light across 
a row of the mask, but a long detector has high capacitance, and such capacitance limits 
the bandwidth of the electronic channel that follows. 

The parallel matrix-vector multiplier performs all N X M multiplications and ad- 
ditions in a single clock cycle. A clock cycle can be very short, for example 10 nsec, 
depending on the amount of light available from each source. Lasers can be used as 
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the sources, in spite of the fact that incoherent addition is used by this system, due 
to the fact that all additions are of light from different lasers, which for most types of 
semiconductor lasers will be mutually incoherent on the time scale of a clock cycle. 

Many applications of the parallel matrix-vector multiplier architecture have been 
proposed and demonstrated. These include the construction of an optical crossbar switch 
1841, the iterative inversion of matrices [236], the construction of Hopfield neural net- 
works [97], and others. The architecture is a useful workhorse of the optical information 
processing field. 

a FIGURE 8.38 

8.11.4 An Outer Product Processor 

(c) 

A fundamentally different architecture for discrete operations is the outer product pro- 
cessor of Athale and Collins [ll], which is a method for performing a matrix-matrix 
multiplication. 

Suppose we wish to multiply two 3 X 3 matrices A and B to produce a product 3 X 3 
matrix C, where 

a 

< - . Optical elements comprising the . . . parallel matrix-vector multiplier: 
(a) perspective view, (b) top view, 

all a12 a13 b12 b13 c12 c13 

(8-94) 

and (c) side view. 

Straightforward manipulations show that it is possible to express C as a sum of outer 
products of the column vectors of A and the row vectors of B as follows: 
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The sum of outer products can be achieved optically with the system shown in 
Fig. 8.39. Two two-dimensional SLMs are used, each operating as an array of one- 
dimensional SLMs. Lens Lo collimates the light from the source S.  That light is incident 
on a set of independently addressable SLM rows, the outputs of which are imaged by 
spherical lens L I  onto a second SLM, consisting of a set of independently addressable 
SLM columns. Finally, lens L2 images the light transmitted by the second SLM onto a 
two-dimensional array of time-integrating detectors. 

The operation of the system in this simple example is described as follows. The first 
column vector of A is entered into the first SLM and the first row vector of B is entered 
into the second SLM. The detector array then stores charge proportional to the first of 
the individual outer products found in Eq. (8-95). The first SLM is now filled with the 
second column vector of A and the second SLM with the second row vector of B. The 
light incident on the detector array now adds charge proportional to the second outer 
product in Eq. (8-95). The process repeats one more time with the third column vector 
of A and the third row vector of B. The total stored charge array, now proportional to 
the elements of the product matrix C, is read out of the detector. 

Neglecting the time required to dump the detected charges, the speed of operation 
of this approach for a general product of an N x M matrix (i.e. with N rows and M 
columns) A and an M x N matrix B would be one cycle for each N x N outer product 
component, and M such cycles to accumulate the entire output matrix. During each 
cycle, N~ multiplies and additions take place. For N = M, the degree of parallelism is 
similar to that of the parallel matrix-vector multiplier discussed earlier. 

8.11.5 Other Discrete Processing Architectures 

A multitude of other discrete processing architectures have been proposed and in 
some cases demonstrated in the past. We mention in particular the systolic approach of 
Caulfield et al. [55]. Also of interest is the systolic processor demonstrated by Guilfoyle 
[135], although this processor was aimed at "numerical" processing, rather than analog 
processing, and therefore is not within the realm of our coverage here. 

8.11.6 Methods for Handling Bipolar and Complex Data 

Until now we have assumed that the elements of both the input vector and the system 
matrix are nonnegative real numbers, an assumption that assures compatibility with 
the nonnegative real character of incoherent optical signals. To handle bipolar data or 
complex data, two different methods can be utilized, either individually or together. 
For the purposes of this discussion, we focus on the parallel matrix-vector multiplier, 
although the methods are more widely applicable. 



FIGURE 8.39 
Outer product processor. 
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The first method places all bipolar signals on a bias, with the bias chosen large 
enough so that all elements of the input vector and all elements of the system ma- 
trix remain nonnegative. The biasing operation can be represented mathematically by 
noting that the input vector is now the sum of the signal vector s'and a bias vector b (all 
elements assumed identical), and the system matrix is likewise the sum of two matri- 
ces, H and B, where the elements of the bias matrix are also assumed to be identical. 
The output of the system now becomes 

If the bias matrix and the bias vector are known and constant over time, then the last 
term can be subtracted from the output electronically. In addition, the matrix H is known 
a priori, so the product H 6 can be calculated in advance and subtracted from any result. 
However, the vector Sis not known in advance, and therefore it is generally necessary 
to measure its inner product with a row vector of the bias matrix, perhaps by adding a 
simple extra bias row to the matrix H and one extra element to the detector array. 

An alternative approach to handling bipolar elements is to represent the input vec- 
tor and the system matrix as the diference of two nonnegative vectors or two non- 
negative matrices, respectively. Thus H = H+ - H- and s' = S+ - S-, where the 
matrix H+ contains positive elements only in those locations where H contains pos- 
itive elements, and zero elsewhere, and H- contains positive elements equal to the 
magnitude of any negative elements of H and zero for all other elements, with a similar 
construction procedure for s'+ and s'-. In addition, the output vector 2 can be simi- 
larly decomposed. It is now easily shown that the nonnegative components of the out- 
put vector are related to the similar components of the input vector and the system 
matrix by 

A simpler way of stating this relation is to stack 6, and S- in a longer column vector, 
and to do the same for the two parts of g, yielding 

g+ = H+ H- S+ [;-I [H- H+] [;-I 
From this result we can see that a doubling of the two dimensions of the matrix mask 
to accommodate the larger matrix above, and a doubling of the length of the input 
vector, will allow the two components of 2 to be computed without the use of bi- 
ases. Those two output vectors must then be subtracted electronically, element by ele- 
ment. 

When complex elements of the input vector and matrix are important, then the most 
straightforward approach is to quadruple the dimensions of the input vector, the output 
vector, and the matrix, thus allowing positive and negative real parts and positive and 
negative imaginary parts to be handled properly. More efficient decompositions can 
also be found [130]. 
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PROBLEMS-CHAPTER 8 

8-1. An object has a periodic amplitude transmittance described by 

tA(5, 77) ' tA(5) ' 1 

where tA(5) is shown in Fig. P8.1. The object is placed in the object plane of the optical 
system shown in Fig. 8.1, and a tiny completely opaque stop is introduced on the optical 
axis in the focal plane, blocking only the spot on the optical axis. Sketch the intensity 
distribution observed in the image plane. 

5 FIGURE PS.l 

8-2. The central dark ground method for observing phase objects is achieved by placing a tiny 
opaque stop on the optical axis in the focal plane to block the undiffracted light. Assuming 
that the variable component of phase shift through the object is always small compared 
with 2.rr radians, find the observed image intensity in terms of the object phase delay. 

8-3. The schlieren method for observing phase objects is achieved by introduction of a knife 
edge in the focal plane to block half of the diffracted light. The amplitude transmittance 
through the focal plane may be written 

1 
tf(x, y) = -(1 + sgnx). 

2 

(a) Assuming a magnification of unity and neglecting image inversion, show that the 
image amplitude Ui is related to the object amplitude U ,  by 

(b) Let the field transmitted by the object be of the form 

where A+((, q )  << 27~. Show that the image intensity can be approximated as 

(c) Find and sketch the image intensity distribution when 

A 4  = Qrect - (3 
with the constant Q << 2 ~ .  
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8-4. Find an expression for the image intensity observed when the phase-shifting dot of the 
Zernike phase-contrast microscope is also partially absorbing, with intensity transmittance 
equal to a (0 < a < 1). 

8-5. A certain coherent processing system has an input aperture that is 3 cm wide. The focal 
length of the initial transforming lens is 10 cm, and the wavelength of the light is 0.6328 
pm. With what accuracy must a frequency-plane mask be positioned in the focal plane, 
assuming that the mask has a structure comparable in scale size with the smallest structure 
in the spectrum of the input? 

8-6. It is desired to remove an additive periodic intensity interference of the form I N ( [ ,  q) = 

4 [ l  + cos 27r f,&] from a photograph taken by an imaging system. A coherent "4 f" opti- 
cal processing system will be used for that removal. The wavelength of the coherent light 
is A. The image was recorded on photographic film (size L X L) using the linear region 
of the H&D curve. A purely absorbing positive transparency with a photographic gamma 
of -2 was made, and that transparency is to be inserted in the input plane of the optical 
processing system. Specify the absorbing mask you would place in the frequency plane 
of the coherent optical processor in order to remove the interference. Consider especially: 

(a) Where should the absorbing spots be placed? 

(b) What size would you make the absorbing spots? 

(c) What would you do at frequency ( fx = 0, fr = O)? 

Note: Neglect any effect the mask might have on the nonperiodic signal that is also present 
at the input. 

8-7. A grating with amplitude transmittance tA(x, y) = 3 [ l  + cos(27r fox)] is placed at the 
input to a standard "4 f" coherent optical processing system of the kind illustrated in 
Fig. 8.10(a). Specify the transfer function (as a function of fx) of apurephase spatial filter 
that will completely suppress the spatial frequency component of output intensity having 
spatial frequency f,. Assume normally incident plane wave illumination, monochromatic 
light, and neglect the effects of finite lens apertures. 

8-8. A transparent object with complex amplitude transmittance IA(X, y) is placed immediately 
in front of a positive spherical lens. The object is normally illuminated with a monochro- 
matic plane wave, and a photographic transparency records the intensity distribution 
across the back focal plane. A positive transparency with a gamma of - 2 is produced. 
The developed transparency is then illuminated by a plane wave, and the same positive 
lens is inserted directly behind the transparency. What is the relationship between the 
amplitude transmittance of the original object and the intensity distribution observed 
across the back focal plane of the lens in the second step of the process? 

8-9. A phase object with amplitude transmittance tA(xl, yl ) = exp [ j+(xl, y l  )] is present in 
the object plane of a coherent imaging system. In the back focal plane of the system, an 
attenuating plate (of uniform thickness) with intensity transmittance 

is introduced. How is the resulting image intensity related to the object phase? 
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8-10. Consider the optical system shown in Fig. P8.10. A transparency with a real and non- 
negative amplitude transmittance sl(5, q) is placed in plane P I  and coherently illuminated 
by a monochromatic, unit-intensity, normally incident plane wave. Lenses L I  and L2 are 
spherical with common focal length f .  In plane P2,  which is the rear focal plane of L I ,  a 
moving diffuser is placed. The effect of the moving diffuser can be considered to be the 
conversion of spatially coherent incident light into spatially incoherent transmitted light, 
without changing the intensity distribution of the light in plane P2 and without appreciably 
broadening the spectrum of the light. In plane P3, in contact with L2, is placed a second 
transparency, this one with amplitude transmittance s2(x, y) .  Find an expression for the 
intensity distribution incident on plane P4. 

Motion 

2f 2f 

FIGURE P8.10 

8-11. The VanderLugt method is used to synthesize a frequency-plane filter. As shown in 
Fig. P8.11(a), a "signal" transparency with amplitude transmittance s(x, y) is placed im- 
mediately against a positive lens (rather than in the front focal plane) and a photographic 
plate records the intensity in the back focal plane. The amplitude transmittance of the 
developed plate is made proportional to exposure, and the resulting transparency is placed 
in the system of part (b) of the figure. Assuming that the appropriate portions of the output 

Input Output 

(b) FIGURE P8.11 
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plane are examined in each case, what should the distance d between the object plane and 
the first lens of the filtering system be in order to synthesize: 

(a) A filter with impulse response s(x, y)? 

(b) A filter with impulse response s*(-x, -y)? 

8-12. Given a standard VanderLugt matched filtering system, prove that the output correlation 
spot shifts with any shift of the input signal against which we are correlating the reference. 
Assume that the magnification of the system is unity. 

8-13. Prove that the inequality of Eq. (8-25) must be satisfied if the various output terms of the 
joint transform correlator are to be separated. 

8-14. A certain image is blurred by camera motion such that the image incident on the recording 
film has moved linearly with velocity V on the film during a T-second exposure time. 

(a) Specify the point-spread function and the optical transfer function of the blur. 

(b) Specify and plot the magnitude of the transfer function of an inverse filter that will in 
principle remove the blur. 

(c) Assuming a constant ratio of signal power spectrum to noise power spectrum of 10, 
specify and plot the transfer function of a Wiener filter that will serve as a better 
deblurring filter than the simple inverse filter. 

(d) If you have access to a computer, calculate and plot the impulse response of the Wiener 
filter of part (c). 

8-15. Consider an ideal "perfect" periodic transmitting object with amplitude transmittance 
p(x, y) having period L in both thex and y directions. On this object there exists an opaque 
defect, with a size much smaller than the period of the object, but nonetheless much larger 
than the smallest structure contained in p(x, y). We wish to create an optical filter that will 
enhance the brightness of the defect with respect to the periodic object, thus enhancing 
our ability to detect the defect. Ideally we would like to completely suppress the periodic 
portion of the image and pass only a bright image of the defect. 

(a) Describe how you might make a spatial filter that would accomplish the task described 
above. Be as specific as possible. 

(b) Suppose that your filter were able to completely eliminate the discrete frequency com- 
ponents associated with the ideal periodic object, but also pass essentially all the light 
caused to leave these locations by the defect. Find an approximate expression for the 
image intensity that would be obtained at the output. As an aid to your analysis, let the 
amplitude transmittance of the defect be described by 1 - d(x, y), where the function 
d(x, y) is unity within the defect and zero outside it. Remember that the defect and the 
periodic object should be treated as two separate diffracting structures in close con- 
tact with one another. You may neglect the finite sizes of the lenses and any vignetting 
effects. 
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8-16. You are to construct a coherent optical "grade change" filter that will change the letter F 
into the letter A. The filtering system is of the standard "4 f" type. Describe in detail how 
you would construct such a filter. Be specific. How would you expose the photographic 
plate in making the filter? What behavior of the photographic transparency would you try 
to achieve? Where would you look in the output plane of the processor? Give as many 
details as you can. 

8-17. A synthetic-aperture radar system carries an antenna of dimension D along the direction 
of the flight path. Therefore on any particular transmitted pulse, that antenna illuminates 
a patch on the terrain that is of approximate width A,rlD where r is the slant range. 

(a) Approximately how long (in the direction of the flight path) is the synthetic aperture 
that such a system can generate? 

(b) If the radar is transmitting a microwave frequency f, and moving with linear velocity 
v,, find the frequency of the radiation returned from a fixed target and received in 
the aircraft, first when the target initially enters the radiation pattern of the transmit- 
tingtreceiving antenna, and second when it is just leaving that radiation pattern. From 
these results deduce the total bandwidth of received radiation seen by the radar from 
one target. 

(c) Taking into account the fact that both the transmitter and the receiver are moving, 
show that the approximate size of a minimum resolvable spot achieved in the image 
of the terrain (in the direction of the flight path) can be as small as approximately 012, 
and therefore the smaller the antenna carried, the better the resolution of the system 
(neglecting noise). 

8-18. With reference to Eq. (7-34), show that the optical frequency of the light at coordinate y2 in 
the spatial frequency domain of the Bragg cell spectrum analyzer is offset from the optical 
frequency of the source by an amount that is exactly equal to the temporal frequency of 
the RF spectral component represented at that coordinate. 
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Holography 

In 1948, Dennis Gabor [106] proposed a novel two-step, lensless imaging process 
which he called wavefront reconstruction and which we now know as holography. 
Gabor recognized that when a suitable coherent reference wave is present simultane- 
ously with the light diffracted by or scattered from an object, then information about 
both the amplitude and phase of the diffracted or scattered waves can be recorded, in 
spite of the fact that recording media respond only to light intensity. He demonstrated 
that, from such a recorded interference pattern (which he called a hologram, meaning 
a "total recording"), an image of the original object can ultimately be obtained. 

While Gabor's imaging technique received only mild interest in its early days, the 
1960s saw dramatic improvements in both the concept and the technology, improve- 
ments that vastly extended its applicability and practicality. In 197 1 Gabor received 
the Nobel prize in physics for his invention. 

In this chapter we examine the basic principles behind holography, explore the 
many modern variations upon Gabor's original theme, and survey some of the impor- 
tant applications that have been found for this novel imaging technique. Several excel- 
lent books devoted to holography exist. The classic text is that of Collier, Burckhardt, 
and Lin [70]. For another excellent and authoritative treatment see the book by Hariha- 
ran [139]. Other broad books include those by Smith [265], Develis and Reynolds [83], 
Caulfield [53], and Saxby [254]. 

9.1 
HISTORICAL INTRODUCTION 

Gabor was influenced in his early studies of holography by previous work of W.L. Bragg 
in X-ray crystallography (see, for example, [34]), but was primarily motivated by pos- 
sible applications of his newfound technique to electron holography. Gabor followed 
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his original proposal with two more lengthy papers ([107], [108]) published in 1949 
and 195 1, considering the possible application of holography to microscopy. While for 
practical reasons he was unable to realize his envisioned application, the improvements 
developed in the 1960s led to many applications that Gabor could not possibly have 
foreseen. 

In the 1950s, a number of authors, including G.L. Rogers [245], H.M.A. 
El-Sum [93], and A.W. Lohmann [197], significantly extended the theory and un- 
derstanding of holography. It was not, however, until the early 1960s that a revolution 
in holography began. Again it was workers at the University of Michigan's Radar 
Laboratory, in particular E.N. Leith and J. Upatnieks [188], who recognized the simi- 
larity of Gabor's lensless imaging process to the synthetic-aperture-radar problem and 
suggested a modification of his original technique that greatly improved the process. 
At virtually the same time, Y.N. Denisyuk [82], working in what was then the Soviet 
Union, created a remarkable synthesis of the ideas of both Gabor and French physicist 
G. Lippmann to invent the thick reflection hologram, which he perfected to an advanced 
state. 

The Michigan workers soon coupled their new developments with the emerging 
technology of lasers in order to perform lensless three-dimensional photography [190]. 
The quality and realism of the three-dimensional images obtained by holography were 
largely responsible for the development of a great popular interest in the field. To- 
day it is common to find museums or galleries specializing in holography in many 
of the great cities of the world. However, contrary to popular impression, many of the 
most interesting and useful properties of holography are quite independent and separate 
from the three-dimensional imaging capability, as we shall see in some detail in later 
sections. 

9.2 
THE WAVEFRONT RECONSTRUCTION PROBLEM 

The fundamental problem addressed by holography is that of recording, and later recon- 
structing, both the amplitude and the phase of an optical wave arriving from a coherently 
illuminated object. This problem is sufficiently general to be of interest for electromag- 
netic waves in all regions of the spectrum, as well as for acoustic and seismic waves. 
Our considerations here, however, will be largely restricted to the optical problem. 

9.2.1 Recording Amplitude and Phase 

As indicated above, the wavefront-reconstruction problem must consist of two distinct 
operations: a recording or detection step, and a reconstruction step. For the moment we 
focus on the first of these two operations. 

Since the wavefronts of concern are coherent, it is necessary to detect information 
about both the amplitude and phase of the waves. However, all recording media re- 
spond only to light intensity. It is therefore required that the phase information somehow 
be converted to intensity variations for recording purposes. A standard technique for 



CHAPTER 9 Holography 297 

/ Reference 

Object 

wave 
Recording FIGURE 9.1 
n-Iediun-I Interferometric recording. 

accomplishing this task is intetferometry; that is, a second wavefront, mutually coherent 
with the first and of known amplitude and phase, is added to the unknown wavefront, 
as shown in Fig. 9.1. The intensity of the sum of two complex fields then depends on 
both the amplitude and phase of the unknown field. Thus if 

represents the wavefront to be detected and reconstructed, and if 

represents the "reference" wave with which a(x, y) interferes, the intensity of the sum 
is given by 

Y) = IA(x, y)I2 + la(x, y)I2 + 2 / 4 4  y)lla(x, y)l cos[+(x, y) - +(x, y)]. (9-3) 

While the first two terms of this expression depend only on the intensities of the individ- 
ual waves, the third depends on their relative phases. Thus information about both the 
amplitude and phase of a(x, y) has been recorded. The issue as to whether it is sufficient 
information to reconstruct the original wavefront remains to be dealt with. At this point 
we have not specified any detailed character of the reference wave A(x, y). Properties 
that the reference wave must satisfy in order to enable reconstruction of a(x, y) will be- 
come evident as the discussion progresses. The recording of the pattern of interference 
between an "object" wave and a "reference" wave may be regarded as a hologram. 

9.2.2 The Recording Medium 

The material used to record the pattern of interference described above will be assumed 
to provide a linear mapping of intensity incident during the detection process into am- 
plitude transmitted by or reflected from the material during the reconstruction process. 
Usually both light detection and wavefront modulation are performed by photographic 
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film or plate. The linear relation required is then provided by operation in the linear 
portion of the t~ vs. E curve of the emulsion. However, many other materials suitable 
for holography exist, including photopolymers, dichromated gelatin, photorefractive 
materials, and others (see Section 9.8). It is even possible to detect the interference 
pattern electronically and reconstruct the wavefront with a digital computer. However, 
photographic materials remain the most important and widely used recording medium. 

Thus we assume that the variations of exposure in the interference pattern remain 
within a linear region of the t~ VS. E curve. In addition, it is assumed that the MTF of 
the recording material extends to sufficiently high spatial frequencies to record all the 
incident spatial structure (effects of removing some of these ideal assumptions are ex- 
amined in Section 9.10). Finally we assume that the intensity 1 ~ 1 ~  of the reference wave 
is uniform across the recording material, in which case the amplitude transmittance of 
the developed film or plate can be written 

where tb is a uniform "bias" transmittance established by the constant reference expo- 
sure, and p 1  is the product of the slope /3 of the t~ vs. E curve at the bias point and 
the exposure time. Note that, as in Section 7.1, P' is a negative number for a negative 
transparency, and a positive number for a positive transparency. 

9.2.3 Reconstruction of the Original Wavefront 

Once the amplitude and phase information about the object wave a(x, y) have been 
recorded, it remains to reconstruct that wave. Suppose that the developed transparency 
is illuminated by a coherent reconstruction wave B(x, y). The light transmitted by the 
transparency is evidently 

Note that if B is simply an exact duplication of the original uniform reference wavefront 
A, the third term of this equation becomes 

Since the intensity of the reference wave is uniform, it is clear that reconstructed wave 
component U3 is, up to a multiplicative constant, an exact duplication of the original 
wavefront a(xJ y), as shown in Fig. 9.2(a). 

In a similar fashion, if B(x, y) happens to be chosen as the conjugate of the original 
reference wave, i.e. as A*(x, y), the fourth term of the reconstructed field becomes 

which is proportional to the conjugate of the original wavefront. This case is illustrated 
in Fig. 9.2(b). 

Note that in either case, the particular field component of interest (that is, U3 when 
B = A and U4 when B = A*) is accompanied by three additional field components, 
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FIGURE 9.2 
Wavefront reconstruction with (a) the original reference wave 
A as illumination, and (b) the conjugate reference wave A* as 
illumination. 

each of which may be regarded as extraneous interference. Evidently, if a usable du- 
plication of the object wave a(x, y) (or of a*(x, y)) is to be obtained, some method for 
separating the various wave components of transmitted light is required. 

9.2.4 Linearity of the Holographic Process 

The characteristic behavior hypothesized for the recording material in Eq. (9-4) cor- 
responds to a highly nonlinear mapping of fields incident during exposure into fields 
transmitted after development. It would therefore appear, at first glance, that linear sys- 
tems concepts can play no role in the theory of holography. While the overall mapping 
introduced by the film is nonlinear, nonetheless the mapping of object field a(x, y) into 
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the transmitted field component U3(x, y) is entirely linear, as evidenced by the pro- 
portionality of Eq. (9-6). Similarly, the mapping of a(x, y) into the transmitted field 
component U4(x, y), as represented by Eq. (9-7), is a linear one. Thus if the object 
field a(x, y) is regarded as an input, and the transmitted field component U3(x, y) (or 
U4(x, y)) is regarded as an output, the system so defined is a linear one. The nonlinearity 
of the detection process manifests itself in the generation of several output terms, but 
there is no nonlinear distortion of the one term of interest, assuming that the exposure 
variations remain in the linear region of the t~ VS. E curve. 

Recording 
medium 

Reconstruction 

Real 

beam 

- 20 m 

Hologram 

(c) 

FIGURE 9.3 
Imaging by wavefront reconstruction. (a) Recording the hologram of a 
point-source object; (b) generation of the virtual image; (c) generation 
of the real image. 
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9.2.5 Image Formation by Holography 

To this point we have considered only the problem of reconstructing a wavefront which 
arrived at a recording medium from a coherently illuminated object. It requires but a 
small change in point of view to regard the wavefront reconstruction process as a means 
of image formation. 

To adopt this point of view, note that the wave component U3(x, y) of Eq. (9-6), 
being simply a duplication of the original object wavefront a(x, y), must appear to the 
observer to be diverging from the original object, in spite of the fact that the object 
has long since been removed. Thus when the reference wave A(x, y) is used as the 
illumination during reconstruction, the transmitted wave component U3(x, y) may be 
regarded as generating a virtual image of the original object. This case is illustrated in 
Fig. 9.3(a),(b) for the particular case of a simple point-source object. 

In a similar fashion, when the conjugate of the reference wave, A*(x, y), is used as 
the illumination during reconstruction, the wave component U4(x, y) of Eq. (9-7) also 
generates an image, but this time it is a real image which corresponds to an actual focus- 
ing of light in space. To prove this assertion, we invoke the linearity property discussed 
above, considering an object which consists of a single point source. The correspond- 
ing result for a more complicated object may then be found by linear superposition of 
point-source solutions. 

Incident on the recording medium we have the sum of the reference wave A(x, y) 
and a simple spherical object wave, 

a(x, y) = a, exp jk  Jzi, + (x - i,)* + (y - Yo)* I (9-8) 

where (i,, 9,) are the (x, y) coordinates of the object point, and z,  is its normal distance 
from the recording plane. Illuminating the developed hologram with a reconstruction 
wave A*(x, y), we obtain the transmitted wave component 

which is a spherical wave that converges towards a real focus at distance z, to the right 
of the hologram, as shown in Fig. 9.3(c). A more complicated object may be considered 
to be a multitude of point sources of various amplitudes and phases; and by the linearity 
property, each such point source generates its own real image as above. Thus a real 
image of the entire object is formed in this fashion. 

Note that the amplitude of the wave described by Eq. (9-9) is proportional to a:, the 
conjugate of the original object point-source amplitude. Similarly, for a more compli- 
cated object, the real image generated by the hologram is always the complex conjugate 
of the original object amplitude. Such a change of phase does not affect image intensity, 
but it can be important in certain applications that utilize both the amplitude and phase 
of the image. 

It should again be emphasized that we have considered, in each case, only one of 
the four wave components transmitted by the hologram. This approach is acceptable if, 
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by proper choice of reference wave, the undesired components are suppressed or are 
separated from the image of interest. When this is not the case, the interference of the 
various components of transmitted light must be taken into account. 

9.3 
THE GABOR HOLOGRAM 

Keeping in mind the preceding general discussion, we now consider the wavefront- 
reconstruction process in the form originally proposed and demonstrated by Gabor. In 
Section 9.4, we turn to modifications of the process which improve its imaging capa- 
bilities. 

9.3.1 Origin of the Reference Wave 

The geometry required for recording a Gabor hologram is illustrated in Fig. 9.4. The 
object is assumed to be highly transmissive, with an amplitude transmittance 

where to is a high average level of transmittance, At represents the variations about this 
average, and 

lAt( << It,(- (9-11) 

When such an object is coherently illuminated by the collimated wave shown in 
Fig. 9.4, the transmitted light consists of two components: ( I )  a strong uniform plane 
wave passed by the term to, and (2) a weak scattered wave generated by the transmit- 
tance variations At(x,, yo). The intensity of the light incident on the recording medium 
at distance z, from the object may be written 

where A is the amplitude of the plane wave, and a(x, y) is the amplitude of the scattered 
light at the recording plane. 

Recording 
Object medium 

Sourc 

scattered/ \ Directly 
wave / . t r a n ~ ~ i t t e d  FIGURE 9.4 

wave Recording a Gabor hologram. 
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FIGURE 9.5 
Formation of twin images from a Gabor hologram. 

Thus the object has, in a sense, supplied the required reference wave itself through 
the high average transmittance to. The interference of the directly transmitted light with 
the scattered light results in a pattern of intensity that depends on both the amplitude 
and the phase of the scattered wave a(x, y). 

9.3.2 The Twin Images 

The developed hologram is assumed to have an amplitude transmittance that is propor- 
tional to exposure. Thus 

tA(x, y) = tb + p1(la12 + A * a  + Aa*). 

If the transparency is now illuminated by a normally incident plane wave with uniform 
amplitude B, the resulting transmitted field amplitude consists of a sum of four terms: 

Bt* = Btb + P1B1a(x, y)12 + plA*Ba(x, y) + PIABa*(x, y). (9- 14) 

The first term is a plane wave which passes directly through the transparency, suffer- 
ing uniform attenuation but without scattering. The second term may be dropped as 
negligible by virtue of our assumption (9-1 I), which implies that 

The third term represents a field component that is proportional to the original scattered 
wave a(x, y). This wave appears to originate from a virtual image of the original object 
located at distance zo from the transparency, as shown in Fig. 9.5. Similarly, the fourth 
term is proportional to a*(x, y) and, in accord with our earlier discussions, leads to the 
formation of a real image at distance zo on the opposite side of the transparency from 
the virtual image (again, see Fig. 9.5). 

Thus the Gabor hologram generates simultaneous real and virtual images of the 
object transmittance variations At, both images being centered on the hologram axis. 
These so-called twin images are separated by the axial distance 2z,, and are accompa- 
nied by a coherent background Btb. 
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Note from Eq. (9-14) that positive and negative transparencies yield different signs 
for the image-forming waves with respect to the background (P ' is positive for a posi- 
tive transparency and negative for a negative transparency). In addition, for any one of 
these two cases, the real image wave is the conjugate of the virtual image wave, and 
depending on the phase structure of the object, further contrast reversals are possible 
when one of these waves interferes with the constant background. For an object with 
constant phase, a positive hologram transparency is found to produce a positive image, 
and a negative hologram transparency is found to produce a negative image. 

9.3.3 Limitations of the Gabor Hologram 

The Gabor hologram is found to suffer from certain limitations which restrict the extent 
of its applicability. Perhaps the most important limitation is inherent in the assumption 
of a highly transparent object and the consequent conclusion (9-15) that followed. If 
this assumption is not adopted, there exists an additional wave component 

transmitted by the hologram which can no longer be dropped as negligible. In fact, 
if the object is of low average transmittance, this particular wave component may be 
the largest transmitted term, and as a consequence may entirely obliterate the weaker 
images. Thus with a Gabor hologram it is possible to image an object consisting of, for 
example, opaque letters on a transparent background, but not transparent letters on an 
opaque background. This restriction seriously hampers the use of Gabor holograms in 
many potential applications. 

A second serious limitation lies in the generation of overlapping twin images, rather 
than a single image. The problem lies not with the presence of twin images per se, but 
rather with their inseparability. When the real image is brought to focus, it is always 
accompanied by an out-of-focus virtual image. Likewise an observer viewing the vir- 
tual image sees simultaneously a defocused image arising from the real-image term. 
Thus, even for highly transparent objects, the quality of the images is reduced by the 
twin image problem. A number of methods have been proposed for eliminating or re- 
ducing the twin-image problem, (e.g. see [197]), including one technique originated by 
Gabor himself [ I l l ] .  The most successful of these methods has been that of Leith and 
Upatnieks [188], which we discuss in detail in the next section. 

9.4 
THE LEITH-UPATNIEKS HOLOGRAM 

Leith and Upatnieks suggested and demonstrated a modification of Gabor's original 
recording geometry that solved the twin image problem and vastly extended the ap- 
plicability of holography. This type of hologram will be called the Leith-Upatnieks 
hologram, and is also known as an onset-reference hologram. The major change be- 
tween this type of hologram and the Gabor hologram is that, rather than depending on 
the light directly transmitted by the object to serve as a reference wave, a separate and 
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FIGURE 9.6 
Recording a Leith-Upatnieks hologram. 

distinct reference wave is introduced. Furthermore the reference is introduced at an 
offset angle, rather than being collinear with the object-film axis. 

The first successful demonstration of this type of hologram, reported in 11881, was 
carried out without a laser source. However, it was not until the technique was combined 
with highly coherent laser illumination that its full potential became evident [190], 
[189]. 

9.4.1 Recording the Hologram 

One possible geometry for recording a Leith-Upatnieks hologram is illustrated in 
Fig. 9.6. The light from a point source of illumination is collimated by the lens L. A 
portion of the resulting plane wave strikes the object, which is taken to be a trans- 
parency with a general amplitude transmittance t(x,, yo). A second portion of the plane 
wave strikes a prism P located above the object and is deflected downwards at angle 
28 with respect to the normal to the recording plane.' Thus at the recording surface we 
find the sum of two mutually coherent waves, one consisting of light transmitted by 
the object, and the other consisting of a tilted plane wave. The amplitude distribution 
incident on the recording plane may be written 

U(x, y) = A exp(- $ r a y )  + a(x, y), (9- 17) 

where the spatial frequency a of the reference wave is given by 

sin 28 a=- 
A -  

The intensity distribution across the recording plane is evidently 

'The reason for calling this angle 28 rather than 8 will become evident when we consider fringe orientation 
through the depth of a thick emulsion. 
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An alternative more revealing form may be obtained by writing a(x, y) explicitly as an 
amplitude and phase distribution, 

and combining the last two terms of (9-19) to yield 

This expression demonstrates that the amplitude and phase of the light arriving from the 
object have been recorded, respectively, as amplitude and phase modulations of a spatial 
carrier of frequency a. If the carrier frequency is sufficiently high (we shall see shortly 
just how high it must be), the amplitude and phase distributions can be unambiguously 
recovered from this pattern of interference. 

9.4.2 Obtaining the Reconstructed Images 

In the usual fashion, the photographic plate is developed to yield a transparency with 
an amplitude transmittance proportional to exposure. Thus the film transmittance may 
be written 

For convenience we represent the four terms of transmittance by 

For the present we assume that the hologram is illuminated by a normally incident, 
uniform plane wave of amplitude B, as illustrated in Fig. 9.7. The field transmitted by 
the hologram has four distinct components, each generated by one of the transmittance 
terms of Eq. (9-23): 

The field component U1 is simply an attenuated version of the incident reconstruction 
illumination, and therefore represents a plane wave traveling down the optical axis. The 
second term U2 is spatially varying and therefore has plane wave components traveling 
at various angles with respect to the optical axis. However, as we shall see in more 
detail shortly, if the bandwidth of a(x, y) is sufficiently small compared with the carrier 
frequency a ,  the energy in this wave component remains sufficiently close to the optical 
axis to be spatially separated from the images of interest. 

The wave component U3 is proportional to the original object wavefront a multi- 
plied by a linear exponential factor. Proportionality to a implies that this term generates 
a virtual image of the object at distance zo to the left of the transparency, while the 
linear exponential factor exp(j2.rray) indicates that this image is deflected away from 
the optical axis at angle 28, as shown in Fig. 9.7. Similarly, wave component U4 is 
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FIGURE 9.7 
Reconstruction of images from a Leith-Upatnieks hologram. 

proportional to the conjugate wavefront a*, which indicates that a real image forms at 
distance z,  to the right of the transparency. The presence of the linear exponential factor 
exp(- j2.rray) indicates that the real image is deflected at angle -28 from the optical 
axis, as again can be seen in Fig. 9.7. 

The most important observation to be derived from these results is that, while twin 
images are again generated by the holographic process, they have been angularly sep- 
arated from each other and from the wave components UI and U2. This separation 
comes about due to the use of a reference wave with an angular offset; indeed, suc- 
cessful isolation of each of the twin images requires the use of an angle between object 
and reference which is chosen larger than some lower limit (the minimum reference 
angle will be discussed in more detail shortly). When this angle exceeds the minimum 
allowable angle, the twin images are not contaminated by each other nor by other wave 
components. 

Note in addition that since the images may be viewed without the presence of a co- 
herent background generated by the object transparency, the particular sign associated 
with the wave components U3 and U4 of Eq. (9-24) is immaterial. The transparency 
may be either a positive or a negative; in each case a positive image is obtained. For 
practical reasons it is generally preferable to use negatives directly, thus avoiding the 
two-step process usually required for making a positive transparency. 

Finally we should point out that we have chosen to illuminate the hologram with 
a normally incident plane wave, which is neither a duplication of the original refer- 
ence wave nor its complex conjugate, yet we have obtained a real and a virtual image 
simultaneously. Evidently our conditions concerning the required nature of the recon- 
struction illumination were overly restrictive. However, when we consider the effects 
of the thickness of the emulsion on the reconstructed wavefronts, the exact nature of 
the reconstruction illumination will become more important. As will be discussed in 
Section 9.7, it then becomes critical that the hologram be illuminated with a duplicate 
of the original reference wave to obtain one image, and the complex conjugate of the 
reference wave to obtain the other image. 
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9.4.3 The Minimum Reference Angle 

Returning to the reconstruction geometry of Fig. 9.7, if the twin images are to be sepa- 
rated from each other and from the light transmitted with directions close to the optical 
axis, the offset angle 28 of the reference beam with respect to the object beam must 
be greater than some minimum angle 20min. To find this minimum, it suffices to de- 
termine the minimum carrier frequency a for which the spatial frequency spectra of t3 
and t4 (that is the virtual-image and real-image terms of hologram transmittance) do not 
overlap each other and do not overlap the spectra of tl and t2. If there is no overlap, then 
in principle the hologram amplitude transmittance can be Fourier transformed with the 
help of a positive lens, the unwanted spectral components can be removed with appro- 
priate stops in the focal plane, and a second Fourier transformation can be performed 
to yield just that portion of the transmitted light that leads to the twin  image^.^ 

Consider the spatial frequency spectra of the various terms of transmittance listed 
in Eq. (9-23). Neglecting the finite extent of the hologram aperture, we have directly 
that 

Using the autocorrelation theorem, we also have 

where Ga( fx, fy) = F { a(x, y ) }  and the * indicates the autocorrelation operation. Fi- 
nally we have 

G3(fx, f ~ )  = F{t3(x, y ) }  = PIA*G,(fx, fy - a )  (9-27) 
G4(fx3 f ~ )  = F { ~ ( X ,  Y)) = P1AG;(- fx, - fy  - a).  

Now note that the bandwidth of G, is identical with the bandwidth of the object, 
for the two spectra differ only by the transfer function of the propagation phenomenon, 
which (neglecting the evanescent wave cutoff) is the pure phase function of Eq. (3-70). 
Suppose that the object has no spatial frequency components higher than B cycles/mm. 
Thus the spectrum ]Gal might be as shown in Fig. 9.8(a). The corresponding spectrum 
of the hologram transmittance is illustrated in Fig. 9.8(b). The term IGl ( is simply a S 
function at the origin in the ( fx, fy) plane. The term IG21, being proportional to the auto- 
correlation function of IGal, extends to frequencies as high as 2B. Finally, IG31 is simply 
proportional to [Gal, displaced to a center frequency (0, a ) ,  while IG4( is proportional to 
a reflected version of [Gal centered at frequency (0, - a). 

Examination of Fig. 9.8(b) shows that lG31 and (G4( can be isolated from IG2I if 

or equivalently if 

sin 28 r 3 Bh. (9-29) 

2Spatial filtering operations are seldom used in practice to separate the twin images. If the reference angle 
satisfies the requirements to be derived here, the images will separate of their own accord due to the dif- 
ferent directions of propagation of the respective wave components (cf. Fig. 9.7). However, spatial-filtering 
arguments do provide a conceptually simple way of finding sufficient conditions for separation. 
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FIGURE 9.8 
Spectra of (a) the object and (b) the hologram. 

Evidently the minimum allowable reference angle is given by 

20mi, = sin-' 3BA. (9-30) 

When the reference wave is much stronger than the object wave, this require- 
ment can be relaxed somewhat. The term G2 is generated physically by interference 
of light from each object point with light from all other object points, while G3 and 
G4 arise from interference between the object and reference waves. When the object 
wave is much weaker than the reference wave (i.e. when la1 << IAl), the term G2 is of 
much smaller magnitude than G I ,  G3,  or G4, and can be dropped as negligible. In this 
case the minimum reference angle is that which barely separates Gj and G4 from each 
other, or 

20min = sin-' (BA) .  (9-3 1) 

9.4.4 Holography of Three-Dimensional Scenes 

In 1964, Leith and Upatnieks reported the first successful extension of holography to 
three-dimensional imagery [190]. Success in this endeavor rested to a large degree on 
the availability of the HeNe laser, with its excellent temporal and spatial coherence. 

Figure 9.9(a) illustrates the general geometry used for recording holograms of 
three-dimensional scenes. Coherent light illuminates the scene of interest. In addition, 
a portion of the illumination strikes a "reference" mirror placed next to the scene. Light 
is reflected from the mirror directly to the photographic plate, where it serves as a refer- 
ence wave, interfering with light reflected from the scene itself. Thus the photographic 
plate records a hologram of the three-dimensional scene. 

To reconstruct a three-dimensional image of the scene, two different geometries 
are recommended, one for viewing the virtual image and the other for viewing the real 
image. As indicated in Fig. 9.9(b), to view the virtual image we illuminate the hologram 
with an exact duplicate of the original reference wave, in which case the virtual image 
appears fixed in three-dimensional space behind the photographic plate at exactly the 
same location where the object was originally located. Since the wavefronts origi- 
nally incident on the plate have been duplicated during the reconstruction process, the 
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FIGURE 9.9 
Holographic imaging of a three-dimensional scene. (a) Recording the hologram; (b) 
reconstructing the virtual image; (c) reconstructing the real image. 

image retains all three-dimensional properties of the object. In particular, it is possible 
to "look behind" objects in the foreground simply by changing one's viewing position 
or perspective. 

The real image is best viewed when we illuminate the hologram in a different 
manner. Let the reconstruction wave be a wave that duplicates the reference wave in 
all respects except one, namely it is traveling backwards towards the original location 
of the reference source as if time had been reversed during the recording process. This 
wave can be referred to as an "anti-reference" wave, and can be thought of as being 
obtained by reversing the direction of the local vector of the reference wave at each 
point on the hologram. The result is a reconstruction wave with a complex distribution 
of field that is the complex conjugate of the original reference wave, i.e. A*(x, y). Under 
such illumination, the real image forms in space between the photographic plate and 
the observer, as shown in Fig. 9.9(c). For three-dimensional objects, the real image has 
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FIGURE 9.10 
Photograph of a portion of a hologram of a diffuse three-dimensional scene. 

certain properties that make it less useful than the virtual image in many applications. 
First, points on the object that were closest to the photographic plate (and therefore 
closest to an observer of the original scene) appear in the real image closest to the pho- 
tographic plate again, which in this case is farthestfrom the observer (cf. Fig. 9.9(c)). 
Thus to an observer of the real image, the parallax relations are not those associated 
with the original object, and the image appears (in a certain peculiar sense that must be 
personally observed to be fully appreciated) to be "inside out". Images of this type are 
said to be pseudoscopic, while images with normal parallax relations (like the virtual 
image) are said to be orthoscopic. 

As a second disadvantage of the real image, if photographic film is inserted directly 
into that image in an attempt to record it directly, the experimenter soon discovers that 
(for holograms of reasonable size) the depth of focus is generally so small that a recog- 
nizable recording can not be obtained. This problem can be alleviated by illuminating 
only a small portion of the hologram, in which case the depth of focus is increased and 
a usable two-dimensional image can be recorded. If the illuminating spot on the holo- 
gram is moved, then the apparent perspective of the two-dimensional image changes. 
Thus every small region of a large hologram is capable of producing a real image of the 
original object with a different perspective! 

Figure 9.10 shows a photograph of a portion of a hologram of a diffusely reflect- 
ing three-dimensional scene. Note that there is nothing recognizable in the structure 
recorded on the hologram. In fact, most of the observable structure is irrelevant to the 
reconstruction in the sense that it arises from imperfections in the optical apparatus 
(e.g. from dust specks on mirrors and lenses). The structure that generates the recon- 
structed images is far too fine to be resolved in this photograph. 

To illustrate the truly three-dimensional nature of the reconstructed images, we 
refer to Fig. 9.11, which shows two photographs of the virtual image. In 9.11(a), the 
camera is focused on the background of the virtual image; the sign in the background 
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(b) 

FIGURE 9.11 
Photographs showing the three-dimensional character of the 
virtual image reconstructed from a hologram. 

is sharply in focus, while the figurines in the foreground are out of focus. Note also that 
the tail of the horse obscures the head of the shadow of the horse. The camera is now 
refocused on the foreground and moved to change perspective, with the result shown 
in Fig. 9.1 l(b). The foreground is now in focus and the background out of focus. The 
tail of the horse no longer obscures the head of the shadow of the horse, a consequence 
of the change of perspective. Thus the camera has succeeded in "looking behind" the 
tail by means of a simple lateral movement. 
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9.4.5 Practical Problems in Holography 

There are several problems that any practitioner of holography faces and must overcome 
in order to successfully make a hologram. To become better acquainted with the practice 
of holography, the reader may wish to consult Ref. [254]. 

Historically, the extremely short coherence lengths of optical sources available be- 
fore the advent of the laser seriously constrained the types of holograms that could be 
recorded. Today the availability of high-quality laser sources has vastly alleviated this 
problem. However, the experimenter must still take some precautions, for the coher- 
ence of lasers is not perfect. For example, it is good practice to measure the distances 
the reference beam and the object beam travel from source to photographic plate and 
to equalize the lengths of these paths as closely as possible. 

The process of recording a hologram is an exercise in interferometry. As with any 
interferometric experiment, if clean and sharp interference fringes are to be recorded, it 
is essential that all path-length differences for interfering light be kept stable to within a 
fraction of an optical wavelength during the duration of the exposure period. The higher 
the power available from the laser source, the shorter the required exposure time and 
the less severe the stability requirements become. The exposure time required depends 
on a multitude of factors, including the transmissivity or reflectivity of the object, the 
distances and geometry involved, and the particular film or plate used to record the 
hologram. Pulsed lasers with pulse durations as short as a few nanoseconds have been 
used in some instances, and CW exposures as long as several hours have been used in 
some cases. 

Some of the most stringent experimental requiremehts are associated with the 
recording of holograms of three-dimensional scenes. Photographic emulsions with 
extremely high resolution are required in such cases (see Section 9.8 for a more com- 
plete discussion of this point). One of the most commonly used emulsions for this use, 
Kodak Spectroscopic Plate Type 649F, has a resolution better than 2000 lines-pairs 
(cycles)/mm and an equivalent ASA speed of about 0.03.3 It is invariably true that 
high-resolution emulsions are extremely insensitive. 

An additional problem of some significance is the limited dynamic range of photo- 
graphic recording materials. The amplitude transmittance vs. exposure curve is linear 
over only a limited range of exposure. It is desirable to choose an average exposure that 
falls at the midpoint of this linear region. However, when the object is, for example, 
a transparency with a rather coarse structure, there may exist significant areas on the 
hologram with exposures falling well outside the linear region. As a consequence of 
this nonlinearity, degradation of the reconstructed images can be expected (see Section 
9.10.2 for further discussion). The dynamic range problem can be largely overcome by 
a technique first demonstrated by Leith and Upatnieks [190]. The object is illuminated 
through a diffuser, which spreads the light passed by any one point on the object to 
cover the entire hologram. Thus a bright spot on the object will no longer generate a 

3The ASA speed is a standard way of rating the photographic sensitivity of an emulsion. The lower the ASA 
number the less sensitive the emulsion. The ASA speeds of emulsions used in conventional photography 
are often of the order of 100 or higher. 
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strong Fresnel diffraction pattern on part of the hologram, but rather contributes a more 
uniform distribution of light. Attendant with the advantageous reduction of dynamic 
range of the exposing light pattern is another advantage: since each object point con- 
tributes to every point on the hologram, an observer looking at a reconstructed image 
through only a portion of the hologram will always see the entire image. As might be 
expected, the virtual image appears to be backlighted with diffuse illumination. 

9.5 
IMAGE LOCATIONS AND MAGNIFICATION 

To this point we have considered primarily collimated reference and reconstruction 
waves. In practice these waves are more commonly spherical waves diverging from 
or converging toward particular points in space. Therefore this section is devoted to 
an analysis of the holographic process in this more general case. We begin by deter- 
mining image locations, and then utilize these results to find the axial and transverse 
magnifications characteristic of the imaging process. The section then concludes with 
an example. 

9.5.1 Image Locations 

Referring to Fig. 9.12(a), we suppose that the reference wave is generated by a point 
source located at coordinates (x,, y,, z,). Since the mapping of object amplitudes into 
image amplitudes is linear, provided the reference offset angle is sufficiently large 
to separate the twin. images from each other and from other unwanted terms of trans- 

Reference 
source 
( x r - ~  rpzr 

I medium 
(a) 

source FIGURE 9.12 
Generalized (a) recording and (b) 
reconstruction geometries. 
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mitted light, it suffices to consider a single object point source located at coordinates 
(xu, yo, to). Note from the figure that, for our choice of the location of the center of 
the coordinate system, both z, and zo are negative numbers for point sources lying 
to the left of the hologram recording plane (i.e. for diverging spherical waves), and 
positive numbers for points lying to the right of that plane (i.e. for converging spherical 
waves). 

During the reconstruction step, illustrated in Fig. 9.12(b), the hologram is assumed 
to be illuminated by a spherical wave originating from a point source at coordinates 
(x,, yp, z,). Again zp is negative for a diverging wave and positive for a converging 
wave. 

To achieve the maximum possible generality, we allow for the possibility that 
the recording and reconstruction processes may involve radiation with different wave- 
lengths. Such is the case, for example, in microwave holography, in which the hologram 
is recorded with microwaves and reconstructed using visible light. The recording wave- 
length will be represented by A1,  and the reconstruction wavelength by A2. 

Our analysis will determine the paraxial approximations to the (twin) image loca- 
tions for an object point source at the given coordinates. An extended coherent object 
may then be regarded as a collection of many mutually coherent point sources. 

Using quadratic-phase approximations to the spherical waves involved: the total 
field incident on the recording plane may be written 

where A and a are complex constants representing the amplitudes and relative phases 
of the two spherical waves. The corresponding intensity distribution in the pattern of 
interference between the two waves is 

7T 7T + Aa* e x p {  jG[(x - xr)' + (y - r 2
]  + [ - ~ 0 ) '  (Y - 

hl t o  I 

If the amplitude transmittance of the developed transparency is proportional to ex- 
posure, then the two important terms of transmittance are 

4Note that diverging spherical waves have a negative sign in the exponent, whereas in the past they have 
had a positive sign. This is because the values of z being used here are negative, whereas in previous cases 
they were positive. It remains true that, if the overall sign in the exponent is positive, the spherical wave is 
diverging, and if it is negative, the wave is converging. 
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lr 
t 3  = j3 'Aa* exp [ ( x  - xr12 + ( y  - yr12] + jhlZo [ ( x  - x012 + ( y  - yo12] 

lr r4 = P I A * a  exp - xr12 + ( y  - - j - [ ( x  - x0)2 + (Y - 
hl zo 

The hologram is illuminated with a spherical wave, which in the paraxial approximation 
is described by 

The two wavefronts of interest behind the transparency are found by multiplying (9-34) 
and (9-35) ,  yielding 

To identify the nature of these transmitted waves, we must examine their ( x ,  y )  de- 
pendence. Since only linear and quadratic terms in x and y are present, the two expres- 
sions U3 and U4 may be regarded as quadratic-phase approximations to spherical waves 
leaving the hologram. The presence of linear terms simply indicates that the waves are 
converging towards or diverging from points that do not lie on the z axis. It remains to 
determine the exact locations of these real or virtual points of convergence. 

Since the waves emerging from the hologram are given by a product of quadratic- 
phase exponentials, they must be representable as quadratic-phase exponentials them- 
selves. Thus we can identify the coordinates (x i ,  yi, z ; )  of the images if we compare the 
expanded equations (9-36)  with a quadratic-phase exponential of the form 

U i ( x ,  y )  = K exp - xi)* + ( y  - ~ i ) ~ ]  (9-37) 

From the coefficients of the quadratic terms in x and y we conclude that the axial dis- 
tance zi of the image points is 

where the upper set of signs applies for one image wave and the lower set of signs for 
the other. When z; is negative, the image is virtual and lies to the left of the hologram, 
while when zi is positive, the image is real and lies to the right of the hologram. 

The x and y coordinates of the image points are found by equating the linear terms 
in x and y in Eqs. (9-36)  and (9-37) ,  with the result 
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Equations (9-38) and (9-39) provide the fundamental relations that allow us to pre- 
dict the locations of images of point sources created by the holographic process. De- 
pending on the geometry, it is possible for one image to be real and the other virtual, or 
for both to be real or both virtual (see Prob. 9-2). 

9.5.2 Axial and 'lkansverse Magnifications 

The axial and transverse magnifications of the holographic process can now be found 
from the equations derived above for image locations. The transverse magnification is 
easily seen to be given by 

Similarly, the axial magnification is found to be 

Note that in general the axial and transverse magnifications will not be identical. 
This can be very important when we consider the imaging of three-dimensional objects, 
as we shall do shortly, for the difference between these magnifications will create a 
three-dimensional distortion of the image. There does exist one additional parameter 
that can be used to combat such distortions, namely, it is possible to scale the hologram 
itself between the recording and reconstruction process. For example, if the hologram 
were formed with microwaves or acoustic waves, it would be possible to plot out the 
hologram at any scale size we choose, and record a transparency of the hologram with 
magnification or demagnification. If m is the magnification (m > 1) or demagnification 
(m < 1) to which the hologram is subjected, then we can show that the transverse and 
axial magnifications take the form 

9.5.3 An Example 

Consider an example in which we record a hologram at wavelength A,  = 10 cm in the 
microwave region of the spectrum, and reconstruct images in the visible region of the 
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FIGURE 9.13 
Recording a microwave hologram. The sources that provide the object and 
reference illuminations are derived from the same microwave signal generator to 
assure coherence. 

spectrum with h2 = 5 X cm. Figure 9.13 illustrates how the experiment might be 
performed. A microwave source illuminates an object with variable microwave trans- 
mittance, perhaps a three-dimensional structure which partially absorbs microwaves. 
A mutually coherent microwave source provides a reference wave which interferes 
with the radiation diffracted by the object. Some distance away a scanning rig with 
a microwave horn antenna measures the microwave intensity impinging on a larger 
aperture. To be specific, suppose that the size of the scanned aperture is 10 m x 10 m. 
Attached to the scanning microwave horn antenna is a light bulb, which is driven with a 
current that is proportional to the incident microwave power at each point in the scanned 
aperture. A camera records a time exposure of the brightness pattern of the light bulb 
as it scans across the microwave aperture, and this recorded photograph generates an 
optical transparency that is inserted into an optical system and illuminated at the visible 
wavelength quoted above. 

If we imagined a physically impossible case of a photographic transparency that is 
as large as the total scanned microwave aperture, and we suppose that the microwave 
reference wave supplied in the recording process is a plane wave (2, = a) and the 
optical reconstruction wave is a plane wave ( z ,  = m), then application of Eqs. (9-42) 
yields the following transverse and axial magnifications: 

As can be seen from these numbers, there is an enormous amount of distortion of the 
image, with the transverse magnification being more than five orders of magnitude 
smaller than the axial magnification. 

Now suppose that we modify this experiment such that the photograph is optically 
reduced to be only 5 p m  on a side, which corresponds to a demagnification of m = 2 = 5 x Again the reference wave and the reconstruction wave are assumed to 
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be plane waves. In this case we find that the transverse and axial magnifications are 
given by 

M, = 5 X 

M, = 5 X 

Thus we see that the two magnifications have been made equal to each other by means 
of the scaling of the hologram by the wavelength ratio, thereby removing the three- 
dimensional distortion. Unfortunately in the process the image has been made so small 
(5 X times smaller than the original object) that we may need a microscope to 
examine it, in which case the microscope will introduce distortions similar to what we 
have removed from the holographic process. 

The above example is somewhat contrived, but it does illustrate some of the prob- 
lems that can be encountered when the recording and reconstruction wavelengths are 
significantly different. Such is often the case for acoustic holography and microwave 
holography. For holography at very short wavelengths such as the ultraviolet and X- 
ray regions of the spectrum, the problem is reversed, and the hologram must be scaled 
upwards in size in order to avoid distortions. 

9.6 
SOME DIFFERENT TYPES OF HOLOGRAMS 

Attention is now turned to a brief guided tour through several different kinds of holo- 
grams. There are many different aspects with respect to which holograms may differ, 
and this has led to a rather confused classification system, in which a given hologram 
may in fact be properly classified in two or more different classes at the same time. 
There is nothing fundamentally wrong with this, as long as we understand what the 
different classes mean. In what follows we do not include the categorization "thin" 
vs. "thick" as a classification, only because these differences will be discussed in detail 
in later sections. 

9.6.1 Fresnel, Fraunhofer, Image, and Fourier Holograms 

Our first dimension of classification is one that distinguishes between the diffraction 
or imaging conditions that exist between the object and the photographic plate where 
the hologram is recorded. Thus we say that a hologram is of the Fresnel type if the 
recording plane lies within the region of Fresnel diffraction of the illuminated object, 
whereas it is of the Fraunhofer type if the transformation from object to hologram plane 
is best described by the Fraunhofer diffraction equation. 

In some cases a hologram is recorded in what must be called an image plane, and 
such a hologram would be referred to as an image hologram. This geometry is most 
frequently used when the object is three-dimensional but perhaps not extremely deep 
in the third dimension. The middle of the object can then be brought to focus in the 
plane of the photographic plate, and the resulting image obtained from the hologram 
will appear to float in space at the hologram, with parts of the object extending forwards 
and backwards from the hologram. 
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A category that applies primarily to transparency objects is the Fourier hologram, 
for which the recording plane resides in a plane that will yield the Fourier transform 
of the object amplitude iansmittance. ~ h u s  with a normally illuminated object trans- 
parency in the front focal plane of a lens and the recording plane in the rear focal plane of 
the lens, the relation between fields in the two planes will be that of a Fourier transform. 
For such a hologram, the light from each point on the object interferes with the refer- 
ence beam (assumed planar) to create a sinusoidal fringe with a vector spatial frequency 
that is unique to that object point. The transformation from object points into sinusoidal 
fringes of unique spatial frequencies is thus characteristic of the Fourier transform holo- 
gram. To view the reconstructed images, we can place the hologram in front of a positive 
lens, illuminate it with a normally incident plane wave, and look for images in the rear 
focal plane. Note that both of the twin images come to focus in the same plane for such 
a hologram, as can be verified by applying Eq. (9-38). 

Finally, for transparency objects one sometimes sees mention of a hologram that 
is called a lensless Fourier transform hologram. The name is a misnomer, for the 
geometry usually requires a lens, but not a Fourier transforming lens as is used in 
the ordinary ~ o u r i e r  transform geometry. Rather, as shown in ~ i ~ l 9 . 1 4 ,  the reference 
wave is brought to focus in the plane of the object transparency, and then diverges to 
the recording plane without passing through any optical elements. Likewise, the wave 
transmitted by the object propagates to the recording plane without the intervention of 
any optical elements. The interference pattern is then recorded. The distance between 
the object and the hologram recording plane is immaterial. The reason for associating 
the words Fourier transform with such a hologram, when in fact no Fourier transform 
actually takes place, can be understood by considering the interference pattern gener- 
ated by light from a single point on the object. Both the object wave and the reference 
wave arediverging spherical waves with the same curvature, and as a consequence 
when they interfere, the pattern of intensity is (within the paraxial approximation) a 
sinusoidal fringe of a vector spatial frequency that is unique to that object point. This 
is the same property that holds for a true Fourier transform hologram, and hence the 
mention of Fourier in the name for this type of hologram. The difference between this 
type of hologram and the true Fourier transform hologram lies in the spatial phases that 
are associated with the various sinusoidal fringes, which in this case are not the phases 
of the Fourier transform of the object. The twin images can be observed if the fields 
transmitted by the hologram are Fourier transformed by a positive lens. Again, if the 

Reference 

FIGURE 9.14 
Recording a lensless Fourier transform hologram. 
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hologram is illuminated with a plane reconstruction wave, both images appear in the 
focal plane of the transforming lens. 

The encoding of object points into sinusoidal fringes of constant frequency should 
be contrasted with the Fresnel hologram, in which each object point is encoded into a 
portion of a frequency-chirped sinusoidal fringe (a sinusoidal zone plate) with an en- 
tire range of spatial frequency components present. The Fourier transform and lensless 
Fourier transform holograms make the most efficient use of the space bandwidth prod- 
uct of the hologram. 

9.6.2 Transmission and Reflection Holograms 

The majority of the holograms discussed so far have been of the transmission type. 
That is, we view the images in light that has been transmitted through the hologram. 
Such holograms are comparatively tolerant to the wavelength used during the recon- 
struction process (although the amount of tolerance depends on the thickness of the 
emulsion), in the sense that a bright image can be obtained without exactly duplicating 
the wavelength used during exposure. However this also leads to chromatic blur when 
a transmission hologram is illuminated with white light, so some filtering of the source 
is generally required. 

Another important class of holograms is that of rejection holograms, for which we 
view the images in light that is reflected from the hologram. The most widely used 
type of reflection hologram is that invented by Y. Denisyuk in 1962 [82]. The method 
for recording such a hologram is illustrated in Fig. 9.15(a). In this case there is only 
one illumination beam, which supplies both the object illumination and the reference 
beam simultaneously. As shown in the figure, the object is illuminated through the 
holographicplate. The incident beam first falls upon the holographic emulsion, where it 
serves as a reference wave. It then passes through the photographic plate and illuminates 
the object, which usually is three dimensional. Light is scattered backwards from the 
object, towards the recording plane, and it passes through the emulsion traveling in a 
direction that is approximately opposite to that of the original incident beam. Within 
the emulsion the two beams interfere to produce a standing interference pattern with 
extremely fine fringes. As will be seen in Section 9.7, the period of the sinusoidal fringe 
formed when two plane waves traveling at angle 28 with respect to each other interfere 
is given by 

When 28 = 180°, as is the case for the reflection hologram, the fringe period is half of 
an optical wavelength in the the e m ~ l s i o n . ~  As will be seen in Section 9.7, the fringes 
are oriented such that they bisect the angle between directions of travel of the reference 

5Note also that the optical wavelength in the emulsion is smaller than the vacuum wavelength by a factor 
l ln,  which for n = 1.5 is a factor of 213. 
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FIGURE 9.15 
(a) Recording a reflection hologram, 
and (b) reconstructing an image in 
reflected light. 

and the object waves, and are therefore approximately parallel to the surface of the 
emulsion for a reflection hologram. 

Figure 9.15(b) shows how the virtual image would be viewed for a reflection holo- 
gram. The hologram is illuminated by a duplication of the original reference wave, and 
a duplicate of the object wave is generated, which in this case is a reflected wave. The 
observer looks into the reflected wave and sees the virtual image in the original location 
of the object, behind the hologram. Figure 9.16 shows a photograph of the virtual image 
reconstructed from a reflection hologram that is being illuminated by white light. 

This type of hologram can be illuminated with white light, for the hologram is 
highly wavelength selective, and the wavelength that satisfies the Bragg condition will 
automatically be reflected, while others will not. In this regard it should be noted that 
photographic emulsions usually suffer some shrinkage during the chemical processing 
and drying steps, and therefore the color of the light reflected from this type of holo- 
gram will usually be different than that used during recording. For example, a hologram 
recorded with red light may reflect green light. Such effects can be compensated by in- 
tentionally swelling the emulsion by means of proper chemical treatment. 

9.6.3 Holographic Stereograms 

At a relatively early stage in the development of holography, several ideas emerged 
for using the holographic process to capture a multitude of images that were recorded 
by conventional photography and to create the illusion of three dimensions through 
the stereo effect. The function of holography in these schemes is to allow the ob- 
server to see different images, taken from different perspectives, in each eye, thereby 
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FIGURE 9.16 
Photograph of a virtual image reconstructed from a reflection 
hologram. 

creating the stereo effect. The fact that the process begins with ordinary photography, 
and does not require that the original scene be illuminated by a laser, is a distinct ad- 
vantage. A laser is required in the hologram-recording process. References include 
[205], [8 1 1, and [242]. 

One method for recording such a hologram is illustrated in Fig. 9.17 [81]. A series 
of black and white photographs are taken of the subject from a sequence of horizontal 
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FIGURE 9.17 
Recording a holographic stereogram (top view). (a) Recording the holograms, and (b) 
viewing the image. 
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positions, each with its own unique perspective. Each frame of the sequence is then 
projected with light from a laser onto a translucent screen. A reference beam is intro- 
duced and a hologram is recorded through a movable slit. As the photographic frame is 
advanced, the slit is moved, with the result that a multitude of holograms are recorded 
side-by-side, each hologram capable of reconstructing an image of the original object 
taken from a different horizontal perspective. If the resulting hologram is illuminated in 
its entirety by a duplicate of the reference wave, the observer will look through a differ- 
ent holographic stripe with each eye, and therefore each eye will see the subject from 
a different perspective, creating a three-dimensional image through the stereo effect. 

An alternative approach [242] uses angular multiplexing in thick holograms to su- 
perimpose a multitude of overlapping holograms on a photographic plate. Each eye 
views the holographic plate from a slightly different angle, and as a consequence the 
Bragg effect leads to the reconstruction of a different image seen by each eye, and a 
resulting three-dimensional image is created. 

9.6.4 Rainbow Holograms 

An important advance in the field of display holography was the invention of the rain- 
bow hologram by S .  Benton [19]. This invention provides a method for utilizing white 
light as the illumination when viewing the hologram, and does so by minimizing the 
blur introduced by color dispersion in a transmission hologram, at the price of giving up 
parallax information in one dimension. The ability to view holographic images in white 
light was a vital step on the road to making holography suitable for display applications. 

The method entails a two-step process, in which an initial hologram is made, and 
then a second hologram is made using the first hologram as part of the process. The first 
step in the process is to record a hologram of a three-dimensional scene in the usual way, 
in particular using monochromatic or nearly monochromatic light, as is illustrated in 
Fig. 9.18(a). The light from the reference source R 1  and light scattered by the object 0 
interfere to form holographic recording H I .  This recording is processed in the usual way, 
and a hologram results. We now illuminate this first hologram with an monochromatic 
"anti-reference" wave, i.e. a wave that duplicates the original reference wave, except 
that the direction of travel is reversed, as illustrated in Fig. 9.18(b). A real image of 
the original object is produced by hologram HI, and the location of that real image 
coincides with the original location of the object. 

Now a new element is introduced in the reconstruction geometry of Fig. 9.18(b), 
namely a narrow horizontal slit immediately following hologram H I .  The light passing 
through this slit again reconstructs a real image of the original object, but this time 
vertical parallax is eliminated; the image that is formed is the one that would have been 
seen from the particular vertical location of the slit. Having created this real image, a 
second hologram H2 is recorded, this time a hologram of the image produced by the 
first hologram, with a new reference wave being used, in particular a reference wave 
that is a converging spherical wave. Again the light used in the recording process is 
monochromatic, and the pattern of interference is between the reference wave from R2 
and the light that has passed through the focus of the real image and traveled on to 
the recording plane, as shown in Fig. 9.18(b). H2 is the final hologram created by this 
process. 
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FIGURE 9.18 
The rainbow hologram. (a) The first recording step, and (b) the 
second recording step. 

The hologram obtained by the method described above is now illuminated with a 
diverging spherical wave, which is in fact the "anti-reference" wave for the converging 
reference wave from R2, as shown in Fig. 9.19(a). 

The hologram forms a real image6 of the original object, but beyond that image, 
closer to the viewer, there is also formed an image of the slit that was introduced when 

6Because this is a pseudoscopic image of a pseudoscopic image, it is orthoscopic from the perspective of 
the viewer. 
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Image 
of slit 

(a) 

FIGURE 9.19 
Reconstruction of the image from a rainbow hologram; (a) Reconstruction geometry, (b) slit 
sizes at different wavelengths. 

hologram H2 was recorded. Now if the reconstruction source in this last step emits 
white light, then the dispersion of the hologram will in fact generate a blur of images 
of both the object and the slit. In particular, each different narrow band of colors of the 
reconstruction source will create an image of the slit at a different vertical location (and 
with a different magnification), with red light having been diffracted vertically the most 
and blue light the least. An observer located in the plane of the images of the slit will 
in effect look through a slit appropriate for only a narrow color band, and will intercept 
no light outside of this color band. Thus the image will appear free from color blur, 
and will have a color that depends on exactly where the observer's eyes are located in 
the vertical dimension. Tall observers will see an image with a different color (and a 
somewhat different magnification) than short observers. Thus the dispersive properties 
built into hologram Hz have been used to advantage to eliminate color blur and to allow 
the image to be viewed with a white light source. As shown in Fig. 9.19(b), the slit 
position varies with color in both vertical position and magnification. 

9.6.5 Multiplex Holograms 

Another major type of hologram that has been widely used for display purposes is the 
multiplex hologram invented by Lloyd Cross [72]. Good descriptions of the multiplex 
hologram process can be found in Ref. [254]. 
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FIGURE 9.20 
Constructing a multiplex hologram.(a) Recording the still-frame sequence, and (b) 
recording the multiplex hologram. M indicates a mirror, BS a heam splitter. The 
reference wave arrives at the recording plane from above. 

The process begins with a series of still-frame photographs, typically made with 
a motion picture camera operated a single frame at a time. Figure 9.20(a) shows the 
process. A subject is placed on a slowly rotating platform and still-frame photographs 
are taken, typically at a rate of 3 frames for every degree of rotation of the subject. Thus 
for a hologram that is to offer a 120' viewing angle, a total of 360 images are recorded. 
During the rotation process, the subject may undergo some motion or movement of its 
own, a motion that will eventually be evident in the image viewing process. 

The sequence of photographs obtained as above is now fed through a special pro- 
jector, as shown in Fig. 9.20(b). Using light from a laser, the images are projected onto 
a large cylindrical lens, which focuses the light down to a narrow vertical stripe on the 
large film strip that is to record the hologram. At the same time a portion of the laser light 
is brought above the projection system and focused to a vertical stripe that coincides 
with the projected image and provides a reference beam that is offset from the object 
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Bulb Viewing the image with a multiplex hologram. 

beam by an angle in the vertical dimension. Thus a narrow vertical stripe hologram is 
recorded for a given still-frame photo, with a carrier frequency running vertically. The 
film is now advanced to the next still-frame photo, and the holographic film is moved so 
that a new vertical stripe on the film will be exposed, usually partially overlapping the 
adjacent stripe. Through a sequence of such exposures, the 360 holograms are recorded. 
Note that each still-frame photo, and therefore each holographic stripe, contains image 
information taken from a different perspective in the original photographic process. 

To view a three-dimensional image with the hologram after processing, the film 
is bent into a cylindrical shape and illuminated from within the cylinder with a white- 
light source, properly positioned in the vertical direction to account for the reference 
angle used during recording (see Fig. 9.21). An illumination source with a clear bulb 
and a vertical filament is required in order to avoid image blur. The observer looks into 
the hologram and sees an apparently three-dimensional image within the cylinder. The 
white light is dispersed in the vertical dimension by the holographic gratings, with red 
light suffering more downward deflection than blue light. An observer looking into the 
hologram will automatically perform two types of selection. First the vertical position 
of the observer's head will place him or her in a certain narrow region of the color spec- 
trum, so color filtering is performed simply by geometry. Second, the two eyes of the 
observer will look through different regions of the multiplex hologram, and therefore 
will be looking predominantly through two different holographic stripes, each of which 
yields an image of the original object taken from a different perspective. As a conse- 
quence the stereo effect creates the illusion that the object is three-dimensional. As the 
observer moves horizontally, the image appears to be stationary in space and the per- 
spective changes accordingly. If the subject goes through some form of motion while the 
original platform is being rotated, then corresponding motion of the three-dimensional 
image will be seen as the viewer moves around the hologram, or alternatively as the 
hologram is rotated. Note that, as with the rainbow hologram, vertical parallax is not 
present in the image. 

9.6.6 Embossed Holograms 

Embossing has become a highly refined and advanced technique for replicating com- 
pact disks and video disks, which have structures of the same order of size as an optical 
wavelength. The same techniques can be applied to the replication of holograms, with 
substantial cost savings as compared with optical methods of duplication. The ability 
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to produce holograms inexpensively has led to their use, for example, in security cards, 
credit cards, magazines, books, and in some cases on monetary bills. We outline here 
the various steps that are involved in creating an embossed hologram. 

The first step in the process is to record a hologram of the subject of interest, on 
photoresist. With a proper choice of photoresist, the resolution is fully adequate to the 
task at hand. Usually a rather powerful argon-ion laser is used in the recording step. 
The exposed photoresist is then developed, leading to a relief pattern that constitutes 
the photoresist master hologram. 

A metal master hologram is now made from the photoresist hologram by means of 
an electroforming process. A silver spray is applied to the photoresist surface, making 
it conducting. The master is then immersed in a plating tank, together with a bar of pure 
nickel, and current is passed through the tank with the result that a thin layer of nickel 
is plated on top of the photoresist master. The layer of nickel, which forms the metal 
master, is then separated from the photoresist. It is now possible to use the metal master 
in a second electroforming process, in which a second-generation metal submaster can 
be made from the original. The process can be repeated to make many metal submasters, 
which will serve as stampers in the reproduction process. 

With the metal submasters in hand it is now possible to initiate the embossing pro- 
cess. There are several different methods for embossing, including flat-bed embossing, 
roll embossing, and hot stamping. In all cases the metal submaster is heated to an el- 
evated temperature, and used to stamp the hologram pattern, usually into a polyester 
material. Often the embossed pattern is metallized to create a reflection hologram. 

Without doubt, of all the holograms in existence today, the largest number are of 
the embossed type, for only with embossing can the cost of reproducing holograms be 
brought down to the levels needed for extremely high-volume applications. 

9.7 
THICK HOLOGRAMS 

Just as for acousto-optic spatial light modulators (see Section 7.2.6), holograms behave 
differently depending on the relation between the period of the finest fringe they con- 
tain and the thickness of the recording medium. It is therefore common to categorize 
holograms as thick or thin, depending on this relation. Like the acoustic waves in an 
acousto-optic SLM, a hologram is a grating. Unlike the acousto-optic case, the grating 
is stationary rather than moving, and it may also be highly absorbing, partially absorb- 
ing, or nonabsorbing, depending on the conditions of exposure and the photographic 
processing to which it has been subjected. 

If we consider a hologram consisting of a single sinusoidal grating with grating 
planes normal to the surface of the emulsion, it behaves as a thick or thin grating de- 
pending on the value of the Q parameter of Eq. (7-29), which is repeated here, 

where A, is the vacuum wavelength of the light used during reconstruction, n is the re- 
fractive index of the emulsion after processing, A is the period of the sinusoidal grating, 
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and d is the emulsion thickness. Again, for Q > 2 7 ~  the grating is considered "thick", 
while for Q < 2 7 ~  the grating is "thin". 

The most common photographic plates used in holography have thicknesses of the 
order of 15 p m ,  while the fringes formed in holograms may be only a few wavelengths, 
or in some cases as small as half a wavelength, depending on the angle between the ref- 
erence wave and the object wave. Therefore a hologram of an object with any significant 
angular subtense at the hologram plane will contain at least some fringes that exhibit 
the properties of a thick grating. Hence Bragg diffraction effects must be considered in 
most cases. 

In this section we consider in more detail the properties of the gratings recorded by 
the holographic process, and the requirements for achieving high diffraction efficiency 
from such gratings. Finally we determine the diffraction efficiencies of thick holograms 
and compare them with those of thin holograms. An excellent and far more detailed 
treatment of this subject will be found in [267]. 

9.7.1 Recording a Volume Holographic Grating 

Consider the very simple case of a plane reference wave and a plane object wave in- 
cident on an emulsion of nonnegligible thickness. These two simple waves may be 
regarded as generating a simple holographic grating. 

With reference to Fig. 9.22, it is assumed for simplicity that the two wave normals 
(represented by arrows and pointing in the directions of the two vectors), are each 
inclined at angle 0 to the surface normal. Wavefronts, or successive lines of zero phase, 
are shown dotted; the wavefronts of any one wave are spaced by a normal distance 
of one wavelength. Along the lines (points in this two-dimensional figure) within the 
emulsion where the wavefronts of the two waves intersect, the two amplitudes add in 
phase, yielding high exposure. As time progresses, the wavefronts move in the direc- 
tion of their respective wave normals, and the lines of constructive interference move 
through the emulsion, tracing out planes of high exposure. Simple geometry shows that 
these planes bisect the angle 20 between the two wave normals and occur periodically 
throughout the emulsion. 

Describing the three-dimensional interference process mathematically, the com- 
plex amplitudes of the two waves can be represented by 

"Reference" "Object" 
wave normal wave normal 

FIGURE 9.22 
Recording an elementary hologram with a 
thick emulsion. 
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FIGURE 9.23 

a Wave vector diagram illustrating the length and direction of the grating 
vector. 

where ir and 1, are the wave vectors of the reference and object waves, respectively, 
and ?is a position vector with components (x, y, z). The intensity distribution that results 
from superimposing these waves is given by 

I(?) = 1 ~ 1 ~  + \aI2 + 21~IIal cos [(i, - I,) ? + $1, (9-46) 

where 4 is the phase difference between the phasors A and a. 
At this point it is convenient to define a grating vector I? as the difference of the 

two wave vectors, -. -. -. 
K = k,  - k,. (9-47) 

The vector I? has a magnitude that is 9, where A is the fringe period, and points in the 
direction of the difference between and io. A pictorial representation of I? is given 
by the wave vector diagram shown in Fig. 9.23. From this figure we can deduce that 
the period A of the grating is given by 

as asserted in an earlier section. 
If the photographic plate is developed, silver atoms will appear concentrated along 

the quasi-planes of high exposure, which we will call silver "platelets". The distance 
between these platelets is the period A specified above. 

9.7.2 Reconstructing Wavefronts from a Volume Grating 

Suppose that we attempt to reconstruct the original object plane wave by illuminating 
the volume grating with a reconstruction plane wave. The question naturally arises as 
to what angle of illumination should be used to obtain a reconstructed object wave of 
maximum intensity. To answer this question, we may regard each platelet of high silver 
concentration as a partially reflecting mirror, which diverts part of the incident wave 
according to the usual laws of reflection, and transmits part of the wave. If the plane- 
wave illumination is incident on the silver platelets at angle a ,  as shown in Fig. 9.24, 
then the reflected wave will travel in the direction satisfying the law of reflection. How- 
ever, such reflections occur at all the platelets, and if the various reflected plane waves 
are to add in phase, then it is essential that the various path lengths traveled by waves 
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FIGURE 9.24 
Reconstruction geometry. 

reflected from adjacent platelets differ by precisely one optical wavelength.' With ref- 
erence to the figure, simple geometry shows that this requirement will be satisfied only 
if the angle of incidence satisfies the Bragg condition, 

Comparison of Eqs. (9-48) and (9-49) shows that maximum intensity of the diffracted 
wave will be obtained only if 

This result is a very important one, for it indicates the condition necessary to obtain a 
reconstructed plane wave of maximum intensity. Actually, this equation defines a cone 
of reconstruction angles that will yield the desired results. It is only necessary that the 
wave vector Ip of the reconstruction wave be inclined at angle 19 to the planes of the 
silver platelets. Figure 9.25 shows the allowable cones of incident and diffracted wave 
vectors. As the reconstruction (or "playback) wave vector $ moves around circle 
shown, the wave vector of the diffracted light Ii moves with it such that the k-vector 
diagram always closes. Note that it is possible to interchange the roles of I, and ii in 
this figure and still satisfy the Bragg c~nd i t ion .~  The fact that an entire cone of incident 
k-vectors will diffract strongly from a given volume grating is referred to as "Bragg 
degeneracy". 

9.7.3 Fringe Orientations for More Complex Recording Geometries 

The discussion above has focused on the simplest case of a hologram formed by the 
interference of two plane waves that have equal but opposite angles with respect to 
the normal to the surface of the recording medium. This case is less restrictive than it 

'The path-length difference could be any integer number of wavelengths. We consider only a single wave- 
length, which corresponds to thej rs t  order diffracted wave. 

use the subscript i on the k-vector of diffracted wave because in most circumstances it is an "image" 
wave. The i does not stand for "incident". 
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FIGURE 9.25 
Cone of incident wave vectors that satisfies the Bragg condition. 

might appear, for it is possible to consider two arbitrary wavefronts to be locally planar 
and their interference to be similar to the interference of two plane waves in any local 
region, albeit with a different tilt angle with respect to the recording medium than has 
been assumed here. In all such cases the general principle governing the orientation of 
the fringe pattern is the same as for the simple case examined: the fringes formed in 
the recording medium are always oriented locally to bisect the angle between the two 
inter$ering waves within the m e d i ~ m . ~  

Application of the principle stated above allows one to accurately predict the fringe 
structures expected in any given case. Figure 9.26 shows several cases of interest, in- 
cluding plane waves interfering to produce slant fringes, plane waves and spherical 
waves interfering, and waves interfering from opposite sides of the recording medium, 
a case that leads to a reflection hologram. 

Another general case worth considering is that of two equiphase point sources, per- 
haps at different distances from the recording medium, generating interference fringes. 
The fringe peaks form along surfaces for which the difference of distances from the 
two point sources is an integer multiple of an optical wavelength. Such surfaces are 
hyperboloids, and any slice through the surface shows hyperboloidal lines of fringe 
peaks, as shown in Fig. 9.27. Note that if our distance from the two sources is much 
greater than their separation, and if we examine the fringes over a region that is small 
compared with the distance from the sources, the fringes will appear to be of an approx- 
imately constant spatial frequency determined by the angular separation of the sources, 
viewed from the recording plane. Notice also that the fringe spacing is smallest when 
the spherical waves are approaching one another from opposite directions. When the 
angle between reference and object reaches 180°, Eq. (9-48) implies that the fringe 
spacing is h0/2n, where n is the refractive index of the recording medium. 

9.7.4 Gratings of Finite Size 

The theoretical treatments of volume gratings are, for simplicity, often based on the 
assumption that the grating is infinite in extent. Such is never the case in practice, of 
course, so it is important to understand the consequences of finite grating size. Such 
gratings are confined spatially to the finite volume occupied by the recording medium, 
and usually that volume has a highly asymmetric shape.1° For example, photographic 
emulsions are usually very much thinner than their lateral extent. 

'Remember that the angle between two waves within the recording medium is different than the angle 
between them external to that medium, due to the generally higher refractive index of the recording medium. 
'OAn exception is found for nonlinear crystals, which may have sizes that are comparable in all three di- 
mensions. 
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FIGURE 9.26 
Orientation of interference fringes within a recording medium. (a) Two 
plane waves forming slant fringes, (b) a plane wave and a spherical 
wave, (c) two plane waves impinging from opposite sides of the 
emulsion, and (d) a plane wave and a spherical wave impinging from 
opposite sides of the recording medium. 

We now present an analysis which is at best a rough approximation to the full de- 
scription of the effects of finite grating size. The approach is an approximation primarily 
because it neglects the effects of absorption on the readout beam, but it does provide 
some physical intuition regarding some of the properties of thick holograms. 

For this purpose we use three-dimensional Fourier analysis to express a finite-size 
grating as a superposition of a multitude of infinite-size gratings, each having a different 

FIGURE 9.27 
Slice through the hyperboloids of fringe maxima for the case 
of two point sources. The dark lines represent interference 
fringes, while the lighter lines are the wavefronts. 
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K vector. Suppose that g ( 3  represents the local refractive index of a volume phase grat- 
ing, or the local absorption coefficient of a volume amplitude grating. It is convenient 
to represent g with a three-dimensional Fourier integral, 

where G(X) describes the amplitude and phase of k-vector components contained in g, 
andd3 i  = dkxdkydkz. 

In the special case of a cosinusoidal fringe of constant grating vector k g ,  the form 
of g is 

X Y z 
g(fi = [1 + mcos($ i + +,)I rect - rect - rect -, 

X Y Z  
(9-52) 

where 4, is an unimportant spatial phase of the grating, m is the modulation of the 
grating, and the recording medium has been assumed to have dimensions X, Y ,  Z in the 
three rectangular coordinate directions. 

The grating-vector spectrum of the above spatially bounded fringe is easily found 
to be 

1 X ~ X  Yky ZkZ 
- kg)  + Z ~ ( k  + ~ ~ , ) ] @ x ~ ~ s i n c - s i n c -  27r 2~ sinc -. 27r 

The result of this convolution is a blurring of the grating-vector tip into a continuum 
of grating vectors surrounding the ideal location of the tip of the grating vector for an 
infinite grating. This blurring operation then leads to the possibility that the k-vector 
triangle required by the Bragg effect can be closed in many different ways, perhaps 
at some cost in terms of the strength of the diffracted wave. If the k-vector triangle 
closes within the central portion of the primary lobe of the three-dimensional sinc func- 
tion above, then the diffraction efficiency should still be near its maximum possible 
value. 

Figure 9.28 shows the effects of the grating-vector cloud on k-vector closure in 
two different cases. In all cases, the angle of illumination of the grating is assumed to 
be identical with the angle of the reference wave used during the recording process. In 
9.28(a), the grating has been recorded by plane waves incident from the same side of 
the recording medium, which is assumed much thinner in the z direction than in the 
other directions. Since the grating-vector cloud is extended in the direction normal to 
the recording surface, this geometry is quite tolerant to changes of the wavelength of 
the reconstruction beam (i.e. the length of X,) relative to that used during recording, 
but less tolerant to changes of the direction of the reconstruction beam. In 9.28(b), 
the object and reference waves have come from opposite sides of the emulsion, pro- 
ducing a grating that operates by reflection rather than transmission. In this case the 
grating-vector blur extends predominantly in a direction along the grating-vector di- 
rection. This orientation leads to tolerance with respect to the angle of illumination, and 
less wavelength tolerance than in the previous case. The degree of tolerance to angular 
or wavelength changes depends, in both cases, on the thickness of the grating as well as 
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FIGURE 9.28 
Grating-vector clouds and their effect on 
closing the k-vector triangle. The dotted vectors 
correspond to k vectors when the grating is 
recorded, and the solid vectors correspond 
to the k vectors when reconstruction takes 
place. Changes of the lengths of the k vectors 
correspond to reconstruction at a different 
wavelength than was used for reco~ding. In 
part (a), a change of the length of k, does not 
prevent closure of the k-vector diagram. In 
part (b), a change of the angle of k, does not 

(b) prevent closure. 

on the period of the fringes, but it is generally true that transmission gratings are more 
tolerant to wavelength changes than are reflection gratings, and reflection gratings are 
more tolerant to angle changes than are transmission gratings. 

A more exact understanding of the tolerance of volume gratings to the angles and 
wavelengths of illumination requires a more sophisticated analysis. An example of such 
an analysis is the coupled mode theory that follows. 

9.7.5 Diffraction Efficiency-Coupled Mode Theory 

It is extremely important to know the diffraction efficiencies that can be theoretically 
expected from thick holograms of various types. To find these efficiencies, as well as 
the tolerance of various types of gratings to the particular angle and wavelength used 
for reconstruction, it is necessary to embark on a significant analysis. Many methods for 
calculating these quantities have been found. Most entail some form of approximation, 
and some are more accurate than others. For an in-depth discussion of a variety of 
different methods, see Ref. [267]. However, the most widely used method is the coupled 
mode theory, pioneered by Kogelnik [169], [170] in holography. This is the approach 
that we shall use here, although we shall follow [139], Chapter 4, most closely. See also 
Ref. [I141 for another useful reference. 

The general geometry is illustrated in Fig. 9.29. In this general case, the grating 
within the emulsion is tilted at angle t,b with respect to the normal to the surface of 
the recording medium and has grating period A = 2 d K .  The reconstruction wave is 
incident at angle 8 to that same normal. 
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FIGURE 9.29 
Geometry for analysis of a thick hologram. 

The analysis 
The analysis begins with the scalar wave equation, 

valid in a source free region for monochromatic light. The wave number in the most 
general case is complex-valued, k = (27.rnlho) + ja, where a is the absorption constant 
and A, is the vacuum wavelength. The refractive index n and the absorption constant 
a within the grating are assumed to vary in sinusoidal fashions according to 

where i - (x ,  y, 1) and d is the grating vector. The hologram is assumed to lie with its 
faces parallel to the (x, y) plane and to be of thickness d in the z dimension. 

A number of assumptions are needed for simplification of the problem of solving 
the wave equation. First it is assumed that the hologram is thick enough that only two 
waves need be considered within the grating. One is the reconstruction or playback 
wave Up(?), which is gradually depleted by diffraction and absorption, and the other is 
the first-order Bragg-matched grating order Ui(?). We assume that the total field within 
the grating is composed of a sum of these two waves, and we accordingly write that 
field as 

where the symbols 6 and b are conventionally used in place of what would be &, and 
&, respectively, in our previous notation. We assume that the wave vector p' of R is 
that of the playback wave in the absence of coupling, and that the wave vector G of the 
diffracted wave is given by 

In addition, it is assumed that absorption in a distance of one wavelength is small and 
that the variation of the refractive index is small compared to its mean, 
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where k ,  is the vacuum wave number, k ,  = 2nlA0. 
It is now possible to expand and simplify k2 for use in the wave equation as fol- 

10ws:'l 

where liberal use of the approximations (9-58) has been made, B = keno, and K is the 
coupling constant, given by 

The next step is to substitute the assumed solution (9-56) and the expression for k2 

above into the wave equation (9-54). During the substitution, R(z) and S(z) are assumed 
to be slowly varying functions of z so that their second derivatives can be dropped, 
the term cos I? . ? is expanded into its two complex-exponential components, and d 
is replaced according to (9-57). Terms with wave vectors d - d = 6 - 2 d  and 6 + 
d = & + 2 8  are dropped, since they correspond to propagation directions that are far 
from satisfying the Bragg condition. Finally, equating the sum of all terms multiplying 
exp[jp' 8 to zero and similarly for the sum of all terms multiplying exp[jd 8 ,  we 
find that R(z) and S(z) must individually satisfy the following equations in order for the 
wave equation to be satisfied: 

where 5 is called the "detuning parameter", given by 

and the quantities C R  and cs are given by 

Pz 
CR = - = cos e B 

where 8 and i+!~ are defined in Fig. 9.29. 

"Note that the definition of a used here is the reciprocal of the propagation distance within which thejeld 
drops to lle of its original value. The intensity drops to Ile2 in this same distance. 
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The quantity is a measure of the "Bragg mismatch" of the reconstructed wave, 
and deserves further discussion. Equation (9-57) is a statement of the Bragg matching 
condition. Using this equation, we see 

where K =  dl and p = 161 = B = keno. Thus 

Note that the quantity in brackets will be zero when the Bragg condition is satisfied. 
Consider now a departure from the Bragg matched conditions caused by a combination 
of a small mismatch in the illumination angle 8' = O B  - A8 and a small mismatch in 
the wavelength A' = h - Ah. Substitution into (9-65) yields the following expression 
for the detuning parameter in terms of the angular and wavelength mismatches: 

It can now be clearly seen that mismatch due to wavelength error grows as the grating 
period A shrinks, and therefore wavelength selectivity will be maximum forcounterprop- 
agating object and reference beams, which produce a reflection hologram. Selectivity 
to angular mismatch can be shown (see Prob. 9-10) to be maximum when the refer- 
ence and object beams are separated by an angle of 90'. With the help of Eq. (9-66), 
we can estimate the value of the detuning parameter for any combination of angular or 
wavelength mismatch. 

Returning to the coupled wave equations, note that the equation for S contains a 
driving or forcing term on the right that depends on the incident wave R. It is this 
term that leads to a transfer of energy from the incident wave to the diffracted wave. If 
the coupling constant K is zero, no such coupling will occur. The detuning parameter 
[, if sufficiently large, will swamp the driving term in R, leading to a spoiling of the 
coupling phenomena due to phase mismatch through the coupling region. In addition, 
the equation for the amplitude of the incident wave contains a driving term that de- 
pends on the diffracted wave, leading to coupling from that wave back into the incident 
wave. 

For all specific solutions discussed in the following, we assume that the grating 
is unslanted. For a transmission grating, this implies that $ = 0 while for a reflection 
grating, $ = 90". 

Solution for a thick phase transmission grating 
For a pure phase grating we have a0 = a ,  = 0. For a transmission geometry, the 

boundary conditions to be applied to the differential equations (9-6 1) are R(0) = 1 and 
S(0) = 0. The solution for the diffracted wave S at the exit of the grating ( z  = d) then 
takes the form 
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sin kJ-1 
S(d) = j e jx  

J=g ' 

nnl  d 
@ = -  

A cos 8 

The diffraction efficiency of the grating is given by 

When the grating is illuminated at the Bragg angle with the same wavelength used 
during recording, the parameter ,y is identically zero, yielding for the diffraction effi- 
ciency 

The diffraction efficiency is seen to increase initially with increasing thickness of the 
grating, reach a maximum of loo%, fall to zero, rise to loo%, etc., periodically. Since 
the grating is lossless, the power in the undiffracted wave oscillates similarly but with 
minima and maxima interchanged. The first maximum of 100% for the diffraction ef- 
ficiency is reached when @ = 73-12, or when 

Figure 9.30 shows the oscillations of the diffracted power and the undiffracted power 
as a function of the parameter @. 

When the grating is illuminated off of the Bragg angle or with a different wave- 
length than was used during recording, the parameter ,y is nonzero. Figure 9.3 1 shows 
a three-dimensional plot illustrating efficiency as a function of the both @ and ,y . It 
can be seen that for any fixed value of @, an increase in ,y leads to a loss of diffraction 
efficiency, although oscillations of a diminishing magnitude occur for some values of 
@. This figure is useful when either @ or ,y is fixed and we wish to understand the effect 
of changing the other parameter. Note, however, that both parameters are proportional 
to the grating thickness d, so if the behavior as a function of thickness is of interest, a 
slice through the surface at some angle with respect to the 0 axis is required. 

I2In expressions involving both h and 8 ,  it is possible to take them to have their values outside the emulsion 
or inside the emulsion, as long as the same condition holds for both (cf. Prob. 9-7(a)). 
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FIGURE 9.30 
Normalized intensities of the 
diffracted and undiffracted waves 
as a function of for the Bragg 
matched case. 

Solution for a thick amplitude transmission grating 
For an unslanted amplitude grating, the index modulation nl is zero and a ,  is 

nonzero. The appropriate boundary conditions are the same as for the phase transmis- 
sion grating, R(0) = 1 and S(0) = 0. The solution for the diffracted amplitude at the 
grating output is now given by 

sinh (@, J-) 

where sinh is a hyperbolic sine function, 

and again 

For Bragg matched conditions, x = 0 and the diffraction efficiency is given by 

2aod 
q~ = exp (- - ) sin" (* ). 

COS e 2 cos e 

10 

FIGURE 9.31 
Diffraction efficiency of a thick phase 
transmission grating when Bragg 

6 -0 mismatch is present. 
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FIGURE 9.32 
Maximum possible Bragg matched 
diffraction efficiency vs. for 
a thick amplitude transmission 
grating. 

This solution is a product of two functions, the first of which simply represents the 
attenuation of light due to the average absorption coefficient a0 as it propagates through 
the distance dlcos 13 in the hologram. The second term represents the rising effect of 
diffraction as the wave propagates through increasing thickness. The absorption can 
never be negative in a passive medium, and therefore the modulation of absorption can 
never exceed the average absorption, a 1 5 ao. Because of this constraint, the two terms 
balance one another in such a way that there is an optimum thickness where diffraction 
efficiency is maximized. 

Diffraction efficiency will be maximized if the attenuation modulation is taken to 
have its largest possible value, a 1 = ao. Defining @A = 6, this maximum diffrac- 
tion efficiency can be expressed as 

78 = exp (-4@;) sinh2 (@A) (9-76) 

under Bragg matched conditions, a plot of which is shown in Fig. 9.32. This expression 
takes on a maximum value of 0.037 or 3.7% for @A = 0.55. 

Figure 9.33 shows a three-dimensional plot of the maximum possible diffraction 
efficiency (again, a ,  = a,) with the quantity @A running from the left and the quantity 
x running into the right, thus illustrating the effects of Bragg mismatch on the diffrac- 
tion efficiency. Note that when @A is in the vicinity of the value that yields maximum 
diffraction efficiency, values of x of the order of 2.5 will drive the diffraction efficiency 
to near zero. 

5 

FIGURE 9.33 
Diffraction efficiency of a thick 
amplitude transmission grating with 

3"  Bragg mismatch. 
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FIGURE 9.34 
3 4 Diffraction efficiency of a thick Bragg 

@ matched phase reflection grating. 

Solution for a thick phase reflection grating 
For a reflection grating, the grating planes run nearly parallel with the face of the 

recording medium In what follows we assume for simplicity that the grating is un- 
slanted, i.e. that the grating planes are exactly parallel to the surface ($ = 90"). The 
boundary conditions change, now being R(0) = 1 and S(d) = 0 (i.e. the diffracted 
wave is now growing in the "backwards" direction. Again for a pure phase grating, 
a0 = a1 = 0. The solution of the coupled mode equations for the amplitude of the 
diffracted wave is now 

where @ and x are again given by Eqs. (9-68) and coth is a hyperbolic cotangent. The 
diffraction efficiency then becomes13 

r I-' 

Under Bragg matched conditions, x = 0, and the diffraction efficiency can be ex- 
pressed as 

where tanh is a hyperbolic tangent. Figure 9.34 shows a plot of this diffraction effi- 
ciency vs. the parameter @. As can be seen, the diffraction efficiency asymptotically 
approaches 100% as the parameter @ increases. 

The behavior of the diffraction efficiency with Bragg mismatch is illustrated in the 
three-dimensional plot of Fig. 9.35. In this figure we have interchanged the directions 

I3When evaluating this equation under the condition ,y > @, use must be made of the fact that sinh iu  = 

i sin u. 
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FIGURE 9.35 
Diffraction efficiency of a thick phase 
reflection grating when Bragg mismatch 
is present. 

of 0 and x from those of the other cases shown previously in order to better reveal the 
structure of the surface. 

Solution for a thick amplitude reflection grating 
The final case of interest is that of a thick amplitude reflection grating. The bound- 

ary conditions are the same as for the previous case, but now  PI^ = 0 and diffraction is 
caused by variations a 1 of the absorption coefficient. 

Solution of the coupled-wave equations now yields the following expression for the 
diffracted amplitude: 

where @, is again given by Eq. (9-73) and 

Under Bragg matched conditions, l goes to zero. Again maximum diffraction effi- 
ciency will be achieved if the variations of absorption have their largest possible value, 
a 1 = ao. Under these conditions, ,y,/@, = 2, and 

which is shown plotted vs. @, in Fig. 9.36. The diffraction efficiency is seen to asymp- 
totically approach its maximum value of 0.072, or 7.2%. 

Under Bragg mismatched conditions, again with the largest possible modulation of 
absorption, the following expression holds for xa: 
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FIGURE 9.36 
2 3 Bragg matched diffraction efficiency of a 

@a thick amplitude reflection grating. 

where x is as given in Eq. (9-68) earlier. Thus the expression for the Bragg mismatched 
diffraction efficiency can be written 

Figure 9.37 illustrates the dependence of diffraction efficiency on c9, and X ,  again with 
the display rotated to make its structure most clear. The broadening tolerance to Bragg 
mismatch as the parameter c9, increases is a result of the increasing absorption of the 
grating, and a resulting decrease of its effective thickness. 

Summary of maximum possible diffraction efficiencies 
In Table 9.1 the various maximum possible diffraction efficiencies possible with 

thick gratings of various kinds are summarized. For comparison purposes, recall that 
for a thin sinusoidal amplitude grating the maximum possible diffraction efficiency is 
6.25% and for a thin sinusoidal phase grating the maximum is 33.8%. 

FIGURE 9.37 
Diffraction efficiency of a thick amplitude 
reflection hologram when Bragg mismatch 

0-0 is present. 
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TABLE 9.1 

Maximum possible diffraction efficiencies of volume sinusoidal gratings. 

9.8 
RECORDING MATERIALS 

Phase transmission 

Holograms have been recorded in a vast number of different materials during the history 
of holography. In this section we will offer a brief review of some of the more impor- 
tant recording materials. Unfortunately space limitations prevent a complete coverage 
here. For further information, the reader may wish to consult any of the textbooks on 
holography already cited. A particularly relevant reference is [266]. 

9.8.1 Silver Halide Emulsions 

I I I 

Amplitude transmission 

The most widely used recording materials for holograms are certainly those based on 
silver halide photographic technology. A detailed review of such materials, with partic- 
ular reference to holography, can be found in [22]. It should be noted at the start that a 
major distinguishing characteristic of holographic materials is that they must be capa- 
ble of recording extremely fine structures, as compared with the structures encountered 
in ordinary photography. The spatial frequency response of holographic recording ma- 
terials often exceeds 2000 cycles/mm, whereas in conventional photography, a spatial 
frequency response of 200 cycles/mm is considered high. A corollary to this fact is that 
high resolution is always accompanied by low sensitivity. High resolution is achieved 
by constructing emulsions with very small grain sizes, but a certain number of photons 
must be absorbed by each grain to make it developable. It follows that the energy den- 
sities needed to expose high-resolution materials are much greater than those required 
for low-resolution materials. 

There are four major classes of silver-halide emulsions that have found use in 
holography, classes that can be distinguished by the manufacturer. The first material 
to be widely used was a high-resolution plate manufactured by Kodak, especially the 
Spectroscopic Plate 649F, which is sensitive across the entire visible spectrum, includ- 
ing the red (emulsions with this broad wavelength sensitivity are calledpanchromatic). 
The emulsion thickness for this plate is about 15 pm.  A common measure of sensitivity 
is the energy density required to achieve an amplitude transmittance of 0.5. For 649F 
plate about 80 p ~ / c r n ~  are required. The same emulsion can be obtained on film, but 
with a smaller thickness (5 pm). Other Kodak materials are also available, as will be 
summarized in Table 9.2. 

The second manufacturer is Agfa-Gevaert, and in particular its Scientia series, 
including plates numbered 8E75 HD (red sensitive, < 5000 cycles/mm), 8E56 (blue- 
green sensitive, < 5000 cycles/mm), 10E75 (red sensitive, < 2800 cycles/mm), and 

Phase reflection Amplitude reflection 
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Resolving 
power 
[cycles/mm] 

TABLE 9.2 

Properties of some silver halide materials. 

10E56 (blue-green sensitive, < 2000 cycles/mm). These materials have been optimized 
for particular laser wavelengths in each case. 

The third manufacturer, Ilford Limited, has a number of new holographic silver 
halide plates and films, as indicated in Table 9.2. 

The last class of materials are those made in the former Soviet Union and in Eastern 
Europe. These manufacturers took a rather different path than those in the West, actively 
developing emulsions especially for holography. For a discussion of these emulsions, 
with many references, see [267] and [22]. We do not include these materials in Table 
9.2 because they are not widely available. 

Table 9.2, after [22], presents a summary of the relevant properties of the silver- 
halide materials from the manufacturers mentioned above. 

Hotec R (film) 
SP695T (plate) 
SP672 (film) 

9.8.2 Photopolymer Films 

Photopolymer films provide a recording medium with two major virtues: (1) the holo- 
grams obtained are primarily phase holograms, and (2) the films can be coated with 
considerable thickness (as thick as 8 mm). The thick phase holograms that result can 
have excellent efficiency. 

The modulation mechanism for these holograms is a combination of thickness 
variation and internal refractive index change. The recording material is a photopoly- 
merizable monomer, i.e. a monomer that experiences polymerization or cross-linking 
under exposure to light. After the initial polymerization of the portions of the monomer 
exposed to light, diffusion of the remaining monomer takes place away from areas of 

7 
6 
7 

< 700 
< 560 
< 560 

20 
100 
100 
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high concentration (low exposure). A final uniform exposure polymerizes the remaining 
monomer, but due to the previous diffusion, the distribution of polymer is now nonuni- 
form, leading to the phase modulation properties of the hologram. Changes of refractive 
index of 0.2% to 0.5% are possible. 

Work on recording volume holograms in photopolymers began in the late 1960s 
at the Hughes Research Laboratories [67]. Further important work included that of 
Booth [26], [27], Colburn and Haines [69], and many others. See [267], pp. 293-298, 
for a more detailed consideration of the history of this material in volume holography. 

Photopolymer materials are either self-developing or dry-developing, for example 
by exposure to UV light. Resolutions are excellent but sensitivities are low, typically a 
few m ~ l c m ~ .  E.I. Dupont de Nemours & Co. markets one such material under the name 
OmniDex, and Polaroid offers another material named DMP- 128. 

9.8.3 Dichromated Gelatin 

Dichromated gelatin films are widely used to record extremely efficient volume phase 
holograms, particularly of the reflection type. Diffraction efficiencies in excess of 90% 
are readily achieved repeatably. 

A gelatin film containing a small amount of a dichromate, such as (NH4)2Cr207, 
is found to harden under exposure to light. The process is a form of molecular cross- 
linking, similar to that observed in polymer films. Since dichromated gelatin plates 
are not available commercially, users must make their own photosensitive plates from 
gelatin films, typically coated on a glass plate. The methods used for preparing such 
plates and developing them are quite complex and must be performed with great 
care. A description of these methods can be found, for example, in [139], [254], 
and [267]. 

Particularly important publications on this material from an historical point-of-view 
include [258], [195], [56], [211], and others. Again a more detailed discussion of the 
history can be found in [267], pp. 278-286. 

A number of theories have been proposed to explain the physical mechanism that 
takes place in the dichromated gelatin plates. Currently the best-accepted theory [5  11 
is that a large number of very tiny vacuoles, with sub-wavelength dimensions, form 
in unhardened areas of the film. The density of vacuoles changes the local refractive 
index, allowing smooth and continuous variations of phase shift. 

Recording using dichromated gelatin films is carried out typically at 488 nm or 
5 14.5 nm wavelengths in the blue and green, respectively. Emulsion thickness may be 
of the order of 15 pm, and exposures required are of the order of 50 to 100 r n ~ l c m ~ ,  a 
very high exposure indeed. 

9.8.4 Photorefractive Materials 

A number of crystals, including lithium niobate (LiNb03), barium titanate (BaTi03), 
bismuth silicon oxide (BSO), bismuth germanium oxide (BGO), potassium tantalum 
niobate (KTN), and strontium barium nitrate (SBN), exhibit a combination of sensi- 
tivity to light and an electro-optic effect. This combined effect has come to be known as 
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the photorefractive efect, and the materials that exhibit it are known asphotorefractives 
or photorefractive materials. For an excellent background on these materials and their 
applications in optics, see [I371 and [138]. 

Early work on photorefractive holograms took place at the Bell Laboratories [57] 
and the RCA Laboratories [2], [3]. Considerable advances in theoretical understanding 
were developed in this early work. The reader should consult the more general refer- 
ences cited above for a more complete historical picture. 

The mechanisms by which incident optical interference patterns are stored as 
changes of the local refractive index of these materials are extremely complex and in 
some cases not completely understood. Index change is known to occur as a result of 
charge transport and the electro-optic effect. The charge transport results from photoex- 
citation of trapped carriers, transport of these carriers, and retrapping at new locations. 
In some materials (e.g. SBN) the transport mechanism is diffusion, while in others 
(e.g. LiNb03), it may be the photovoltaic effect under some circumstances and diffu- 
sion under others. After charge transport and re-trapping, internal electric fields will 
result from the charge redistribution. These internal electric fields cause, through the 
electro-optic effect, local changes of the refractive index experienced by polarized light. 

Figure 9.38 illustrates an incident sinusoidal intensity pattern and the resulting dis- 
tributions of charge, electric field, and refractive index. The charge carriers, which in 
this case carry positive charge, migrate to the nulls of the intensity pattern, establishing 
a charge distribution that is 180" out-of-phase with the incident intensity distribution. 
Electric field is proportional to the spatial derivative of charge, and hence the electric 
field distribution is 90" out-of-phase with the charge distribution and (in the opposite 
sense) with the intensity distribution. Assuming the linear electro-optic effect, the re- 
fractive index change is proportional to the electric field, and a volume index grating, 
spatially phase-shifted by 90" from the exposure pattern, results. 

The 90" phase shift between the exposure pattern and the pattern of refractive in- 
dex change plays an important role in the transfer of energy between the two interfering 
beams during the exposure process. The two interfering beams create, in any incre- 
mental distance Az normal to the grating fringes, a weak phase grating with amplitude 
transmittance of the form 

Since the grating is weak, the argument of the exponential is small, and 

An Az 
t*(x, y) = exp s in27rx /~]  == I + j27r- sin 27rxlA, (9-86) 

A0 

where An is the peak refractive index change in the grating, and A is the grating period. 
Note in particular the 90" phase difference between the zero order (represented by unity) 
and the combination of the two first orders (represented by the sinusoid) in the last 
expression. For one of the first-order diffracted components, the spatial shift of the index 
grating with respect to the incident intensity pattern compensates for the similar phase 
shift in the above equation, with the result that strong coupling and energy transfer can 
occur between the two incident beams. In this fashion a strong incident beam can couple 
to a weak incident beam such that the component diffracted in the direction of the weak 
beam is amplified by energy transfer from the strong beam. 
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pdnv FIGURE 9.38 ANx) Relations between (a) an incident 
sinusoidal intensity pattern and the 

I I resulting distributions of (b) charge, (c) 
(d) 

I I 

I electric field, and (d) refractive index 
I I I 1 change in a photorefractive material. 

It is often found desirable to apply an external voltage across the photorefractive 
crystal in a direction orthogonal to the grating planes to induce a drift component of 
charge transfer. Such a voltage is found to strengthen the diffraction efficiency of the 
crystal for low spatial frequency components of the interference pattern, whereas with- 
out the applied field the diffraction efficiency may be poorer for low frequencies than 
for high frequencies. 

Many photorefractive crystals are extremely slow when compared with photo- 
graphic emulsions, at least for exposures with typical CW lasers. In fact their response 
time depends on the rate at which energy is delivered to them, and therefore a recording 
can be made in a very short time (e.g. a few nsec) with a powerful pulsed laser. 

The chief difficulty found with the use of photorefractive materials as a medium 
for holography is the fact that the reconstruction beam will partially or totally erase the 
stored hologram as the image is read out. While in some simple cases it is possible to 
read out the image with a different wavelength than was used for recording, in particular 
a wavelength to which the crystal is not sensitive, this is not possible in general due 
to the impossibility of properly Bragg matching the entire set of gratings that were 
recorded for a complex object when there is a wavelength change. Various methods for 
"fixing" the recorded holograms have been investigated and remain an area of active 
research. 

Photorefractive crystals have found applications in interferometry, adaptive optics, 
holographic memories, and optical signal and image processing. They have formed 
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the basis for certain types of spatial light modulators. For a review of many of these 
applications, see [138]. 

9.9 
COMPUTER-GENERATED HOLOGRAMS 

The vast majority of holograms are made using interference of coherent light, as de- 
scribed in previous sections. However, a significant amount of study has been given to 
methods for creating holograms by means of calculations on a digital computer, which 
are then transferred to a transparency by means of a plotting or printing device. The 
advantage gained by such a process is that one can create images of objects that in 
fact never existed in the real physical world. We thus become limited in the creation 
of images (two-dimensional or three-dimensional) only by our ability to describe that 
image mathematically, our ability to compute the hologram numerically in a reasonable 
amount of time, and our ability to transfer the results of that computation to a suitable 
transparent medium, such as photographic film or plate. 

The process of creating a computer-generated hologram can be broken down into 
three separate parts. First is the computational part, which involves calculation of the 
fields that the object would produce in the hologram plane if it existed. It is these fields, 
or an approximation to them, that we wish the hologram to generate. This portion of 
the problem has itself two distinct parts: ( I )  a decision as to how many sampling points 
we should use for the object and the hologram (we can calculate only a discrete set of 
samples of the desired field starting from a discrete representation of the object); and 
(2) the carrying out of the correct discrete Fresnel or Fourier transform on the object 
fields, which is usually accomplished with a fast Fourier transform algorithm. 

The second part of the process is the choice of a suitable representation of the 
complex fields in the hologram plane. The result of the calculation mentioned above 
is usually a discrete set of samples of a complex field, each sample point having both 
a magnitude and a phase. In general we cannot create structures that directly control 
both the amplitude and the phase of the amplitude transmittance in arbitrary ways, so 
some form of encoding of these quantities into a form suitable for representation on a 
transparency must be chosen. 

The third part of the problem is the transfer of the encoded representation of the 
fields to a transparency. This plotting or printing operation is constrained by the proper- 
ties of available computer output devices, whether they be pen plotters, laser printers, 
or electron-beam lithography machines. In fact, the choice of an encoding step is often 
influenced by the properties of the plotting device that will be used, so the second and 
third parts of the problem are not entirely independent. Most plotting devices are capa- 
ble of writing small rectangles at various locations on the output plane. In some cases 
those rectangles can be written with gray scale, while in others they are restricted to 
binary values, i.e. transparent or opaque. 

Many different methods for creating computer-generated holograms have been dis- 
covered, but we are limited by space constraints here to discuss only a few of the most 
important kinds. For more complete discussions, see [I851 and [304]. It should be noted 
that computer-generated holograms are almost invariably thin holograms, due to the 
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FIGURE 9.39 
Geometries when (a) the desired hologram field is the Fourier transform of the object 
field, and (b) the desired hologram field is the Fresnel transform of the object field. 

constraints imposed by the various methods that are used to write such holograms onto 
transparencies. 

9.9.1 The Sampling Problem 

The process of holography, whether analog or digital, invariably involves the creation 
of a complex field in the hologram plane, a field that we wish to regenerate during the 
wavefront reconstruction process. For computer-generated holograms, we must calcu- 
late that field using a digital computer; of necessity the field must be sampled, and 
complex values computed at each sample point. How many samples of the field must 
we compute? 

To answer this question, we must consider two different situations illustrated in 
Fig. 9.39. For the case illustrated in part (a) of the figure, we wish to create a hologram 
field that is the Fourier transform of the desired object field. In part (b) of the figure, 
the goal is to create a hologram field that is the Fresnel transform of the object field. 
We consider each of the cases illustrated in this figure separately. 

Fourier hologram 
Consider the case of a Fourier hologram first. In this case, a fictitious lens of infinite 

size and focal length f exists between the object and the hologram field. Since the two 
fields exist in the front and back focal planes of this lens, the hologram field Uh(x, y )  
and the object field U,((, q )  are related by a Fourier transform, 

M 

where f is the focal length of the lens. The number of samples required in the plane 
of the hologram field is determined by the bandwidth of that field, as dictated by the 
Whittaker-Shannon sampling theorem (cf. Sect. 2.4). The size of the object determines 
the bandwidth of the hologram field in this case, and therefore in turn determines the 
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number of hologram field samples required. If the dimensions of the object are Lg X L,, 
then the spectrum of the field in the hologram plane is contained within a centered 
rectangle with dimensions 2Bx X 2By ,  where 

The rectangular sampling lattice14 in the hologram plane should therefore have spacings 

If the extent of the field in the hologram plane is to be Lx X Ly, then the number of 
samples required in that plane will be 

It is a straightforward matter to show that the number of samples required in the object 
plane (from which the hologram field will be calculated) is identically the same as for 
the hologram field. 

Fresnel hologram 
Consider now the case of the Fresnel hologram illustrated in part (b) of the figure. 

The hologram field is no longer related to the object field by a simple Fourier transform, 
since the lens is missing. 

The hologram field and the object field are now related by the Fresnel diffraction 
integral, 

- X 

The relation between the bandwidth of the hologram field and the size of the object is 
not as obvious as it was in the case of the Fourier hologram. 

An excellent approximation to the bandwidth of the hologram field can be obtained 
from the following argument. The object in this case is viewed as being the function 
Uo(C, q )  exp [ j e ( c 2  + q2)]. The presence of a phase distribution across the object does 

I4If the spectrum of the desired field in the hologram plane is not efficiently contained within a centered 
rectangle, or if a rectangular lattice is not the most efficient means of packing spectral islands in the fre- 
quency domain, more efficient forms of the sampling theorem can be used, but we will not dwell on this 
point here. 
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not affect its intensity distribution, which is the quantity we wish to re-create from 
the hologram field. Therefore Eq. (9-91) can be viewed as expressing the hologram 
field as the product of the quadratic-phase factor in (x, y) and the Fourier transform of 
the modified object field. We can now consider the bandwidth of each of these terms 
individually, and by invoking the convolution theorem, we can add the two bandwidths 
to give us the total bandwidth in the hologram plane. 

The bandwidth that arises from the Fourier transform of the modified object will 
be identical to that obtained in the case of the Fourier hologram, for the presence of 
the quadratic-phase factor in the object plane has not changed the width of the object. 
The bandwidth of the quadratic-phase factor in (x, y) can be approximated ;sing local 
spatial frequencies and taking into account the finite extent of the hologram field (cf. 
Eq. (2-39)). The local frequencies in the x direction are easily shown to vary between 
+ & and those in the y direction between + &. The total bandwidth of the hologram 
field is now found by adding these bandwidths to those obtained in the Fourier hologram 
case, with the result 

Note that the bandwidth now depends on both the extent of the object field and the 
extent of the hologram field. The sampling intervals in the hologram plane must now 
be taken to be 

and the total number of samples in each dimension becomes 

Again the number of samples required in the object domain is equal to the number re- 
quired in the hologram domain. Note that the number of samples required in the Fresnel 
hologram case is greater than the number required in the Fourier hologram case. See 
Prob. 9-1 2 for a further illustration of this fact. 

Having determined the sampling requirements for the hologram field, we now turn 
to a short discussion of the computational problem associated with determining the 
hologram field from the object field. 

9.9.2 The Computational Problem 

The relations between the hologram field and the object field represented by Eqs. (9-87) 
and (9-91) both involve Fourier transforms. After the object and hologram fields have 
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been sampled, the calculations required to determine the hologram field take the form 
of a discrete sum. Given that the sampling spacings in the hologram and object planes 
are (Ax, Ay) and (At, Aq), respectively, the case of the Fourier transform hologram 
requires that the following be calculated: 

Nx-1 Nv-1 

Uh(pAx, yay)  = 1 1 U,(rnAt, nAq) exp 
m=O n = O  

Such a transform is referred to as a discrete Fourier transform. It is most rapidly com- 
puted using the fast Fourier transform algorithm [37], which for a total of N x N y  points 
requires order N x N y  log, N x N y  complex multiplications and additions. The computa- 
tion is fastest if the numbers of samples Nx and Nr are chosen to be powers of 2. 

Due to the constraints of the representational methods to be discussed in the next 
section, it is often desirable to introduce a randomly and independently chosen phase at 
each object point, which simulates the presence of a diffuser through which the object 
is illuminated. Such a step does not change the sampling requirements discussed ear- 
lier. The result is a more uniform hologram field, but the price paid is that the images 
reconstructed by this field will contain speckle. 

For a Fresnel hologram, the procedure differs only through the postmultiplication 
of the discrete Fourier transform obtained by a discrete quadratic-phase function. 

9.9.3 The Representational Problem 

Having obtained the complex field in the hologram plane, the remaining important step 
is to adopt a representation of that field that can be encoded in a hologram. Just as 
with holograms recorded by analog optical means, it is not practical in general to at- 
tempt to control both the amplitude and the phase of the amplitude transmittance of a 
transparency (an exception is the so-called ROACH, to be mentioned below). There- 
fore some method for encoding complex amplitude into either amplitude or phase is 
required. We discuss various such methods in what follows. The reader should keep in 
mind that once a suitable hologram has been plotted by any of the means discussed, 
it is then necessary to photo-reduce the plot and produce a transparency that can be 
illuminated with coherent light. 

Detour-phase holograms 
The oldest and perhaps the best known method for creating holograms from com- 

puted complex fields is the so-called "detour-phase" method, invented by Brown and 
Lohmann [41] and Lohmann and Paris [200]. This method accepts the constraints im- 
posed by most plotting devices, namely that it is easiest to plot binary patterns (ink or no 
ink) and that convenient basic building blocks are black rectangles that can be centered 
at any of a quantized set of locations and can be controlled in size at least in certain 
quantized increments. 

Suppose that the final hologram transparency will be illuminated by an off-axis 
plane wave, and the image will be obtained with a positive lens of focal length f by 
looking on the optical axis in the focal plane behind the lens. Let the illuminating wave 
be inclined with respect to the x axis for simplicity, so that its complex field distribution 
incident on the hologram plane is 
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U,(x, y) = exp [ - j2vcrx], 

where cr is equal to sin 28/h, 28 being the angle between the k vector of the incident 
beam and the normal to the hologram. Then for each value of x on the hologram plane, 
the optical phase of the illuminating beam has a different value. 

Let the hologram plane be divided into Nx x N y  separate cells, with the width of 
a cell in the x direction being equal to one full period of the incident phase function, 
i.e. the width is a!- ' .  The width in the y direction need not necessarily be the same but 
for simplicity might be chosen so. Each cell defined in this way will encode one of the 
Fourier coefficients that was calculated with the fast Fourier transform. 

Suppose that one particular Fourier coefficient is given by 

Then within that cell we will plot a black rectangle with an area proportional to lapq\ 
and with a position in the x direction such that at the center of the rectangle, the inci- 
dent phase from the reconstruction beam is precisely 4,,. Remembering that a black 
rectangle will be changed to a transparent rectangle after the plot is photographed, we 
have created a transmitted wave component from this cell that has the amplitude of the 
desired Fourier component and a phase equal to that of the desired Fourier component. 
Phase shift has been achieved by moving the center of the plotted rectangle, a method 
known as detourphase, and illustrated in Fig. 9.40. Note that our goal is to synthesize 
an image field of the form 

Nx-l Ny-l 

Uf(u ,  V )  = lapq[ eidp9 exp (upAx + vqAy) 
p = O  q = O  

which expresses the image field as the sum of its Fourier components, all with proper 
amplitudes and phases. 

To understand the approximations inherent in the detour-phase approach, we un- 
dertake a short analysis. Consider first the diffraction pattern created in the rear focal 
plane of the transforming lens when a single transparent rectangle of widths (wx,  wy) 
exists in the hologram plane, that rectangle being describable by the function 

Y - Yo  (x. y )  = rect (3) rect (?), 
wx 

where (xo, yo) is the center of the rectangle. When this rectangle is illuminated by the 
reconstruction wave of Eq. (9-96), the transmitted field is 

Illumination 

Hologram 

FIGURE 9.40 
The detour-phase concept. The subcells are moved 
within a cell to control the phase of the transmitted 
light. Zero-phase lines of the reconstruction wavefront 
are shown. 
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Udx, y) = e - j 2 m x  rect (" - ixxO) rect (y ), 
and the optical Fourier transform of this field is given by 

Uf(u,v) = - 
WX 

WY sinc [WX(U f A f  a ) ]  [WYV] { ?T 
f A  f 

sine - exp j [ (u + A f a)xo + vyo J f 

where we have made use of the similarity and shift theorems. 
If the width wx of this rectangle is limited in the x direction so that it is a small 

fraction of the period of the reconstruction beam, 

then the shift of the first sinc function can be neglected. In addition, if the region of 
interest in the image plane (size Lu X Lv) is much smaller than the width of the sinc 
functions, then those functions can be replaced by unity within that region. The resulting 
approximation to the contribution of this single rectangle can then be written 

Now consider the result of introducing many such rectangles, one for each cell 
defined in the hologram plane. The cells are indexed by (p, q), since each cell represents 
one Fourier coefficient of the image. For the moment we assume that all rectangles are 
located precisely in the center of their respective cells, but in general each may have a 
different set of widths (wx, wy), subject to the constraint on wx introduced above. Thus 
the center of the (p, q)th cell is located at 

( ~ 0 ) ~ ~  = PAX 

(~0)pq = ~ A Y .  

The total reconstructed field in the image plane becomes 

where the period a-' of the reconstruction wave must equal Ax, the width of one cell. 
Thus when the subcells are all centered in their respective cells, the phase of the first 
exponential term is seen to be an integer multiple of 27r, and that term can be replaced 
by unity. The terms represented by the second exponential are the Fourier basis func- 
tions that we are attempting to add to synthesize the final image. The amplitude of the 
(p, q)th Fourier component is wxwylA f  and the phases of all components are identical. 
While we can properly control the amplitudes of the Fourier components by control- 
ling they widths (wy),, (which are not constrained by the limitation imposed on wx in 
our earlier approximation), we have not yet controlled the phases of these components 
properly. 

Phase control is introduced by moving the centers of the subcells in the x direction 
within each cell. Suppose that the center of the (p, q)th cell is now located at 
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(xo)pq = PAX + (Sx)pq 

(yo)pq = ~ A Y .  
With this change, the expression of Eq. (9-103) becomes 

where an exponential term with a phase that is an integer multiple of 271. has been 
replaced by unity. One further approximation is needed. We assume that the width of 
the image region of interest, which extends in the u direction over (LU/2, -LU/2) is 
sufficiently small that 

L u ( ~ x ) P ~  << 1, 
2hf  

in which case the exponential term exp[- j $ ~ ( b x ) ~ , ]  -. 1, leaving the following ex- 
pression for the image field: 

This field does have the phases of the Fourier components properly controlled, pro- 
vided 

e - . i 2 ~ +  = e j 4 p q .  

Given the phase +,, of the (p, q)th Fourier component, the subcell in the (p, q)th cell 
should be centered at (Sx),, satisfying 

In addition we choose the width (wy),, of the (p, q)th subcell to be proportional to the 
desired magnitude of the (p, q)th Fourier component, 

( w ~ ) ~ ,  is held constant to satisfy the previous approximation regarding the overlap of 
the sinc functions. Thus we have created a field in the image plane that is, to within 
a proportionality constant, equal to the desired field represented by Eq. (9-98). Fig- 
ure 9.41 illustrates a single cell in the detour-phase hologram. 

Once the desired reconstructed field is generated by the hologram, an image will 
appear in the rear focal plane of a positive lens placed behind the hologram. In fact, as 
in the case of optically recorded holograms, this type of computer-generated hologram 
utilizes a carrier frequency a and generates twin images. The second image can be 
made to appear on the optical axis of the transforming lens if the incident illumination 
wave is taken to be the conjugate of the previous reconstruction wave, i.e. if its angle 
with respect to the normal to the hologram is the negative of that in the previous case. 
Alternatively, the incident wave can be normal to the hologram, in which case both twin 
images appear with opposite displacements off axis in the rear focal plane. 

Figure 9.42 shows (a) a binary detour-phase hologram and (b) an image recon- 
structed from that hologram. 
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L I * FIGURE 9.41 
P Ax A single cell in a detour-phase hologram. 

FIGURE 9.42 
(a) Binary detour-phase hologram; 
(b) image reconstructed from that 
hologram. [Courtesy of A.W. Lohmann. 
Copyright 1969 by International 
Business Machines Corporation; 
reprinted with permission.] 
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Note that in practice it is necessary to quantize both the amplitude and the phase 
of a binary detour-phase hologram, a process that leads to noise in the reconstructed 
image. The effects of phase quantization are particularly important and interesting 
[1291, [771, [78l. 

Alternative methods of representation using the detour-phase concept exist. For 
example, Lee [183] utilized four fixed subcells per cell, each with a gray-level trans- 
mittance, the first representing the real and positive part of the Fourier coefficient (angle 
0°), the second the imaginary and positive part (angle 90°), the third the real and neg- 
ative part (angle 180°), and the fourth the imaginary and negative part (angle 270"). 
Since the real and imaginary parts are either positive or negative but not both, two of 
the subcells in every cell are normally opaque. Burckhardt [44] recognized that any 
point in the complex plane can be reached with only three gray-level phasors, one at 
0°, one at 120°, and the third at 240'. 

The Kinoform and the ROACH 
An entirely different method for computer-generated hologram representation is 

known as the kinofomz [193]. In this case, an assumption is made that the phases of the 
Fourier coefficients carry the majority of information about an object, and the ampli- 
tude information can be entirely eliminated. While this assumption might at first glance 
appear surprising, it turns out to be quite accurate if the object is a diffuse one, i.e. if 
the object points all are assigned random and independent phases. 

Considering a Fourier geometry again, the hologram is divided up into Nx x N y  
cells, each representing one Fourier coefficient of the object. The amplitudes lapq/ of 
all Fourier coefficients are assigned value unity, and it is only the phases +,, that we 
attempt to encode in the hologram. The encoding is done by linearly mapping the phase 
range (O,27~) into a continuum of gray levels displayed by an output device such as a 
photographic plotter. The gray-level transparency obtained from this process is sub- 
jected to photographic bleaching. Thus each gray level is mapped into a corresponding 
phase shift introduced by the transparency, and if the bleaching process is well enough 
controlled to assure that the complete phase range (O,27~) is exactly and properly re- 
alized by the transparency, an excellent image can be obtained in the Fourier plane of 
the kinoform. In this case there is only a single image and it appears on the optical axis. 
The diffraction efficiency of the kinoform is very high because it is a pure phase trans- 
parency. Errors in "phase matching" the (0,27r) interval result in a single bright spot 
on the optical axis, generally in the midst of the desired image. 

Figure 9.43 shows a photograph of the gray-level recording that leads to a kinoform 
after bleaching, and the image obtained from the same kinoform. 

A related approach known as the "referenceless on-axis complex hologram" 
(ROACH) utilizes color film to control both the amplitude and the phase of the Fourier 
coefficients simultaneously [58]. Suppose we wish to create a computer-generated 
Fourier hologram which will reconstruct an image in red light. Let the magnitudes 
lapqJ of the Fourier coefficients first be displayed as gray levels on a black-and-white 
CRT display. This display is photographed through a red-transmitting filter onto a 
frame of reversal color film. The red-absorbing layer of the three-layer film records this 
exposure. Then the desired array of Fourier phases is encoded as an array of gray levels, 
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(4 (b) 

FIGURE 9.43 
(a) The gray level display that leads to a kinoform, and (b) the image obtained from that 
kinoform. [Copyright 1969 by International Business Machines Corporation; reprinted with 
permission.] 

as was done for the kinoform, displayed on the same CRT, and photographed through 
a blue-green transmitting filter, thus exposing the blue and green absorbing layers of 
the same frame of film used previously. After processing, the layer exposed to red light 
becomes absorbing in the red, but the layers exposed to blue-green light are transparent 
in the red. However, these layers do introduce a phase shift in the transmitted red light, 
due to thickness variations. Thus the color photographic transparency controls both the 
amplitude and the phase of the transmitted red light, and as such creates an on-axis 
image of the desired object. Again proper phase matching is critical, and errors in this 
regard result in a bright spot of light on axis. 

Note that both the kinoform and the ROACH are more efficient than detour-phase 
holograms in their utilization of the space-bandwidth product of the plotter or display 
used, since only one resolution cell is required for each Fourier coefficient, whereas 
many cells are required for the binary hologram. However, both the kinofonn and the 
ROACH require that the phase matching problem be solved, whereas no such problem 
exists for the detour-phase hologram. 

Phase contour interferograms 
When phase variations exceeding 2 7 ~  radians are to be created by the hologram, 

as is often required for holographic optical elements used in optical testing, detour- 
phase holograms have the disadvantage that subapertures near the 27.r phase boundaries 
may partially overlap. For such applications, other representational approaches have 
some advantages. We discuss here only one such approach, namely a method due to 
Lee [ 1 841. 
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We focus here on the problem of generating elements that control only the phase of 
the transmitted wavefront. Consider an optical element with ideal amplitude transmit- 
tance 

1 
t~ (x, y) = 3 { 1 + cos[2aax - +(x, y)]} . (9- 1 09) 

This is a carrier frequency hologram which generates two reconstructed waves of inter- 
est, one with a pure phase distribution +(x, y) and the other a conjugate term with the 
negative of this phase distribution. Since this amplitude transmittance contains a con- 
tinuum of gray levels, it would not be easy to display directly on a plotter and record 
with high fidelity. We prefer some form of binary pattern for this purpose. Let the plotter 
create a contour plot of t ~ ,  with one contour line per period, each located at a maximum 
of the distribution. Such contours are defined by the equation 

where each integer n defines a different contour line. Such a plot, when photographically 
reduced, has been shown by Lee to generate both the desired phase distribution and its 
conjugate, each in a different first diffraction order [184]. 

Figure 9.44 shows such a plot generated for the case of a quadratic-phase approx- 
imation to a lens, i.e. a phase distribution 

where the constant h f has been chosen to be unity for convenience, and a, = 2.5. The 
photoreduction of such a pattern will yield an optical element that provides the effect 
of a positive lens in one first diffraction order and the effect of a negative lens in the 
other first order. 

FIGURE 9.44 
Plot of a phase contour interferogram 
for a quadratic-phase approximation 
to a spherical lens. 
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Generalizations of this procedure to allow the incorporation of amplitude informa- 
tion in addition to phase information have been demonstrated by Lee [186]. The reader 
is referred to the original reference for more details. 

9.10 
DEGRADATIONS OF HOLOGRAPHIC IMAGES 

Holographic imaging, like other imaging approaches, suffers from certain degradations 
that limit the quality of the images that can be obtained. Some degradations, such as that 
caused by diffraction, are common to all systems. Others, while having a counterpart in 
conventional photography, manifest themselves in distinctly different ways in hologra- 
phy. In this section we review some of the common sources of image degradations and 
discuss the effects expected and found in holography. 

Holography, like other imaging processes, can suffer from all of the classical aber- 
rations encountered in optics. Consideration of such aberrations is beyond the scope 
of our treatment. The interested reader can find an excellent discussion in the work of 
Meier [209]. We mention only that if a hologram is reconstructed with an exact dupli- 
cate of the original reference wave at the same wavelength used for recording, and no 
auxiliary optical elements exist between the object and the hologram and between the 
hologram and the image plane, the image obtained will be aberration-free (provided 
there has been no swelling or shrinking of the emulsion on which the hologram was 
recorded). 

The holographic imaging process almost always uses coherent light (for exceptions, 
cf. Section 9.11). Under usual circumstances, such as operation in the linear region of 
the t~ VS. E curve for thin holograms, the imaging process has been argued to be lin- 
ear in complex amplitude, as long as attention is focused on one of the twin images. 
Under such circumstances it is possible to characterize the holographic process by an 
amplitude transfer function H (  fx, fy). As with nonholographic systems, the amplitude 
transfer function is determined by the pupil function of the imaging system, and speci- 
fies the response of the system to complex-exponential components of the ideal image. 
Thus in the absence of effects associated with limited film MTF or film nonlineari- 
ties, we would characterize the holographic imaging process by an amplitude transfer 
function of the form 

H(fxt f ~ )  = P(hzifx, hzify), (9-111) 

where P is the pupil function, usually determined by the finite size of the hologram. The 
amplitude transfer function fully accounts for the limitations to image quality posed by 
diffraction, and therefore we concentrate on other effects in what follows. 

9.10.1 Effects of Film MTF 

It has been seen previously that the holographic process in general places heavy re- 
quirements on the resolving power of recording materials, requirements that may 
not always be perfectly met in some applications. It is therefore of some interest to 
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understand the effects of a limited spatial frequency response (MTF) of a recording 
material used in holography. 

We present analyses of two particularly important recording geometries. For more 
detailed consideration of the subject, the reader is referred to the classic work of van 
Ligten [288], [289]. 

Collimated reference wave 
We examine first the effects of the MTF of the recording medium on the mapping 

of object amplitudes into real-image amplitudes when a plane reference wave is used. 
The linearity of the holographic imaging process is not affected by the linear pro- 

cesses (e.g. light scattering) that reduce the spatial frequency response of the recording 
medium. Therefore it suffices to find the effects of the MTF on one general frequency 
component of the object amplitude, and to construct the more general result by linear 
superposition. 

To this end, consider the reference and object waves to be given by 

respectively. Thus the object and reference waves are plane waves propagating in dif- 
ferent directions. The distribution of exposing intensity is therefore 

where 6 = arg a and the phase angle of A has been taken as the phase reference. If 
we represent the MTF of the emulsion as M( fx, fy), then from the Keliey model of the 
recording process (cf. Section 7 . 1 3 ,  the effective exposing intensity distribution is 

where we assumed that the MTF of the recording medium is entirely real. We conclude 
that the particular Fourier component of the object with spatial frequency ( fx, fy) is 
attenuated by the factor M( fx, fy - a ) ,  relative to the amplitude that would be obtained 
with a perfect recording medium. 

Figure 9.45 illustrates this result pictorially. The spectrum of the object is assumed 
to be centered at the origin in the frequency domain. The MTF of the recording medium 

MTF 
Object 
spectrum 

\ 

Reference 

Image 

. . FIGURE 9.45 
Effects of the MTF of the recording 
medium when the reference wave is 
collimated. 
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is erected about the frequency ( fx = 0, fy = a ) ;  the product of the object amplitude 
spectrum and the film MTF yields the image amplitude spectrum. 

From the preceding analysis it is clear that, when a collimated reference wave is 
used, the effect of the recording medium frequency response may be represented by a 
simple multiplicative factor M (  fx, fy - a )  applied to the object spectrum. This result 
directly implies an amplitude transfer function 

might be associated with the imaging process. However, the spatial frequency response 
of the system is limited not only by the effects of the recording medium, but also by 
the effects of diffraction. Therefore, as mentioned previously the finite pupil function 
of the hologram aperture must be included. Let 

1 (x, y) in the hologram aperture 

Then the complete amplitude transfer function of the imaging system may be written 

where the wavelength used in reconstruction has been assumed to be h2. Note that the 
effect of the recording medium MTF may be regarded as entirely equivalent to that of 
inserting an attenuating mask with amplitude transmittance 

across the pupil of the imaging system. 

Fourier transform and lensless Fourier transform holograms 
A second type of hologram we shall consider here is one in which each object point 

is encoded as a fringe pattern of a unique and constant spatial frequency. Such is the 
case for the Fourier transform hologram and the lensless Fourier transform hologram 
discussed earlier. For both of these types of holograms the reference wave originates 
from a point that is co-located with the object, and each object point is encoded in a 
fringe with a spatial frequency that is proportional to the distance of that point from the 
reference point. 

For both types of holograms, the intensity distribution falling upon the recording 
medium when the object is a point source at coordinates (x,, yo) and the reference is at 
coordinates (x,, y,) is 

Z(x, y) = + laI2 + 2Alal cos - Yr'Y + +I, (9-1 17) 
hl z 

where z is the focal length of the lens in the case of the Fourier transform hologram, or 
the common perpendicular distance of the object and reference points from the record- 
ing plane in the case of the lensless Fourier transform hologram. Here + is a phase 
angle that, for the lensless Fourier transform hologram, depends on the locations of 
the reference and the object points but not on the coordinates in the recording plane. 
For the true Fourier transform hologram, c$ depends only on the relative phases of the 
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object and reference points. Thus the object point with coordinates (x,, yo) is encoded 
as a sinusoidal fringe of spatial frequency 

To find the effects of the MTF of the recording medium on the image obtained from 
such a hologram, we find the effective recording intensity by applying the MTF to the 
sinusoidal fringe in the interference pattern, 

If the factor M in this expression is less than unity, then the amplitude of the fringe 
generated by this object point will be reduced, the diffraction efficiency will be lower, 
and the light amplitude incident on the image of this particular point will have been 
reduced by the MTF of the recording medium. Since object points furthest from the 
reference point generate the highest spatial frequencies, these points will be attenuated 
the most. 

While in the first case examined, i.e. a collimated reference wave, the effect of 
the MTF was found to be representable by a mask in the pupil plane of the imaging 
system, in the cases of the Fourier transform and lensless Fourier transform holograms, 
the effect of the MTF is seen to be representable by an attenuating mask placed over 
the object (or equivalently, over the image if magnification is taken into account). The 
amplitude transmittance of this mask is given by 

and its intensity transmittance by the square of this quantity. Thus for these cases, the 
effect of the MTF of the recording medium is seen to restrict theJield of view about the 
reference point, but not to affect the resolution attained within that field of view. 

Since each object point receives a different amplitude weighting in these geome- 
tries, the imaging system is seen to be space-variant and there is no amplitude transfer 
function that can describe the effects of the MTF of the recording medium. 

More general recording geometries 
Van Ligten's analysis [288], [289] shows that the effects of the MTF of the record- 

ing medium are in all cases equivalent to those of an attenuating mask, again with 
amplitude transmittance proportional to a scaled version of the MTF, and placed at a 
certain position between the object and the recording plane. The particular position of 
this attenuating mask depends on the recording geometry used. The two types of ge- 
ometries examined above represent limiting cases for which the location of the effective 
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mask is against the pupil of the system on the one hand, and against the object itself on 
the other hand. 

Some further consideration of the effects of the MTF on holographic recordings is 
found in the problems. 

9.10.2 Effects of Film Nonlinearities 

Throughout our discussions of holography, we have repeatedly assumed that, at least for 
thin holograms, the recording medium is exposed in such a way as to assure operation 
within a linear region of the amplitude transmittance vs. exposure curve. However, real 
recording media are never perfectly linear in this respect, the deviation from linearity 
depending to a large degree on the magnitude of the variations of exposure to which the 
medium is subjected and the exposure bias point selected. In this section we present a 
brief discussion of the effects of recording medium nonlinearities on the reconstructed 
image. It should be emphasized that, when the average exposure produced by the ob- 
ject is comparable with that produced by the reference, nonlinear effects can present 
a serious limitation to image quality. This case may be contrasted with that of a very 
weak object, for which film-grain noise or other scattered light is generally the limiting 
factor. 

In what follows we omit any detailed analysis of nonlinear effects, preferring to 
give the reader a set of references that will provide an excellent overview of previous 
work. Almost all previous work has been devoted to thin holograms. 

In discussing the effects of nonlinearities on the reconstructed images, it is impor- 
tant to distinguish between two different classes of object. One class consists of ob- 
jects that contain a collection of isolated point sources; another class consists of diffuse 
objects, such as a transparency illuminated through a diffuser or a three-dimensional 
object with an optically rough surface. For both types of objects, the analyses use a 
model of the nonlinearities first introduced by Kozma [176]. A simpler model was sub- 
sequently introduced by Bryngdahl and Lohmann [43]. 

For objects consisting of collections of point sources, the first analysis was that of 
Friesem and Zelenka [105], who demonstrated both analytically and experimentally 
several important effects. First, a phenomenon found with all types of objects, non- 
linearities introduce higher-order images, i.e. images in the second, third, or higher 
diffraction orders. Such extraneous images are not of great concern since they gener- 
ally do not overlap the first-order image. More important effects occur in the first-order 
image itself. If the object consists of two point sources, one of greater amplitude than 
the other, small-signal suppression effects are anticipated and observed. That is, the im- 
age of the weaker object point source is suppressed relative to that of the stronger point 
source. In addition, owing to intermodulation effects, false images may be generated 
within the first-order image by nonlinear interaction of the two point sources, yielding 
apparent images of point sources that are not actually present on the object itself. 

The effects of film nonlinearities for diffuse objects have also been investi- 
gated [127], [178]. In this case the exposure is most properly treated as a random 
process, employing techniques that are somewhat more complex than required for 
points-source objects. For further details, the reader may wish to consult the previ- 
ous references. In this case it is found that the effects of nonlinearities are primarily to 
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(a) (b) 

FIGURE 9.46 
Effects of film nonlinearities on reconstructed images. The object is a diffuse uniform 
square patch and the hologram is recorded in the lenless Fourier transform geometry. 
(a) Twin images obtained when the recording is nearly linear; (b) images obtained under 
highly nonlinear recording conditions. 

introduce a diffuse halo on and around the images of the object. If the diffuse object has 
fine structure, then the diffuse halo will have related structure. The effects can be quite 
severe, as illustrated in Fig. 9.46. 

9.10.3 Effects of Film-Grain Noise 

When the object wave is very weak compared with the reference wave, the primary 
source of image degradations is often grain noise arising from the film or plate on which 
the hologram is recorded. The effects of film-grain noise have been analyzed by Good- 
man [I  2 11 and by Kozma [177]. 

The effects of finite grain size in the photographic emulsions used for holography 
manifest themselves in a spatial power spectrum of scattered light which overlaps the 
locations of the desired images. This noise spectrum reduces the contrast of the images 
obtained, and because it is coherent with respect to the images, it interferes with them 
to cause unwanted fluctuations of image brightness. Such effects are most noticeable 
with low resolution films, for which the grain size is relatively large and the scattered 
light spectrum correspondingly strong. They are also most important when the light 
arriving from the object during recording is very weak, in which case the statistics of 
the detection process become quite important. 

A particularly important fact, first recognized by Gabor, is that holographic 
recording can in some circumstances provide greater signal detectability than can 
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conventional photography of the same coherent object. This enhancement comes about 
from the interference of a strong reference wave with the weak object wave, and the 
resulting enhancement of the strength of the fringes, a phenomenon analogous to "het- 
erodyne conversion gain" observed in heterodyne detection. Experimental work has 
shown that such advantages exist in practice [128]. 

9.10.4 Speckle Noise 

For diffuse objects illuminated with coherent light, granularity arising from speckle can 
be expected in the resulting images, regardless of the imaging method. Since hologra- 
phy is nearly always a process that depends on coherent light, speckle is of special 
concern in holographic imaging. 

When viewing a virtual image, the pupil of the eye is the limiting aperture, and 
a speckle pattern appears on the retina of the observer. When detecting a real image, 
using either film or an electronic detector, the aperture of the hologram is the limiting 
aperture, and together with the distance of the image from the hologram, defines the 
size of the speckles. If D is the size of the hologram, and zi is the image distance, then 
the speckle size is of the order of the diffraction limit, hzilD. Speckle has been found 
to reduce the detectability of image detail by a significant factor, particularly when the 
size of that detail is comparable with the speckle size. Its effects can be suppressed 
only by smoothing or averaging the intensity over several speckle sizes, for example 
with detector elements that are several times larger than the diffraction limit. However, 
if such smoothing is performed, the resolution in the image is reduced accordingly, so 
whether the reduction of detail comes from smoothing in the detection process or from 
the inability of the human visual system to extract details when their size is comparable 
with a speckle, the results are essentially the same. 

For a more detailed discussion of the effects of speckle on the ability of the human 
observer to resolve image detail, see [ lo]  and the references contained therein. 

9.11 
HOLOGRAPHY WITH SPATIALLY INCOHERENT LIGHT 

While holography was originally conceived as a means for coherent image formation, 
certain techniques exist by means of which holograms of incoherently illuminated ob- 
jects can be recorded. The extension of holographic techniques to the incoherent case 
was first suggested by Mertz and Young [210]. The theory and practice of incoher- 
ent holography were later extended by Lohmann [198], Stroke and Restrick [277], and 
Cochran [68]. For additional relevant information, see the book by Rogers [246]. 

The light from any one point on a spatially incoherent object will not interfere with 
the light from any other point. Nonetheless, if by means of some suitable optical trick 
the light from each object point is split into two parts, then it is possible for each pair 
of waves of common origin to interfere and form a fringe pattern. Thus each object 
point may be encoded in a suitable pattern of fringes, and if the encoding is a unique 
one, with no two object points generating identical fringe patterns, then in principle an 
image of the object can be obtained. 
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FIGURE 9.47 
Triangular interferometer for 
incoherent holography. 

While many optical systems for achieving the required splitting of the object waves 
are known, we illustrate here with one particular system suggested by Cochran [68]. 
As shown in Fig. 9.47, the system consists of a triangular interferometer, in which are 
placed two lenses L 1  and L2 with different focal lengths f l  and f2. We assume that 
both lenses are positive, although a combination of one positive and one negative lens 
may also be used. The lenses are separated by a path length f l  + f2, their focal points 
coinciding at the point P in the figure. Plane A and plane B both lie at path length f i  
from lens L 1  and path length f2 from L2.  

Light may travel from plane A to plane B along either of two paths, one clockwise 
around the interferometer and the second counterclockwise. Considering first the clock- 
wise path, light travels a distance f i  from plane A to lens L 1  by means of a reflection 
at the beam splitter BS. From L 1  to L2 the path length is f i  + f2, and from L2 to plane 
B (again by means of reflection at BS) the path length is f2.  Because of the particular 
choice of the path lengths in relation to the focal lengths f i  and f2, plane A is imaged 
onto plane B; due to the particular sequence in which L 1  and L2 are encountered on this 
path, the imaging is performed with magnification M I  = - f2/ f i  . 

For the counterclockwise path, light is in each case transmitted (rather than re- 
flected) by the beam splitter. Again plane A is imaged onto plane B, but for this path the 
lenses are encountered in opposite sequence, and the magnification is M2 = - f i l  f2.  

Consider now the single point 0 (see Fig. 9.47) of an incoherent object located at 
distance z from plane A. Regarding the light from that one point as providing a phase 
reference, we may express the resulting spherical wave (wavefront Wo in the figure) 
incident on plane A as the complex function 

where a paraxial approximation has been used. At plane B we find two spherical waves 
(wavefronts W 1  and W 2  in the figure), one magnified by MI and the second by M2. 
Thus the total amplitude is 
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The corresponding intensity distribution is 

4 -  4  

( x ,  y) = u + u + 2 [ '' )(r2 + y2)], (9-122) " fff2 
where we have used the relation 

If a photographic plate is exposed by the intensity pattern of Eq. (9-122), and pro- 
cessed to produce a positive transparency with amplitude transmittance linearly pro- 
portional to exposure, the resulting transmittance may be written 

We recognize the second and third terms as the transmittance functions of a negative 
and positive lens, respectively (cf. Eq. (5-lo)), each of focal length 

Thus if the transparency is illuminated by a coherent source, both a virtual and a real 
image of the original object will be formed. 

Generalizing now to an object consisting of a multitude of mutually incoherent 
point sources, each point source generates its own fringe pattern on the recording 
medium. Since the various sources are not coherent, the total intensity is found sim- 
ply by adding the various intensity patterns so generated. The (x, y) coordinates of 
each point source determine the center of the corresponding pattern of fringes, and 
therefore fix the (x, y) coordinates of the real and virtual images. Similarly, the z 
coordinate of the point source influences the focal length of its contribution to the 
transmittance function, as seen in Eq. (9-124), and the image formed is thus a three- 
dimensional one. 

Although the possibility of using incoherent illumination, rather than coherent il- 
lumination, is an attractive one in many applications, there exists one serious problem 
that limits the usefulness of incoherent holography. The problem arises because each 
elementary fringe pattern is formed by two extremely tiny portions of the light incident 
on the recording medium. Whereas for coherent holography light from each object point 
interferes with all the light contributed by the reference wave, for incoherent hologra- 
phy, the interfering waves represent only a minute fraction of the total light. The sum- 
mation of many weak interference patterns, each with its own bias level of exposure, 
results in a very large bias level, in general much larger than for a hologram of a similar 
object formed with coherent light. As a consequence of this bias problem, incoherent 
holography has been successfully applied only to objects composed of small numbers 
of resolution elements. This limitation restricts its use significantly. 
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9.12 
APPLICATIONS OF HOLOGRAPHY 

Holography is a mature scientific field: most of the basic science has been done, and the 
techniques have undergone a great deal of refinement. During this process, a multitude 
of applications have been explored, some leading to highly successful businesses, others 
to important diagnostic tools that are widely used in some branches of both science and 
engineering. In this section we present a brief summary of the major applications to 
date. 

9.12.1 Microscopy and High-Resolution Volume Imagery 

From an historical perspective, microscopy has been the application of holography 
which has motivated much of the early work on wavefront reconstruction; it was cer- 
tainly the chief motivating force behind the early works of Gabor [106], [107], [lo81 and 
El-Sum [93]. Interest in applications to electron microscopy has remained (cf. [285]), 
and interest in extending holographic microscopy to the X-ray region of the spectrum 
remains strong as well [207]. Interest in both electron and X-ray holography is moti- 
vated by the potential for achieving extremely high resolutions, comparable with the 
wavelength in each case. 

In the visible region of the spectrum, holography is not a serious competitor with 
the conventional microscope in ordinary, run-of-the-mill microscopy. Nonetheless there 
does exist one area in which holography offers a unique potential to microscopy, namely 
in high-resolution volume imagery. In conventional microscopy, high lateral resolution 
is achieved only at the price of a limited depth of focus. As seen in Chapter 6, the 
best lateral resolution achievable by an imaging system is of the order of A/(NA) (cf. 
Eq. (6-46)), where (NA) is the numerical aperture. It can be shown that with this lateral 
resolution comes a depth of focus that is limited to an axial distance on the order of 
A/(NA)* .  Note that for numerical apertures approaching unity, the depth of focus be- 
comes as shallow as one wavelength! Thus there is a limited volume that can be brought 
into focus at one time. 

It is, of course, possible to explore a large volume in sequence, by continuously 
refocusing to explore new regions of the object volume, but such an approach is often 
unsatisfactory if the object is a dynamic one, continuously in motion. 

A solution to these problems can be obtained by recording a hologram of the object 
using a pulsed laser to obtain a very short exposure time. The dynamic object is then 
"frozen" in time, but the recording retains all the information necessary to explore the 
full object volume. If the hologram is illuminated, the real or virtual image can be 
explored in depth with an auxiliary optical system. Sequential observation of the image 
volume is now acceptable because the object (i.e. the holographic image) is no longer 
dynamic. 

This approach was fruitfully applied by C. Knox in the microscopy of three- 
dimensional volumes of living biological specimens [167], and by Thompson, Ward, 
and Zinky in measurement of the particle-size distributions in aerosols [281]. The 
reader may consult these references for further details. 
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9.12.2 Interferometry 

Some of the most important scientific applications of holography have proven to arise 
from the unique modalities of interferometry that it offers. Holographic interferometry 
can take many different forms, but all are dependent on the ability of a hologram to 
store two or more separate complex wave fields on the same recording medium, and 
the subsequent interference of those fields when they are reconstructed together. More 
detailed treatments of holographic interferometry can be found, for example, in the 
books by Vest [294] and Schumann [256].  

Multiple-exposure holographic interferometry 
The most powerful holographic interferometry techniques are based on a property, 

emphasized by Gabor et al. [110], that, by means of multiple exposures of holograms, 
coherent additions of complex wavefronts can be achieved. This property can easily be 
demonstrated as follows: let a holographic recording material be exposed sequentially 
by N different intensity distributions T I ,  2 2 ,  . . . , IN.  The total exposure to which the 
medium has been subjected can be written 

N 

where T I ,  Tz, . . . , TN are the N individual exposure times. Now suppose that during 
each individual exposure interval the incident radiation is the sum of a reference wave 
A(x, y) (the same for all exposures) and an object wave ak(x, y) which changes from 
exposure interval to exposure interval. The total exposure becomes 

Assuming linear operation in the t~ vs. E characteristic of the recording medium, 
we find components of transmittance 

k =  1 

From Eq. (9-127) it is clear that illumination of the processed hologram with a wave- 
front A will generate a transmitted field component proportional to the product of ( ~ 1 ~  
and the sum of the complex wavefronts al,  a2, . . . , a ~ .  As a consequence, N coherent 
virtual images of the objects that gave rise to the N wavefronts will be linearly superim- 
posed and will mutually interfere. In a similar fashion, illumination of the transparency 
by a wavefront A* will generate N coherent real images which likewise interfere. 

The earliest dramatic demonstrations of the potential of this type of interferometry 
were performed by Brooks et al. [40] using a Q-switched ruby laser. Figure 9.48 shows 
two photographs obtained in each case by double exposure of a hologram with two laser 
pulses. In the case of part (a) of the figure, the first pulse records a hologram of only a 
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FIGURE 9.48 
Double-exposure holographic interferometry with a Q-switched 
ruby laser. [By permission of R.E. Brooks, L.O. Heflinger, and R.F. 
Wuerker.] 

diffuse background, while the second pulse records a hologram of a bullet in flight in 
front of the same diffuse background. The shock waves generated by the bullet produce 
changes in the local refractive index of the air. As a consequence, the two images of the 
diffuse background, one recorded in the absence of the bullet and the other recorded 
through the refractive-index perturbations of the air, will mutually interfere, producing 
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interference fringes that outline the shock waves generated by the bullet. These fringes 
have the appearance of being fixed in three-dimensional space around the bullet. 

Part (b) of the same figure is a similarly obtained image of an incandescent bulb. 
During the first exposure the filament is off, and again a hologram of a diffuse back- 
ground is recorded, this time through the imperfect glass envelope of the bulb. The 
filament is then turned on, and a second laser pulse exposes the hologram. The incoher- 
ent light generated by the lamp does not interfere with the laser light, so the filament 
does not appear lighted in the final image. However, the heating of the gases within the 
envelope has resulted in changes of the local index of refraction, which again gener- 
ate fringes of interference in the final image, outlining the patterns of gas expansion. 
It should be emphasized that these interference fringes have been obtained in the pres- 
ence of the optically imperfect glass envelope, a feat which would be impossible by 
other classical methods of interferometry. 

Real-time holographic interferometry 
Another important type of holographic interferometry depends on interference be- 

tween a prerecorded, holographically produced wavefront and the coherent waves re- 
flected from or transmitted by the same object in real time [39]. The holographically 
produced wavefront can be regarded as a reference, representing the reflected or trans- 
mitted light when the object is in a "relaxed" state. If the same object, located in the 
same position relative to the hologram that it occupied when the reference wavefront 
was recorded, is now perturbed, perhaps by placing it under stress with some form of 
loading, then the complex fields intercepted from the object change, and upon inter- 
ference with the reference wavefront, produce fringes that are visible on the image of 
the object seen through the hologram. Two slightly different coherent images are being 
superimposed by this process, one the image of the object in its original state, and the 
second the image of the object in its stressed or modified state. The fringes observed 
can reveal quantitative information about the nature of the object deformations that have 
taken place. 

Note that we are causing the coherent image of the object now to interfere with 
the coherent image of the object that existed sometime in the past (or perhaps, using a 
computer-generated hologram, with an object that never actually existed previously), a 
feat that would be impossible to accomplish with conventional interferometry. 

Contour generation 
The interference of multiple coherent images described previously has also led 

to the development of techniques for obtaining three-dimensional images with super- 
imposed constant-range contours. These techniques are applicable to the problems of 
cross-section tracing and contour mapping. Two distinctly different techniques have 
been demonstrated by Hildebrand and Haines [144]. 

In the first of these techniques, the object is illuminated by two mutually coherent 
but spatially separated point sources. The two object illuminations may be applied si- 
multaneously or the hologram may be double-exposed, with a different position of the 
object illumination source during each exposure. If the pattern of interference between 
the two object illumination sources is considered, it is found to consist of interference 
fringes that follow hyperbolas of constant path-length difference, as shown in Fig. 9.49. 
If the object is illuminated from the side and the hologram is recorded from above, then 
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FIGURE 9.49 
Contour generation by the two-source 
method. 

depth contours (i.e. the intersection of the object with the hyperbolic fringes) are readily 
seen on the reconstructed image. Identical results are obtained whether the two object 
illumination sources were used simultaneously in a single exposure or separately in 
individual exposures, for in either case the two illuminations add coherently. 

The two-source method of contour generation suffers from the requirement that the 
directions of illumination and observation must differ by nearly 90'. Thus if the object 
has significant reliefing, shadows will be cast and parts of the object will simply not 
be illuminated. This deficiency is overcome by the two-frequency or two-wavelength 
method of contour generation. In this case the object and reference illuminations both 
contain the same two distinct wavelengths, say hl and h2. In effect, each wavelength 
records a separate and independent hologram on the same recording medium. When 
the resulting hologram is illuminated by light of a single wavelength, two images with 
slightly different positions and magnifications are produced, These two images will 
interfere, and for certain geometries the resulting image contours will be accurate in- 
dications of depth. We do not dwell on a detailed analysis of this case; the interested 
reader may consult the original reference for further details [144]. Figure 9.50 shows 
the results of contour mapping by the two-wavelength method. In part (a) we see a 
holographic image of a coin, illuminated in the usual manner with single-wavelength 
light. When two-wavelength light is used to record the hologram, the image of part (b) 
is obtained. In this case the two wavelengths were obtained from two different lines of 
an argon laser. The two lines are separated by 650 nm, and the resulting contours on 
the image are spaced by 20 p m .  

Vibration analysis 
A holographic technique for vibration analysis, first proposed by Powell and Stet- 

son [234], may be regarded as a generalization of multiple-exposure holographic inter- 
ferometry to the case of a continuous time exposure of a vibrating object. 

With reference to the geometry of Fig. 9.51, we consider a point at coordinates 
(x,, yo) on a planar object which is vibrating sinusoidally with angular frequency R. 
The peak amplitude of the vibration at that point is represented by m(x,, yo), and the 
fixed phase of the vibration is p(xo, yo). The light incident at the hologram recording 
plane coordinates (x, y) from that particular point may be regarded as having a time- 
varying phase modulation 
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FIGURE 9.50 
Contour generation by the two- 
wavelength method. [By permission of 
B.P. Hildebrand and K.A. Haines.] 

Reference k Mirror 

plane 

FIGURE 9.51 
Recording a hologram of a vibrating 
object. 
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where h is the optical wavelength of the illuminating source, O1 is the angle between 
the vector displacement of the object at (x,, yo) and the line joining that point to (x, y), 
and O2 is the angle between the vector displacement and the direction of propagation 
of the incident light at (x,, y,). 

Using what by now should be a familiar expansion into Bessel functions, the tem- 
poral spectrum of the time-varying phaser representing the modulated light incident at 
(x, y) can be written 

x 
cos 8 + cos O2 

h 

When the exposure time is much longer than the vibration period (that is, when T >> 
27~/R) ,  only the k = 0 term, which is at the same optical frequency as the reference 
wave, will cause stable interference fringes to be formed. All other terms will fail to 
produce such fringes. If the variations of the modulation depth introduced by the term 
cos 81 are nearly independent of (x, y) (that is, if the angle subtended by the film at 
(x,, yo) is small), then the amplitude of the image at (x,, y,) will be suppressed by the 
factor 

(cos 8 1 + cos 02) m(xo, y, 

and the intensity will be suppressed by the square of this factor. Thus the intensity of 
the image depends at each point on the depth of vibration of the corresponding object 
point. 

Figure 9.52 shows images of a vibrating diaphragm obtained experimentally by 
Powell and Stetson. In part (a) of the figure, the diaphragm is vibrating in its lowest- 
order mode, with a single vibration maximum at the center of the diaphragm. In part 
(b), the diaphragm is vibrating in a higher-order mode, with two vibration maxima. By 
counting the number of fringes from the center of the diaphragm to any point in ques- 
tion, it is possible, with the help of Eq. (9- 130), to determine the vibration amplitude at 
that point. 

9.12.3 Imaging Through Distorting Media 

In many cases of practical interest, an optical system may be required to form images 
in the presence of uncontrollable aberrations. These aberrations may result from im- 
perfections of the image-forming components themselves, or they may be introduced 
by an external medium, such as the Earth's atmosphere. The techniques of holography 
offer several unique advantages for problems of imaging in the presence of such aber- 
rations. We discuss here three distinctly different holographic techniques for obtaining 
high resolution in the presence of severe aberrations. 
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FIGURE 9.52 
Holographic images of a diaphragm 
vibrating in two different modes. [By 
permission of R.L. Powell and K.A. Stetson.] 

The first technique ([191], [168]) of interest is applicable only when the distort- 
ing medium is constant in time. As illustrated in Fig. 9.53, a hologram of the distorted 
object waves is recorded with an undistorted reference wave. The processed hologram 
is then illuminated with an "anti-reference" wave, i.e. a reconstruction wave that du- 
plicates the reference wave but propagates in the reverse direction. A real, conjugate 
image of the distorting medium will form precisely at the location of the medium itself, 
between the hologram and the image plane. If the object wave incident on the distorting 
medium during the recording process is represented by !Yo(&, r ] )  and if the amplitude of 
transmittance of the distorting medium is exp[jW(&, r])], then the wave falling on the 
distorting medium during reconstruction is U:([, r ] )  exp[- jW(&, r])]. Note that when 
this conjugate wave passes back through the identically same distorting medium that 
was originally present, the aberrations entirely cancel, 
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FIGURE 9.53 
Use of the original distorting medium for compensating 
aberrations. (a) Recording the hologram; (b) reconstructing 
the image. 

leaving a wave UZ(6, q )  to propagate on to the image plane, where an aberration-free 
image appears. 

A limitation of the technique in some applications is that the image must appear 
where the object originally was situated, whereas in practice it is often desired to obtain 
an image on the other side of the distorting medium (i.e. to the right of the distorting 
medium in Fig. 9.53). If the distorting medium is movable, then this difficulty can be 
overcome. 

A second technique of interest is illustrated in Fig. 9.54. Again the distorting 
medium should be unchanging in time. In this case we record a hologram of the dis- 
torted waves transmitted by the medium when it is illuminated by a simple point source 
(i.e. a record of the point response of the medium). This hologram may now be used 
as a "compensating plate" to enable a more conventional optical system to form an 
aberration-free image. Let the waves incident on the recording medium due to the 
point source be represented by exp[jW(x, y)]. We have assumed that the distorting 
medium is such that only phase distortions are introduced. The portion of the holo- 
gram amplitude transmittance that normally contributes the real image is proportional 
to exp[- jW(x ,  y ) ] .  Thus if we replace the point source by a more general object, and 
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FIGURE 9.54 
Use of a hologram compensating plate. (a) Recording the 
compensating plate; (b) cancellation of the aberrations. 

reinsert the hologram in the same position it originally occupied, we find that the cur- 
vatures of the object waves reaching the hologram are canceled on passage through the 
hologram, with the waves from different object points producing plane waves traveling 
at different angles. The lens then forms a distortion-free image in its focal plane. 

This technique will work well over only a restricted field of view, for if an object 
point is too far from the position of the original point source used in recording the 
hologram, the aberrations imparted to its wave may differ from those recorded on 
the hologram. This restriction is less severe if the hologram is recorded very close 
to the distorting medium. Upatnieks et al. [287] have successfully applied this tech- 
nique to the compensation of lens aberrations, an application to which it is well suited. 

A third technique, which may be applied to imaging through media that are time- 
varying or time-invariant, is accomplished by passing both the reference wave and the 
object wave through the same distorting medium [125]. As indicated in Fig. 9.55 the 
lensless Fourier transform recording geometry is most commonly used, with a refer- 
ence point source existing in the same plane or nearly the same plane as the object 
of interest. For simplicity it is assumed that the distorting medium is located imme- 
diately in front of the recording plane, although this restriction can be relaxed with 
some loss of the field of view over which compensation is effective. The reference and 
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FIGURE 9.55 
Aberration-free imaging when the 
object and reference waves are 
identically distorted. (a) Recording 
the hologram; (b) obtaining the 
image. 

object waves reaching the recording medium can be written as A(x, y) exp[jW(x, y)] 
and a(x, y) exp[j  W(x, y)], where A and a are the waves that would have been present 
in the absence of a distorting medium. Interference of the two distorted waves yields a 
pattern of intensity that is unaffected by the presence of the distorting medium, 

z(x, Y) = I A ( x ,  Y) exp[ jW( i  y)l + a(x, y) exp[ jW(x, y)1 l 2  
= 1 ~ 1 ~  + laI2 + A*a + Aa*, 

and distortion-free twin images can be obtained from the hologram. 
Again the technique will work over only a limited object field, since points too 

far from the reference may produce waves with aberrations that differ significantly 
from those of the reference wave. The working field is largest when the aberrations are 
introduced close to the recording plane. 

This method is an example of a more general set of techniques in optics known as 
"common path interferometry". It has been applied to the problem of obtaining high- 
resolution images of distant objects through the Earth's atmosphere [112], [113], [126]. 

9.12.4 Holographic Data Storage 

There are many attractive properties of holography as a potential data storage technique, 
and as a consequence, much attention has been given over the years to this application. 
Most obvious, perhaps, is the highly diffused nature of holographic storage, in the sense 
that a single pixel of an analog image or a single bit in a binary data array is stored in 
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a distributed fashion over a considerable area of the hologram. Nonlocalization is most 
complete for a Fourier transform hologram, and least complete for an image hologram, 
with Fresnel holograms falling in between these two extremes. When there is a large 
amount of nonlocalization, a dust speck or a defect in the recording medium that ob- 
scures or destroys a very localized area on the hologram will not create a localized 
defect in the image, and therefore there will not be a localized loss of stored data. 

A second advantage, associated particularly with the Fourier transform recording 
geometry, arises from the fact that a shift in the hologram domain results in only a 
linear phase tilt in the Fourier domain, and therefore has no effect on the location of 
the image intensity distribution. As a consequence, Fourier holograms are extremely 
tolerant to misalignment or registration errors. This property is extremely important for 
high-density memories, especially those that have high magnification in the sense that 
a small hologram produces a much larger image. 

A third attraction of holography as a storage method comes from our ability to use 
the third dimension of a three-dimensional recording material, such as a thick record- 
ing film or a photorefractive crystal, for recording. Thus holography offers one method 
of three-dimensional optical storage, and by utilizing the third dimension the volume 
storage density that can be achieved is quite high. 

Early work on holographic storage concentrated on thin holograms and storage of 
two-dimensional binary arrays [ 5 ] .  Figure 9.56 shows a typical arrangement. Separate 
two-dimensional pages of binary data are stored in a two-dimensional array of holo- 
grams. The light from a CW laser is deflected by a pair of acousto-optic beam deflec- 
tors to a particular hologram in the array. The particular hologram selected generates an 
array of binary spots on a two-dimensional detector array. Thus to determine the state 
of one particular binary element in the memory, a combination of the right hologram 
and the right detector element must be interrogated. 

More recent emphasis has been on three-dimensional storage media, such as photo- 
refractive crystals (see, for example, [141]), which are capable of providing Bragg se- 
lectivity. Multiplexing of holograms within the crystal and selective recall of the data 
recorded in those holograms can be achieved by means of angle multiplexing, wave- 
length multiplexing, or multiplexing with phase-coded reference beams. A typical ge- 
ometry for such a system (from [141]) is shown in Fig. 9.57. A spatial light modulator 
serves to generate an array of binary data, and the reference wave is introduced at a par- 
ticular angle designated for that page of data. The reference beams are introduced from 
the side of the crystal, an orientation that maximizes angular selectivity. The hologram 
is recorded, and the data can be read out onto a CCD detector array by illumination of 
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FIGURE 9.57 
A volume holographic storage system. The case of angle multiplexing is illustrated. 

the crystal with a duplicate of the reference beam. Other holograms are superimposed 
in the crystal by use of other reference angles, and must be read out with duplicates 
of those reference beams. The diffraction efficiency associated with a single bit falls 
as 1IN2 when N holograms are superimposed, due to the partial erasure of early holo- 
grams caused by the recording of later holograms. Superposition of several thousand 
holograms by angular multiplexing has been demonstrated experimentally [45]. 

Finally, mention should be made of the use of holography for associative memories, 
an idea first described by Gabor [109]. Discussion of related ideas can be found in [115], 
[164], [165], and [166]. 

9.12.5 Holographic Weights for Artificial Neural Networks 

Neural network models provide an interesting and powerful approach to many pattern 
recognition and associative memory problems. One approach to constructing an arti- 
ficial "neural" processor is through the use of volume holography. In this section we 
provide the briefest introduction to this subject, together with references that will allow 
the reader to pursue the ideas further. The terminology used to describe networks of 
this type is borrowed from the neurological sciences, but it is important to understand 
that the models used in artificial neural networks contain only the simplest extraction of 
the essence of the types of processing that are believed to take place in real biological 
neural systems. An introduction to the field of neural computing can be found in, for 
example, [142]. 

Model of a neuron 
Neural networks consist of a multitude of nonlinear elements referred to as neu- 

rons, highly interconnected with each other. A simple model of a neuron is illustrated 
in Fig. 9.58(a). The summation of a multitude of different weighted binary inputs is 
applied to the input of a nonlinear element, usually taken to have a "sigmoid" nonlinear 
characteristic described by the input-output relation 
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FIGURE 9.58 
(a) Model of a single neuron; (b) sigmoidal nonlinearity. 

which is illustrated in Fig. 9.58(b). 
The input y to the nonlinearity is the sum of N weighted inputs xi, as described by 

the relation 

where the wi are the weights applied to those inputs. 
A single neuron can be trained to produce either a 1 or a 0 in response to a particular 

input vector i by adjusting the weight vector so that it is either co-directional with or 
orthogonal to that input vector, respectively. In the former case a large positive input to 
the sigmoid nonlinearity drives the output to a result very close to unity, and in the latter 
case a large negative input drives the output result very close to zero. In this way, by 
adjusting the weights, it is possible to "train" the neuron to recognize a particular input 
vector. Extending this idea, one finds if the neuron is to be presented with an entire set 
of vectors, each of which is to be classified into one of two possible sets, by training the 
neuron with examples of the two classes, it can be taught to separate the input vectors 
by means of a simple hyperplane in the N-dimensional space of the vectors. Classes of 
vectors that are separable with a hyperplane will then be distinguished by the neuron, 
while those that are not separable with a hyperplane cannot be distinguished. 

Networks of neurons 
To obtain functionality that is more complex than that possible with a single neuron, 

collections of such elements are joined together to form a neural network. An example 
of such a network having four layers of interconnected neurons is shown in Fig. 9.59. 
The layer of neurons on the far left can be thought of as containing input neurons. In an 
image-recognition problem, for example, each such neuron might receive a single input 
representing the value of one pixel of an image that is to be classified by the network. 
The layer on the right can be thought of as containing output neurons. Each such neuron 
represents one of the possible classes into which the image is to be classified. Ideally, 
when a single image is presented at the input of the network, with appropriate training, 
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FIGUR 

the network will cause a single output neuron to produce a value at or near unity and 
the rest to produce values at or near zero. The particular neuron that has unity output 
indicates the class of which the input image is a member. The middle layers of neurons 
are referred to as "hidden" layers. The number of hidden layers determines the com- 
plexity of the dividing surfaces in N-dimensional space that can separate input images 
into classes. 

The neural network must be trained by presenting it with samples from the var- 
ious classes of input images, and adjusting all of the weights according to some pre- 
determined algorithm. A variety of training algorithms exist, all of which involve the 
minimization of an error metric. We mention in particular the LMS algorithm [299] 
for single-layer networks and the backpropagation algorithm [25 11 for multilayer net- 
works, but must refer the reader to the references for details. 

Optical neural networks based on volume holographic weights 
One popular implementation of neural networks using optics is based upon storage 

of weights in an erasable, thick holographic medium. Photorefractive crystals are most 
commonly used. Figure 9.60 illustrates one manner in which a hologram can introduce 
a weighted interconnection. We assume that the input to the neural network consists of 
a spatial light modulator that generates a coherent amplitude distribution proportional 
to the input to be processed. The lens L I  Fourier transforms the input, and thus each 
pixel in the spatial light modulator generates a plane wave with a unique k vector at 
the crystal. We assume that a collection of sinusoidal volume gratings has been written 
into the crystal; the exposure times or the strengths of the waves used in recording these 

Cone of Bragg 
degeneracy 

FIGURE 9.60 
Illustration of a single weighted interconnection using a 
hologram. In practice, many such interconnections would be 
realized simultaneously. 
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gratings determine their diffraction efficiencies, and therefore control the weights that 
they will apply to incident Bragg-aligned plane waves. By means of a second Fourier 
transforming lens, all plane waves traveling in a common direction are summed onto 
a single output pixel. There are many output pixels, each corresponding to a different 
direction of light diffracted from the crystal. 

Thus a multitude of volume gratings are written into the crystal, each grating rep- 
resenting one weight. A weighted sum of input pixel values then results at each output 
pixel. A training procedure can be implemented under computer control that changes 
the strengths of the volume gratings in accord with a chosen training algorithm. 

The attraction of optics, and in particular volume holography, in this application 
comes from the very large number of gratings (or weights) that can be superimposed 
in a single crystal, coupled with the fact that large numbers of pixels (or neurons) can 
be realized with SLM technology. The thickness of the recording material is important 
if a multitude of different gratings are to be angularly multiplexed (using the Bragg 
effect) in the medium. The goal of achieving large numbers of weights is hindered by 
two phenomena. One, known as Bragg degeneracy, refers to the fact that the Bragg 
condition can be satisfied by an entire cone of angles, rather than just a single angle, 
and therefore there is the potential for significant crosstalk to exist between weighted 
interconnections. This problem can be combatted by utilizing only a properly chosen 
subset of the possible gratings, such that light can pass from one input pixel to one 
output pixel by means of one and only one volume grating [238]. A second solution is 
to break the Bragg degeneracy by forcing a single path from an input pixel to an output 
pixel to diffract from more than one volume grating [224]. 

A second limitation arises from the fact that, for photorefractive crystals subjected 
to a sequence of exposures, the later exposures partially erase the early exposures. This 
limits the total number of gratings that can be superimposed; however, experiments 
have demonstrated storage of several thousands of exposures [215]. Actually, the ten- 
dency of the photorefractive medium to "forget" early exposures can be used to advan- 
tage in some learning processes. 

We have only touched the subject of optical neural networks in the above discus- 
sion. Other approaches to utilizing optics for neural-like computation exist. We mention 
in particular the realization of Hopfield neural networks using the matrix-vector archi- 
tecture of Section 8.1 1.3 [237] and the use of competitive and cooperative phenomena 
in systems utilizing nonlinear optical elements [4]. For additional references, see the 
March 1993 issue ofApplied Optics, which was devoted to the subject of optical neural 
networks. 

9.12.6 Other Applications 

Many other applications of holography exist, but space limitations prevent us from re- 
viewing them all here. In this section we give brief mention of several areas that are 
particularly important, and present some references for further study. 

Holographic optical elements 
Holography has found considerable application to the construction of waveshaping 

optical elements, which are referred to as holographic optical elements (HOES). Such 
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elements are one further example of diffractive optical elements. Again it is the light 
weight and compact volume associated with such elements that make them particu- 
larly attractive. Holographic optical elements have been used, for example, for optical 
scanning [18], [18 11, for heads-up displays in aircraft cockpits [66], and in many other 
applications. 

The reader is referred to Section 7.3 for further discussion of diffractive optical el- 
ements. References [59], [60], [61], [62], and [63] all contain examples of applications. 

Holographic display and holographic art 
The striking character of three-dimensional holographic images has been the fac- 

tor most responsible for interest in holography on the part of the nontechnical pub- 
lic. Holography has been applied to advertising, and a multitude of artists have taken 
up holography as a medium of choice. A Museum of Holography was established in 
New York City and recently moved to the Massachusetts Institute of Technology. Holo- 
graphic jewelry can be found in many-shops around the world. 

Holograms for security applications 
The application that brings holography into direct contact with the largest num- 

ber of people is the use of holograms for prevention of counterfeiting and fraud. The 
ubiquitous embossed hologram on the credit card is the most common example in the 
United States, although in Europe its use has been extended even further. Holography 
is used in such applications to provide a deterrent to counterfeiting, since the presence 
of a hologram as an integral part of a credit card or a bank note makes the unauthorized 
duplication of that item considerably more difficult than would otherwise be the case. 

To gain a better appreciation for the variety of applications of holography in the 
security field, the reader may wish to consult [96], which contains many papers on the 
subject. 

PROBLEMS-CHAPTER 9 

9-1. A hologram is recorded using a spherical reference wave that is diverging from the point 
(x,, y,, z,), and the images from that hologram are played back with a reconstruction beam 
that is diverging from the point (x,, y,, 2,). The wavelength used for both recording and 
reconstruction is A, .  The hologram is taken to be circular, with diameter D. See Fig. P9.l(a) 
below. It is claimed that the image of an arbitrary three-dimensional object obtained by 
this method is entirely equivalent to that obtained by a lens of the same diameter and at 
the same distance from the object, as shown in part (b) of the figure, and a prism (for 
simplicity, not shown), where again the wavelength is A , .  What are the two possible focal 
lengths for the lens that will produce equivalence? 

9-2. A hologram is recorded with light from an argon laser at 488 nm wavelength, and the 
images are reconstructed with light from a HeNe laser with wavelength 632.8 nm. There 
is no scaling of the hologram. 

(a) Assuming z, = m, z, = a, and z, = - 10 cm, what are the axial distances zi of the 
twin images? What are the transverse and axial magnifications of the images? 
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FIGURE P9.1 

(b) Assuming zp = w, z,  = 2z0, and zo = - 10 cm, what are the axial distances and the 
transverse and axial magnifications of the twin images? 

9-3. A hologram is recorded, and its images reconstructed with the same wavelength A. As- 
suming zo < 0, show that when z, = z, there results a virtual image with unity transverse 
magnification, whereas with zp = -2, there results a real image with unity transverse 
magnification. What is the transverse magnification of the twin image in each case? 

9-4. The lensless Fourier transform geometry (see Fig. 9.14) is used to record a hologram of 
an object consisting of a square transparency of width L. The amplitude transmittance 
of the object is tA(xo, yo), and the distance of the object from the recording plane is lzl. 
The reconstruction wavelength is the same as the recording wavelength. The images are 
obtained by illuminating the hologram with a plane wave, followed by a positive lens of 
focal length f. For simplicity, both the object illumination and the reconstruction wave 
may be taken to have amplitude unity. 

(a) What is the transverse magnification M, of the first-order images? 

(b) Show that the amplitude of the zero-order (i.e. on-axis) image term can be expressed 
as 

m 

(plus a central diffraction-limited spot), where 

u:(x,, yo) = tA(xo, yo) e j h i ; l ( ~ s + y s ) .  

(c) How far from the center of the object transparency should the reference point source be 
placed in order to assure no overlap of the zero-order light with the first-order images? 

9-5. We wish to make a holographic display that will project a real image of a planar trans- 
parency object. The recording and reconstruction geometries are shown in Fig. P9.5. The 
reference and object are constrained to lie to the left of the hologram during recording. The 
reconstruction source must lie to the left of the hologram, and the projected image must lie 
to the right of the hologram. The hologram is not turned around or changed in size between 
recording and reconstruction. The recording wavelength is 632.8 nm, the reconstruction 
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(a) 

FIGURE P9.5 

wavelength is 488 nm, the object transparency size is 2 x 2 cm, the desired image size is 
4 x 4 cm, the axial distance from the hologram to the image must be 1 m, and the axial 
distance of the reconstruction source to the hologram is constrained to be 0.5 m. 

(a) Subject to the above constraints, specify all possible axial object and reference dis- 
tances z ,  and z, that will together yield the desired image. 

(b) Repeat part (a), but with the hologram rotated 180" left to right (i.e. back and front 
interchanged) between the recording and reconstruction steps. 

9-6. It is proposed to record an X-ray hologram using coherent radiation of wavelength 0.1 
nm and to reconstruct images optically using light of wavelength 600 nm. The object is 
a square transparency with a pattern of absorption at the X-ray wavelength. The lensless 
Fourier transform recording geometry is chosen. The width of the object is 100 pm,  and 
the minimum distance between the object and the reference is to be 200 p m  to assure 
that the twin images will be separated from the "on-axis" interference. The X-ray film is 
placed 2 cm from the object. 

(a) What is the maximum spatial frequency (cycles/mm) in the interference pattern 
falling on the film? 

(b) Assume that the film has sufficient resolution to record all of the incident intensity 
variations. It is proposed to reconstruct the images in the usual manner, i.e. by look- 
ing in the rear focal plane of a Fourier transforming lens. Why will this experiment 
fail? 

9-7. A thick unslanted transmission phase grating is to be produced by bleaching the recording 
that results from interfering two plane waves in a photographic emulsion. The wavelength 
of the exposing radiation in air is 488 nm and the angle between the two interfering beams, 
also in air, is 60". The thickness of the emulsion is 15 pm.  The average refractive index 
of the emulsion, both before exposure and after bleaching, is 1.52 (the index of gelatin). 
The same wavelength is used for reconstruction as for recording. 

(a) What are the wavelength and the angle between the two beams inside the emulsion 
during recording? How does the period of the grating predicted by the angle and wave- 
length outside the emulsion compare with the period predicted using the wavelength 
and angle inside the emulsion? 
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(b) Assuming Bragg matched conditions, what peak refractive index modulation nl is 
required in order to reach the first 100% peak of the diffraction efficiency curve for a 
thick transmission phase grating? 

(c) Assuming operation at this same first maximum of diffraction efficiency, and assum- 
ing no error A 9  in the illumination angle, what wavelength error AA (external to the 
emulsion) will result in the diffraction efficiency dropping to 50%? 

(d) Again assuming operation at the first maximum of the diffraction efficiency, and as- 
suming no error in the reconstruction wavelength, what angular error A 9  (external to 
the emulsion) will result in a reduction of the diffraction efficiency to 50%? 

9-8. A holographic plate of thickness 15 p m  records a hologram by interference of two plane 
waves with equal but opposite angles to the emulsion normal. The wavelength for both 
recording and reconstruction is 633 nm, and the refractive index of the emulsion is 1.52 
before and after development. For what angle (in air) between the two interfering beams 
will the thickness parameter Q of Eq. (9-44) have value 27r? 

9-9. Consider a thick transmission, unslanted sinusoidal absorption grating. Let the absorption 
modulation have its maximum possible value. Assume that the interfering plane waves 
are separated in angle by 60". Under Bragg matched conditions, what average density D 
of the transparency yields the maximum possible diffraction efficiency of 3.7%? 

9-10. Using Eq. (9-66), show that, in the absence of wavelength mismatch, the angular selectiv- 
ity of a volume grating is maximized when the object and reference waves are separated 
by an angle of 90". Hint: remember that K depends on 9. 

9-11. Show that for a Fourier transform computer-generated hologram, the number of samples 
required for the object amplitude equals the number of samples required for the hologram 
wave amplitude. 

9-12. Consider the problem of constructing a computer-generated hologram when the geometry 
is as illustrated in Fig. 9,39(a), but with the object plane moved by distance Az to the left 
of the Front focal plane. Determine the approximate bandwidth of the hologram field and 
the minimum allowed spacing of the samples in the hologram plane, as a function of Az 
and any other needed parameters. 

9-13. For a certain binary detour-phase hologram, square cells (size L X L) are allocated to 
each Fourier coefficient, and the amplitudes lap,l of those coefficients are represented by 
opening a rectangular subcell within each cell. The width wx for all transparent subcells is 
constrained to be 1110th of the cell width to satisfy the approximations used. The width wy 
can range from 0 to the full size of a cell, depending on the amplitude to be represented. 
The hologram is uniformly illuminated by a normally incident plane wave, and no light is 
lost by the Fourier transforming lens that follows the hologram. For the purposes of this 
problem, the object is taken to be a point source located at the center of the object space, 
yielding Fourier coefficients that are all the same constant, say of value a,  which we shall 
take to be a number somewhere between 0 and 1. When the Fourier amplitude is to be a,  
the vertical height of all subcells is set to wy = aL. 

(a) For a given value of a,  find the coefficients of the two-dimensional Fourier series 
representation of the amplitude transmittance of the binary hologram. 
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(b) Calculate the fraction of the total light intensity incident on the hologram that ends up 
in the zero-frequency spot on the axis in the image plane. 

(c) Calculate the fraction of total incident light that is blocked by the opaque portions of 
the hologram. 

(d) Find the diffraction efficiency for both of the two first-order images. 

9-14. The following table lists approximate cutoff frequencies (in line-pairslmm) for several 
different types of film: 

l f g g  

Kodak Tri-X 25 
Kodak High-Contrast Copy 30 
Kodak SO-243 150 
Agfa Agepan FF 300 

Assume illumination at 632.8 nm and a lensless Fourier transform geometry with reference 
source and object both 10 cm from the film. For each film above, estimate the radius of 
the circle about the reference point outside of which object points will be at the respective 
cutoff frequencies. 

9-15. A certain film has a nonlinear tA vs. E curve which, over its region of operation, may be 
described by 

t~ = tb + PE:, 

where El represents the variations of exposure about the reference exposure. 

(a) Assuming a reference wave A exp(- j2.rrax) and an object wave 

a(x, Y) exp [ - j4(x7 Y)] 

at the film, find an expression for that portion of the transmitted field that generates 
the twin first-order images. 

(b) To what does this expression reduce if A >> lal? 

(c) How do the amplitude and phase modulations obtained in the previous parts of the 
problem compare with the ideal amplitude and phase modulations present when the 
film has a linear t~ VS. E curve? 
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Delta Functions and Fourier 
Transform Theorems 

A.l 
DELTA FUNCTIONS 

The one-dimensional Dirac delta function, widely used in systems analysis, is in fact 
not a function at all, but rather is a more general entity, often called a "functional" or a 
"distribution". While a function is an entity that maps a number (the argument of the 
function), into a number (the value of the function), a functional maps a function into a 
number. A simple example of a functional is a definite integral, for example 

which maps any given function h( t )  into the value of its area. 
In this spirit, the defining characteristic of the delta function1 is its so-called "sift- 

ing" property under integration, namely 
m 

h(b) b a point of continuity of h 

/_m 
- b)h(t)dE = { 1 2 [h(bt) + h(b-)] b a point of discontinuity of h. (A- 1) 

In this equation, the symbols h(b+) and h(b-) represent the limiting values of h as its 
argument approaches the discontinuity from above and from below, respectively. The 
mapping of a function h into the values on the right of the above equation defines the 
functional we call the delta function. The integral is a convenient representation for this 
mapping, but should not be interpreted literally as an integral. It can be viewed as the 
limit of a set of integrals, i.e. 

'We continue to use the wordfunction due to its common use, even though it is not strictly correct. 

393 
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where g~ is a sequence of functions that in the limit N + GQ exhibit the required sift- 
ing property. Such functions must all have unit area, and must in some sense become 
narrower and narrower as N grows large. 

It has become fairly common practice in the engineering literature to represent the 
delta function by the limit of the sequence of functions g~ in Eq. (A-2), i.e. to write 

S(x) = lirn gN(x). 
N+m 

04-31 

Although this representation is not strictly correct, the limit of the sequence of integrals 
being the proper representation, nonetheless we use it here with the understanding that 
it really means what is expressed in Eq. (A-2). Thus we write, for example that 

S(x) = lim N e ~ ~ ( - ~ ~ . r r x ~ )  
N+m 

S(x) = lim N rect(Nx) 
N - + m  

6(x) = lirn N sinc(Nx). 
N+m 

A plot of the last of the above functions shows that Nsinc(Nx) does not become a very 
narrow pulse as N -+ a, but rather it retains a finite spread and develops ever more 
rapid oscillations everywhere except at the origin. Such oscillations in the limit assure 
that under an integral sign the value of h at the location of the center of the function 
sequence will be sifted out. Thus it is not necessary that the functions g~ vanish in the 
limit everywhere except the origin. A somewhat more bizarre example is the function 
sequence 

gN (x) = N ejTl4 exp [ j a ( ~ x ) ~ ] ,  

each member of which has unit area and magnitude N everywhere, but still exhibits a 
sifting property in the limit. 

While the S function is used in electrical systems analysis to represent a sharp, 
intense pulse of current or voltage, the analogous concept in optics is a point source of 
light, or a spatial pulse of unit volume. The definition of the S function in two dimen- 
sions is a simple extension of the one-dimensional case, although there is even greater 
latitude in the possible functional forms of the pulse sequences used. Many possible 
definitions use separable pulse sequences, e.g. 

S(x, y) = lirn N~ exp [ - N ~ ~ ( x ~  + y2)] 
N+m 

6(x, y) = lim N~ rect(Nx) rect(Ny) 
N+m 

6(x, y) = lim N~ sinc(Nx) sinc(Ny). 
N+m 

Other possible definitions use circularly symmetric functions, e.g. 

6(x, y) = lim 
N+m 
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J I  (2nN J-) 
S(x, y) = lim N 

N+= ,I- (A-4 cont.) 

In some applications one definition may be more convenient than others, and the defi- 
nition best suited for the problem can be chosen. 

A property of all two-dimensional delta functions that can be easily proved (see 
Prob. 2-l(a)) is 

I 
Nax, by) = -S(x, y), 

lab1 (A-5) 

which describes how such entities behave under scaling of coordinates. Again this state- 
ment has meaning only under integral signs. 

A.2 
DERIVATION OF FOURIER TRANSFORM THEOREMS 

In this section, brief proofs of basic Fourier transform theorems are presented. For more 
complete derivations, see [32], [226], and [13 11. 

1. Linearity theorem. F{ag + ph) = aF{g) + PF{h) 
Proof: This theorem follows directly from the linearity of the integrals that define 
the Fourier transform. 

2. Similarity theorem. If F{g(x, y)) = G(fx, fy), then 

F{g(ax, by)) = 

Proof: 

%(ax9 by)) = g(ax, by) exp[- j2n(  fxx + fur)] dx dy II 
= I/ g(ax, by) exp 

3. Shift theorem. If F{g(x, y)) = G( fx, fv), then 

Proof: 
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= 11 g(x l ,  Y ' )  exp{-  j 2 n [ f x ( x 1  + a )  + f y ( y f  + b ) l ) d x f  dy' 

4. Rayleigh's (Parseval's) theorem. If F { g ( x ,  y ) )  = G (  fx,  f y  ), then 

Proof: 

5. Convolution theorem. If F { G ( x ,  y ) )  = G (  fx,  f y )  and F{h(x ,  y ) )  = H( fx,  f y ) ,  
then 



APPENDIX A Delta Functions and Fourier Transform Theorems 397 

Proof: 

= G(fx, fu) H(fx, fv). 

6. Autocorrelation theorem. If i{g(x, y)) = G( fx, fy), then 

Proof: 

F { i  g(t, n)g*(t - x9 n - yrd tdn  
-m 

7. Fourier integral theorem. At each point of continuity of g, 

FF-'{g(x, Y)) = 3-'F{g(x, Y)) = g(x, y). 

At each point of discontinuity of g, the two successive transformations yield the 
angular average of the value of g in a small neighborhood of that point. 

Proof: Let the function gR(x, y) be defined by 
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where AR is a circle of radius R, centered at the origin of the ( fx,  f y )  plane. To prove 
the theorem, it suffices to show that, at each point of continuity of g, 

and that, at each point of discontinuity of g, 

where gO(0)  is the angular dependence of g in a small neighborhood about the point 
in question. Some initial straightforward manipulation can be performed as follows: 

Noting that 

where r  = , / ( x  - [ ) 2  + ( y  - q ) 2 ,  we have 

Suppose initially that ( x ,  y )  is a point of continuity of g. Then 

lim ~ R ( x ,  y )  = did77 g(5, v) lim R 
R+ m R+m 

= Ij i d ?  ~ ( ( 9  ? ) W x  - i, y  - 77) = g(x,  y), 

where Eq. (A-4) has been used in the second step. Thus the first part of the theorem 
has been proved. 

Consider next a point of discontinuity of g. Without loss of generality that point 
can be taken to be the origin. Thus we write 

m 

J I  ( 2 a R r )  
g ~ ( 0 . 0 )  = 1 d i d r l g ( 6 ,  77)R [ r  1. 



APPENDIX A Delta Functions and Fourier Transform Theorems 399 

where r = de2 + q2. But for sufficiently large R, the quantity in brackets has sig- 
nificant value only in a small neighborhood of the origin. In addition, in this small 
neighborhood the function g depends (approximately) only on the angle 0 about that 
point, and therefore 

where go(0) represents the 0 dependence of g about the origin. Finally, noting that 

we conclude that 

and the proof is thus complete. 
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Introduction Paraxial Geometrical 
Optics 

B.l 
THE DOMAIN OF GEOMETRICAL OPTICS 

If the wavelength of light is imagined to become vanishingly small, we enter a domain 
in which the concepts of geometrical optics suffice to analyze optical systems. While 
the actual wavelength of light is always finite, nonetheless provided all variations or 
changes of the amplitude and phase of a wavefield take place on spatial scales that are 
very large compared with a wavelength, the predictions of geometrical optics will be 
accurate. Examples of situations for which geometrical optics does not yield accurate 
predictions occur when we insert a sharp edge or a sharply defined aperture in a beam 
of light, or when we change the phase of a wave by a significant fraction of 27r radians 
over spatial scales that are comparable with a wavelength. 

Thus if we imagine a periodic phase grating for which a "smooth" change of phase 
by 27r radians takes place only over a distance of many wavelengths, the predictions of 
geometrical optics for the amplitude distribution behind the grating will be reasonably 
accurate. On the other hand, if the changes of 27r radians take place in only a few 
wavelengths, or take place very abruptly, then diffraction effects can not be ignored, 
and a full wave-optics (or "physical-optics") treatment of the problem is needed. 

This appendix is not a complete introduction to the subject of geometrical optics. 
Rather, we have selected several topics that will help the reader better understand the 
relationship between geometrical optics and physical optics. In addition, several ge- 
ometrical concepts that are needed in formulating the physical-optics description of 
imaging and spatial filtering systems are introduced. 

The Concept of a Ray 

Consider a monochromatic disturbance traveling in a medium with refractive index that 
varies slowly on the scale of an optical wavelength. Such a disturbance can be described 
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by an amplitude and phase distribution 

where A(?) is the amplitude and k,S(?) is the phase of the wave. Here k, is the free- 
space wavenumber 2r/A,;  the refractive index n of the medium is contained in the 
definition of S. S(?) is called the Eikonal function. We follow the argument presented 
in 12531 (p. 52) in finding the equation that must be satisfied by the Eikonal function. 

Surfaces defined by 

S(?) = constant 

are called wavefronts of the disturbance. The direction of power flow and the direction 
of the wave vector are both normal to the wavefronts at each point i in an isotropic 
medium. A ray is defined as a trajectory or a path through space that starts at any par- 
ticular point on a wavefront and moves through space with the wave, always remaining 
perpendicular to the wavefront at every point on the trajectory. Thus a ray traces out 
the path of power flow in an isotropic medium. Substitution of (B-1) in the Helmholtz 
equation of Eq. (3-1 2) yields the following equation that must be satisfied by both A(?) 
and S(?): 

The real and imaginary parts of this equation must vanish independently. For the real 
part to vanish, we require 

Using the artifice of allowing the wavelength to approach zero to recover the geo- 
metrical-optics limit of this equation, the last term is seen to vanish, leaving the 
so-called Eikonal equation, which is perhaps the most fundamental description of 
the behavior of light under the approximations of geometrical optics, 

This equation serves to define the wavefront S. Once the wavefronts are known, the 
trajectories defining rays can be determined. 

Rays and Local Spatial Frequency 

Consider a monochromatic wave propagating in three dimensional space defined by an 
(x, y, z) coordinate system, with propagation being in the positive z direction. At each 
point on a plane of constant z, there is a well defined direction of the ray through that 
point, a direction that coincides with the direction of the wave vector at that point. 

We have seen previously that an arbitrary distribution of complex field across a 
plane can be decomposed by means of a Fourier transform into a collection of plane- 
wave components traveling in different directions. Each such plane wave component 
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has a unique wave vector with direction cosines (a, p ,  y )  defined by Eq. (3-58), and 
can be regarded as one spatial frequency associated with the wave. 

The spatial frequencies defined through the Fourier decomposition exist every- 
where in space and cannot be regarded as being localized. However, for complex func- 
tions with a phase that does not vary too rapidly, the concept of a local spatial frequency 
can be introduced, as was done in Section 2.2. The definitions of the local spatial fre- 
quencies (fix, fry) given there can also be viewed as defining the local direction cosines 
(al, pl, yl) of the wavefront through the relations 

These local direction cosines are in fact the direction cosines of the ray through the 
(x ,  y) plane at each point. This leads us to the following important observation: 

The description of the local spatial frequencies of a wavefront is identical with the descrip- 
tion of that wavefront in terms of the rays of geometrical optics. Ray direction cosines are 
found from local spatial frequencies simply by multiplication by the wavelength. 

B.2 
REFRACTION, SNELL'S LAW, AND THE 
PARAXIAL APPROXIMATION 

Rays traveling in a medium with constant index of refraction always travel in straight 
lines, as can be derived from the Eikonal equation. However, when the wave travels 
through a medium having an index of refraction that changes in space (i.e. an inhomo- 
geneous medium), the ray directions will undergo changes that depend on the changes 
of refractive index. When the changes of refractive index are gradual, the ray trajec- 
tories will be smoothly changing curves in space. Such bending of the rays is called 
refraction. 

However, when a wave encounters an abrupt boundary between two media having 
different refractive indices, the ray directions are changed suddenly as they pass through 
the interface. The angles of incidence el  and refraction e2, as shown in Fig. 3.1, are 
related by Snell's law, 

nl sine1 = n2sine2, (B-5) 

where nl and n2 are the refractive indices of the first and second media, respectively. 
In the problems of interest here, the changes of refractive index, as encountered, for 
example, on passage through a lens, will always be abrupt, so Snell's law will form the 
basis for our analyses. 

A further simplifying approximation can be made if we restrict attention to rays that 
are traveling close to the optical axis and at small angles to that axis, the geometrical 
optics version of the paraxial approximation. In such a case, Snell's law reduces to a 
simple linear relationship between the angle of incidence and the angle of refraction, 

and in addition the cosines of these angles can be replaced by unity. 
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The product 8 = n8 of the refractive index n and an angle 8 within that medium 
is called a reduced angle. Thus the paraxial version of Snell's law states that the re- 
duced angle remains constant as light passes through a sharp interface between media 
of different refractive indices, 

B.3 
THE RAY-TRANSFER MATRIX 

Under paraxial conditions, the properties of rays in optical systems can be treated with 
an elegant matrix formalism, which in many respects is the geometrical-optics equiv- 
alent of the operator methods of wave optics introduced in Section 5.4. Additional ref- 
erences for this material are [163], [253], and [261]. To apply this methodology, it is 
necessary to consider only meridional rays, which are rays traveling in paths that are 
completely contained in a single plane containing the z axis. We call the transverse axis 
in this plane the y axis, and therefore the plane of interest is the (y, z) plane. 

Figure B. 1 shows the typical kind of ray propagation problem that must be solved 
in order to understand the effects of an optical system. On the left, at axial coordinate 
zl, is an input plane of an optical system, and on the right, at axial coordinate 22, is an 
output plane. A ray with transverse coordinate yl enters the system at angle 81, and the 
same ray, now with transverse coordinate y2, leaves the system with angle 82. The goal 
is to determine the position y2 and angle 8 2  of the output ray for every possible yl and 
8, associated with an input ray. 

Under the paraxial condition, the relationships between (y2, 82) and (yl,  8 1)  are 
linear and can be written explicitly as 

where for reasons that will become evident, we use reduced angles rather than just 
angles. The above equation can be expressed more compactly in matrix notation, 

FIGURE B.l 
Input and output of an optical system. 
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The matrix 

is called the ray-transfer matrix or the ABCD matrix. 
The ray-transfer matrix has an interesting interpretation in terms of local spatial 

frequencies. In the (y, z) plane under paraxial conditions, the reduced ray angle 0 with 
respect to the z axis is related to local spatial frequency fi through 

Therefore the ray-transfer matrix can be regarded as specifying a transformation be- 
tween the spatial distribution of local spatial frequency at the input and the correspond- 
ing distribution at the output. 

Elementary Ray-Transfer Matrices 

Certain simple structures are commonly encountered in ray tracing problems. Here we 
specify the ray-transfer matrices for the most important of these structures. They are all 
illustrated in Fig. B.2. 

1 .  Propagation through free space of index n. Geometrical rays travel in straight 
lines in a medium with constant refractive index. Therefore the effect of propagation 
through free space is to translate the location of the ray in proportion to the angle at 
which it travels and to leave the angle of the ray unchanged. The ray-transfer matrix 
describing propagation over distance d is therefore 

1 dln 
~ = [ o  I ]  

(B- 10) 

2. Refraction at a planar interface. At a planar interface the position of the ray is un- 
changed but the angle of the ray is transformed according to Snell's law; the reduced 

FIGURE B.2 
Elementary structures for ray- 
transfer matrix calculations. 
(a) Free space, (b) a planar 
interface, (c) a spherical interface, 

(dl and (d) a thin lens. 
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angle remains unchanged. Therefore the ray-transfer matrix for a planar interface 
between a medium of refractive index nl and a medium of refractive index n2 is 

3.  Refraction at a spherical interface. At a spherical interface between an initial 
medium with refractive index nl and a final medium with refractive index n2, the 
position of a ray is again not changed, but the angle is changed. However at a point 
on the interface at distance y from the optical axis, the normal to the interface is not 
parallel to the optical axis, but rather is inclined with respect to the optical axis by 
angle 

Y Y $ = arctan - = - 
R R' 

where R is the radius of the spherical surface. Therefore if 0, and d2 are measured 
with respect to the optical axis, Snell's law at transverse coordinate y becomes 

or, using reduced angles, 

Solving for tT2 yields 

The ray-transfer matrix for a spherical interface can now be written as 

(B- 12) 

Note that a positive value for R signifies a convex surface encountered from left to 
right, while a negative value for R signifies a concave surface. 

4. Passage through a thin lens. A thin lens (index n2 embedded in a medium of index 
n l )  can be treated by cascading two spherical interfaces. The roles of nl and n2 
are interchanged for the two surfaces. Representing the ray-transfer matrices of the 
surfaces on the left and the right by M 1  and M2,  respectively, the ray-transfer matrix 
for the sequence of two surfaces is 

We define the focal length of the lens by 

(B-  1 3 )  
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in which case the ray-transfer matrix for a thin lens becomes 

The most useful elementary ray-transfer matrices have now been presented. Prop- 
agation through a system consisting of regions of free space separated by thin lenses 
can be treated with these matrices. Note that, just as with the wave-optics operators 
presented in Chapter 5, the ray-transfer matrices should be applied in the sequence in 
which the structures are encountered. If light propagates first through a structure with 
ray-transfer matrix M I ,  then through a structure with ray-transfer matrix M2, etc., with 
a final structure having ray-transfer matrix M,, then the overall ray-transfer matrix for 
the entire system is 

We note also that, because we have chosen to use reduced angles, rather than the 
angles themselves in the definition of the ray-transfer matrix, all of the elementary 
matrices presented have a determinant that is unity. 

B.4 
CONJUGATE PLANES, FOCAL PLANES, AND PRINCIPAL PLANES 

There exist certain planes within an optical system that play important conceptual and 
practical roles. In this section we explain the three most important of these types of 
planes. 

Conjugate Planes 

Two planes within an optical system are said to be conjugate planes if the intensity 
distribution across one plane is an image (generally magnified or demagnified) of the 
intensity distribution across the other plane. Likewise, two points are said to be conju- 
gate points if one is the image of the other. 

The properties that must be satisfied by the ray-transfer matrix between two con- 
jugate planes can be deduced by considering the relation between two conjugate points 
yl and y2, as implied by Eq. (B-8). The position of the point y:! that is conjugate to yl 
should be independent of the reduced angle of a ray through yl, implying that the ma- 
trix element B should be zero. The position y~ should be related to the position y~ only 
through the transverse magnification m,, which is the scale factor between coordinates 
in the two planes. We conclude that the matrix elementA must equal mt. In addition, the 
angles of the rays passing through y;! will generally be magnified or demagnified with 
respect to the angles of the same rays passing through yl . The magnification for reduced 
angles is represented by ma, and we conclude that the matrix element D must satisfy 
D = m,. There is no general restriction on the matrix element C, so the ray-transfer 
matrix between conjugate planes takes the general form 
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Recalling that angles and positions are conjugate Fourier variables, the scaling theorem 
of Fourier analysis implies that the transverse magnification and the angular magnifi- 
cation must be related in a reciprocal fashion. The magnifications m, and m, are in fact 
related by 

mtm,  = 1. (B- 1 6) 

Thus the form of the ray-transfer matrix for conjugate planes is 

Note that both m, and m, can be positive or negative (signifying image inversion), but 
they must be of the same sign. 

The paraxial relation (B-16) has a more general nonparaxial form, known as the 
sine condition, which states that for conjugate points yl and y2 the following equation 
must be satisfied: 

nl yl sin 0 = n2y2 sin 02. (B-17) 

Focal Planes 

Consider a parallel bundle of rays traveling parallel to the optical axis and entering a 
lens. Whether that lens is thick or thin, for paraxial rays there will exist a point on the 
optical axis toward which that ray bundle will converge (positive lens) or from which 
it will appear to diverge (negative lens). See Fig. B.3 for an illustration. Considering a 
positive lens for the moment, the point behind the lens at which this originally parallel 
ray bundle crosses in a focused point is called the rear focal point or the second focal 
point of the lens. A plane constructed through that point perpendicular to the optical 
axis is called the rear focal plane or the second focal plane. It has the property that a 
paraxial parallel bundle of rays traveling into the lens at any angle with respect to the 
optical axis will be brought to a focus at a point in the focal plane that depends on the 
initial angle of the bundle. 

In a similar fashion, consider a point source on the optical axis in front of a positive 
lens, thick or thin. The particular point in front of the lens for which the diverging 
bundle of rays is made to emerge as a parallel bundle traveling parallel to the optical 
axis behind the lens is called the front focal point (or thefirst focal point) of the lens. A 
plane erected through the front focal point normal to the optical axis is called the front 
focal plane (or the$rst focal plane) of the lens. 

For a negative lens, the roles of the front and rear focal points and planes are re- 
versed. The front focal point is now the point from which a bundle of rays, originally 
parallel to the optical axis, appears to be diverging when viewed from the exit side 
of the lens. The rear focal point is defined by the point of convergence of an incident 
bundle of rays that emerges parallel or collimated after passage through the lens. 
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FIGURE B.3 
Definition of focal points. (a) Rear focal point of a positive lens, 
(b) front focal point of a positive lens, (c) front focal point of a 
negative lens, and (d) rear focal point of a negative lens. 

The mapping from the front focal plane to the rear focal plane is one that maps 
angles into positions, and positions into angles. Iff is the focal length of the lens, then 
the ray-transfer matrix between focal planes takes the form 

as can be readily verified by multiplying together three matrices representing propaga- 
tion over distance f ,  passage through a thin lens with focal length f ,  and propagation 
over a second distance f .  

Principal Planes 

By the definition of a thin lens, a ray incident at input coordinate yl exits that lens at the 
same coordinate y:! = yl. For a thick lens this simple idealization is no longer valid. A 
ray entering the first spherical surface at coordinate yl will in general leave the second 
spherical surface at a different coordinate y2 # yl,  as can be seen in Fig. B.3. 

Much of the simplicity of a thin lens can be retained for a thick lens by introducing 
the concept of principal planes. Principal planes are planes where the focusing power 
of the lens can be imagined to be concentrated. 

To find the first principal plane of a lens, trace a ray from the front focal point to 
the first lens surface, as shown in Fig. B.4. By definition of the focal point, that ray 
will exit the second surface of the lens parallel to the optical axis, i.e. in a collimated 
beam. If we project the incident ray forwards and the exiting ray backwards into the 
lens, retaining their original angles, they will intersect at a point. A plane through this 
point normal to the optical axis defines theJirst principal plane. For this geometry it 
is possible to imagine that all the refraction associated with the lens takes place in this 
principal plane. 
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FIGURE B.4 
Definitions of principal planes. (a) First principal plane 

(b) P I ,  (b) second principal plane P2. 

In the most general case, different rays diverging from the front focal point might 
define different planes, which would be an indication that the principal plane is not a 
plane at all, but rather is a curved surface. Such can be the case for lenses with very large 
aperture or for special lenses such as wide-angle lenses, but for the lenses of interest to 
us in this book the principal planes are indeed flat to an excellent approximation. 

The second principal plane is found by starting with a ray that is parallel to the 
optical axis, and tracing it through the rear focal point of the lens. The extension of the 
incident ray and the exiting ray intersect in a point, which in turn defines the second 
principal plane of the lens, again normal to the optical axis. For this geometry it is pos- 
sible to imagine that all of the power of the lens is concentrated in the second principal 
plane. 

For more general geometries, ray bending can be imagined to take place in both 
of the principal planes. As will be seen shortly, the two planes are in fact conjugate 
to one another with unit magnification. A ray incident at particular transverse coordi- 
nates on the first principal plane will exit from the second principal plane at those same 
coordinates, but in general with a change of angle. 

In general, the first and second principal planes are separate planes. However, the 
definition of a thin lens implies that for such a lens the distinguishing characteristic is 
that the first and second principal planes coincide, and all the focusing power can be 
imagined to be concentrated in a single plane. 

The relationship between the principal planes can be more fully understood if we 
derive the ray-transfer matrix that holds for propagation between the two principal 
planes. The derivation is based on the two geometries already introduced, namely that 
of a point source at the front focal point that yields a collimated ray bundle leaving 
the second principal plane, and that of a collimated bundle incident on the first princi- 
pal plane that yields a ray bundle converging from the second principal plane toward 
a focus at the rear focal point. Considering the case of collimated input light passing 
through the rear focal point, we find that the matrix element A must be unity, and the 
matrix element C must be -rill f .  Consideration of the case of input rays diverging 
from the front focal point shows that B = 0 and D = 1. Thus the ray-transfer matrix 
for the passage between principal planes is 

r -. 
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0 I 

4 f - m  t f +  
FIGURE B.5 
Relations between principal planes, focal - 21- -22- lengths, and objecdimage distances. 

This matrix is identical with the ray-transfer matrix describing passage through a thin 
lens. Thus by constructing the principal planes, and by tracing rays only up t i  the first 
principal plane and away from the second principal plane, we are able to treat a complex 
lens system as if it were a simpler thin lens. Note that the ray-transfer matrix above 
implies that the two principal planes are conjugate to one another, and the magnification 
between them is unity. 

The focal length of a lens is by definition the distance of a principal plane from the 
corresponding focal point that was used in its definition. Assuming that the refractive 
indices of the media in front of and behind the lens are the same, the distance of the 
front focal plane from the first principal plane is identical with the distance of the rear 
focal point from the second principal plane. That is, the two focal lengths of the lens 
are the same. Note that for some lenses the second principal plane may lie to the left of 
the first principal plane. Such an occurrence does not change the definition of the focal 
length. It can also be shown that the distances zl and 22 in the lens law 

are measured from the first and second principal planes. These various relations are 
illustrated in Fig. B.5. 

B.5 
ENTRANCE AND EXIT PUPILS 

Until now, we have not considered the effects of pupils (i.e. finite apertures) in optical 
systems. Apertures, of course, give rise to diffraction effects. The concepts of entrance 
and exit apertures are of great importance in calculations of the effects of diffraction on 
optical systems. 

A system of lenses may contain several or many different apertures, but one such 
aperture always provides the severest limitation to the extent of the optical wavefront 
captured at the input of the system, and to the extent of the optical wavefront leaving the 
system. That aperture may lie deep within the system of lenses, but the single aperture 
that most severely restricts the bundle of rays passing through the system is in effect 
the aperture that limits the extent of the wavefront at both the input and at the output. 

The entrance pupil of the optical system is defined as the image of the most severely 
limiting aperture, when viewed from the object space, looking through any optical 
elements that may precede the physical aperture. The exit pupil of the system is also 
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defined as the image of the physical aperture, but this time looking from the image 
space through any optical elements that may lie between that aperture and the image 
plane. 

Figure B.6 illustrates the entrance and exit pupils for a very simple system con- 
sisting of a single lens, for three cases: a limiting pupil (1) in the plane of the lens, (2) 
following the lens, and (3) preceding the lens. In the first case, the entrance and exit 
apertures coincide with the real physical aperture in the plane of the lens. In the second 
case, the exit pupil coincides with the physical pupil (which is assumed to limit the 
angle of the bundle of rays more severely than does the lens aperture), and the entrance 
pupil is a virtual image of the physical aperture, lying to the right of the lens. In the 
third case, the entrance pupil is the real physical aperture lying to the left of the lens. 
In this case, the exit pupil is a virtual image of the physical aperture, lying in a plane 
to the left of the lens. 

In a more complex optical system, containing many lenses and many apertures, it 
is in general necessary to trace rays through the entire system in order to determine 
which aperture constitutes the most severe restriction on the ray bundles and therefore 
which aperture must be imaged to find the entrance and exit pupils. 

Once the location and extent of the exit pupil are known, the effects of diffrac- 
tion on the image of a point-source object can be calculated. For an object point source, 

Entrance and 

Entrance 

I 
I Entrance 

FIGURE B.6 
Entrance and exit pupils. (a) Entrance and exit pupils 
coincide with the physical pupil, (b) the exit pupil 

; ' Exit 
pupil (c) 

coincides with the physical pupil, and (c) the entrance 
pupil coincides with the physical pupil. 
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a converging bundle of rays fills the exit pupil on its way to a geometrical image. If 
the optical system has no aberrations, the geometrical image is an ideal point and the 
converging bundle defines a perfect spherical wave. The exit pupil limits the angular 
extent of the converging bundle. The Fraunhofer diffraction formula can now be applied 
at the exit pupil, using the distance from that pupil to the image as the distance appearing 
in the formula. 





APPENDIX C 

Polarization and Jones Matrices 

Birefringent media play an important role in the analysis of spatial light modulators 
of various kinds, as described in Chapter 7. In this appendix we introduce a tool for 
analyzing polarization-based devices, the so-called Jones calculus, first introduced by 
R.C. Jones. For an alternative discussion, together with references, see Ref. [123], Sec- 
tion 4.3. 

For simplicity, we restrict attention here to monochromatic light, since the problems 
of interest here arise primarily in coherent optical systems. However, the theory is more 
general, and can be extended to both narrowband and broadband optical signals with 
appropriate modifications. 

C. 1 
DEFINITION OF THE JONES MATRIX 

Consider a monochromatic light wave, polarized in the (x, y) plane, but with an arbitrary 
state of polarization in that plane. Let the polarization state be defined by a vector fi 
formed from the complex amplitudes (phasor amplitudes) of the x and y components of 
polarization, Ux and Uy as follows: 

We will refer to fi as the polarization vector of the light. Some examples of unit-length 
polarization vectors describing light with different states of polarization are as fol- 
lows: 
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Linearly polarized in the x direction: , 61 
Linearly polarized in the y direction: , [El 
Linearly polarized at + 45 degrees: 

Right-hand circularly polarized: - 

Left-hand circularly polarized: - 

As an aside, the convention adopted in optics is to define left-hand and right-hand 
circular polarization as follows. The observer always looks "head-on" into the wave as 
it approaches, i.e. towards the source of the light. If from such a perspective the polar- 
ization vector is rotating (with a period equal to the optical period and without change of 
length) in the clockwise sense, then the wave is said to be right-hand circularly polar- 
ized. This is because if you point the thumb of your right hand towards the source, the 
direction your fingers curl is clockwise, which in this case is the direction of rotation 
of the polarization vector. If, on the other hand, the direction of rotation is counter- 
clockwise, then for reasons that are probably now obvious we call this wave left-hand 
circularly polarized. 

Left-hand and right-hand elliptical polarizations are similar to circular polariza- 
tions except that the length of the polarization vector changes periodically as the vector 
rotates. 

When light passes through a polarization-sensitive device, the state of polarization 
of the wave will in general change, and it is of interest to find a simple representation of 
the new state of polarization, described by the vector fit, in terms of the initial state of 
polarization described by the vector c. All of the polarization devices of interest here 
are linear, and for such devices the initial and final polarization vectors can be related 
through a 2 x 2 matrix L, known as the Jones matrix, 

The four elements of the Jones matrix fully describe the effects of a linear device on 
the state of polarization of the wave. 

When light passes through a sequence of linear polarization devices, the Jones ma- 
trices of the various transformations can be chained together, defining a single new 
Jones matrix for the sequence of devices through the relation 

where L1 is the Jones matrix of the first device encountered, L2 that of the second 
device, etc. 
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C.2 
EXAMPLES OF SIMPLE POLARIZATION TRANSFORMATIONS 

Perhaps the simplest transformation of the state of polarization of a wave is that defined 
by a rotation of the coordinate system within which the wave is described (the wave 
itself does not change under such a rotation, only our mathematical description of it). If 
the (x, y) coordinate system is rotated by angle 8 in the counterclockwise direction (as 
illustrated in Fig. C. I),  simple geometry shows that 

U i  = cos8Ux + sin8Uy 

U; = - sin 8Ux + cos 8Uy, 

and therefore that the Jones matrix for a coordinate rotation is given by 

cos 8 sin 8 
Lrotate(8) = [ - sin8 c o s ~  I - 

Closely related to the Jones matrix of a coordinate rotation is the Jones matrix of 
a polarization device that transforms the polarization of a linearly polarized wave, ini- 
tially polarized in direction 8 1 with respect to the x axis, into a linearly polarized wave 
with new polarization direction 8 2  = 8, + 8. Such a device is called a polarization 
rotatoz Since the polarization vectors before and after rotation are given, respectively, 

cos e,  COS e2 
by [sin 

and [sin 82], the Jones matrix of a device that rotates the polarization coun- 

terclockwise by angle 8 must be given by 

A second simple case is one in which the X and Y components of the wave undergo 
different phase delays. A device introducing such a polarization transformation is called 
a wave retardel: For example, a transparent birefringent plate of thickness d having 
refractive index nx for the polarization component in the x direction and refractive 
index ny for the polarization component in they direction, will introduce phase delays 
4x = 2.rrnxdlho and 4y = 2.rrnydlAo, respectively, in those two components. The 
Jones matrix for such a transformation can be written 

Y 
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where A, is the vacuum wavelength of light, a common phase delay suffered by both 
components has been dropped, and the relative phase shift A is given by 

A wave retarder of special interest is a quarter wave plate, for which A = d 2 .  
The Jones matrix for such a device is 

(C- 10) 

It is easily seen to convert linearly polarized light with polarization direction at 45' to the 

x axis, described by the polarization vector J- , into right-hand circularly polarized 
J5 [ ' I  1 

light described by polarization vector . Equivalently, this device converts left- 

hand circularly polarized light polarized light 1 

Another wave retarder of special interest is a half-wave plate, for which A = n 
and 

Comparison of the Jones matrix for such a device with Eq. (C-7) shows that a half-wave 
plate is a device that rotates the polarization of a wave, initially linearly polarized at 
45" to the x axis, by 90'. 

As a final example of a polarization device we consider a polarizer (or equivalently 
a polarization analyzer) which passes only the wave component that is linearly polar- 
ized at angle a to the x axis. With a small amount of work it can be shown that the Jones 
matrix for such a device is given by 

cos2 a sin a cos a L(a) = 
sin a cos a sin2 a I a 

(C- 12) 

C.3 
REFLECTIVE POLARIZATION DEVICES 

Until this point we have considered only polarization devices used in transmission. 
Since many spatial light modulators operate in a reflective mode, we turn attention to 
such a geometry. 

Consider a reflective polarization device as illustrated in Fig. C.2. Light enters the 
device from the left, with normal incidence assumed. It passes through a polarization 
element having Jones matrix L, is normally incident on a lossless mirror, reflects from 
the mirror, and passes a second time through the same polarization element. We wish 
to specify the Jones matrix for an equivalent transmissive device that will function in 
the same way as this reflective device. 
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FIGURE C.2 
Reflective polarization device. 

An important point to consider at the start is that we will consider only reciprocal 
polarization elements before the mirror. For a reciprocal element, the coupling from, 
say, the x component of polarization to the y component of polarization on the forward 
pass through the device must equal the coupling from the y component back to the x 
component on the reverse pass. In addition the forward coupling from the y component 
to the x component must be the same as the backward coupling from x to y. For a 
reciprocal element, the Jones matrix for backward passage of light is exactly equal 
to the transpose of the Jones matrix for forward passage of light. Most polarization 
elements are reciprocal, the most important exceptions being devices that operate by 
the Faraday effect in the presence of a magnetic field. For such devices the dependence 
on the direction of the magnetic field destroys reciprocity, and the Jones matrix for 
reverse propagation is identical with the Jones matrix for forward propagation. 

It is also important to note several geometrical factors at the start. First, we specify 
the polarization vectors of waves by examining the polarization state from a "heads- 
on" geometry, looking towards the source and using x and y axes that form a right-hand 
coordinate system, with the z axis pointing in the direction of propagation. This is a 
convention that we must consistently apply. Note that for a transmissive device, the 
coordinate system both before and after passage through the device is right-handed. 
We attempt to retain this convention even with the reflective device. 

As shown in Fig. C.2, the z axis is taken to reverse direction after reflection to 
become Z. We have also shown the x axis reversed to obtain a right-hand system, with 
x being changed to i. However, for the time being, we allow the coordinate system to 
be left-handed, converting to a right-handed system shown only at the very end. 

Consider now the progress of a wave as it travels through the reflective device. 
It begins with a polarization state described by a vector fi. This polarization state is 
modified by passage through the polarization element, yielding a polarization state 

fit = L fi. 
Next the light reflects from the mirror. Since the tangential components of the electric 
field must be zero at a perfectly conducting boundary, the electric field components 
after reflection are the negative of their values before reflection. However, we regularly 
drop constant phase factors, and a negation of the two components of the electric field 
is just a common phase factor of 180" that we drop. So with this understanding, after 
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reflection, the field components Ux and Ur are the same as they were before reflection, 
when measured in the original (x, y) coordinate system. 

The wave now proceeds back through the polarization element. As argued above, 
for a reciprocal device, the Jones matrix under reverse propagation is Lt, where the 
superscript t indicates the ordinary matrix transpose operation. 

Finally, if we wish to specify the polarization vector leaving the element in a right- 
hand coordinate system, rather than a left-hand system, we must reverse either the 
direction of the x axis or the direction of the y axis. We choose to reverse the direction 
of the x axis. Such a reversal is accounted for by a Jones matrix of the form 

Thus the transmission equivalent of the reflective device has a Jones matrix of the form 

(C- 13) 

As an example, consider a polarization device that consists of a simple coordinate 
rotation by angle +8, followed by reflection from a mirror. On passage through the 
coordinate rotation the second time, in the backwards direction, the coordinate system 
is once again rotated, but this time back to its original orientation. Utilizing Eq. (C-13), 
the Jones matrix for the entire device, expressed in a right-hand coordinate system at 
the output, is 

- 1 0 cos 0 - [ cos 0 sin R]  = [- 1 01 
= [ o I]  [sin 0 cos 0 - sine cos 0 o 1 '  

Thus the only effect of passage through this simple device is a reversal of the direction 
of the x axis, a reversal we intentionally introduced to assure a right-handed system. 
Note that in this case the transpose operation was critical to obtaining the right result. 
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of binary optic element, 211, 214 
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Diffraction efficiency (continued) 
definition, 8 1 
of general periodic grating, 92 
of sawtooth grating, 21 1 
of sinusoidal amplitude grating, 8 1 
of sinusoidal phase grating, 82-83 
of thick holograms, 336-346 
and volume gratings, 346 

Diffraction-limited system, definition, 128 
Diffractive optical elements, 209-214 
Diffuse object, 367 
Diffuser, 160 
Diffusion, in a photographic emulsion, 18 1 
Direction cosine, 56 
Discrete analog optical processors, 282-289 
Discrete Fourier transform, 355 
Distorting media, imaging through, 378-382 
Diverging lens (see negative lens) 
Doppler history, 267 
Doppler shifts: 

from acoustic grating, 207 
in synthetic aperture radar, 267 

Driffield, V.C., 175 
Dudgeon, D.E., 26 
Duffieux, P.M., 126 
Dynamic range: 

of inverse filter, 258, 261 
of Wiener filter, 263 

Edge images, in coherent and incoherent light, 
158-159 

Eigenfunction: 
Bessel function as, 29 
complex exponentials as, 22 
definition, 22 

Eigenvalue, 22 
Eikonal equation, 402 
Eikonal function, 402 
Electric dipole, in a liquid crystal molecule, 188 
Electroforming process, 329 
Electron holography, 295 
Electronic charge, 64 
Electro-optic effect, in photorefractive 

materials, 349 
Elementary function, 20, 22 
Elias, P., 223 
El-Sum, H.M.A., 296,372 
Embossed hologram, 328-329 
Embossing, 210 
Emulsion, photographic, 173 
Energy spectrum, 103 
Entrance pupil, 127, 128, 41 1-41 3 
Equivalent area, 28 
Equivalent bandwidth, 28 

Erasure, in photorefractive materials, 350, 387 
Evanescent waves, 58 
Exciton, 202, 203 
Exit pupil, 127, 128, 41 1-413 
Exposure, definition, 174 
Extraordinary refractive index, 190 

Fabry-Perot Ctalon, 204 
False images, in holography, 367 
Faraday effect, 198 

rotation angle, 200 
Faraday rotation, 215, 216 
Far field, 74 
Fast Fourier transform, 355 
Ferroelectric liquid crystal, 186-1 87, 189, 

1 90- 194 
and spatial light modulator, 197-1 98 

FET-SEED, 205 
Film grain noise, effects in holography, 368-369 
Film MTF, effects in holography, 363-367 
Film nonlinearities, effects in holography, 

367-368 
Filter realization, constraints of, 236-237 
Finite thickness, effects with volume grating, 

333-336 
Fixing: 

of photographic image, 174 
for photorefractive materials, 350 

F-number, of a lens, 170 
Focal length, 99 
Focal plane, 101, 104,408-409 
Focal properties, of synthetic aperture radar data, 

268-27 1 
Focusing error, 148-1 5 1 
Fourier-Bessel transform, 12, 28 
Fourier coefficient, 356 
Fourier hologram, computer-generated, 352-353 
Fourier integral, 5 

three-dimensional, 335 
Fourier integral theorem, 9 

proof, 397-399 
Fourier transform hologram, 320, 365 
Fourier transform: 

as decomposition, 7 
definition, 5 
existence conditions of, 5 
generalized, 6 
inverse, 5 
with lens, 104-106 
optical, 101-1 07 
optical, of array of one-dimensional 

functions, 122 
optical, exact, 104 
optical, example of, 107 
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Founer transform (continued) 
optical, geometries, 10 1-1 07 
optical, input against lens, 102-104 
optical, input behind lens, 106-107 
optical, input in front of lens, 
optical, location of transform plane, 119 
optical, vignetting effect, 105-106 
pairs, table of, 14 
theorems, 8, 395-399 
two-dimensional, 7 

Fraunhofer approximation, 63, 73-75 
Fraunhofer diffraction, 74 

by circular aperture, 77-78 
distance required for, 74 
by rectangular aperture, 75-77 
by sinusoidal amplitude grating, 78-8 1 
by sinusoidal phase grating, 81-83 

Fraunhofer diffraction pattern, obtained with 
lens, 103 

Fraunhofer hologram, 3 19, 32 1 
Frequency spectrum: 

of coherent image intensity, 155 
of incoherent image intensity, 155 

Fresnel, A.J., 34 
Fresnel approximation, 63, 66-67 

accuracy of, 69-7 1 
Fresnel diffraction: 

between confocal spherical surfaces, 72 
by square aperture, 84-87 

Fresnel diffraction integral, 67 
as convolution, 67 
as Fourier transform, 67 

Fresnel hologram, 319, 321 
computer-generated, 353-354 

Fresnel integral, 18, 69, 84 
Fresnel-Kirchhoff diffraction formula, 45-46 
Fresnel number, 85 
Fresnel zone plate, 124 
Friesem, A.A., 367 
Fringe orientation, in thick holograms, 332-334 
Fringe period, in holography, 321 

Gabor, D., 295, 368, 372, 373, 384 
Gabor hologram, 302-304 
Gamma, photographic, 176 
Gaussian reference sphere, 145-146 
Geometrical optics, 19, 32 
Geometrical theory of diffraction, 55 
Gerchberg, R. W., 164 
Goldberg, E., 225 
Goodman, J.W., 5, 11 1,243,263,368 
Grain size, in photographic emulsions, 368 
Grating vector, 33 1 
Grating vector cloud, 335 

Grating vector spectrum, 335 
Gray, D.S., 223 
Gray, R.M., 5 
Green's function, 35, 40-41, 47-49 
Green's theorem, 39 
Gross fog, 176 
Guilfoyle, P., 287 

Haimes, R., 256 
Haines, K.A., 348, 375 
Halftone process, 223 
Half-wave plate, 41 8 
Hankel transform, 10-1 2 
Hard-clipped filter, 237n 
Hariharan, P., 295 
H&D curve (see Hurter-Driffield curve) 
Helmholtz equation, 38-39, 41, 57 

paraxial, 62 
Heurtley, J.C., 5 1 
Hidden layer, in a neural network, 386 
High-contrast film, 176 
High-definition television, 202 
High-gamma film (see high-contrast film) 
High-order images, in holography, 367 
Hildebrand, B.P., 375 
HOE (see holographic optical element) 
Holographic art, 388 
Holographic data storage, 382-384 
Holographic display, 388 
Holographic interferometry, 373-378 

contour generation, 375-375 
multiple exposure, 373-375 
real-time, 375 

Holographic memory (see holographic data 
storage) 

Holographic optical element (HOE), 387-388 
Holographic stereograms, 322-324 
Holographic weights, for neural networks, 

386-387 
Holography: 

applications of, 372-388 
history of, 295-296 
with incoherent light, 369-371 
linearity of imaging process, 299-300 
practical problems in, 3 13-3 14 

Homogeneous medium, 36 
Hopfield neural network, 286, 387 
Hopkins, H.H., 126, 130n 
Hughes liquid crystal light valve, 194-196 
Hurter, F., 175 
Hurter-Driffield curve, 175 
Huygens, C., 33 
Huygens envelope construction, 34 
Huygens-Fresnel principle, 35, 52-53, 65 
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Huygens-Fresnel principle (continued) 
as convolution integral, 53 

Hybrid-field-effect mode, of liquid crystal 
cell, 195 

Hydrogenated amorphous silicon, 197 
Hyperplane decision surface, 385 

Ideal image, definition, 130 
Ilford, Ltd., holographic emulsions from, 347 
Image amplification, with SLM, 185 
Image casting, 225 
Image deblurring, 222-223 
Image formation: 

by holography, 301-302 
in monochromatic light, 108-1 14 
with polychromatic illumination, 130-134 

Image hologram, 3 19 
Image location, in holography, 3 14-3 17 
Image magnification, in holography, 3 17-3 19 
Image restoration, fundamentals, 257-260 
Imaging system, generalized model, 127-1 28 
Impedance, of liquid crystal cell, 195 
Impulse response, 20 

of imaging system, 1 12 
of positive lens, 108-1 12 

Incoherent imaging: 
vs. coherent imaging, 154-160 
conditions for, 134 

Incoherent optical processing, 224-231 
and geometrical optics, 225-229 
limitations of, 229 

Incoherent-to-coherent converter, with SLM, 185 
Integral theorem, of Helmholtz and Kirchhoff, 

40-42 
Intensity: 

definition, 63-65 
instantaneous, 65 

Intensity impulse response, 134 
Intensity mapping, by photographic emulsion, 

177-178 
Intensity modulator, and liquid crystals, 192-193 
Intensity transmittance, definition, 175 
Interference gain, 160 
Interferometry: 

with holography, 373-378 
holography as, 297 

Intermodulation effects, in holography, 367 
Invariant pattern recognition, optical 

approaches, 252-257 
Invariant system, 21 
Inverse filter, 258-259 

realization of, 261 
Inverse Fourier transform, 5, 12 
Inverse Hankel transform, 12 

Isoplanatic patch, 21 
Isoplanatic system, 2 1 
Isotropic medium, 36 

Jinc function, 16 
Joint transform correlator, 243-246 
Jones calculus, 190 
Jones matrix, definition, 190, 415416  

Keller, J., 55 
Kelley, D.H., 181 
Kelley model, 18 1 
Kinoform, 360-36 1 
Kirchhoff, G., 35 
Kirchhoff boundary conditions, 44-45,49 
Kirchhoff diffraction theory, 42-46 
Knox, C., 372 
Kodak 649F spectroscopic plate, 183, 3 13, 346 
Kogelnik, H., 336 
Koliopoulis, C.L., 279 
Kottler, F., 35 
Kozma, A., 179, 367, 368 
k vector diagram (see wave vector diagram) 

Laser ablation, 2 14 
Latent image, 174 
Least-mean-square-error filter (see Wiener filter) 
Lee, W.H., 360, 361 
Leith, E.N., 237n. 296, 313 
Leith-Upatnieks hologram, 304-314 

with diffused illumination, 3 13 
minimum reference angle, 308-309 
obtaining images from, 306-307 
recording, 305-306 
for three-dimensional scenes, 309-3 12 

Lens, thin, 96-101 
Lens law, 1 10 
Lensless Fourier transform hologram, 320, 365 
Light emitting diode, 283 
Lighthill, M.J., 6 
Light-mod (see magneto-optic spatial light 

modulator) 
Lin, L.H., 295 
Linear system, 4 

definition, 7 
Linearity, 4 
Linearity theorem, 9 

proof, 395 
Line-spread function, 166 
Lippmann, G., 296 
Liquid crystals, 185-198 

electrical properties, 188- 190 
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Liquid crystals (continued) 
mechanical properties, 186-1 88 
optical properties, 190 

Liquid gate, 178-1 79 
Lithium niobate, 348 
LMS algorithm, 386 
Local spatial frequency, 17 

relation to ray optics, 402-403 
Lohmann, A.W., 256,296, 355, 367,369 
Low contrast film, 176 

Mach-Zehnder interferometer, 239, 240 
Maggi, G.A., 55 
Magneto-optic spatial light modulator 

(MOSLM), 198-200 
Magnification, definition, 1 12 
Marchand, E.W., 51 
Marechal, A., 179, 222, 236 
Matched filters, 246-25 1 

bank of, 250 
Matrix-matrix multiplier (see outer product 

processor) 
Matrix-vector multiplier: 

parallel, 284-286 
serial, 283-284 

Matrix-vector product, 282-283 
Maxwell, J.C., 35 
Maxwell's equations, 36 
Meier, R.W., 363 
Mellin transform, 252 

insensitivity to scale size, 253 
Meridional ray, 404 
Mersereau, R.M., 26 
Mertz, L., 369 
Metal master hologram, 329 
Micromachining, in fabrication of binary 

optics, 210 
Microscopy, with holography, 372 
Microwave holography, 3 15, 3 17-3 19 
Middleton, D., 26 
Minimum reference angle, for Leith-Upatnieks 

hologram, 308-309 
Modulation transfer function (MTF), 139 

definition, 182 
measurement, 183 
of photographic emulsion, 180-1 83 

Molecular beam epitaxy, 202, 204 
Montgomery, R.M., 279 
MOSLM (see magneto-optic spatial light 

modulator) 
MTF (see modulation transfer function) 
Multilayer neural network, 385-386 
Multiple exposure holographic interferometry, 

373-375 

Multiple quantum well structure, 203 
Multiplex hologram, 326-328 
Multiplexing, in holography, 383 
Museum of Holography, 388 
Mutual intensity, 133 
Mylar-base film, 173 

Narrowband light, 13 1 
Nazarathy, M., 114 
Near field, 67 
Negative lens, 99-101 
Nematic liquid crystal, 186-1 87, 190-1 94 
Networks of neurons, 385-386 
Neural network, 384 
Neuron, 384-385 
Newton, I., 34 
Nonlocalization of data, in Fourier 

hologram, 383 
Nonmagnetic medium, 36 
Nonmonochromatic wave, 53 
Nontanning bleach, 183- 1 84, 262 
Numerical aperture, 157 
Nyquist sampling, 281 

Obliquity factor, 5 1 
Offset reference hologram (see Leith-Upatnieks 

hologram) 
O'Neill, E.L., 223 
Operator notation, 114-1 20 

applications of, 1 16-1 20 
operator relations, table of, 117 

Optical transfer function, 138-145 
of aberration-free system, 140 
and apodization, effects of, 15 1-1 54 
as autocorrelation function, 139 
examples of, 142-144, 148-150 
and geometrical calculation, 141 

Ordinary refractive index, 190 
Orthoscopic image, 3 1 1 
Outer product processor, 286-287 

Palermo, C., 237n 
Papoulis, A., 5, 164 
Paraxial approximation, 403 
Paraxial diffraction, 72, 73 
Paraxial geometrical optics, 401413  
Paris, D.P., 355 
Parseval's theorem, 9 

proof, 396 
Partial coherence, 13 1 
Penumbra effect, 33 
Permeability, 36 
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Permittivity, 36, 37 
Peterson, D.P., 26 
Phase-coded reference beams, 383 
Phase contour interferogram, 361-363 
Phase-contrast microscope, 220 
Phase matching, 360 
Phase modulation, by photographic emulsion, 

183-184 
Phase-only filter, 237n 
Phase shift, by photographic emulsion, 178 
Phase-shifting plate, 222 
Phasor, 39 

time-varying, 131 
Photo-elastic effect, 206 
Photographic density, definition, 175 
Photographic film, 173-1 84 
Photolithography, in fabrication of binary 

optics, 210 
Photopolymer films, 347-349 
Photorefractive crystal, 386 
Photorefractive effect, 349 
Photorefractive materials, 348-35 1 
Photoresist, for recording hologram, 329 
Pinhole camera, 168 
Planck's constant, 64 
Plane wave, 56 
Plus-X film, 183 
Point-spread function, 20 
Poisson, S., 34 
Poisson's spot, 35 
Polarization analyzer, 41 8 
Polarization rotator, 191-193, 199, 417 
Polarization transformations, 4 1 7 4  18 
Polarization vector, 190, 41 5 
Polymerization, 347 
Porter, A.B., 218 
Positive lens, 99-101 
Potassium tantalum niobate, 348 
Potential function, 46 
Powell, R.L., 376 
Power spectral densities, 259 
Power spectrum, 103 
Principal plane, 409-41 1 
Prism, 120 
Psaltis, D., 253 
Pseudoscopic image, 3 1 1 
Pupil function, 102 

generalized, 145 

Q factor: 
for acousto-optic diffraction, 208 
for holograms, 329-330 

Q parameter (see Q factor) 
Quadratic phase dispersion, 72 

Quadratic phase factors, in imaging equation, 
109-112 

Quality criterion, 154 
Quantum-confined Stark effect, 203 
Quantum confinement, 203 
Quantum efficiency, of detector, 64 
Quantum well, 202 
Quarter-wave plate, 418 
Quasi-monochromatic light, 127 

Ragnarsson, S.I., 262, 263 
Rainbow hologram, 324-326 
Raman-Nath regime, 206, 208, 209, 276 
Ratcliffe, J.A., 55 
Ray, 401402 
Ray directions, 19 
Rayleigh, Lord, 126, 129 
Rayleigh interferometer, 239, 240 
Rayleigh resolution criterion, 157 
Rayleigh resolution distance, 157 
Rayleigh-Sommerfeld diffraction formula, 49-50 
Rayleigh-Sommerfeld diffraction theory, 46-50 
Rayleigh's theorem, 9, 396 
Ray-transfer matrix, 404-407 
Real image, 108 

in holography, 301 
Real-time holographic interferometry, 375 
Reciprocal polarization element, 419 
Reciprocity theorem, 46 
Reconstruction wave, 297 
Recording materials, for holography, 346-35 1 
Rectangle function, 13 
Rectangular sampling lattice, 23, 26 
Reduced coordinates, 130 
Referenceless on-axis complex hologram 

(ROACH), 355,360-361 
Reference wave, 297 

in VanderLugt filter, 239 
Reflection, 33 
Reflection hologram, 296,321-322,333 
Reflection intensity modulator, 193 
Reflective polarization devices, 418420  
Refraction, 32 
Refractive index, 32, 36 
Registration errors, in holographic 

memories, 383 
Relief image, photographic, 184 
Replication of holograms, 328-329 
Resistor-biased SEED (R-SEED), 204 
Resolution, beyond classical limit, 160-165 
Responsivity, of detector, 64 
Restrick, R.C., 369 
Retardation, Jones matrix representation of, 191 
Retarded time, 54 
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Reynolds, G.O., 295 
Rhodes, W.T., 230 
ROACH (see referenceless on-axis complex 

hologram) 
Robinson, D.Z., 223 
Rogers, G.L., 296, 369 
Rotation sensitivity, of matched filter, 25 1 
R-SEED (see resistor-biased SEED) 
Rubinowicz, A., 55 

Saltus problem, 35 
Sampled function, 25 
Sampling theory, 22-27 
SAR (see synthetic aperture radar) 
Sawtooth grating, 21 1 
Saxby, G., 295 
Scalar diffraction theory, 35, 36-38 

limitations of, 214 
Scale size sensitivity, of matched filter, 25 1 
Scaling of hologram, 3 17, 3 19 
Scattering, in photographic emulsion, 18 1 
Schade, O., 126 
Schlieren method, in microscopy, 220 
Schumann, W., 373 
Schwarz's inequality, 140, 147 
Secondary source, 46 
Secondary wavelets, 34 
Security applications, of holography, 388 
SEED (see self-electro-optic effect device) 
Self-electro-optic effect, 204-205 
Self-electro-optic effect device (SEED), 204-205 
Self images, 87-90 
Separable functions, 10 
Shamir, J., 114 
Shannon, C., 23 
Sherman, G., 61 
Shift theorem, 8 

proof, 395-396 
Shoulder, of H&D curve, 176 
Side lobes, 152 
Side-looking radar, 159 
Sifting property, of delta function, 20, 393 
Sight-mod (see magneto-optic spatial light 

modulator) 
Sigmoid nonlinearity, 384 
Sign convention, for radii of curvature, 97 
Signum function, 13 
Silver halide, 173 
Similarity theorem, 8 

proof, 395 
Sinc function, 13 
SLM (see spatial light modulator) 
Small angle diffraction, 72 

Small signal suppression, in holography, 367 
Smectic-A phase, of liquid crystal, 188n 
Smectic-C* phase, of liquid crystal, 186, 

187, 188n 
Smectic liquid crystal, 186 
Smith, H.M., 295 
Snell's law, 32, 403 
Sommerfeld, A., 33, 35 
Sommerfeld radiation condition, 44 
Space-bandwidth product, 27, 229 
Space-integrating correlator, 278-279 
Space invariance, 2 1 
Space-variant impulse response, 113 
Sparrow resolution criterion, 170 
Spatial coherence, 133 
Spatial frequency, 5 

local, 17 
Spatial light modulator (SLM), 101, 184-209 

acousto-optic, 205-209 
and liquid crystals, 194-198 
and multiple quantum wells, 202-205 

Spatially coherent illumination, 13 1, 133 
Spatially incoherent illumination, 13 1, 134 
Speckle, effects in holography, 369 
Speckle effect, 159- 160, 224 
Speckle size, 159 
Sprague, R.A., 279 
S-SEED (see symmetric SEED) 
Stanford matrix-vector multiplier, 284-286 
Stationary phase, principle of, 7 1 
Stereo effect, 323, 328 
Stetson, K.A., 376 
Strehl definition, 168 
Stroke, G.W., 369 
Strontium barium nitrate, 348 
Superposition, 20 
Superposition integral, 20, 52 

for imaging system, 129 
Superposition property, 20 
Super-resolution, 160-1 65 
Symmetric SEED (S-SEED), 204 
Synthetic aperture radar (SAR), 264-275 

data processing for, 268-275 
data recording format, 265-268 
image from, 275 

Synthetic discriminant functions, 256-257 
System, 19 
Systolic processor, 287 

Talbot image, 87-90 
Talbot subimage, 89 
Tanning bleach, 183-1 84 
Telescopic system, imaging properties of, 273 



Television display, and liquid crystals, 197 
Thick amplitude reflection grating, 344 
Thick amplitude transmission grating, 341 
Thick hologram, 329-346 
Thick phase reflection grating, 343 
Thick phase transmission grating, 339 
Thin lens, 96-1 01 

definition, 96 
as phase transformation, 99-101 

Thompson, B.J., 372 
Three-dimensional imaging, with holography, 

309-3 12 
Three-dimensional interference pattern, 330 
Three-dimensional optical storage, 383 
Tichenor, D.A., 11 1, 263, 264 
Tilt angle, of ferroelectric liquid 

crystal, 192 
Tilted plane processor, 272-275 
Time constant, for liquid crystals, 190 
Time-bandwidth product, 28 1 
Time-integrating correlator, 279-28 1 
Time invariance, 21 
Toe, of H&D curve, 176 
Training of neural network, 385 
Transfer function, 22 

of wave propagation, 59-61 
Transmission hologram, 321-322 
Transverse magnification, 273 

in holography, 3 17 
Triangle function, 13 
Triangular interferometer, 370 
Twin image problem, 303-304 
Twisted nematic liquid crystal, 186, 191 
Two-point resolution, 157 
Two-pupil OTF synthesis, 230-231 

Ultrasound imaging, 159 
Ultraviolet holography, 3 19 
Upatnieks, J., 296, 313, 381 

VanderLugt, A.B., 114,237 
VanderLugt filter, 237-243 

advantages of, 242-243 
impulse response of, 250 
and synthesis of frequency-plane mask, 

238-240 

Van Ligten, R.F., 366 
Vectorial diffraction theory, 35, 36-38 
Velocity of propagation, 37 
Vertical parallax, 328 
Vest, C.M., 373 
Vibration analysis, with holography, 376-378 
Virtual image, 108 

in holography, 301 
Volume grating (see thick hologram) 
Volume imagery, with holography, 372 

Ward, J.H., 372 
Wave equation, scalar, 37, 39 
Wave equation, vector, 36 
Wavefront, 402 
Wavefront reconstruction, 295, 296-302 
Wavelength conversion, with SLM, 185 
Wavelength mismatch, for thick hologram, 339 
Wavelength multiplexing, in holography, 383 
Wave number, 39 
Wave retarder, 4 17-4 1 8 
Wave vector diagram, 208 
Weaver, C.S., 243 
White light illumination, in holography, 32 
Whittaker, E.T., 23 
Whittaker-Shannon sampling theorem, 

23-26 
Wiener filter, 259-260 

optical realization, 261-264 
Wigner distribution function, 30 
Windowing, 15 1 
Wolf, E., 5 1 

X-ray crystallography, 295 
X-ray holography, 3 19, 372 

Young, N.O., 369 
Young, T., 34, 54 

Zelenka, J.S., 367 
Zernike, F., 2, 220 
Zernike phase contrast microscope, 220 
Zero-spread nonlinearity, 18 1 
Zinky, W.R., 372 
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