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CHAPTER 1

GENERAL PRINCIPLES OF
GEOMETRIC OPTICS

Douglas S. Goodman
Polaroid
Cambridge, Massachusetts

1.1 GLOSSARY

(NS) indicates nonstandard terminology

italics definition or first usage
\Y gradient (8/dx, 8/dy, 9/9z)

prime, unprime before and after, object and image space (not derivatives)

A auxiliary function for ray tracing

AA area, total field areas, object and image points

AB directed distance from A to B
a unit axis vector, vectors
ap, dg, 4, coefficients in characteristic function expansion

B matrix element for symmetrical systems
B auxiliary function for ray tracing

B, B’ arbitrary object and image points
b binormal unit vector of a ray path
B interspace (between) term in expansion
C matrix element for conjugacy

C(0, B, F) characteristic function

c speed of light in vacuum
c surface vertex curvature, spherical surface curvature
s sagittal curvature
¢ tangential curvature
D auxiliary distance function for ray tracing
d distance from origin to mirror
d nominal focal distance

d,d’ arbitrary point to conjugate object, image points

d'=A'0'
d,d’ axial distances, distances along rays
du hyperfocal distance

AO,
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near focal distance

far focal distance

differential area

differential geometric path length
image irradiance

axial image irradiance

entrance and exit pupil locations
eccentricity

coefficients for collineation
matrix element for front side
front and rear focal points
F-number

F-number for magnification m
general function

general surface function

front and rear focal lengths f = PF, f'=P'F'

diffraction order
focal lengths in tilted planes

ray heights at objects and images, field heights, Vx> + y*

hamiltonian

incidence angles

unit matrix

paraxial incidence angles

image space term in characteristic function expansion

surface x-direction cosine
paraxial invariant

principal points to object and image axial points / = PO, I’ =P'O’

axial distances from vertices of refracting surface [ = VO, I

lagrangian for heterogeneous media
lambertian emittance

surface z-direction cosine

transverse magnification

longitudinal magnification

angular magnification

paraxial pupil magnification

nodal point magnification = n/n’

pupil magnification in direction cosines
magnification at axial point
magnifications in the x, y, and z directions
surface z-direction cosine

nodal points

numerical aperture

refractive index

Vo'
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normal unit vector of a ray path
axial object and image points
object space term in expansion
power (radiometric)

principal points

pupil shape functions

period of grating

ray vector, optical direction cosine p=nr=(p,, p,, p.)
pupil radius

optical direction cosines

pupil shape functions relative to principal direction cosines

resolution parameter

coordinate for Lagrange equations
derivative with respect to parameter
auxiliary functions for collineation

unit vector along grating lines

matrix element for rear side

radius of curvature, vertex radius of curvature
ray unit direction vector r = («, B, v)
surface normal S = (L, M, N)

point eikonal V (x, y, zo; X', ', zo')
geometric length

axial length

distances associated with sagittal foci
skew invariant

angle characteristic function

thickness, vertex-to-vertex distance
distances associated with tangential foci
time

tangent unit vector of a ray path
meridional ray angles relative to axis
paraxial ray angles relative to axis
paraxial marginal ray angle

paraxial chief ray angle

homogeneous coordinates for collineation
optical path length

point characteristic function

vertex points
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v speed of light in medium
Wi~ wavefront aberration term
W, W,, W, wavefront aberration terms for reference shift
W( n;x,y,2) wavefront aberration function
Wi a, B;x',y") angle-point characteristic function
W(x,y;a’, B") point-angle characteristic function
x=(x,y,2z) position vector
x(0) parametric description of ray path
x(o) derivative with respect to parameter
X(o) second derivative with respect to parameter

y meridional ray height, paraxial ray height

Ym

Ye

Yoy Vb

Z

z(p)
Zsphere
Zconic

z, 7’

a B,y

a B,y
a,’ B” ‘y,
a, Bo
aq, Ba
Amaxs Xmin

ﬁmax’ Bmin
r

éx, 8y, 6z
Aa, AB
Ax, Ay, Az
€

&, &

&Em

paraxial marginal ray height

paraxial chief ray height

paraxial ray height at the principal planes

axis of revolution
surface sag
sag of a sphere

sag of a conic

focal point to object and image distances z = FO, z' = F'O’

ray direction cosines

entrance pupil directions

exit pupil direction cosines
principal direction of entrance pupil
principal direction of exit pupil
extreme pupil directions
extreme pupil directions
n'cosl'—ncosl

reference point shifts

angular aberrations

shifts

surface shape parameter
transverse ray aberrations
pupil coordinates—not specific

ray angle to surface normal
marginal ray angle
plane tilt angle
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K conic parameter
K curvature of a ray path
A wavelength
aximuth angle
field angle
o) power, surface power
azimuth
p radius of curvature of a ray path

distance from axis
radial pupil coordinate

T ray path parameter
general parameter for a curve

T reduced axial distances
torsion of a ray path

T(a', B5x',y") pupil transmittance function
w, o' reduced angle w =nu, o' =n'u’

do differential solid angle

1.2 INTRODUCTION

The Subject

The Contents

Geometrical optics is both the object of abstract study and a body of knowledge necessary
for design and engineering. The subject of geometric optics is small, since so much can be
derived from a single principle, that of Fermat, and large since the consequences are
infinite and far from obvious. Geometric optics is deceptive in that much that seems simple
is loaded with content and implications, as might be suggested by the fact that some of the
most basic results required the likes of Newton and Gauss to discover them. Most of what
appears complicated seems so because of obscuration with mathematical terminology and
excessive abstraction. Since it is so old, geometric optics tends to be taken for granted and
treated too casually by those who consider it to be ‘“understood.” One consequence is that
what has been long known can be lost if it is not recirculated by successive generations of
textbook authors, who are pressed to fit newer material in a fairly constant number of

pages.

The material in this chapter is intended to be that which is most fundamental, most
general, and most useful to the greatest number of people. Some of this material is often
thought to be more esoteric than practical, but this opinion is less related to its essence
than to its typical presentation. There are no applications per se here, but everything is
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Terminology

Notation

References

applicable, at least to understanding. An effort has been made to compensate here for
what is lacking elsewhere and to correct some common errors. Many basic ideas and useful
results have not found their way into textbooks, so are little known. Moreover, some basic
principles are rarely stated explicitly. The contents are weighted toward the most common
type of optical system, that with rotational symmetry consisting of mirrors and/or lens
elements of homogeneous materials. There is a section on heterogeneous media, an
application of which is gradient index optics discussed in another chapter. The treatment
here is mostly monochromatic. The topics of caustics and anisotropic media are omitted,
and there is little specifically about systems that are not figures of revolution. The section
on aberrations is short and mostly descriptive, with no discussion of lens design, a vast field
concerned with the practice of aberration control. Because of space limitations, there are
too few diagrams.

Because of the complicated history of geometric optics, its terminology is far from
standardized. Geometric optics developed over centuries in many countries, and much of it
has been rediscovered and renamed. Moreover, concepts have come into use without being
named, and important terms are often used without formal definitions. This lack of
standardization complicates communication between workers at different organizations,
each of which tends to develop its own optical dialect. Accordingly, an attempt has been
made here to provide precise definitions. Terms are italicized where defined or first used.
Some needed nonstandard terms have been introduced, and these are likewise italicized, as
well as indicated by “NS” for ‘“‘nonstandard.”

As with terminology, there is little standardization. And, as usual, the alphabet has too few
letters to represent all the needed quantities. The choice here has been to use some of the
same symbols more than once, rather than to encumber them with superscripts and
subscripts. No symbol is used in a given section with more than one meaning. As a general
practice nonprimed and primed quantities are used to indicate before and after, input and
output, and object and image space.

No effort has been made to provide complete references, either technical or historical.
(Such a list would fill the entire section.) The references were not chosen for priority, but
for elucidation or interest, or because of their own references. Newer papers can be found
by computer searches, so the older ones have been emphasized, especially since older work
is receding from view beneath the current flood of papers. In geometric optics, nothing
goes out of date, and much of what is included here has been known for a century or
so—even if it has been subsequently forgotten.

Communication

Because of the confusion in terminology and notation, it is recommended that communica-
tion involving geometric optics be augmented with diagrams, graphs, equations, and
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numeric results, as appropriate. It also helps to provide diagrams showing both first order
properties of systems, with object and image positions, pupil positions, and principal
planes, as well as direction cosine space diagrams, as required, to show angular subtenses
of pupils.

1.3 FUNDAMENTALS

What Is a Ray?

Geometric optics, which might better be called ray optics, is concerned with the light ray,
an entity that does not exist. It is customary, therefore, to begin discussions of geometric
optics with a theoretical justification for the use of the ray. The real justification is that,
like other successful models in physics, rays are indispensable to our thinking, not-
withstanding their shortcomings. The ray is a model that works well in some cases and not
at all in others, and light is necessarily thought about in terms of rays, scalar waves,
electromagnetic waves, and with quantum physics—depending on the class of phenomena
under consideration.

Rays have been defined with both corpuscular and wave theory. In corpuscular theory,
some definitions are (1) the path of a corpuscle and (2) the path of a photon. A difficulty
here is that energy densities can become infinite. Other efforts have been made to define
rays as quantities related to the wave theory, both scalar and electromagnetic. Some are
(1) wavefront normals, (2) the Poynting vector, (3) a discontinuity in the electromagnetic
field (Luneburg 1964,' Kline & Kay 1965%), (4) a descriptor of wave behavior in short
wavelength or high frequency limit, (Born & Wolf 1980%) (5) quantum mechanically
(Marcuse 1989*). One problem with these definitions is that there are many ordinary and
simple cases where wavefronts and Poynting vectors become complicated and/or meaning-
less. For example, in the simple case of two coherent plane waves interfering, there is no
well-defined wavefront in the overlap region. In addition, rays defined in what seems to be
a reasonble way can have undesirable properties. For example, if rays are defined as
normals to wavefronts, then, in the case of gaussian beams, rays bend in a vacuum.

An approach that avoids the difficulties of a physical definition is that of treating rays as
mathematical entities. From definitions and postulates, a variety of results is found, which
may be more or less useful and valid for light. Even with this approach, it is virtually
impossible to think “purely geometrically”—unless rays are treated as objects of geometry,
rather than optics. In fact, we often switch between ray thinking and wave thinking without
noticing it, for instance in considering the dependence of refractive index on wavelength.
Moreover, geometric optics makes use of quantities that must be calculated from other
models, for example, the index of refraction. As usual, Rayleigh (Rayleigh 1884%) has put
it well: “We shall, however, find it advisable not to exclude altogether the conceptions of
the wave theory, for on certain most important and practical questions no conclusion can
be drawn without the use of facts which are scarcely otherwise interpretable. Indeed it is
not to be denied that the too rigid separation of optics into geometrical and physical has
done a good deal of harm, much that is essential to a proper comprehension of the subject
having fallen between the two stools.”

The ray is inherently ill-defined, and attempts to refine a definition always break down.
A definition that seems better in some ways is worse in others. Each definition provides
some insight into the behavior of light, but does not give the full picture. There seems to
be a problem associated with the uncertainty principle involved with attempts at definition,
since what is really wanted from a ray is a specification of both position and direction,
which is impossible by virtue of both classical wave properties and quantum behavior. So
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the approach taken here is to treat rays without precisely defining them, and there are few
reminders hereafter that the predictions of ray optics are imperfect.

Refractive Index

For the purposes of this chapter, the optical characteristics of matter are completely
specified by its refractive index. The index of refraction of a medium is defined in
geometrical optics as

_ speed of light in vacuum _ ¢

- )

a speed of light in medium v

A homogeneous medium is one in which n is everywhere the same. In an
inhomogeneous or heterogeneous medium the index varies with position. In an isotropic
medium n is the same at each point for light traveling in all directions and with all
polarizations, so the index is described by a scalar function of position. Anisotropic media
are not treated here.

Care must be taken with equations using the symbol #, since it sometimes denotes the
ratio of indices, sometimes with the implication that one of the two is unity. In many cases,
the difference from unity of the index of air (=1.0003) is important. Index varies with
wavelength, but this dependence is not made explicit in this section, most of which is
implicitly limited to monochromatic light. The output of a system in polychromatic light is
the sum of outputs at the constituent wavelengths.

Systems Considered

The optical systems considered here are those in which spatial variations of surface
features or refractive indices are large compared to the wavelength. In such systems ray
identity is preserved; there is no “‘splitting” of one ray into many as occurs at a grating or
scattering surface.

The term lens is used here to include a variety of systems. Dioptric or refractive systems
employ only refraction. Catoptric or reflective systems employ only reflection. Catadioptric
systems employ both refraction and reflection. No distinction is made here insofar as
refraction and reflection can be treated in a common way. And the term lens may refer
here to anything from a single surface to a system of arbitrary complexity.

Summary of the Behavior and Attributes of Rays

Reversibility

Rays propagate in straight lines in homogeneous media and have curved paths in
heterogeneous media. Rays have positions, directions, and speeds. Between any pair of
points on a given ray there is a geometrical path length and an optical path length. At
smooth interfaces between media with different indices rays refract and reflect. Ray paths
are reversible. Rays carry energy, and power per area is approximated by ray density.

Rays are reversible; a path can be taken in either direction, and reflection and refraction
angles are the same in either direction. However, it is usually easier to think of light as
traveling along rays in a particular direction, and, of course, in cases of real instruments
there usually is such a direction. The solutions to some equations may have directional
ambiguity.
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Groups of Rays

Certain types of groups of rays are of particular importance. Rays that originate at a single
point are called a normal congruence or orthotomic system, since as they propagate in
isotropic media they are associated with perpendicular wavefronts. Such groups are also of
interest in image formation, where their reconvergence to a point is important, as is the
path length of the rays to a reference surface used for diffraction calculations. Important in
radiometric considerations are groups of rays emanating from regions of a source over a
range of angles. The changes of such groups as they propagate are constrained by
conservation of brightness. Another group is that of two meridional paraxial rays, related
by the two-ray invariant.

Invariance Properties

Individual rays and groups of rays may have invariance properties—relationships between
the positions, directions, and path lengths—that remain constant as a ray or group of rays
passes through an optical system (Welford 1986, chap. 6°). Some of these properties are
completely general, e.g., the conservation of etendue and the perpendicularity of rays to
wavefronts in isotropic media. Others arise from symmetries of the system, e.g., the skew
invariant for rotationally symmetric systems. Other invariances hold in the paraxial limit.
There are also differential invariance properties (Herzberger 1935,” Stavroudis 1972, chap.
13%). Some ray properties not ordinarily thought of in this way can be thought of as
invariances. For example, Snell’s law can be thought of as a refraction invariant # sin /.

Description of Ray Paths

A ray path can be described parametrically as a locus of points x(o), where o is any
monotonic parameter that labels points along the ray. The description of curved rays is
elaborated in the section on heterogeneous media.

Real Rays and Virtual Rays

Direction

Since rays in homogeneous media are straight, they can be extrapolated infinitely from a
given region. The term real refers to the portion of the ray that “really” exists, or the
accessible part, and the term virtual refers to the extrapolated, or inaccessible, part.

At each position where the refractive index is continuous a ray has a unique direction. The
direction is given by that of its unit direction vector r, whose cartesian components are
direction cosines («, B, y), i.e.,

r=(a,B,7)
where [f> =’ + B>+ y*=1. (2)

The three direction cosines are not independent, and one is often taken to depend
implicitly on the other two. In this chapter it is usually vy, which is

y(a, B)=V1—a’— g’ 3)



1.12 GEOMETRIC OPTICS

Another vector with the same direction as r is

p =nr = (na, nB, ny) = (p, py, P:)
where |p|° = n’ 4)

Several names are used for this vector, including the optical direction cosine and the ray
vector.

Geometric Path Length

Geometric path length is geometric distance measured along a ray between any two points.
The differential unit of length is

ds = Vdx* + dy* + dz” Q)

The path length between points x; and x, on a ray described parametrically by x(o’), with
derivative x(o) = dx(o)/do is

s(xy;%,) = fz ds = LX25%do = fxz Vix(o)P do (6)

1 1 x

Optical Path Length

The optical path length between two points x, and x, through which a ray passes is
. 2 ds
Optical path length = V(x;x,) = f n(x)ds=c J —=c J dt (7
x| v

The integral is taken along the ray path, which may traverse homogeneous and
inhomogeneous media, and include any number of reflections and refractions. Path length
can be defined for virtual rays. In some cases, path length should be considered positive
definite, but in others it can be either positive or negative, depending on direction (Forbes
& Stone 1993°). If x,, X, and x, are three points on the same ray, then

V (X0, X2) = V(X0 X;) + V(x5 X5) ®)
Equivalently, the time required for light to travel between the two points is

tical path length V 1 (™ 2 d,
_ optical path leng :*:EJ n(x) ds = VS ©)

1 X1

Time
C c

In homogeneous media, rays are straight lines, and the optical path length is V =n [ds =
(index) X (distance between the points).

The optical path length integral has several interpretations, and much of geometrical
optics involves the examination of its meanings. (1) With both points fixed, it is simply a
scalar, the optical path length from one point to another. (2) With one point fixed, say x,,
then treated as a function of x, the surfaces V(x,; x) = constant are geometric wavefronts
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for light originating at x,. (3) Most generally, as a function of both arguments V(x;; x,) is
the point characteristic function, which contains all the information about the rays between
the region containing x, and that containing x,. There may not be a ray between all pairs of
points.

Fermat’s Principle

According to Fermat’s principle (Magie 1963,'° Fermat 1891,'""> Feynman 1963, Rossi
1956,'* Hecht 1987"%) the optical path between two points through which a ray passes is an
extremum. Light passing through these points along any other nearby path would take
either more or less time. The principle applies to different neighboring paths. The optical
path length of a ray may not be a global extremum. For example, the path lengths of rays
through different facets of a Fresnel lens have no particular relationship. Fermat’s principle
applies to entire systems, as well as to any portion of a system, for example to any section
of a ray. In a homogeneous medium, the extremum is a straight line or, if there are
reflections, a series of straight line segments.

The extremum principle can be described mathematically as follows (Klein 1986'°).
With the end points fixed, if a nonphysical path differs from a physical one by an amount
proportional to 8§, the nonphysical optical path length differs from the actual one by a
quantity proportional to 8> or to a higher order. If the order is three or higher, the first
point is imaged at the second-to-first order. Roughly speaking, the higher the order, the
better the image. A point is imaged stigmatically when a continuum of neighboring paths
have the same length, so the equality holds to all orders. If they are sufficiently close, but
vary slightly, the deviation from equality is a measure of the aberration of the imaging. An
extension of Fermat’s principle is given by Hopkins (H. Hopkins 1970").

Ray and wave optics are related by the importance of path length in both (Walther
1967, Walther 1969'%). In wave optics, optical path length is proportional to phase change,
and the extremum principle is associated with constructive interference. The more alike
the path lengths are from an object point to its image, the less the differences in phase of
the wave contributions, and the greater the magnitude of the net field. In imaging this
connection is manifested in the relationship of the wavefront aberration and the eikonal.

Fermat’s principle is a unifying principle of geometric optics that can be used to derive
laws of reflection and refraction, and to find the equations that describe ray paths and
geometric wavefronts in heterogeneous and homogeneous media. Fermat’s is one of a
number of variational principles based historically on the idea that nature is economical, a
unifying principle of physics. The idea that the path length is an extremum could be used
mathematically without interpreting the refractive index in terms of the speed of light.

Geometric Wavefronts
For rays originating at a single point, a geometric wavefront is a surface that is a locus of
constant optical path length from the source. If the source point is located at x, and light
leaves at time t,, then the wavefront at time t is given by
V(xo; X) = c(t — to) (10)
The function V(x;x,), as a function of x, satisfies the eikonal equation
aV\* AV (9V\?
n(x)* = (—) + <—) + (—)
0x ady 9z

= VV(x: %)) (1)
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This equation can also be written in relativistic form, with a four-dimensional gradient as
0=3(dV/dx;)* (Landau & Lifshitz 1951, sec. 7.1*°).

For constant refractive index, the eikonal equation has some simple solutions, one of
which is V =n[a(x —x,) + B(y — ) + y(z — z0)], corresponding to a parallel bundle of
rays with directions (a, B,y). Another is V =n[(x —x,)°+(y —yo)> + (z — 20)°]"%,
describing rays traveling radially from a point (x,, yo, Zo)-

In isotropic media, rays and wavefronts are everywhere perpendicular, a condition
referred to as orthotomic. According to the Malus-Dupin principle, if a group of rays
emanating fron a single point is reflected and/or refracted any number of times, the
perpendicularity of rays to wavefronts is maintained. The direction of a ray from x, at x is
that of the gradient of V(x,; x)

p=nr=VV
or
A% A% A%
=" =— = 12
na =" np ay ny P (12)

In a homogeneous medium, all wavefronts can be found from any one wavefront by a
construction. Wavefront normals, i.e., rays, are projected from the known wavefront, and
loci of points equidistant therefrom are other wavefronts. This gives wavefronts in both
directions, that is, both subsequent and previous wavefronts. (A single wavefront contains
no directional information.) The construction also gives virtual wavefronts, those which
would occur or would have occurred if the medium extended infinitely. This construction is
related to that of Huygens for wave optics. At each point on a wavefront there are two
principal curvatures, so there are two foci along each ray and two caustic surfaces
(Stavroudis 1972,% Kneisly 1964°").

The geometric wavefront is analogous to the surface of constant phase in wave optics,
and the eikonal equation can be obtained from the wave equation in the limit of small
wavelength (Born & Wolf 1980, Marcuse 1989*). A way in which wave optics differs from
ray optics is that the phase fronts can be modified by phase changes that occur on
reflection, transmission, or in passing through foci.

Fields of Rays

In many cases the optical direction cosine vectors p form a field, where the optical path
length is the potential, and the geometric wavefronts are equipotential surfaces. The
potential changes with position according to

dV =nadx +nBdy +nydz =nr-dx=p-dx (13)
If dx is in the direction of a ray, then dV /dx = n, the maximum rate of change. If dx is
perpendicular to a ray, then dV/dx =0. The potential difference between any two
wavefronts is
X2
vi-vi=[ av (14)
X

where x, and x, are any two points on the respective wavefronts, and the integrand is
independent of the path. Other relationships for rays originating at a single point are

0=VXxp=VX(nr) and 0=3€p-dx (15)

where the integral is about a closed path (Born & Wolf 1980%). These follow since p is a
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gradient, Eq. (13). In regions where rays are folded onto themselves by refraction or
reflections, p and V are not single-valued, so there is not a field.

1.4 CHARACTERISTIC FUNCTIONS

Introduction

Characteristic functions contain all the information about the path lengths between pairs of
points, which may either be in a contiguous region or physically separated, e.g., on the two
sides of a lens. These functions were first considered by Hamilton (Hamilton 1931%%), so
their study is referred to as hamiltonian optics. They were rediscovered in somewhat
different form by Bruns (Bruns 1895,” Schwarzschild 1905**) and referred to as eikonals,
leading to a confusing set of names for the various functions. The subject is discussed in a
number of books (Czapski-Eppenstein 1924, Steward 1928,”° Herzberger 1931,” Synge
1937,%® Caratheodory 1937,” Rayleigh 1908, Pegis 1961, Luneburg 1964, Brouwer and
Walther 1967,>* Buchdahl 1970,** Born & Wolf 1980, Herzberger 1958%).

Four parameters are required to specify a ray. For example, an input ray is defined in
the z =0 plane by coordinates (x,y) and direction (a, B). So four functions of four
variables specify how an incident ray emerges from a system. In an output plane z' =0, the
ray has coordinates x'=x'(x,y,a,B), y' =y'(x,y,a, B), and directions a'=
a'(x,y,a,B), B'=B'(x,y, a, B). Because of Fermat’s principle, these four functions are
not independent, and the geometrical optics properties of a system can be fully
characterized by a single function (Luneburg 1964, sec. 19°%).

For any given system, there is a variety of characteristic functions related by Legendre
transformations, with different combinations of spatial and angular variables (Buchdahl
1970**). The different functions are suited for different types of analysis. Mixed
characteristic functions have both spatial and angular arguments. Those functions that are
of most general use are discussed below. The others may be useful in special circum-
stances. If the regions have constant refractive indices, the volumes over which the
characteristic functions are defined can be extended virtually from physically accessible to
inaccessible regions.

From any of its characteristic functions, all the properties of a system involving ray
paths can be found, for example, ray positions, directions, and geometric wavefronts. An
important use of characteristic functions is demonstrating general principles and fun-
damental limitations. Much of this can be done by using the general properties, e.g.,
symmetry under rotation. (Unfortunately, it is not always known how closely the
impossible can be approached.)

Point Characteristic Function

The point characteristic function is the optical path integral V(x;x") =V (x,y, z;x',y', z')
taken as a function of both points x and x'. At point x where the index is 7,

)% )% )%
—noa =— —-npB=— —-ny=—

= -p=VV 16
ax ay 0z or P (16)
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Similarly, at x’, where the index is n’,

n'a'= n'g' = n'y' = or p=VV 17)

It follows from the above equations and Eq. (4) that the point characteristic satisfies two
conditions:

n2 — |VV|2 and an — |Vrv|2 (18)

Therefore, the point characteristic is not an arbitrary function of six variables. The total
differential of V is

dvV(x;x')=p’-dx' —p-dx (19)

“This expression can be said to contain all the basic laws of optics” (Herzberger 1958°).

Point Eikonal

If reference planes in object and image space are fixed, for which we use z, and z{, then
the point eikonal is S(x,y;x',y")=V(x,y, z0;x',y’, z¢).- This is the optical path length
between pairs of points on the two planes. The function is not useful if the planes are
conjugate, since more than one ray through a pair of points can have the same path length.
The function is arbitrary, except for the requirement (Herzberger 1936™) that

7S S S 9°S

’ ’ - ! ’ (20)
dx dx’'dy dy’ ox dy' ox’ dy
The partial derivatives of the point eikonal are
aS aS aS
—na =— -npB=— and n'a'=— n'p' =— (21)
0x ay ox dy

The relative merits of the point characteristic function and point eikonal have been
debated. (Herzberger 1936, Herzberger 1937,%° Synge 1937%).

Angle Characteristic

The angle characteristic function T(a, B;a’, B'), also called the eikonal, is related to the
point characteristic by

T(e, Bsa', BY=V(x,y,z;x",y',2') + n(ax + By + yz)

_n/(a/xl _,’_B/y/ + ,y/z/) (22)

Here the input plane z and output plane z' are fixed and are implicit parameters of 7.
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FIGURE 1 Geometrical interpretation of the angle characteristic function for
constant object and image space indices. There is, in general, a single ray with
directions (a, B, ¥) in object space and (', B’, y') in image space. Point O is the
coordinate origin in object space, and O’ is that in image space. From the origins,
perpendiculars to the ray are constructed, which intersect the ray at Q and Q'. The
angle characteristic function 7'(«, 8; «’, B') is the path length from Q to Q'.

This equation is really shorthand for a Legendre transformation to coordinates p, = 9V /dx,
etc. In principle, the expressions of Eq. (16) are used to solve for x and y in terms of « and
B, and likewise Eq. (17) gives x’ and y' in terms of a’ and B’, so

I(a, Bsa', B') =V (x(a, B), y(a, B), z:x'(a', B'), y'(a', B'), 2")
+nlax(a, B) + By(a, B) + V1 —a’ - B’z]
— 'l (@, B+ B (o, B+ VI—a = B2 (23)
The angle characteristic is an arbitrary function of four variables that completely specify
the directions of rays in two regions. This function is not useful if parallel incoming rays
give rise to parallel outgoing rays, as is the case with afocal systems, since the relationship

between incoming and outgoing directions is not unique. The partial derivatives of the
angular characteristic function are

oT_ (@ oT_ _E)

aa—n<x yz) 0B n<y yz (24)
aT?_/ /_a7,/ aT:_/ /_E’ /)
Rl ) Il (R aE (s)

These expressions are simplified if the reference planes are taken to be z =0 and z' =0.
The geometrical interpretation of 7 is that it is the path length between the intersection
point of rays with perpendicular planes through the coordinate origins in the two spaces, as
shown in Fig. 1 for the case of constant n and n'. If the indices are heterogeneous, the
construction applies to the tangents to the rays. Of all the characteristic functions, T is
most easily found for single surfaces and most easily concatenated for series of surfaces.

Point-Angle Characteristic

The point-angle characteristic function is a mixed function defined by
Wy, z;a', B)=V(xy z;x,y, 2" ) —n'(a'x" + By +v'2')
=T(a, B: ', B') —n(ax + By + yz) (20)

As with Eq. (22), this equation is to be understood as shorthand for a Legendre
transformation. The partial derivatives with respect to the spatial variables are related by
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equations like those of Eq. (16), so n>=|VW/, and the derivatives with respect to the
angular variables are like those of Eq. (25). This function is useful for examining
transverse ray aberrations for a given object point, since W /da’, oW /9B’ give the
intersection points (x’, y') in plane z for rays originating at (x, y) in plane z.

Angle-Point Characteristic
The angle-point characteristic function is
Wi(a, B;x',y', 2 )=V (x,y,z;x",y",2") + n(ax + By + yz)
=T(a, B:a', B") —n'(a’x" +B'y" +v'z2) @7)

Again, this is shorthand for the Legendre transformation. This function satisfies relation-
ships like those of Eq. (17) and satisfies n'> = |V'W'[". Derivatives with respect to spatial
variables are like those of Eq. (21). It is useful when input angles are given, and output
angles are to be found.

Expansions About an Arbitrary Ray

If two points on a ray that are not conjugate are taken as coordinate origins, and the z axes
of the coordinate systems are taken to lie along the rays, then the expansion to second
order of the point eikonal about these points is

S(XI; Y15 X2, )’2) =v+ alx? +bx, yito y? + 02x§ + b2x2YZ + Cz)’%
+dx,x, +ey, y, + fx x, + gyix, (28)

The other characteristic functions have similar expansions. These expansions have three
types of terms, those associated with the input space, the output space, and ‘‘interspace”
terms. From the coefficients, information about imaging along a known ray is obtained.
This subject is treated in the references for the section “Images About Known Rays.”

Expansions About the Axis
For rotationally symmetric systems, the building blocks for an expansion about the axis are
Object space term: O=x>+y> or &’ + 8’ (29)
Image space term: $=x"+y”> or a”+B"7 (30)
Interspace term: B =xx'+yy’ or aa’ + BB’ or xa' +yB’
or ax' + By’ 31)

(Here % = “between.””) The interspace term combines the variables included in 0 and .$.
The general form can be written as a series

C(0, B, )= > a,ynO"B" I (32)

LMN
To second order, the expansion is
C(O, B, F) = ao+ 1000+ a010B + Ago1 I + A2000” + Ao B + 02 I
+a,100B+ a,,0F +ag, BI+ -+ - (33)
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The constant term is the optical path length between coordinate origins in the two spaces.
It is often unimportant, but it does matter if two systems are used in parallel, as in an
interferometer. The three first-order terms give the paraxial approximation. For imaging
systems, the second-order terms are associated with third-order ray aberrations, and so on
(Rayleigh 1908). It is also possible to expand the characteristic functions in terms of three
linear combinations of O, %, and . These combinations can be chosen so that the
characteristic function of an aberration-free system depends on only one of the three
term§, and the other two describe the aberrations (Steward 1928,° Smith 1945,*7 Pegis
1961°").

Paraxial Forms for Rotationally Symmetric Systems

These functions contain one each of the object space, image space, and interspace terms,
with coefficients a,, a,, and az. The coefficients of the object and image space terms
depend on the input and output plane locations. That of the interspace term depends on
the system power. Point eikonal:

S, ysx,y)=a+ao(x®+y?) +az(xx’ +yy) +a;(x”+y"?) (34)
Angle characteristic:
T(a', B';a, B)=a+ao(a”+ B>+ ag(aa’ + BB) +a(a’>+ B7) (35)
Point-angle characteristic:
W(x,y;a', B =a+ao(x*>+y*) +ag(xa’ +yB') +a,(a”+ B'%) (36)
Angle-point characteristic:
W'(a, B, x',y")=a+ao(a®+ B +ag(ax’ + By’) + a;(x> +y"?) 37)
The coefficients in these expressions are different. The familiar properties of paraxial and

gaussian optics can be found from these functions by taking the appropriate partial
derivatives.

Some Ideal Characteristic Functions

For a system that satisfies certain conditions, the form of a characteristic function can
sometimes be found. Thereafter, some of its properties can be determined. Some examples
of characteristic functions follow, in each of which expression the function F is arbitrary.

For maxwellian perfect imaging (defined below) by a rotationally symmetric system
between planes at z =0 and z’'=0 related by transverse magnification m, the point
characteristic function, defined for z’ #0, is

V', y',2'x,y) = F(x +y°) +[(x" —mx)* + (' —my)* +2"]"” (38)

Expanding the expression above for small x, x', y, y’ give the paraxial form, Eq. (34). The
form of the point-angle characteristic is

W(x, y;a',B') = F(x*+y?) —m(n'a’x +n'B'y) (39)
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The form of the angle-point characteristic is
! ’ ’ 2 72 1 ’ ’
Wi(a, B;x',y") = F(x"" +y") + —(nax' + npy’) (40)
m

The functions F are determined if the imaging is also stigmatic at one additional point, for
example, at the center of the pupil (Steward 1928,”° T. Smith 1945, Buchdahl 1970,
Velzel 1991*"). The angular characteristic function has the form

T(a, B:a', B') = F((na —mn'a’)* + (nf —mn'B')’) (41)

where F is any function.
For a lens of power ¢ that stigmatically images objects at infinity in a plane, and does so
in either direction,

nn'

¢

Partially differentiating with respect to the appropriate variables shows that for such a
system, the heights of point images in the rear focal plane are proportional to the sines of
the incident angles, rather than the tangents.

SC,y;x’,y)=—¢x"+yy) and  T(a,B;a’,B)=——(aa'+BB") (42)

1.5 RAYS IN HETEROGENEOUS MEDIA

Introduction

This section provides equations for describing and determining the curved ray paths in a
heterogeneous or inhomogeneous medium, one whose refractive index varies with
position. It is assumed here that n(x) and the other relevant functions are continuous and
have continuous derivatives to whatever order is needed. Various aspects of this subject
are discussed in a number of books and papers (Heath 1895, Herman 1900, Synge
1937,** Luneburg 1964, Stavroudis 1972,* Ghatak 1978," Born & Wolf 1980,* Marcuse
1989*). This material is often discussed in the literature on gradient index lenses
(Marchand 1973,° Marchand 1978,”' Sharma, Kumar, & Ghatak 1982, Moore 1992,
Moore 1994°*) and in discussions of microwave lenses (Brown 1953, Cornbleet 1976,
Cornbleet 1983, Cornbleet 1984°%).

Differential Geometry of Space Curves

A curved ray path is a space curve, which can be described by a standard parametric
description, x(o) = (x(a), y(), z(0)), where o is an arbitrary parameter (Blaschke 1945,
Kreyszig 1991, Stoker 1969,°" Struik 1990, Stavroudis 1972%°).

Different parameters may be used according to the situation. The path length s along
the ray is sometimes used, as is the axial position z. Some equations change form according
to the parameter, and those involving derivatives are simplest when the parameter is s.
Derivatives with respect to the parameter are denoted by dots, so x(o)=dx(o)/do
= (¥(0), y(0), 2(0)). A parameter other than s is a function of s, so dx(o)/ds
= (dx/do)(do/ds).

Associated with space curves are three mutually perpendicular unit vectors, the tangent
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vector t, the principal normal n, and the binormal b, as well as two scalars, the curvature
and the torsion. The direction of a ray is that of its unit tangent vector

_Xo) _
' k(o)

The tangent vector t is the same as the direction vector r used elsewhere in this chapter.
The rate of change of the tangent vector with respect to path length is

x(s) = (@, B, v) (43)

. . da dp dv)
=t(s) = = (== ZF 27 44
kn=i(s) =x(s) = (55,2 ()
The normal vector is the unit vector in this direction
X(s)
n=-— 45
(o) )

The vectors t and n define the osculating plane. The curvature k =|X(s)| is the rate of
change of direction of t in the osculating plane.

The radius of curvature is p =1/k. Perpendicular to the osculating plane is the unit
binormal vector

b=txn=M 47)

[X(s)I
The torsion is the rate of change of the normal to the osculating plane

dn(s) _ (x(0) X %(0)) -%(o) _ (5(s) X5(5)) K()

T T k() xK(o)P ()

(48)

The quantity 1/7 is the radius of torsion. For a plane curve, T =0 and b is constant. The
rates of change of t, n, and b are given by the Frenet equations:

t(s)=kn  0(s)=—kt+71h  b(s)=—-Tn (49)

In some books, 1/k and 1/1 are used for what are denoted here by « and T.

Differential Geometry Equations Specific to Rays

From the general space curve equations above and the differential equations below specific
to rays, the following equations for rays are obtained. Note that »n here is the refractive
index, unrelated to n. The tangent and normal vectors are related by Eq. (59), which can
be written

Vlogn =«kn+ (Vlogn - t)t (50)

The osculating plane always contains the vector Va. Taking the dot product with n in the
above equation gives

_dlogn

Y, n-Vlogn=b-(xXxVlogn) (51)

K
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The partial derivative d/dN is in the direction of the principal normal, so rays bend toward
regions of higher refractive index. Other relations (Stavroudis 1972*°) are

n = px(s) X (Vlogn X x(s)) (52)
b = px(s) X Vlogn and 0=b-Vn (53)

_ (X(s) X Vn) - Vn

Vi X x(s)]? (54)

Variational Integral

Written in terms of parameter o, the optical path length integral, Eq. (7) is

V=Jnds:f<n£>d0=f$d0 (55)

The solution for ray paths involves the calculus of variations in a way analogous to that
used in classical mechanics, where the time integral of the lagrangian £ is an extremum
(Goldstein 1980%). If & has no explicit dependence on o, the mechanical analogue to the
optics case is that of no explicit time dependence.

Differential Equations for Rays

General Differential Equations. Because the optical path length integral is an extremum,
the integrand % satisfies the Euler equations (Stavroudis 1972*°). For an arbitrary
coordinate system, with coordinates g, ¢g,, g; and the derivatives with respect to the
parameter ¢; = dq;/do, the differential equations for the path are

do¥ o d( ads\ o ( ds
0= dcig g do\"sg,de) g, \"ds) 712 56
dodq;, dq; do <n 8qidg> g <ndo-) i=1,23 (56)

Cartesian Coordinates with Unspecified Parameter. In cartesian coordinates
ds/do = (¥* + y* + #%)'”, so the x equation is

0

d < i) ds) dson d [ nx
n =—
doix do

:% &% (x2+y2+z-2)1/2

a

:| _ (xz +y2 + Z-Z)l/Zl (57)
ax

Similar equations hold for y and z.

Cartesian Coordinates with Parameter o =s. With o =s, so ds/do =1, an expression,
sometimes called the ray equation, is obtained (Synge 1937°%).

d dx(s)) d’x(s)  dn(x(s)) dx(s)
Vi =— = + 58
" ds <n ds " ds® ds ds (58)
Using dn/ds = Vn - %, the ray equation can also be written
Vn=nx+(Vn-%)x or Vlogn =%+ (Vlogn - x)x (59)

Only two of the component equations are independent, since [X| = 1.
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Cartesian Coordinates with Parameter o = [ ds[n. The parameter o = [ ds/n, for which
ds/do =n and n*> =¥+ y* + 72, gives (Synge 1937*)
d’x
102~ VG (60)
This equation is analogous to Newton’s law of motion for a particle, F = m d’x/dt>, so the
ray paths are like the paths of particles in a field with a potential proportional to n’*(x).
This analogy describes paths, but not speeds, since light travels slower where n is greater,

whereas the particles would have greater speeds (Arnaud 1979, Evans & Rosenquist
1986%).

Euler Equations for Parameter o=z 1If o=z, then ds/do=(*+y>+1)" and
F=L(x,y;%, y;z). This gives (Luneburg 1964, Marcuse 1989*)

d < d ds) dson d [ nx
n .
dz ox dz

:E aa (1 +x2+)}2)1/2

0
} A+ 61)
ax
with a similar equation for y. The equations can also be written (Moore 1975,°° Marchand
1978, app. A’") as

‘L”_a”-> ny:(1+x2+y2)<(?*n—@)7> (62)

..:1+.2+.2< i
n=(1+% y)ax azx Jdy 9z

This parameter is particularly useful when 7 is rotationally symmetric about the z axis.

Hamilton’s Equations with Cartesian Coordinates for Parameter o =z. A set of
Hamilton’s equations can also be written in cartesian coordinates using z as the parameter.
(Luneburg 1964, Marcuse 1989*°) The canonical momenta in cartesian coordinates are
the optical direction cosines

_oZL_
0

_aZ_

Ps = =np (63)
Y

na Py

The hamiltonian is

(X, y, 1 Pes Py 2) =3p. +3p, — L= —Vn*(x,y,2) = (p3+p)) (64)
Hamilton’s equations are

de_od dy_ o dp,_ 9% dp, K

dz  dp, dz ap, dz dx dz ady

(65)

It is not possible to write a set of Hamilton’s equations using an arbitrary parameter and
three canonical momenta, since they are not independent (Forbes 19917). Another
equation is

a%_dx_1on

66
dz dz vyoz (66)

Paraxial Form of Hamilton’s Equations for o =z. In the paraxial limit, if n, is the
average index, the above set of equations gives (Marcuse 1989*)

d’x(z) _1on  d’()_1dn
dz>  nyox dz’>  nydy

(67)
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Other Forms. A variety of additional differential equations can be obtained with various
parameters (Forbes 1991%7). Time cannot be used as a parameter (Landau & Lifshitz
1951°). The equations can also be expressed in a variety of coordinate systems (Buchdahl
1973,% Cornbleet 1976, Cornbleet 1978, Cornbleet 1979,”" Cornbleet 1984°).

Refractive Index Symmetries

When the refractive index has symmetry or does not vary with one or more of the spatial
variables, the above equations may simplify and take special forms. If, in some coordinate
system, n does not vary with a coordinate ¢, so dn/dq; =0, and if, in addition,
d/3q;(ds/do) =0, then

0
—=0 and

0¥ ) (ds
“Z_, L
99, aq aq

7) = constant (68)
do

There is an associated invariance of the ray path (Synge 1937,* Cornbleet 1976,>° 1984,
Marcuse 1989*). (This is analogous to the case in mechanics where a potential does not
vary with some coordinate.) A more esoteric approach to symmetries involves Noether’s
theorem (Blaker 1974,” Joyce 19757%). There are a number of special cases.

If the index is rotationally symmetric about the z axis, n=n(x>+y? z), then
0%/d¢ =0, where ¢ is the azimuth angle, and the constant of motion is analogous to that
of the z component of angular momentum in mechanics for a potential with rotational
symmetry. The constant quantity is the skew invariant, discussed elsewhere.

If the refractive index is a function of radius, n =n(r), there are two constants of
motion. The ray paths lie in planes through the center (r =0) and have constant angular
motion about an axis through the center that is perpendicular to this plane, so x X p is
constant. If the plane is in the x-y plane, then n(ay — Bx) is constant. This is analogous to
motion of a particle in a central force field. Two of the best-known examples are the
Maxwell fisheye (Maxwell 1854,” Born & Wolf 1980*%) for which n(r) « (14 r*)™', and the
Luneburg lens (Luneburg 1964, Morgan 19587), for which n(r) = V2 —r* for r =1 and
n=1forr>1.

If n does not vary with z, then # = ny is constant for a ray as a function of z, according
to Eq. (66).

If the medium is layered, so the index varies in only the z direction, then na and ng are
constant. If 6 is the angle relative to the z axis, then n(z) sin 6(z) is constant, giving Snell’s
law as a special case.

The homogeneous medium, where 9n/dx =dn/dy =on/dz =0, is a special case in
which there are three constants of motion, na, nB, and nvy, so rays travel in straight lines.

1.6 CONSERVATION OF ETENDUE

If a bundle of rays intersects a constant z plane in a small region of size dx dy and has a
small range of angles da dB, then as the light propagates through a lossless system, the
following quantity remains constant:

n*dxdydedB =n>dA dedB =n”dA cos 0dw = dx dy dp, dp, (69)
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Here dA = dx dy is the differential area, dw is the solid angle, and 6 is measured relative to
the normal to the plane. The integral of this quantity

andxdydadBZInsz da defnsz cos 9dw=dedydpx dp, (70)

is the étendue, and is also conserved. For lambertian radiation of radiance L., the
total power transferred is P = [ L.n”> da dB dx dy. The étendue and related quantities are
known by a variety of names (Steel 19747°), including generalized Lagrange invariant,
luminosity, light-gathering power, light grasp, throughput, acceptance, optical extent, and
area-solid-angle-product. The angle term is not actually a solid angle, but is weighted.
It does approach a solid angle in the limit of small extent. In addition, the integrations
can be over area, giving n’>da dB [ dA, or over angle, giving n’>dA [ da dB. A related
quantity is the geometrical vector flux (Winston 197977), with components
(Jdp, dp., [dp,dp., [dp.dp,). In some cases these quantities include a brightness factor,
and in others they are purely geometrical. The étendue is related to the information
capacity of a system (Gabor 19617%).
As special case, if the initial and final planes are conjugate with transverse magnification
m =dx'[dx = dy'/dy, then
n*dadB =n"m*da’ dB’ (71)

Consequently, the angular extents of the entrance and exit pupil in direction cosine
coordinates are related by

n? f dadB =n"m? da' dB’' (72)
entrance pupil

exit pupil

See also the discussion of image irradiance in the section on apertures and pupils.

This conservation law is general; it does not depend on index homogeneity or on axial
symmetry. It can be proven in a variety of ways, one of which is with characteristic
functions (Welford & Winston 1978, Welford 1986, Welford & Winston 1989*'). Phase
space arguments involving Liouville’s theorem can also be applied (di Francia 1950,%
Winston 1970, Jannson & Winston 1986, Marcuse 1989%). Another type of proof
involves thermodynamics, using conservation of radiance (or brightness) or the principal of
detailed balance (Clausius 1864, Clausius 1879,” Helmholtz 1874,% Liebes 1969%).
Conversely, the thermodynamic principle can be proven from the geometric optics one
(Nicodemus 1963, Boyd 1983,” Klein 1986°%). In the paraxial limit for systems of
revolution the conservation of etendue between object and image planes is related to the
two-ray paraxial invariant, Eq. (152). Some historical aspects are discussed by Rayleigh
(Rayleigh 1886%) and Southall (Southall 1910°%).

1.7 SKEW INVARIANT

In a rotationally symmetric system, whose indices may be constant or varying, a skew ray is
one that does not lie in a plane containing the axis. The skewness of such a ray is

F=n(ay — Bx) =nay —npx =p.y —p,x (73)

As a skew ray propagates through the system, this quantity, known as the skew invariant,
does not change (T. Smith 1921,” H. Hopkins 1947,”° Marshall 1952,”” Buchdahl 1954, sec.
4,® M. Herzberger 1958,” Welford 1968,'” Stavroudis 1972, p. 208,'"' Welford 1974, sec.
5.4,'” Welford 1986, sec. 6.4'” Welford & Winston 1989, p. 228'™). For a meridional ray,
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one lying in a plane containing the axis, ¥ = 0. The skewness can be written in vector form
as

F=a-(xXp) (74)

where a is a unit vector along the axis, x is the position on a ray, and p is the optical cosine
and vector at that position.

This invariance is analogous to the conservation of the axial component of angular
momentum in a cylindrical force field, and it can be proven in several ways. One is by
performing the rotation operations on «, B, x, and y (as discussed in the section on
heterogeneous media). Another is by means of characteristic functions. It can also be
demonstrated that & is not changed by refraction or reflection by surfaces with radial
gradients. The invariance holds also for diffractive optics that are figures of rotation.

A special case of the invariant relates the intersection points of a skew ray with a given
meridian. If a ray with directions («, ) in a space of index »n intersects the x = 0 meridian
with height y, then at another intersection with this meridian in a space with index n’, its
height y’ and direction cosine «’ are related by

nay=n'a'y’ (75)

The points where rays intersect the same meridian are known as diapoints and the ratio
y'/y as the diamagnification (Herzberger 1958%).

1.8 REFRACTION AND REFLECTION AT INTERFACES BETWEEN
HOMOGENEOUS MEDIA

Introduction

The initial ray direction is specified by the unit vector r= (a, 3, v). After refraction or
reflection the direction is r' = (a’, B', y'). At the point where the ray intersects the
surface, its normal has direction S = (L, M, N).

The angle of incidence I is the angle between a ray and the surface normal at the
intersection point. This angle and the corresponding outgoing angle I’ are given by

lcos I| = |r - S| = |aL + BM + yN|
lcosI'|=[t' -S| =|a’'L+B'M +y'N

(76)

In addition
sin I| = |r X S| |sinI’| =[x’ X S| (77)

The signs of these expressions depend on which way the surface normal vector is directed.
The surface normal and the ray direction define the plane of incidence, which is
perpendicular to the vector cross product S Xr=(My— NB, No — Ly, LB — Ma). After
refraction or reflection, the outgoing ray is in the same plane. This symmetry is related to
the fact that optical path length is an extremum.

The laws of reflection and refraction can be derived from Fermat’s principle, as is done
in many books. At a planar interface, the reflection and refraction directions are derived
from Maxwell’s equations using the boundary conditions. For scalar waves at a plane
interface, the directions are related to the fact that the number of oscillation cycles is the
same for incident and outgoing waves.
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At an interface between two homogeneous and isotropic media, described by indices n and

!

n', the incidence angle I and the outgoing angle I' are related by Snell’s law (Magie
1963'%):

n'sinl’ =nsin/ (78)

If sin I’ >1, there is total internal reflection. Another relationship is

n'cosl'=Vn?—n*sin’I=Vn'>—n®>—n’cos’ [ (79)
Snell’s law can be expressed in a number of ways, one of which is
nr+(x-S)S]=n'[r' +(r'-S)S] (80)
Taking the cross product of both sides with S gives another form
n'(Sxr)=n(Sxr) (81)
A quantity that appears frequently in geometrical optics (but which has no common name
or symbol) is
I'=n'cosI'—ncosl (82)

It can be written several ways

I'=(r—n't')-S=—-ncosl+Vn?—n*sin>I=—-ncosl+Vn?>—n*+n>cos’1 (83)

In terms of I, Snell’s law is
n't' =nr+TS (84)
or
n'a'=na+ LT n'B' =nB +MT n'y' =ny+ NI (85)

The outgoing direction is expressed explicitly as a function of incident direction by

n't' =nr+S[nr-S —Vn'?>—n?+ (nr- S)’] (86)
If the surface normal is in the z direction, the equations simplify to
n'a’ =na n'B'=np n'y' =Vn'?—n®+n?y? (87)

If B =0, this reduces to n'a’ = ne, the familiar form of Snell’s law, written with direction
cosines, with n'y’ = (n'> — n’a?)"?, corresponding to Eq. (79). Another relation is

n'a’—na_n'B'—nB _n'y'—ny
L M N

r (88)

All of the above expressions can be formally simplified by using p=nr and p’ =n'r’. For a
succession of refractions by parallel surfaces,

nysinl,=n,sinL,=n;ysinlL="--- (89)
so the angles within any two media are related by their indices alone, regardless of the

intervening layers. Refractive indices vary with wavelength, so the angles of refraction do
likewise.
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Reflection

The reflection equations can be derived from those for refraction by setting the index of
the final medium equal to the negative of that of the incident medium, i.e., n’ = —n, which
gives I'= —2n cos I. The angles of incidence and reflection are equal

I'=1I (90)

The incident and reflected ray directions are related by

Sxr =-Sxr 91)
Another expression is
r=r—(2S-r)S=r—(2cosI)S (92)
The components are
a'=a—2LcosI B'=B—2Mcosl v' =y —2NcosI (93)

This relationship can be written in terms of dyadics (Silberstein 1918'°°) as r' = (I — SS) - r.
This is equivalent to the matrix form (T. Smith 1928,'"”” Luneburg 1964,'” R. E. Hopkins
1965,'” Levi 1968,"'° Tongshu 1991''")

a’ 1-21 —2LM —2LN\ /[«
g |=| —2LM 1-2M> —2MN || B (94)
y' —2LN —2MN 1-2N*/ \y

Each column of this matrix is a set of direction cosines and is orthogonal to the others, and
likewise for the rows. The matrix associated with a sequence of reflections from plane
surfaces is calculated by multiplying the matrices for each reflection. Another relationship
is

o' —a BB _y' v

95
L M N ©3)
If the surface normal is in the z direction, so (L, M, N) = (0, 0, 1), then

a'=a  B'=B ¥y =-v (96)

Reflection by a Plane Mirror—Positions of Image Points

If light from a point (x,y, z) is reflected by a plane mirror whose distance from the
coordinate origin is d, and whose surface normal has direction (L, M, N), the image point
coordinates (x', y’, z') are given by

x' 1-2L> —-2LM —2LN 2dL\ /x
y'| | —2LM 1-2M*> —2MN 2dM || y 97)
4 —2LN —2MN 1-2N*> 2dN z
1 0 0 0 1 1

This transformation involves both rotation and translation, with only the former effect
applying if d = 0. It is an affine type of collinear transformation, discussed in the section on
collineation. The effect of a series of reflections by plane mirrors is found by a product of
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such matrices. The transformation can also be formulated in terms of quaternions (Wagner
1951,""* Levi 1968, p. 367'"").

Diffractive Elements

The changes in directions produced by gratings or diffractive elements can be handled in
an ad hoc geometrical way (Spencer & Murty 1962,'"* di Francia 1950'"*)

A
n'r; XS=nrxS+G-—q (98)
p

Here A is the vacuum wavelength, p is the grating period, q is a unit vector tangent to the
surface and parallel to the rulings, and G is the diffraction order. Equations (81) and (91)
are special cases of this equation for the Oth order.

1.9 IMAGING

Introduction

Image formation is the principal use of lenses. Moreover, lenses form images even if this is
not their intended purpose. This section provides definitions, and discusses basic concepts
and limitations. The purposes of the geometric analysis of imaging include the following:
(1) discovering the nominal relationship between an object and its image, principally the
size, shape, and location of the image, which is usually done with paraxial optics; (2)
determining the deviations from the nominal image, i.e., the aberrations; (3) estimating
image irradiance; (4) understanding fundamental limitations—what is inherently possible
and impossible; (5) supplying information for diffraction calculations, usually optical path
lengths.

Images and Types of Images

A definition of image (Webster 1934'"%) is: “The optical counterpart of an object produced
by a lens, mirror, or other optical system. It is a geometrical system made up of foci
corresponding to the parts of the object.” The point-by-point correspondence is the key,
since a given object can have a variety of different images.

Image irradiance can be found only approximately from geometric optics, the degree of
accuracy of the predictions varying from case to case. In many instances wave optics is
required, and for objects that are not self-luminous, an analysis involving partial coherence
is also needed.

The term image is used in a variety of ways, so clarification is useful. The light from an
object produces a three-dimensional distribution in image space. The aerial image is the
distribution on a mathematical surface, often that of best focus, the locus of points of the
images of object points. An aerial image is never the final goal; ultimately, the light is to be
captured. The receiving surface (NS) is that on which the light falls, the distribution of
which there can be called the received image (NS). This distinction is important in
considerations of defocus, which is a relationship, not an absolute. The record thereby
produced is the recorded image (NS). The recorded image varies with the position of the
receiving surface, which is usually intended to correspond with the aerial image surface. In
this section, ““image’” means aerial image, unless otherwise stated.
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Object Space and Image Space

The object is said to exist in object space; the image, in image space. Each space is infinite,
with a physically accessible region called real, and an inaccessible region, referred to as
virtual. The two spaces may overlap physically, as with reflective systems. Corresponding
quantities and locations associated with the object and image spaces are typically denoted
by the same symbol, with a prime indicating image space. Positions are specified by a
coordinate system (x, y, z) in object space and (x', y’, z’) in image space. The refractive
indices of the object and image spaces are n and n'.

Image of a Point

An object point is thought of as emitting rays in all directions, some of which are captured
by the lens, whose internal action converges the rays, more or less, to an image point, the
term ‘“‘point” being used even if the ray convergence is imperfect. Object and image points
are said to be conjugate. Since geometric optics is reversible, if A" is the image of A, then
A is the image of A’

Mapping Object Space to Image Space

If every point were imaged stigmatically, then the entire object space would be mapped
into the image space according to a transformation

x'=x'(x,y,z) Yy =y@xyz2) z2'=7(xy72) (99)

The mapping is reciprocal, so the equations can be inverted. If n and n' are constant, then
the mapping is a collinear transformation, discussed below.

Images of Extended Objects

An extended object can be thought of as a collection of points, a subset of the entire space,
and its stigmatic image is the set of conjugate image points. A surface described by
0= F(x, y, z) has an image surface

0=F'(x",y" 2") =F(x(x',y', 2'), y(x', y", 2'), 2(x", ', 7)) (100)
A curve described parametrically by x(o) = (x(o), y(0), z(o)) has an image curve

X'(0) = (x'(x(0), y(0), 2(0)), y'(x(0), y(0), 2(0)), 2 (x(0), y(0), 2(0)))  (101)

Rotationally Symmetric Lenses

Rotationally symmetric lenses have an axis, which is a ray path (unless there is an
obstruction). All planes through the axis, the meridians or meridional planes, are planes
with respect to which there is bilateral symmetry. An axial object point is conjugate to an
axial image point. An axial image point is located with a single ray in addition to the axial
one. Off-axis object and image points are in the same meridian, and may be on the same or
opposite sides of the axis. The object height is the distance of a point from the axis, and the
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image height is that for its image. It is possible to have rotational symmetry without
bilateral symmetry, as in a system made of crystalline quartz (Buchdahl 1970''°), but such
systems are not discussed here. For stigmatic imaging by a lens rotationally symmetric
about the z axis, Eq. (99) gives

x'=x'(x,z) Yy =y'(yz) 2'=7(2) (102)

Planes Perpendicular to the Axis

The arrangement most often of interest is that of planar object and receiving surfaces, both
perpendicular to the lens axis. When the terms object plane and image plane are used here
without further elaboration, this is the meaning. (This arrangement is more common for
manufactured systems with flat detectors, than for natural systems, for instance, eyes, with
their curved retinas.)

Magnifications

The term magnification is used in a general way to denote the ratio of conjugate object and
image dimensions, for example, heights, distances, areas, volumes, and angles. A single
number is inadequate when object and image shapes are not geometrically similar. The
term magnification implies an increase, but this is not the case in general.

Transverse Magnification

With object and image planes perpendicular to the axis, the relative scale factor of length
is the transverse magnification or lateral magnification, denoted by m, and usually referred
to simply as ‘“‘the magnification.” The transverse magnification is the ratio of image height
to object height, m = h'/h. Tt can also be written in differential form, e.g., m = dx’/dx or
m = Ax'/Ax. The transverse magnification is signed, and it can have any value from —o to
+. Areas in such planes are scaled by m”. A lens may contain plane mirrors that affect
the image parity or it may be accompanied by external plane mirrors that reorient images
and change their parity, but these changes are independent of the magnification at which
the lens works.

Longitudinal Magnification

Along the rotational axis, the longitudinal magnification, m,, also called axial
magnification, is the ratio of image length to object length in the limit of small lengths, i.e.,
m, =dz'/dz.

Visual Magnification

With visual instruments, the perceived size of the image depends on its angular subtense.
Visual magnification is the ratio of the angular subtense of an image relative to that of the
object viewed directly. Other terms are used for this quantity, including ‘“‘magnification,”
“power,” and “‘magnifying power.” For objects whose positions can be controlled, there is
arbitrariness in the subtense without the instrument, which is greatest when the object is
located at the near-point of the observer. This distance varies from person to person, but
for purposes of standardization the distance is taken to be 250 mm. For instruments that
view distant objects there is no arbitrariness of subtense with direct viewing.
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Ideal Imaging and Disappointments in Imaging

Terms such as perfect imaging and ideal imaging are used in various ways. The ideal varies
with the circumstances, and there are applications in which imaging is not the purpose, for
instance, energy collection and Fourier transformation. The term desired imaging might be
more appropriate in cases where that which is desired is fundamentally impossible. Some
deviations from what is desired are called aberrations, whether their avoidance is possible
or not. Any ideal that can be approximated must agree in its paraxial limit ideal with what
a lens actually does in its paraxial limit.

Maxwellian Ideal for Single-Plane Imaging

The most common meaning of perfect imaging is that elucidated by Maxwell (Maxwell
1858'"7), and referred to here as maxwellian ideal or maxwellian perfection. This ideal is
fundamentally possible. The three conditions for such imaging of points in a plane
perpendicular to the lens axis are: (1) Each point is imaged stigmatically. (2) The images of
all the points in a plane lie on a plane that is likewise perpendicular to the axis, so the field
is flat, or free from field curvature. (3) The ratio of image heights to object heights is the
same for all points in the plane. That is, transverse magnification is constant, or there is no
distortion.

The Volume Imaging ldeal

A more demanding ideal is that points everywhere in regions of constant index be imaged
stigmatically and that the imaging of every plane be flat and free from distortion. For
planes perpendicular to the lens axis, such imaging is described mathematically by the
collinear transformation, discussed below. It is inherently impossible for a lens to function
in this way, but the mathematical apparatus of collineation is useful in obtaining
approximate results.

Paraxial, First-Order, and Gaussian Optics

The terms “paraxial,” “first order,” and “gaussian” are often used interchangeably, and
their consideration is merged with that of collineation. The distinction is often not made,
probably because these descriptions agree in result, although differing in approach. One of
the few discussions is that of Southall (Southall 1910''¥). A paraxial analysis has to do with
the limiting case in which the distances of rays from the axis approach zero, as do the
angles of the rays relative to the axis. The term first order refers to the associated
mathematical approximation in which the positions and directions of such rays are
computed with terms to the first order only in height and angle. Gaussian refers to certain
results of the paraxial optics, where lenses are black boxes whose properties are
summarized by the existence and locations of cardinal points. In the limit of small heights
and angles, the equations of collineation are identical to those of paraxial optics. Each of
these is discussed in greater detail below.

Fundamental Limitations

There are fundamental geometrical limitations on optical systems, relating to the fact that
a given ray passes through many points and a given point lies on many rays. So the images
of points on the same line or plane, or on different planes, are not independent. A set of
rays intersecting at several points in object space cannot be made to satisfy arbitrary
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requirements in image space. Such limitations are best studied by the methods of
hamiltonian optics.

Stigmatic Imaging

If all rays from an object point converge precisely to an image point, the imaging of this
point is said to be stigmatic. The optical path lengths of all rays between two such points is
identical. A stigmatic image point is located by the intersection of any two rays that pass
through the points. An absolute instrument is one which images all points stigmatically
(Born & Wolf 1980'"%). For such imaging

néx=n'édx' ndy=n'éy’ néz=n'édz' (103)

where conjugate length elements are éx and 6x’, 8y and 8y’, 6z and 6z'.

Path Lengths and Conjugate Points

All the rays from an object point to its stigmatic image point have the same optical path
length. For focal lenses, the paths lengths for different pairs of conjugate points in a plane
perpendicular to the axis are different, except for points on circles centered on the axis.
For afocal lenses path lengths are nominally the same for all points in planes perpendicular
to the axis. For afocal lenses with transverse magnification +n/n’, path lengths can be the
same for all points. In general, the path lengths between different points on an object and
image surface are equal only if the shape of the image surface is that of a wavefront that
has propagated from a wavefront whose shape is that of the object surface.

The Cosine Condition

The cosine condition relates object space and image space ray angles, if the imaging is
stigmatic over some area (T. Smith 1922,"*° Steward 1928,"*' Buchdahl 1970''°). Let the x-y
plane lie in the object surface and the x’-y’ plane in the conjugate surface (Fig. 2). Two

FIGURE 2 The cosine condition. A small area in object space about the origin
in the x-y plane is imaged to the region around the origin of the x’-y’ plane in
image space. A pair of rays from the origin with direction cosines («,, 8;) and
(a,, B,) arrive with (af, B;) and (as, B;). The direction cosines and the
transverse magnification in the planes are related by Eq. (104).
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rays leaving a point in the object region have direction cosines («;, 8;) and (a,, B,), and
the rays on the image side have (a7, B7) and (a3, B;). If the imaging is stigmatic, with local
transverse magnification m on the surface, then

_n(a;—ay)  n(Bi—Bo)

m= = 104
n(ai—a) n(B- B (109
In the limit as &, — a, and B, — B,, the cosine condition gives
d d
nda  ndp (105)

M da’ 0 dp

This condition also holds in the more general case of isoplanatic imaging, where there is
aberration that is locally constant across the region in question (Welford 1976,'* Welford
1986, sec. 94'%).

The Abbe Sine Condition

The sine condition or Abbe sine condition (Abbe 1879,"** Born & Wolf 1980'") is a special
case of the cosine condition for object and image planes perpendicular to the axis in
regions about the axis. For a plane with transverse magnification m, let 8 be the angle
relative to the axis made by a ray from an axial object point, and 8’ be that in image space.
If the lens is free of coma

_nsinf  na  np

" n'sin@ n'a’ n'B’ (106)
for all 8 and O'. There are signs associated with 6 and 6’, so that m >0 if they have the
same sign, and m <0 if the signs are opposite. This equation is sometimes written with m
replaced by the ratio of paraxial angles. There is sometimes the implication that 8 and 6’
refer only to the extreme angles passing through the lens, when in fact the sine condition
dictates that the ratio of the sines is the constant for all angles. For an object at infinity, the
sine condition is

sin@ =—2 or n'B'=-yo (107)

fl

where y is the height of a ray parallel to the axis, ¢ is the power of the lens, and f’ is the
rear focal length. These relationships hold to a good approximation in most lenses, since
small deviations are associated with large aberrations. A deviation from this relationship is
called offense against the sine condition, and is associated with coma (Conrady 1992,' H.
Hopkins 1946,'*° T. Smith 1948, H. Hopkins 1950,'”® Welford 1986'*’). The sine
condition does not apply where there are discontinuities in ray behavior, for example, in
devices like Fresnel lenses, or to diffraction-based devices like zone plates.

The Herschel Condition

The Herschel condition is a relationship that holds if the imaging is stigmatic for nearby

points along the axis (Herschel 1821," H. Hopkins 1946,"° Born & Wolf 1980'"°). The
two equivalent relations are

n sin (36) nsin® (30)  n(1-17y)

m=-r and my = iaN 7 ’

n'sin (36") n'sin®(30') n'(1—7y')

(108)
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The Herschel condition is inconsistent with the sine condition unless m +n/n’. So, in
general, stigmatic imaging in one plane precludes that in others.

Sine and Herschel Conditions for Afocal Systems

For afocal systems the sine condition and Herschel condition are identical. For rays
entering parallel to the axis at y and leaving at y’ they are

m=> (109)

That is, the ratio of incoming and outgoing heights is independent of the incoming height.
(H. Hopkins,"”® Chap. III “The Sine Condition and Herschel’s Condition.”)

Stigmatic Imaging Possibilities

For object and image spaces with constant refractive indices, stigmatic imaging is only
possible for the entire spaces for afocal lenses with identical transverse and longitudinal
magnifications m = £n/n’ and |m,| = |m|. Such lenses re-create not only the intersection
points, but the wavefronts, since the corresponding optical path lengths are the same in
both spaces, Eq. (103). For other lenses with constant object and image space indices, the
maxwellian ideal can be met for only a single surface. In addition, a single point elsewhere
can be imaged stigmatically (T. Smith 1948,'”” Velzel 1991"*"). Nonplanar surfaces can be
imaged stigmatically, a well-known example being the imaging of spherical surfaces by a
spherical refracting surface, for a particular magnification (Born & Wolf 1980, sec.
4.2.3"%). For systems with spherical symmetry, it is possible that two nonplanar surfaces be
stigmatically imaged (T. Smith 1927'*%). In addition, various systems with heterogeneous
indices can image stigmatically over a volume.

1.10 DESCRIPTION OF SYSTEMS OF REVOLUTION

Introduction

This section is concerned with the optical description of lens and mirror systems that are
figures of revolution."”>*> From a mechanical viewpoint, optical systems are comprised of
lenses and mirrors. From the point of view of the light, the system is regions of media with
different indices, separated by interfaces of various shapes. This section is limited to
homogeneous isotropic media. It is further restricted to reflecting and refracting surfaces
that are nominally smooth, and to surfaces that are figures of revolution arranged so their
axes are collinear, so the entire system is a figure of revolution about the lens axis. (The
often-used term ‘“‘optical axis” is also used in crystallography. Moreover, the axis is often
mechanical as well as “optical.”’) The lens axis is the z axis of an orthogonal coordinate
system, with the x-y plane perpendicular. The distance from a point to the axis is
p =Vx*+y> Along the axis, the positive direction is from left to right.
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Terminology

A meridian or meridional plane contains the axis, all such planes being equivalent.
Meridional planes are planes of bilateral symmetry if the indices are homogeneous and
isotropic. Some optical systems are comprised of pieces of surfaces of revolution, in which
case it is still useful to discuss the behavior about the axis.

Reflection, Unfolded Diagrams

Light passes through refractive systems more or less in the same direction relative to the
axis. In reflective and catadioptric systems, the light may change directions. (It may not, in
the case of grazing incidence optics.) In order to consider all types of systems in a unified
way, pictorially and algebraically, reflections can often be ‘“‘unfolded,” i.e., represented
pictorially as transmission, with mirrors replaced by hypothetical lenses with the same
properties, Figs. 3 and 18. Some structures must be taken into account several times in
unfolding. For example, a hole may block light at one point along a ray and transmit it at
another. (In some considerations, unfolding can be misleading—for instance, those
involving stray light.)

Description of Surfaces

A surface is an interface between media with different refractive indices—either refracting
or reflecting. The surface is the optical element, produced by a lens, which is a mechanical
element. Surfaces can be described mathematically in many ways. (For example, conics
can be described as loci of points with certain relationships.) In optical instruments, the
entire surface is rarely used, and the axial region is usually special, so the description
usually begins there and works out. The vertex of a figure of revolution intersects with

i

— 7
—

9

ri? |

FIGURE 3 Example of an unfolded diagram. The two-mirror system above
has an unfolded representation below. The reflective surfaces are replaced by
thin lens equivalents. Their obstructions and the finite openings are accounted
for by dummy elements.
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 2( )

AXIS

FIGURE 4 Description of a surface of revolution.
The distance from the axis is p, and the sag z(p) is
the distance from the vertex tangent plane to the
surface.

the axis, and is a local extremum. The plane perpendicular to the axis and tangent to the
vertex will be referred to as the vertex plane (NS). A surface can be described by its sag,
the directed distance z(p) from the vertex plane to the surface, Fig. 4. The vertex is usually
taken to have z(0) = 0. The vertex curvature or paraxial curvature ¢ and radius of curvature
r are given by
2

_L_zlp) (110)
r ap p=0

For an arbitrary surface, this curvature is identical to that of the sphere which is a best fit
on axis. The sign convention for curvature and radius is that ¢ and r are positive if the
center of curvature is to the right of the vertex, as in the case shown in Fig. 4. In general,
the curvature is mathematically more foolproof than radius, since curvature can be zero,
but it is never infinite, whereas radius is never zero, but may be infinite.

Spherical Surfaces

The spherical surface is the most common in optics, since it is most naturally produced.
Spherical is the default, and is assumed when no other mention is made. Aspheres are
thought of as deviating from spheres, rather than spheres as special cases of more general
forms. The equation for a sphere with radius r, curvature ¢, and a vertex at z =0 is

p’+(z—r)Y=r (111)
The sag is given by
2
cp
z2(p)=r—=Vrr—p*=r(1-V1-c%*?) = 112
(p) p-=r( P Vicey (112)

The Taylor expansion is

2(p) = hep” + KDt + D+ 5o+ e (113)
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At the point (x, y, z) on the surface of the sphere, the surface normal has direction cosines

PLE) (a1 (114)
rr r

(L, M, N)=<

Conics of Rotation

The general form of a conic of rotation about the z axis is

2(p) = g (1= V1—ecp?) = (115)

cp
1+ V1—ec?p®

The value of ¢ determines the type of conic, as given in the table below. It is common in
optics to use «, the conic parameter or conic constant, related by

k=¢g—1 or e=1+« (116)

Another parameter used to describe conics is the eccentricity e, used in the polar
coordinate form for conics about their focus: r(8) = a/(1 + e cos 6) where ¢ = —k. In the
case of paraboloids, the first form of Eq. (115) breaks down. A cone can be approximated
by a hyperbola with k = —sec” 8, where 0 is the cone half angle.

Conic Type and Value of Parameter

Parameter € K e
Oblate ellipsoid e>1 k>0 —
Sphere e=1 k=0 0
Prolate ellipsoid 0<e<l1 -1<k<0 0<e<l1
Paraboloid e=0 k=-1 e=1
Hyperboloid e<0 k<-1 e>1

The Taylor expansion for the sag is

z2(p) = scp® + sec’p* + 1£°C%p® + e’ p® + 557 p 0+ - - - (117)
The surface normals are

(L, M, N)=[1-2c(e — 1)z + c*e(e — 1)z*] "*(cx, cy, cz — 1) (118)

The sagittal and tangential curvatures are

Cc Cc

R s L (R "

General Asphere of Revolution

For an arbitrary figure of revolution all of whose derivatives are continuous, the Taylor
expansion is

2(p) =5’ +qup* +qep° + - - (120)
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An asphere is often treated as a sphere that matches at the vertex and a deviation
therefrom:

2(p) = Zopnere(p) T asp” +agp®+ - - (121)
Alternatively, nonconic aspheres can be treated as conics and a deviation therefrom:

2(P) = Zeonie(p) + bap* +bep®+ - - - (122)
The expansion coefficients are different in each case. Additional information on the

coefficients is given by Malacara (Malacara 1992'**) and Brueggemann (Brueggemann
1968'**). The sagittal and tangential curvatures are given in general by

i(p) e—_ ) (123)

el ey YT )T

Here Z(p) = dz(p)/dp and Z(p) = d’z(p)/dp>.

1.11 TRACING RAYS IN CENTERED SYSTEMS OF SPHERICAL

SURFACES

Introduction

Ray tracing is the process of calculating the paths of rays through optical systems. Two
operations are involved, propagation from one surface to the next and refraction or
reflection at the surfaces. Exact equations can be written for spherical surfaces and conics
of revolution with homogeneous media (Spencer & Murty 1962,'*® Welford 1974, chap.
4,'¥ Kingslake 1978,'** Kinglake 1983, Slyusarev 1984,'° Klein & Furtak 1986, sec.
3.1,"" Welford 1986, chap. 4,"> W. J. Smith 1992, chap. 10"**). Conics are discussed by
Welford (Welford 1986, sec. 4.7'%%). For general aspheres, the intersection position is found
by iterating (Nussbaum & Phillips, p. 95,"** W. J. Smith 1992, sec. 10.5'**). Nonsymmetric
systems are discussed by Welford (Welford 1986, chap. 5'%).

Description and Classification of Rays in a Lens

For optical systems with rotational symmetry, rays are typically described in terms of the
axial parameter z. A ray crosses each constant z plane at a point (x, y) with direction
cosines (a, B, v), where vy is not independent. Thus a ray is described by (x(z), y(z)) and
(a(z), B(2)).

For systems that are figures of revolution, meridional rays are those lying in a
meridional plane, a plane that includes the axis, and other rays are skew rays. The axial ray
corresponds to the axis of revolution. Rays are also classified according to their proximity
to the axis. Paraxial rays are those in the limit of having small angles and small distances
from the axis. Nonparaxial rays are sometimes referred to as finite rays or real rays. Ray
fans are groups of rays lying in a plane. A tangential fan lies in a meridian, and intersects
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Transfer

at a tangential focus. A sagittal fan lies in a plane perpendicular to a meridian, and
intersects at a sagittal focus.

In propagating through a homogeneous medium, a ray originating at (x,, y;, z;) with
directions (a, B, ) intersects a z, plane at

o
x2:x1+;(22_zl) and )’2:)’1+€(Zz_zl) (124)

Intersection Points

Let the intersection points of the ray with the vertex plane at z =0 be (x,, o, 0), Fig. 5.
Define auxiliary functions

Alxo, yos , Bic) =y —claxo+ By)  and  B(xy, yo, ) =c(xg+y5)  (125)
The distance D along the ray from this point to the surface is given by

B

cD=A-VA>-B=— —— 126
A+VA B (126)
The intersection point has the coordinates
X=xy+aD y=yo+BD z=vD (127)
The incidence angle [ at the intersection point is given by
cosI=VA’-B (128)
SO
I'=-nVA>— B+ Vn?—n*>+n?(A*> - B) (129)

Mathematically, double intersection points are possible, so they must be checked for. If

z

(G,B-Y)

n N\

FIGURE 5 Intersection points. A ray with direc-
tion cosines («, B, y) intersects the vertex tangent
plane at (x,,y, 0) and the optical surface at
(x,y,z). The distance between these points is D,
given by Eq. (126).
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the ray misses the surface, then A*><B. If there is total internal reflection, the second
square root in Eq. (129) is imaginary.

Refraction and Reflection by Spherical Surfaces

Rays refract or reflect at surfaces with reference to the local normal at the intersection
point. The surface normal given by Eq. (114) is substituted in the general form for
refraction, Eq. (85), to give

n'a'=na—Tcx n'B' =np —Tcy n'y'=ny —T(1—-cz) (130)

For reflection, the above equations are used, with n’ = —n, so I'=2n cos I =2nVA* — B.

Meridianal Rays

The meridian is customarily taken to be that for which x =0, so the direction cosines are
(0, B, v). Let U be the angle between the axis and the ray, so 8 =sin U and y = cos U. The
transfer equation, Eq. (124) becomes

Y2=y +tan U(zo — 21) (131)
The second equation of Eq. (130) can be written

n'sinU' —nsin U= —cy(n'cosl' —ncosl) (132)

If the directed distance from the vertex to the intersection point of the incident ray with
the axis is /, the outgoing angle is

U’ = U + arcsin [(Ic — 1) sin U] — arcsin [ﬁ/ (Ic — 1) sin U] (133)
n

The directed distance [’ from the vertex to the axial intersection of the refracted ray is
given by

in U
ol =1+ (cl —1) =22 (134)
n'sin U
For reflection, setting n’ = —n gives
U' = U +2arcsin [(Ic — 1) sin U] (135)

1.12 PARAXIAL OPTICS OF SYSTEMS OF REVOLUTION

Introduction

The term paraxial is used in different ways. In one, paraxial rays are those whose distances
from the axis and whose angles relative to the axis are small. This leaves questions of how
small is small enough and how this varies from system to system. The other interpretation
of the term, which is used here, is that paraxial rays represent a limiting case in which the
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distances from the axis and angles relative to the axis vanish. Paraxial optics then describes
the behavior of systems in this limit. The ray-tracing equations in the paraxial limit are
linear in angle and in distance from the axis, hence the term first-order optics, which is
often considered equivalent to paraxial. (There are no Oth-order terms since the expansion
is taken about the axis, so a ray with an initial height and angle of zero, i.e., a ray along the
axis, has the same outgoing height and angle.) The linearity of the paraxial equations
makes them simple and understandable, as well as expressible in matrix form. Paraxial ray
tracing is discussed to some extent by almost every book that treats geometrical optics.

Paraxial ray tracing is done to determine the gaussian properties of lenses, to locate
image positions and magnifications, and to locate pupils and determine their sizes. Another
use of paraxial ray tracing, not discussed here, is the computation of third-order
aberrations (W. Smith 1992'%%).

Paraxial imaging is perfect in the sense that it agrees with the Maxwell ideal and with
that of collineation. Point images everywhere are stigmatic, fields are flat, and there is no
distortion. Aberration is often thought of as the difference between the behavior of finite
rays and that of paraxial rays. If this approach is taken, then in the process of lens design,
finite rays are made to agree, insofar as possible, with the paraxial ones, which cannot be
similarly changed. In the paraxial limit, surfaces are described by their vertex curvatures,
so conics, aspheres, and spheres are indistinguishable, the difference being in the fourth
power and above. Consequently, aberrations can be altered by changing the surface
asphericity without changing paraxial properties. A paraxial treatment can be done even if
a system is missing the axial region, as in the case with central obstructions and off-axis
sections of figures of revolution.

This section is concerned with systems of mirrors and lenses with rotational symmetry
and homogeneous refractive indices. In this case, it suffices to work in a single meridian.
Generalizations are found in the sections in this chapter on images about known rays and
rays in heterogeneous media. Other generalizations involve expansions about given rays in
systems that are not rotationally symmetric.

The Paraxial Limit

Transfer

The lens axis is the z axis, and rays in the x = 0 meridian are considered. Ray heights are y,
and angles relative to the axis are u. In the paraxial limit, the quantities u, tanu, and
sin u = B are indistinguishable. The z-direction cosine is y = cos u = 1. Since the ray angles
and heights are small, incidence angles are likewise, so i =sini, cos /=1, cos/' =1, and
I'=n'cosl'"—ncosl=n'—n.

In traversing a distance ¢ between two planes, the height of a meridional ray changes from
y to y’ according to Eq. (124), y’ =y +tB/y. In the paraxial limit, this equation becomes

y'=y-+tu (136)

If a ray travels from one curved surface to the next, the distance ¢ equals the vertex
separation to first order, since the correction for the surface sag is of second order in
height and angle. This term is given above in Eq. (127).
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Refraction
The paraxial form of Snell’s law, Eq. (78), is
n'i' =ni (137)

Reflection

The law of reflection is the same for paraxial as for finite rays,
i'=-—i (138)

Angle of Incidence at a Surface

A ray with an angle u, which intersects a surface of curvature c at height y, makes an angle
i with the local surface normal of the surface given by

i=u+yc (139)
This equation is easily remembered from two special cases. When y = 0, the intersection is
at the vertex, so i = u. When u = —cy, the ray is directed through the center of curvature,
soi=0.

Refraction at a Surface
The above equation combined with that for Snell’s law gives
n'u’' =nu—yc(n' —n) (140)

This equation can also be obtained from the exact equation, n'B’ =nf — I'cy, Eq. (125). In
the paraxial limit, I'=n’ — n, and the intersection height y is that in the vertex plane.

Reflection at a Surface

The relationship between incident and outgoing angles at a reflecting surface is found by
combining Egs. (138) and (139), to be

u'=—u—2cy (141)

Refraction and Reflection United—Surface Power

Reflection and refraction can be treated the same way mathematically by thinking of
reflection as refraction with n’ = —n, in which case Eq. (140) gives Eq. (141). A reflecting
surface can be represented graphically as a thin convex-plano or concave-plano thin lens
with index —n, where n is the index of the medium, Fig. 18. For both refraction and
reflection,

n'u' =nu—ye (142)
where the surface power ¢ is

b=c(n'—n) (143)

If the surface is approached from the opposite direction, then n and n' are switched, as is
the sign of ¢, so ¢ is the same in both directions. Thus ¢ is a scalar property of the
interface, which can be positive, negative, or zero. The power is zero if n’ =n or ¢ =0. If
n' = n, the surface is “invisible,” and the rays are not bent. If ¢ =0, the rays are bent. For
a planar refracting surface n'u’ = nu, and a planar reflecting surface gives u' = —u.
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Principal Focal Lengths of a Surface

A ray approaching a surface parallel to the axis (u =0) with a height y has an outgoing
angle given by
n'u'=—y¢ (144)

This ray intercepts the axis at the rear focal point, whose directed distance from the vertex
is f' =y/u’ =n'/$. This directed distance is the rear focal length. Similarly, a ray entering
from the right with u’ =0 intercepts the axis at the front focal point, a directed distance
from the vertex of f=y/u = —n/¢, the front focal length. Thus, a surface has a single
power and two focal lengths, among which the following relationships hold:

n n n n' f' n'
I I (145)
¢ ¢ rr foon
For a refracting surface, the signs of f' and f are opposite. For a reflecting surface f' = f.

Axial Object and Image Locations for a Single Surface

A ray from an axial point a directed distance / from the vertex of a surface that makes an
angle u with the axis intersects the surface at height y = —[/u. After refraction or
reflection, the ray angle is u’, and the ray intersects the axis at a distance /' = —y/u’ from
the vertex, Fig. 6. Substituting for u and u’ in Eq. (142), the relationship between axial
object and image distances is

!

’[’—,:?Jr b (146)

o1-2)-oi-)

This is a special case of the equations below for imaging about a given ray. The transverse
magnification is m =1'/L.

This can also be written

Paraxial Ray Tracing

Paraxial rays are traced through an arbitrary lens by a sequence of transfers between
surfaces and power operations at surfaces. Each transfer changes height but not angle, and
each power operation changes angle but not height. An image can be found by applying
Eq. (136) and Eq. (142) successively. Alternatively, matrix methods described below can
be used.

FIGURE 6 Refraction at a single spherical surface with center C and radius r. Axial object
point O is imaged at O'.
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Linearity of Paraxial Optics

For both the transfer and power operations, the outgoing heights and angles depend
linearly on the incoming heights and angles. So a system described by a sequence of such
operations is also linear. Therefore, a ray that enters with height y and angle u leaves with
y'(y,u) and u'(y, u) given by

y,:<6y )y-i—(ay >u and u'=<au >y+<8u )u (148)
ady ou ay ou

These equations can also be thought of as the first terms of Taylor expansions of exact
expressions for y'(y, u) and u'(y, u). These partial derivatives depend on the structure of
the system, and they can be determined by tracing two rays through the system. The
partial derivatives, other than du’/dy, also depend on the axial locations of the input and

output surfaces. The changes with respect to these locations are treated easily by matrix
methods.

The Two-Ray Paraxial Invariant

The various rays that pass through a lens are not acted upon independently, so there are
several invariants that involve groups of rays. Consider two meridional paraxial rays that
pass through a lens. At a given plane, where the medium has an index n, one ray has
height y, and angle u,, and the other has y, and u,. The quantity

L = ny,u, — ny,uy, = n(yu, — y,uy) (149)

which we refer to as the paraxial invariant (NS), is unchanged as the rays pass through the
system. Applying Eq. (136) and Eq. (142) to the above expression shows that this quantity
does not change upon transfer or upon refraction and reflection. The invariant is also
related to the general skew invariant, Eq. (73), since a paraxial skew ray can be
decomposed into two meridional rays.

Another version of the invariance relationship is as follows. Two objects with heights y,
and y, are separated axially by d,,. If their image heights are y; and y;, and the image
separation is d{,, then

Ny, ,y{)’2'
n——=n'=—"-

150
di di> (130)

An additional version of the invariance relationship is

(o)) -GoE) =2 s
dy / \ou ou/\ dy
where the partial derivatives, Eq. (148), describe the action of any system.

The invariant applies regardless of the system. Thus, for example, if the lens changes,
as with a zoom system, so that both of the outgoing rays change, their invariant remains.
The invariant arises from basic physical principles that are manifested in a variety of ways,
for example, as conservation of brightness and Liouville’s theorem, discussed above in the
section on conservation of etendue. This invariance shows that there are fundamental
limits on what optical systems can do. Given the paraxial heights and angles of two input
rays, only three of the four output heights and angles can be chosen arbitrarily. Likewise,
only three of the four partial derivatives above can be freely chosen. The invariant is not
useful if it vanishes identically. This occurs if the two rays are scaled versions of one
another, which happens if both #, =0 and u, =0 for some z, or if both rays pass through
the same axial object point, in which case y, =0 and y, =0. The invariant also vanishes if
one of the rays lies along the axis, so that y, =0 and u, =0.
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FIGURE 7 An object and image plane with ray 1 through the axial points and ray 2 through off-axis
points. The location and magnification of an image plane can be found by tracing a ray from the axial
object point O to axial image point O’. The magnification is given by Eq. (153). In the case pictured,
u, and u; have opposite signs, so the transverse magnification is negative.

Image Location and Magnification

To locate an image plane, any ray originating at the axial object point can be traced
through the system to determine where it again intersects the axis, Fig. 7. The
magnification for these conjugates can be found in two ways. One is to trace an arbitrary
ray from any off-axis point in the object plane. The ratio of its height in the image plane to
that in the object plane is the transverse magnification.

Alternately, the magnification can be found from the initial and final angles of the ray
through the axial points. Let ray 1 leave the axial object point, so y, = 0. Let ray 2 originate
in the object plane some distance from the axis. At the object plane L = ny,u,, and at the
image plane y, =0, so L =n'y,u;. Therefore,

L = ny,u, = n'y;u{ (152)
So the magnification is
m=22=T00 (153)
¥, n'uj

The relative signs of u and 1’ determine that of the magnification. Equation (153) is a paraxial
form of the sine condition Eq. (106). Squaring this equation gives L*> = n’y3u3, which is
proportional to a paraxial form of the etendue. These matters are discussed further in the
sections on conservation of etendue and on apertures. The quantity ny,u, is sometimes

referred to as the invariant, but it is not the most general form.

Three-Ray Rule

A further consequence of the paraxial invariant and of the linearity of paraxial optics, is
that once the paths of two paraxial meridional rays has been found, that of any third ray is
determined. Its heights and angles are a linear combination of those of the other two rays.
Given three rays, each pair has an invariant: L, =n(y,u, — y,uy), Ly =n(yus — ysu,),
and L;, = n(ysu, — y,us). Therefore, in every plane

L23 L’i

=22, 43 and Us=——u,+—u 154

y3 ]2y1 ]2y2 ? L12 ! L12 z ( )

This assumes that no pair of the three rays are simply scaled versions of one another, i.e.
that both L,;# 0 and L5, #0.

Switching Axial Object and Viewing Positions

If an axial object and axial viewing position are switched, the apparent size of the image is
unchanged. Put more precisely, let an object lie in a plane intersecting the axial point A
and let its image be viewed from an axial point B’ in image space that is not conjugate to
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A. If the object and viewing positions are switched, so the eye is at A and the object plane
is at B', the subtense of the object as seen by the eye is unchanged. (Rayleigh 1886,'>
Southall 1910,"” Herzberg 1935,”® Brouwer 1967'%).

1.13 IMAGES ABOUT KNOWN RAYS

Given a ray, referred to here as the central ray (also “‘base ray’’), other rays from a point on
the central ray making a small angle with respect to it are focused at or near other points
on the central ray. These foci can be determined if the path of a central ray is known, as
well as the indices of the media through which it passes, and the principal curvatures at
the surfaces where it intersects. Here indices are constant. At each intersection point with an
optical surface, the wavefront has two principal curvatures, as does the surface. After refraction
or reflection, the wavefront has two different principal curvatures. Accordingly, if a single point
isimaged, there are two astigmatic focal lines at some orientation. These foci are perpendicular,
but they do not necessarily lie in planes perpendicular to that of the central ray. The imaging of a
small extended region is generally skewed, so, for example, a small square in a plane
perpendicular to the central ray can be imaged as a rectangle, parallelogram, or trapezoid.

This is a generalization of paraxial optics, in which the central ray is the axis of a system
of revolution. While not difficult conceptually, the general case of an arbitrary central ray
and an arbitrary optical system is algebraically complicated. This case can also be analyzed
with a hamiltonian optics approach, using an expansion of a characteristic function about
the central ray, like that of Eq. (28). The subject is sometimes referred to as parabasal
optics, and the central ray as the base ray. This subject has been discussed by numerous
authors'®™'* under various names, e.g., “narrow beams,” “narrow pencils,” “first order.”

The following is limited to the case of meridional central rays and surfaces that are
figures of revolution. The surface, at the point of intersection, has two principal curvatures
¢, and c,. [See Eqgs. (119), (123).] For spherical surfaces, ¢, = ¢, = ¢, and for planar surfaces
¢ =0. There is a focus for the sagittal fan and one for the tangential one, Fig. 8, the two

EERNT3

/r\ SAGITTAL

FOCUS

TANGENTIAL
FOCUS

REFRACTING
SURFACE

OBJECT
POINT

FIGURE 8 Astigmatic imaging of a point by a single refracting surface. The
distance from the surface to the object point along the central ray of the bundle
is s =t. The distances from the surface to the sagittal focus is s’, and that to the
tangential focus is ¢/, as given by Eq. (155).
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foci coinciding if the imaging is stigmatic. After one or more surfaces are encountered, the
separated foci are the sources for subsequent imaging. Let s and ¢ be the directed distances
from the intersection point of the central ray and the surface to the object point, and s’
and ¢’ be the distances from intersection point to the foci. The separation |s’ —¢'| is known
as the astigmatic difference.

For refraction

’

n' n n'cos’I’ ncos’l
—=—+cI and =

s' s t t

+el (155)

where I'=n'cosl’ —ncosl, Eq. (82). The sagittal equation is simpler, providing a
mnemonic for remembering which equation is which: “S” =sagittal = simpler. If the
surface is spherical, and the ray fan makes an arbitrary angle of ¢ with the meridian, then
(H. Hopkins 1950'7%)

’

c% (1 —cos® ¢sin®I') = Z (1 = cos® ¢ sin® I) + cT (156)

where d and d’ are the distances along the central ray from the surface to the object and
image points. For normal incidence at a spherical surface I'=n' —n, so both equations
become

’

n n
T =Chcen - 1
g7 g e —m (157)

This also applies to surfaces of revolution if the central ray lies along the axis. This
equation is identical to the paraxial equation, Eq. (146).

The corresponding relations for reflection are obtained by setting n’ = —n and I' =1 in
the refraction equations, giving
1 1 1 1 2
—=——+2¢,cosl and —=——+ < (158)
s s t t cosl/

For stigmatic imaging between the foci of reflective conics, s = ¢ is the distance from one
focus to a point on the surface, and s’ =¢' is that from the surface to the other focus.
Therefore, ¢, = ¢, cos” I. The reflection analogue to Eq. (156), for a spherical surface is

1 1 2ccosl
—=——t 159
d’ d 1—cos®ysin® I (159)
These equations are known by several names, including Coddington’s equations,
Young’s astigmatic formulae, and the s- and t-trace formulae.

1.14 GAUSSIAN LENS PROPERTIES

Introduction

The meaning of the term gaussian optics is not universally agreed upon, and it is often
taken to be indistinguishable from paraxial optics or first-order optics, as well as
collineation. Here the term is considered to apply to those aspects of paraxial optics
discovered by Gauss (Gauss 1840'®7), who recognized that all rotationally symmetric
systems of lens elements can be described paraxially by certain system properties. In
particular, lenses can be treated as black boxes described by two axial length parameters
and the locations of special points, called cardinal points, also called Gauss points. Once a
lens is so characterized, knowledge of its actual makeup is unnecessary for many purposes,
and repeated ray traces need not be performed. For example, given the object location, the
image location and magnification are determined from the gaussian parameters. From the
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gaussian description of two or more lenses, that of a coaxial combination can be found.
Another consequence of Gauss’s discovery is that there is an infinity of specific
embodiments for any external prescription.

The lenses considered in this section are figures of revolution with uniform object space
and image space indices n and n’. All quantities discussed in this section are paraxial, so
the prefix “paraxial” is not repeated. For the purposes of this section, no distinction is
made between real and virtual rays. Those in each space are considered to extend
infinitely, and intersection points may be either accessible or inaccessible. The quantities
used in this section are found in Table 1.

Lenses, and Afocal Lenses

A paraxial ray entering a lens parallel to the axis height y leaves with some angle u’, Fig. 9.
Likewise, a ray entering from the opposite side with height y’ leaves with angle u. The
power of the lens is defined by

u' u

b=-n'"—=n- (160)

y oy

The outgoing ray can have any angle, and the power can be positive, negative, or zero.
If u'=0, then ¢ =0 and the lens is afocal or telescopic. Lenses for which ¢ #0 are
referred to here as focal, although the term ‘“nonafocal” is more common. Afocal lenses
are fundamentally different from focal ones, and are treated separately below. Power is the
same in both directions, i.e. whether the ray enters from left to right or from right to left.
The lens in Fig. 9 has ¢ >0, and that in Fig. 10 has ¢ <0. Diagrams such as Fig. 11 show
the location of the principal focal point, but not the sign of the power; two rays enter and
two leave, but there is no indication of which is which. (Note that some negative lenses
have accessible rear focal points.) Another expression for power involves two rays at
arbitrary angles and heights. If two incident rays have (y,, u,) and (y, u,), and a nonzero
invariant L = n(y,u, — y,u,), and the outgoing ray angles are u; and u;, then

’

nn
¢ = —T(u{u2 — u3u,) (161)

Focal lenses are those for which ¢ # 0. Their cardinal points are the principal focal points,
the principal points, and the nodal points. These points may be located anywhere on axis
relative to the physical lens system. If they are inside a lens, then the intersection points
referred to below are virtual. The cardinal points are pairs consisting of a member in
object space and one in image space. The one in object space is often referred to as front,
and the one in image space as rear, but this terminology may be misleading, since the
points can be any sequence along the axis.

Principal Focal Points. Rays entering a lens parallel to its axis cross the axis at the
principal focal points or focal points. Rays parallel to the axis in object space intersect the
axis at the rear focal point F' in image space and those parallel in image space intersect at
the front focal point F in object space, Fig. 9. The principal focal planes or focal planes are
the planes perpendicular to the axis at the focal points. The terms focal point and focal
plane are often used to refer to the images of any point or plane. In this chapter, image
point is used for other points where rays are focused and image plane for other planes.

Principal Planes. The principal planes are the conjugate planes for which the transverse
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TABLE 1 Gaussian Notation and Definitions

By convention, in the diagrams the object space is to the left of the lens, image space is to the right,
and rays go left to right. Object space quantities are unprimed, and image space quantities are primed,
and quantities or positions that correspond in some way have same symbol, primed and unprimed.
This correspondence can have several forms, e.g., the same type of thing or conjugate. The term front
refers to object space, or left side, and rear to image space, or right side. A “front” entity may actually
be behind a “rear”” one. For example, a negative singlet has its object space focal point behind lens.

Scalars

n and n' object and image space refractive indices

¢ power

m transverse magnification

m, nodal point magnification =n/n’

m; longitudinal magnification

m,, angular magnification

u and u' paraxial ray angles (the positive direction is counterclockwise from the axis)
y and y' paraxial ray heights

yp paraxial ray height at the principal planes =y,

Axial points

Cardinal points:
Focal points F and F’, not conjugate
Principal points P and P’, conjugate m = +1
Nodal points N and N’, conjugate my =n/n’

Other points:
Axial object and image points O and O’, conjugate
Arbitrary object and image points A and A’, B and B’
Vertices V and V', not conjugate, in general

Directed axial distances

These distances here are between axial points and are directed.

Their signs are positive if from left to right and vice versa.

Types of distances: entirely in object or image space, between spaces

Principal focal lengths: f = PF and f' = P'F’

Principal points to object and image axial points: / = PO and I’ = P'O’

Front and rear focal points to object and image axial points: z = FO and z' = F'O’
Relations: [=f+zand I'=f"+ 7’

Arbitrary point to conjugate object and image points: d = AO and d' = A'O’

Distances between object space and image space points involve distances within both spaces, as well as
a distance between the spaces, e.g., PP, FF', VV', and OO'. The distances between spaces depend on
the particular structure of the lens. They can be found by paraxial ray tracing.

magnification is unity, Fig. 12. The intersections of the principal planes and the axis are the
principal points, denoted by P and P’'. The rear principal plane is the locus of intersections
between u = 0 rays incident from the left and their outgoing portions, Fig. 9. Likewise, the
front principal plane is the intersection so formed with the rays for which u’'=0. A ray
intersecting the first principal plane with height y, and angle u leaves the second principal
plane with height y’ =y, and an angle given by

n'u' =nu—yp¢d (162)
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FIGURE 9 Diagrams for determining power, focal points, and focal
lengths. Rays parallel to the axis in one space cross the axis in the
other space at the focal points. The principal planes are at the
intersections of entering and leaving rays. The power is given by Eq.
(159). The lens in this diagram has positive power, a positive rear
focal length, and a negative front focal length.

FIGURE 10 A lens with negative power and negative rear
focal length. An incoming ray parallel to the axis with a
positive height leaves the lens with a positive angle. The
rear focal plane precedes the rear principal plane.

FIGURE 11 An ambiguous diagram. Two rays that
enter a lens parallel to its axis converge at the rear
focal point F’'. Without specifying which ray is which,
the sign of the power is not known.

1.51
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FIGURE 12 Principal planes as effective ray-bending surfaces. In-
coming and outgoing paraxial rays intersect the object and image space
principal planes at the same height y,. The angles are related by Eq.
(161).

The lens behaves as if the incoming ray intercepts the front principal plane, is transferred
to the second with its height unchanged, and is bent at the second by an amount
proportional to its height and to the power of lens. The power of the lens determines the
amount of bending. For rays passing through the principal points, y, =0, so u'/u =n/n’.

Principal Focal Lengths. The focal lengths, also called effective focal lengths, are the
directed distances from the principal points to the focal points. The front and rear focal
lengths are

n n
PF=f=—— and PF =f"=— 163)
¢ ! ¢ (
The two focal lengths are related by
n n' f n
b=——=— and o= (164)
rr A

This ratio is required by the paraxial invariant (Kingslake 1965, p. 214'®). If n =n’, then
f'=—fIftn=n'=1, then
1

===y (165)

The focal lengths are the axial scaling factors for the lens, so axial distances in all equations
can be scaled to them.

Nodal Points. The nodal points are points of unit angular magnification. A paraxial ray
entering the object space nodal point N leaves the image space point N' at the same angle,
Fig. 13. The planes containing the nodal points are called nodal planes. A nodal ray is one
that passes through the nodal points. Such a ray must cross the axis, and the point where it
does so physically is sometimes called the lens center. In general, this point has no special
properties. (Gauss suggested an alternate “lens center,” the point midway between the

FIGURE 13 Nodal points. A paraxial ray through the
object space nodal point N passes through image space
nodal point N" with the same angle.
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principal points. Rotating a lens front to rear about this point would leave object and
image positions and magnifications unchanged.)

If the refractive indices of the object space and image space are the same, the nodal
points correspond to the principal points. If not, both nodal points are shifted according to

’

PN:P’N’:%=f +f (166)

The distances from the nodal points to the focal points are
N'F'=—f and NF = —f' (167)
The nodal points are conjugate, and the transverse magnification of the nodal planes is

o (168)

'

n

These equations can be recalled by the simple example of the single refracting surface, for
which both nodal points correspond to the center of curvature.

Conjugate Equations. For an object plane perpendicular to the axis at point O, there is
an image plane perpendicular to the axis at O’, in which the transverse magnification is m.
Note that specifying magnification implies both object and image positions. There is a
variety of conjugate equations (NS) that relate their positions and magnifications. The
equations differ in which object space and image space reference points are used from
which to measure the directed distances to the object and image. These equations can be
written in several ways, as given below, and with reference to Fig. 14. Axial distances can
be scaled to the focal lengths, or the distances can be scaled to the indices, with a common
power term remaining.

The simplest conjugate equation is Newton’s equation, for which the reference points
are the focal points and the lengths therefrom are z = FO and z' = F'O’. The equation can
be written in several forms:

'z _ Z'z_1

"=ff’ or =1 =— 169

2z’ =ff Fr o T (169)

More generally, if A and A’ are any pair of axial conjugate points, as are B and B’, then
FAXF'A'"=FBXF'B’ (170)

Another form is that for which the reference points are the principal points and the
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If the reference points are arbitrary conjugates with magnification m, and the axial
distances are d = AO and d' = A’O’, then

ng
n 1n d’ Af
n_ln, a1 172
TV A S ()
A
f

This equation also relates the curvatures of a wavefront at conjugate points. For a point
source at A the radius of the wavefront at O is d, so at O’ the radius is d’.
If the reference points are the nodal points, m, = m, =n/n’, and the axial distances are
d=NO and d’' = N'O’, then
f f n n'
1=-"—-+4+=— or —=—+4+ 173
d! d d/ d ¢ ( )
The most general equation relating conjugate points is obtained when both reference
points are arbitrary. Let the reference point in object space be a point A, at which the
magnification is m,, and that in image space be B’, associated with magnification my. If
d=AO0 and d' = B'O’, then

1 N1
7<1—m3):—d—ml;d’+¢dd’ or
¢ my ny
Ld+<mé_1>l (174)
d,:mA my ¢
dd—my

All the other conjugate equations are special cases of this one with the appropriate choice
of m, and my.

If the reference point in object space is the focal point, and that in image space is the
principal plane, then m, = © and my =1, giving

"o "
’7 =i)+1 or ]i,=7+1 (175)

¢ n 2 f
Likewise, if the object space reference point is P and the image space reference is F’', then
n_ o Loiig (176)

I'¢ n I f

A relationship between distances to the object and image from the principal points and
those from the focal points is
'z F'O FO
l=—+-= +— 177
' I PO PO (77

Transverse Magnification. In planes perpendicular to the axis, the transverse
magnification, usually referred to simply as the magnification, is

!

x'y' dx' _dy’

X y_dx_dy

(178)

There are several equations for magnification as a function of object position or image
position, or as a relationship between the two. Newton’s equations are

f__2_f _f-r

z ff-l S

(179)
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Other relationships are
nl' fr z'l
=——=—"—=— 180
m nl l f/ l ll Z ( )
If n=n', then m =1'/l. Another form, with respect to conjugate planes of magnification
m, is
_nd_Jd

“dn' df’ (181)

mm,

If d and d’ are distances from the nodal points, m =d’/d. The change of magnification
with respect to object or image positions with conjugacy maintained is
d 1 d 2
”}:——,:ﬂ, and ﬂ:é:ﬁ:”j (182)
dz 'z dz z f z

Images of Distant Objects. If an object at a great distance from the lens subtends an
angle ¢ from the axis at the lens, then its paraxial linear extent is y = z¢. The image height
is

dy' n
dy n'

yi=my=Ty——p =Sy and & (183)

b4
If a distant object moves perpendicularly to the axis, then its image moves in the opposite
direction if f' >0 and in the same direction if f' <0, so long as n and n' have the same
sign.

Distance Between Object and Image. The directed distance from an axial object point to
its image contains three terms, one in object space, one in image space, and one relating
the two spaces. The first two depend on the magnification and focal lengths. The interspace
term depends on the particular structure of the lens, and is found by paraxial ray tracing.
The most commonly used interspace distance is PP’, since it equals zero for a thin lens,
but the equations using FF' are simpler. Newton’s equations give z = —f/m and
z' = —mf’, so the object-to-image distance is

1
OO’=FF’—Z+z’=FF’—f’m+£:FF’—*<n’m+£) (184)
m o) m

This is the basic equation from which all others are derived. If the reference points are the
principal points, then

00’ =PP' +f'(1 - m) —f(l —i) = pp’ +i [n’(l —m) +n<1 —iﬂ (185)

If the object-to-image distance is given, the magnification is

1
5 (T4 Vg® —4nn’)

where ¢ = $(OO' — PP')—n—n'. (186)

m=

There are two magnifications for which OO’ is the same. The magnitude of their product is
n/n'. The derivative of the object-to-image distance with respect to the magnification is

doorep S T L (n
dmOO_ f m? f ¢<m2 n) (187)
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Extrema occur at m + Vn/n', giving m = £1 if n =n’. The extrema are

00' —FF' = :I:i\/nn’ = 12V ff’ (188)
or
OO’—PP’=é(n+n’i2\/nn’)=f’—fi2\/—ff’ (189)

For the common case of n’ = n, the object-to-image distance is
1
OO’=PP’+f’<2—m—f> (190)
m

OO’ is the same for magnifications m and 1/m. For a lens with f’ >0, the extremum
object-to-image distances are OO’ — PP’ =4f" with m= -1 and OO'—PP' =0 for
m=+1. If the object-to-image distance and the focal length are given, then the
magnification is

m=—is+Vi?—1
1
where s :};(00’ —PP')—2. (191)

The two values of m are reciprocal.

Axial Separations and Longitudinal Magnification. Two axial points A and B are
imaged at A’ and B’ with magnifications m, and mz. Newton’s equations give the object
separation

mymeg

Az=zp—z5=—" 192
7=24"2p mB—mAf (192)

The separation of their images is
Az' =2/ —zp=(mg —my)f’ (193)
The ratio of the image and object separations is
Az' zi—zp A'B' n’ !

= = =—muMg = —"—"Mum 194
N AB n ULl f ANp ( )

If m, and my have different signs, then the direction of A’B’ is opposite that of AB. This
occurs when A and B are on opposite sides of the front focal point. In the limit as the
separation between A and B vanishes, m, and mz both approach the same magnification
m. The longitudinal magnification m, is the ratio of axial separations in the limit of small
separations

_LIMITA’B,_dZ’_n, 2 __ Z/
mp= a-s AB dz n m e (195)

This quantity is also called the axial magnification. Since m” is always positive, as an object
moves axially in a given direction, its image moves in a constant direction. There is a
discontinuity in image position when the object crosses the focal point, but the direction of
motion stays the same. At the nodal points, the transverse and longitudinal magnifications
are equal.

Angular Magnification. The ratio of the outgoing to incoming ray angles, u'/u is
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sometimes called the angular magnification m,. If the ray passes through conjugate axial
points with magnification m, then the angular magnification is

! 1

ma==" (196)
u n'm

If the ray leaves an object point with height y in a plane for which the magnification is m,

the outgoing ray angle is given by

1 1
n'u'=—nu—yp=—(nu—y'ep) (197)
m m
The ratio u'/u is not constant unless y =0 or ¢ =0.

Relationship Between Magnifications. The transverse, angular, and longitudinal mag-
nifications are related by

m,m; =m (198)
This relationship is connected to the paraxial invariant and also holds for afocal lenses.

Reduced Coordinates. Many relationships are formally simplified by using reduced axial
distances T=z/n and T’ = z'/n’ and reduced angles w = nu, ' =n'u’, which are paraxial
optical direction cosines. For example, the angular magnification is '/ =1/m, and the

longitudinal magnification is d1'/dT = m>.

Mechanical Distances. The cardinal points can be located anywhere on axis relative to
the physical structure of the lens. The vertex of a lens is its extreme physical point on axis.
The object space vertex is denoted by V and the image space vertex by V'. The two
vertices are not, in general, conjugate. The front focal distance FV is that from the vertex
to the front focal point, and the rear focal distance V'F' is that from the rear vertex to the
rear focal point. Likewise, the front working distance OV is the distance from the object to
the vertex, and the rear working distance V'O’ is that from the vertex to the image. These
lengths have no significance to the gaussian description of a lens. For example, a lens of a
given focal length can have any focal distance and vice versa. For a telephoto lens the focal
length is greater than the focal distance, and for a retrofocus lens the focal distance is
greater than the focal length.

Afocal Lenses

An afocal or telescopic lens (Wetherell 1987," Wetherell 1994,"° Goodman 1988'") is one
for which ¢ =0. A ray entering with u =0 leaves with u’ =0, Fig. 15. There are no

—_—

FIGURE 15 Afocal lens. Paraxial rays entering parallel
to the axis leave parallel, in general at a different height.
The ratio of the heights is the transverse magnification,
which is constant.
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FIGURE 16 Afocal lens. Groups of paraxial rays
entering parallel leave parallel, in general at a different
angle. The ratio of the angles is the angular magnifica-
tion, which is constant.

principal focal points or focal lengths. In general, the u =0 ray leaves at a different height
than that at which it enters. The ratio y'/y is the same for all such rays, so the transverse
magnification m is constant. Likewise, the longitudinal magnification is constant, equaling
m; = (n'/n)m?, as is the angular magnification u'/u =m, =n/(n'm). A parallel bundle of
rays entering at angle u leaves as a parallel bundle at u’ =m,u, Fig. 16. Summarizing:

’

n n 1
m=const m,=—m’=const m,=—,—=const m=mym, (199)
n n'm

«

Any two of these magnifications provide the two scaling factors that describe the system. If
m=n/n', then m, =m and m, =1, so image space is a scaled version of object space.

Afocal lenses differ fundamentally from focal lenses. Objects at infinity are imaged by
afocal lenses at infinity, and objects at finite distances are imaged at finite distances. An
afocal lens has no cardinal points and the focal length is undefined. Afocal lenses have no
principal planes. If m # 1 there are no unit magnification conjugates, and if m =1 there is
only unit magnification. Likewise, there are no nodal points; the angular magnification is
either always unity or always differs from unity. It is sometimes stated or implied that an
afocal lens is a focal one with an infinite focal length, but this description is dubious. For
example, the above equations relating magnification and conjugate positions to focal
length are meaningless for afocal lenses, and they cannot be made useful by substituting
f = . The equations for the afocal lenses can be obtained from those for focal lenses with
a limiting process, but for most purposes this approach is not helpful.

If the positions for a single axial conjugate pair A and A’ are known, other pairs are
located from the property of constant longitudinal magnification. If O and O’ are another
pair of conjugates, then

A'O'=m, A0 (200)
As a function of distance AO, the object-to-image distance OO’ is
00'=AA"+ (m,—1)AO (201)

where AA' is the separation between the initially known conjugates. If m, =1, the
object-to-image distance is constant. Otherwise, it can take any value. For all afocal lenses,
except those for which m, =1, there is a position, sometimes called the center, at which
00’ =0, so the object and image planes coincide.

A principal use of afocal lenses is in viewing distant objects, as with binoculars. An
object of height h a great distance d from the lens subtends an angle s =h/d. The
image height is 4’ = mh, and the image distance is approximately d’ = m”d. So the image
subtends an angle ' =my = y/m,. Thus a telescope used visually produces an image
which is actually smaller, but which is closer by a greater factor, so the subtense increases.
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Determination of Gaussian Parameters

If a lens prescription is given, its gaussian properties can be obtained by paraxially tracing
any two meridional rays whose invariant is not zero. A common choice for focal lenses is
the rays with u =0 and u’ =0, which give F, P, F', and P’. If a lens is known to be afocal,
a single ray not parallel to the axis suffices, since such a ray gives a pair of conjugates and
the angular magnification. If it is not known that the lens is afocal, two rays show that it is,
as well as giving the required information about conjugates. Alternately, a matrix
representation of the lens can be determined, from which the cardinal points are found, as
described in the matrix section. The gaussian properties can also be determined
experimentally in a number of ways.

Basic Systems

Single Refracting Surface. Media of indices n and n’' are separated by a surface of
curvature ¢ and radius r. The power is ¢ = (n' —n)c. The principal points coincide at the
vertex. The nodal points coincide at the center of curvature. The distance from principal
points to nodal points is r.

Thick Lens. The term thick lens usually denotes a singlet whose vertex-to-vertex distant
is not negligible, where negligibility depends on the application. For a singlet of index » in
vacuum with curvatures ¢, and ¢, and thickness ¢, measured from vertex to vertex

1
=];=(n —1)|:61—C2—7
A given power may be obtained with a variety of curvatures and indices. For a given

power, higher refractive index gives lower curvatures. The principal planes are located
relative to the vertices by

b tcy cz] (202)

n—1tc, n—1tc
= — d V'P'=— — 203
P an Pa—) (203)

These equations can be derived by treating the lens as the combination of two refracting
surfaces. Two additional relationships are

VP

noldate) g VPR o (204)

n b VP rn ¢

PP =VV'—

Thin Lens. A thin lens is the limiting case of a refracting element whose thickness is
negligible, so the principal planes coincide, and the ray bending occurs at a single surface,
Fig. 17. In the limit as t — 0, for a lens in vacuum the thick lens expressions give

(b:fl,:(n—l)(cl_CZ) VP=V'P'=0 PP'=0 (205)

Single Reflecting Surface. A reflecting surface has power ¢ =2n/r =2nc. The principal
points are located at the vertex. The nodal points are at the center of curvature.

Mirror as a Thin Lens. In unfolding systems, a mirror can be thought of as a convex or
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P,P' \

n -n n

FIGURE 17 The thin lens approximation. The FIGURE 18 Reflecting surface represented un-
thickness of the lens is negligible, and the principal  folded. A convex mirror is represented as a convex-
planes are coincident, so rays bend at the common  plano thin lens with index n' = —n, where n is the
plane. index of the medium. Snell’s law gives I' = —1.

concave plano thin lens, with an index —n, where 7 is the index of the medium in which it
works, Fig. 18. All the thin lens equations apply, as well as those for third-order aberration
equations, which are not discussed here.

1.15 COLLINEATION

Introduction

Collineation is a mathematical transformation that approximates the imaging action of a
lens with homogeneous refractive indices in both spaces. This transformation takes points
to points, lines to lines, and planes to planes. With an actual lens, incoming rays become
outgoing rays, so lines go exactly to lines. In general, however, rays that interest in object
space do not intersect in image space, so points do not go to points, nor planes to planes.
The collinear transformation is an approximate description of image geometry with the
intervening optical system treated as a black box, not a theory that describes the process of
image formation. Collineation is also referred to as projective transformation. The
historical development of this approach, which was first applied to optics by Mobius
(Mobius 1855'%), is discussed by Southall (Southall, 1910'"). Several authors give
extensive discussions (Czapski 1893,'** Drude 1901'* Southall 1910,'” Wandersleb 1920,'”°
Chrétien 1980"”). Projective transformation is used in computer graphics, and is discussed
in this context in a number of recent books and papers.

The imaging described by collineation is, by definition, stigmatic everywhere, and
planes are imaged without curvature. And for rotationally symmetric lenses, planes
perpendicular to the axis are imaged without distortion. So the three conditions of
maxwellian perfection are satisfied for all conjugates. Consequently, collineation is often
taken as describing ideal imaging of the entire object space. However, it is physically
impossible for a lens to image as described by collineation, except for the special case of an
afocal lens with m =m, =n/n'. The putative ray intersections of collineation violate the
equality of optical path lengths for the rays involved in the imaging of each point. The
intrinsic impossibility manifests itself in a variety of ways. As an example, for axial points
in a plane with transverse magnification m and ray angles 8 and 8’ relative to the axis,
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collineation gives m o tan 8/tan 6’, but optical path length considerations require that
m o sin B/sin 6’. Another violation is that of the skew invariant & = n(ay — Bx). The ratio
of this quantity before and after collineation is not unity, but ¥'/% = y’/y, where v is the
axial direction cosine in object space and vy’ is that in image space.

The expressions for collineation do not contain refractive indices, another manifestation
of their not accounting for optical path length. Rather than the refractive index ratio n'/n,
which occurs in many imaging equations, the expressions of collineation involve ratios of
focal lengths. For afocal lenses there are ratios of transverse and longitudinal magnifica-
tions or ratios of the focal lengths of the lenses making up the afocal system.

The expressions for actual ray behavior take the form of collineation in the paraxial,
and, more generally, parabasal limits. So paraxial calculations provide the coefficients of
the transformation for any particular system.

Collineation is most often treated by starting with the general form, and then reducing
its complexity by applying the symmetries of a rotationally symmetric system, to give
familiar simple equations such as Newton’s (Born & Wolf 1980'*®%). Alternatively, it is
possible to begin with the simple forms and to derive the general ones therefrom with a
succession of images, along with translations and rotations. However, the more important
use of these properties is in treating lenses lacking rotational symmetry. This includes
those comprised of elements that are arbitrarily oriented, that is, tilted or decentered—
either intentionally or unintentionally. Other examples are nonplanar objects, tilted object
planes, and arbitrary three-dimensional object surfaces.

Lenses, along with plane mirror systems, can form a succession of images and can
produce translations and rotations. Correspondingly, a succession of collinear transforma-
tions is a collinear transformation, and these transformations form a group. It is
associative, corresponding to the fact that a series of imaging operations can be associated
pairwise in any way. There is a unit transformation, correspondingly physically to nothing
or to a unit magnification afocal lens. There is an inverse, so an image distorted as a result
of object or lens tilt can be rectified by an appropriately designed system—to the extent
that collineation validly describes the effects.

General Equations
The general form of the collinear transformation is

_ax+byt+cz+d , _Wmx+bytcztd, ,_asx +byy+ciz+ds

ax +by +cz+d y - ax +by +cz+d ©7 ax +by +cz+d

!

(206)

At least one of the denominator coefficients, a, b, ¢, d, is not zero. The equations can be
inverted, so there is a one-to-one correspondence between a point (x, y, z) in object space
and a point (x’, y’, z') in image space. The inverted equations are formally identical, and
can be written by replacing unprimed quantities with primed ones and vice versa in the
above equation. It is seen that a plane is transformed to a plane, since a’x’ +b'y’ +c¢'z’ +
d’ =0 has the same form as a function of (x, y, z). An intersection of two planes gives a
line. It can also be shown that a line transforms to a line by writing the equation for a line
in parametric form, with parameter o, x(o)=x,+ ao, y(o)=y,+ Bo, z(o) =2z, + yo.
Substituting in the transformation equations, it is found that dx'/dy’ = (dx'/do)/(dy'/do)
is constant, as are other such ratios.

These equations contain 16 coefficients, but it is possible to divide all three equations
through by one of the coefficients, so there are 15 independent coefficients in general.
Since the location of an image point is described by three coordinates, five points that are
not coplanar determine the transformation.
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The ratios of the coefficient dimensions are determined by the fact that x, y, z and x’,
y', z' are lengths. A variety of schemes can be used and, in the expressions below, a given
symbol may have different dimensions.

There are two major categories of the transformation, according to whether the
denominator varies or is constant. That with a varying denominator corresponds to focal
lenses. For afocal lenses, the demonimator is constant, and the general form of the
transformation is

x'"=ax+by+cz+d y' =a,x +b,y+c,z+d, ' =asx +byy tciz +ds
(207)

Here coefficient d has been normalized to unity. Such a transformation is called affine or
telescopic.

Coordinate Systems and Degrees of Freedom

The transformation involves two coordinate systems. The origin of each is located by three
parameters, as is the orientation of each. This leaves three parameters that describe the
other aspects of the transformation for the most general case of no symmetry. The number
is reduced to two if there is rotational symmetry.

In addition to considering the transformation of the entire space, there are other cases,
especially the imaging of planes. In each situation, there are specific coordinate systems in
which the aspects of the relationship, other than position and orientation, are most simply
expressed. Accordingly, different coordinate systems are used in the following sections.
Thus, for example, the z axis in one expression may not be the same as that for another.

Simplest Form of the General Transformation
For focal lenses, the denominators are constant for a set of parallel planes
ax + by + ¢z + d = constant (208)

Each such plane is conjugate to one of a set of parallel planes in the other space. Within
each of these planes, the quantities dx'/dx, dx’'/dy, ox’/dz are constant, as are the other
such derivatives. Therefore, magnifications do not vary with position over these planes,
although they do vary with direction. There is one line that is perpendicular to these planes
in one space whose conjugate is perpendicular to the conjugate planes in the other space.
It can be taken to be the z axis in one space and the z’ axis in the other. The aximuths of
the x-y and x'-y’ axes are found by imaging a circle in each space, which gives an ellipse in
the other. The directions of the major and minor axes determine the orientations of these
coordinate axes. The principal focal planes, are the members of this family of planes for
which

O=ax +by+cz+d (209)

Lines that are parallel in one space have conjugates that intersect at the principal focal
plane in the other. The principal focal points are the intersection of the axes with the focal
planes.
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Using these simplifying coordinate systems, the general transformation is

ax b,y ¢z +d;
= = =2t 10 210
cz+d Y cz+d z cz+d (210)

r—

One of the six coefficients can be eliminated, and two of the others are determined by the
choice of origins for the z axis and z’ axis. If the origins are taken to be at the principal
focal points, the transformation equations are

x'=— 'y (211)

’ exx ’ zeyy ’ g
z Z z

where e,, e,, e, are constants. Unless e, = e,, the images of shapes in constant z planes vary
with their orientations. Squares in one orientation are imaged as rectangles, and in others
as parallelograms. Squares in planes not perpendicular to the axes are imaged, in general,
with four unequal sides.

For afocal lenses, the simplest form is

x'=m.x y' =m,y z'=m.z (212)

Spheres in one space are imaged as ellipsoids in the other. The principal axes of the
ellipsoids give the directions of the axes for which the imaging equations are simplest.

Conjugate Planes

A pair of conjugate planes can be taken to have x =0 and x'=0, so the general
transformation between such planes is

’

_byytcz+d , _bsytciztd;

213
by tcz+d ¢ by tcz+d @13)

There are eight independent coefficients, so four points that are not in a line define the
transformation. In each space, two parameters specify the coordinate origins and one the
orientation. Two parameters describe the other aspects of the transformation.

The simplest set of coordinates is found by a process like that described above. For
focal lenses, constant denominators define a line set of parallel lines

by + cz +d = constant (214)

with similar conjugate lines in the other space. There is a line that is perpendicular to this
family in one space, whose conjugate is perpendicular in the other, which can be taken as
the z axis on one side and the z’ axis on the other. There is a principal focal line in the
plane in each space, and a principal focal point, at its intersection with the axis. In this
coordinate system the transformation is

,_ by z,_c3z+d3
cz+d cz+d

y (215)

Of the five coefficients, four are independent and two are fixed by the choice of origins. If
z=0and z’' =0 are at the principal focal points, then

lzeyy ’ ez

7'== (216)
z z

where e, and e, are constants.
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For afocal lenses, the general transformation between conjugate planes is
y' =byy+cz+d, 7' =bsy +c3z +d; (217)
The simplest form of the transformation is
Yy =m,y z'=m.z (218)

where m, and m_ are constants.

Conjugate Lines
A line can be taken to have x =0, y =0, x’ =0, y' =0, so its transformation is

¢z t+d;
cz+d

!

(219)

There are three independent coefficients, so three points determine them. The origins in
the two spaces account for two of the parameters, leaving one to describe the relative
scaling. The simplest forms are

Focal: z'=%  Afocal: z'=m.z (220)
Z

There is a relationship between distances along a line (or ray) that is unchanged in
collineation (Southall 1910,'”* Southall 1933'*°). If four points on a line A, B, C, D have
images A’, B', C', D', the double ratio or cross ratio is invariant under projective
transformation, that is,

ACBD A'C'B'D
BCAD B'C'A'D

(221)

where AC is the distance from A to C, and likewise for other pairs.

Matrix Representation of the Transformation

The transformation can be expressed in linear form by using the variables (u,, u,, us, u,)
and (u, uj, uj, u;), where x =u,/u,, y=ulu,, z=us/us, and x' =uifui, y' =ului,
z' =ui/u,. These are referred to as homogeneous coordinates. The transformation can be

written
uy a by ¢ d; Uy
u, | @ b, ¢, d, U 220
us - as by ¢ d; Us (222)
U, a b ¢ d Uy

In terms of the cartesian coordinates and an additional pair of terms g and ¢q’, the
transformation can be expressed as

q'x’ a, b, ¢ d, qx
q,’y,’ | @ b o 4| gy (223)
qz as by ¢ d; qz

q' a b ¢ d/ \q
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The dimensions of g and g’ depend on the choice of coefficient dimensions. Here
q'/q = ax + by + cz + d, the equation for the special set of planes.

Certain sections of the matrix are associated with various aspects the transformation
(Penna & Patterson 1986°”). The first three elements in the rightmost column have to do
with translation. This is shown by setting (x, y, z) = (0, 0, 0) to locate the conjugate in the
other space. The first three elements in the bottom row are related to perspective
transformation. The upper left-hand 3 X3 array expresses rotation, skew, and local
magnification variation.

For the simple form of the transformation expressed in Eq. (211), a,=e,, b,=¢,,
d;=e_, ¢ =1, and the rest of the coefficients vanish. The general matrix representation for
the afocal transformation is

' a, by ¢ 4,

! a, b, ¢, d, (224)

a; by ¢y ds
0 0 0 1

SRR T S
_N e =

The quantities g and g’ can also be included, in which case g’ = g. In the simplest afocal
form, Eq. (212), the matrix is diagonal with a, =m,, b, =m,, d;=m_, and the rest of the
nondiagonal coefficients vanishing. A succession of collineations can be treated by
multiplying the matrices that describe them (Chastang 1990*°"). To combine lenses with
arbitrary orientations and to change coordinate systems, compatible rotation and transla-
tion matrices are required. The transformation for a pure rotation with direction cosines
(L, M,N)is
x' 1-2L> —-2LM —2LN
! —-2LM 1-2M> —-2MN
Y= , (225)
z' —2LN —-2MN 1-2N
1 0 0 0

_ o O O
—_ N e R

The transformation for translation by (Ax, Ay, Az) is

1 0 0 Ax\ /x
01 0 Ay|ly
0 01 Az ]\ <z
0 0 0 1 1

x/
Y (226)
Z
1

The quantities ¢ and g’ can be included if necessary. The transformations associated
with conjugate planes can likewise be expressed with 3 X 3 matrices, and the transforma-
tions of lines with 2 X 2 matrices.

Rotationally Symmetric Lenses

For rotationally symmetric lenses, the simplest forms are obtained with the z and z’ axes
corresponding to the lens axis in the two spaces, and the x and x’ meridians corresponding.
There is one less degree of freedom than in the general case, and a, = b, in Eq. (210). The
general transformation is thus

bl o4y _G2tds

x_cz-i-d y cz+d z cz+d

(227)

There are four degrees of freedom, two associated with the lens and two with the



1.66

GEOMETRIC OPTICS

choice of coordinate origins. For focal lenses, the two axial length parameters are f and f'.
If the coordinate origins are at the focal points,

RO i y,:_Q g (228)
z z z
If the coordinate origins are conjugate and related by magnification m,, then
r_ nmoyX ’ m()y - (f’/f)m(z)z (229)

R T T S g

The constant term in the numerator of the z' expression is the longitudinal magnification
for z =0, for which point dz'/dz = (f'/f)ms. A special case of these equations is that for
which the principal points are the origins, so n, = 1.

For rotationally symmetric afocal lenses, the two degrees of freedom are the transverse
magnification m, =m, =m, and the longitudinal magnification m, = m,. The simplest set
of transformation equations is

x'=mx y' =my '=mpz (230)

where z =0 and z’ =0 are conjugate. If m = +£1 and m, = +1 the image space replicates
object space, except possibly for orientation. If m; = m, the spaces are identical except for
overall scaling and orientation. The m and m, appear as functions of ratios of focal lengths
of the lenses that make up the afocal system.

Rays for Rotationally Symmetric Lenses

A skew ray with direction cosines («, B, v) in object space is described in parametric form
with parameter z as follows

X(z)=xo+ -z y(Z)=xe+Ez (231)
Y y

For a focal lens, if z =0 is taken to be the front focal plane, and z’ =0 is the rear focal
plane, the parametric form of the ray in image space is

v@) = (%)« (5 ver=(r8)+(-2) (23)
Y f Y f

So xg=—faly, yo=—fBly, «'/v' =—xo/f'", B'/y'=—y,/f'. For meridional rays with
x =0, if 6 and 6’ are the ray angles in the two spaces, then tan 6 = /v, tan 8’ = —y,/f’,
and

tan 6@ f’
== 2
tan 0" f " (233)

where m is the transverse magnification in a plane where the meridional ray crosses the
axis.

For afocal lenses, if z =0 and z’' =0 are conjugate planes, the ray in image space is
given by

m m
v =+ (P e =mr (22 (234
mpy mpvy
For meridianal rays with x =0,
tan6 mg

= 235
tan@ m (235)
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FIGURE 19 The image plane for a tilted object plane. The y-z plane is the
object plane and the y’-z’ plane is the image plane. The angles between the
planes and the lens axis are 8 and 6’, which are related by Eq. (232). The
conjugate points in these planes are related by Eq. (235).

Tilted Planes with Rotationally Symmetric Lenses

A plane making an angle 6 with the lens axis in object space has an image plane that
makes an angle 6’, given by Eq. (233), the so-called Scheimpflug condition (Scheimpflug
1907, Sasian 1992°”). A tilted plane and its image are perpendicular to a meridian of the
lens, Fig. 19. There is bilateral symmetry on these planes about the intersection line with
the meridian, which is taken to be the z axis in object space and the z’ axis in image space.
The perpendicular, coordinates are y and y'. Letting m, be the transverse magnification for
the axial point crossed by the planes, the transform equations are

,_ Moy ,_(g'lg)miz

= 236
Y 1+z/g 1+z/g (236)

Here g and g’ are the focal lengths in the tilted planes, the distances from the principal
planes to the focal planes of the lens, measured along the symmetry line, so

’ ! 2 1
g= f A and &= \/<J;> cos® 8+ —;sin’ 6 (237)

" cos@ &= cos 6’ g o

As 6—90° g and g’ become infinite, and (g'/g)m,— 1, giving y'—m,y and z' — m,z.
(Forms like Newton’s equations may be less convenient here, since the distances from the
axes to the focal points may be large.)

For an afocal lens with transverse magnification m and longitudinal magnification m,,
the object and image plane angles are related by Eq. (235). The conjugate equations for
points in the planes are

y'=my  z'=(mj cos’ 8+m’sin’ 0)"*z (238)

Here the origins may be the axial intersection point, or any other conjugate points.
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Some General Properties

For all collinear transformations, points go to points, lines to lines, and planes to planes. In
general, angles at intersections, areas, and volumes are changed. The degree of a curve is
unchanged, so, for example, a conic is transformed into a conic. For focal systems, a
“closed” conic, an ellipse or circle, may be imaged as either a closed or an “open” one, a
parabola or hyperbola. For afocal systems, the closedness and openness are preserved.
With focal systems, the imaging of a shape varies with its location, but for afocal systems it
does not. For afocal systems parallelness of lines is maintained, but for focal systems the
images of parallel lines intersect. For afocal systems, equal distances along lines are imaged
as equal distances, but are different unless the magnification is unity.

1.16 SYSTEM COMBINATIONS—GAUSSIAN PROPERTIES

Introduction

This section deals with combinations of systems, each of which is of arbitrary complexity.
From a gaussian description of each lens and the geometry of the combination, the
gaussian description of the net system can be found. If two rotationally symmetric lenses
are put in series with a common axis, the resultant system is also rotationally symmetric.
Its gaussian description is found from that of the two constituent lenses and their
separations. The net magnification is the product of the two contributions, i.e., m =
m; X m,. Matrix methods are particularly convenient for handling such combinations, and
the results below can be demonstrated easily thereby. If two rotationally symmetric lenses
are combined so their axes do not coincide, the combination can be handled with
appropriate coordinate translations and rotations in the intermediate space, or by means of
collineation. In the most general case, where subsystems without rotational symmetry are
combined, the general machinery of collineation can be applied. There are three classes of
combinations: focal-focal, focal-afocal, and afocal-afocal.

Focal-Focal Combination—Coaxial

The first lens has power ¢, and principal points at P, and P;, Fig. 20. The index preceding
the lens is # and that following it is n,,. The second lens has power ¢, and principal points
at P, and P;, with preceding index n,, and following index n’. The directed distance from
the rear principal point of the first lens to the first principal point of the second lens is

M2 Py Ph
1

n O

AT T &

/ PP

F P P' F'
FIGURE 20 Coaxial combination of two focal lenses. The cardinal points of the two

lenses are shown above the axis and those of the system below. The directions in this
drawing are only one possible case.
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d = P{P;, which may be positive or negative, since the lenses may have external principal
planes. The power of the combination is

1
b=+ ¢,— nf dd, ¢, (239)

The two principal planes of the combination are located relative to those of the
contributing lenses by directed distances

pp=+"q%  ppo g

n, ¢ n, ¢ (240)

If ¢ =0, the combination is afocal and there are no principal planes. In applying these
equations, the inner-space index n,;, must be the same as that for which the two lenses are
characterized. For example, if two thick lenses are characterized in air and combined with
water between them, these equations cannot be used by simply changing 7,,. It would be
necessary to characterize the first lens with water following it and the second lens with
water preceding it.

Another set of equations involves the directed distance from the rear focal point of the
first lens to the front focal point of the second, s = F/F,. The power and focal lengths of the
combination are

v

1 ht )
p=——spid f=+"7  f'= (241)
niy s s
The focal points are located with respect to those of the contributing lenses by
FF=+Me_teli pp mme_ neff (242)
s n s so3 n' s

Another relationship is (F,F)(F;F') =ff'. The system is afocal if s =0. There are many
special cases of such combinations. Another case is that when the first principal point of
the second lens is at the rear focal point of the first, in which case the system focal length is
that of the first. These relationships are proven by Welford (Welford 1986, p. 35°%).

Focal-Afocal—Coaxial

A focal lens combined with an afocal lens is focal, Fig. 21. Here we take the afocal lens to
be to the left, with magnification m,. The focal lens to the right has power ¢, and rear

AFOCAL FOCAL

-

FIGURE 21 Coaxial combination of a focal lens and an afocal lens. In this drawing the
afocal lens has a transverse magnification 0 <m, <1 and the focal lens has a positive power.
The combination is a focal lens with focal length f’ = f,;/m,. The focal point on the side of the
focal lens is at the focal point of that lens alone.
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FIGURE 22 Coaxial combination of two afocal lenses. An internal point A’
has an object space conjugate A and an image space conjugate A”. These two
points can be used for position references in the overall object and image
spaces.

focal length f;. The power of the combination is ¢,m,, and the rear focal length of the
combination is f’ = f;/m,. On the side of the focal lens, the location of the principal focal
point is unchanged. On the side of the afocal lens, the system focal point is located at the
image of the focal point of the focal lens in the space between the two. Changing the
separation between the lenses does not change the power or the position of the principal
focal point relative to that of the focal lens. The principal focal point on the afocal lens
side does move.

Afocal-Afocal—Coaxial

The combination of two afocal lenses is itself afocal, Fig. 22. If the two lenses have
transverse magnifications m, and m,, the combination has m =m,;m,. A pair of conjugate
reference positions is found from the conjugates in the outer regions to any axial point in
the inner space. If the separation between the two lenses changes, the combination
remains afocal and the magnification is fixed, but the conjugate positions change. This
result extends to a combination of any number of afocal lenses.

Noncoaxial Combinations—General

The most general combinations can be handled by the machinery of collineation. The net
collineation can be found by multiplying the matrices that describe the constituents, with
additional rotation and translation matrices to account for their relative positions. After
obtaining the overall matrix, object and image space coordinate systems can be found in
which the transformation is simplest. This approach can also be used to demonstrate
general properties of system combinations. For example, by multiplying matrices for afocal
systems, it is seen that a succession of afocal lenses with any orientation is afocal.

1.17 PARAXIAL MATRIX METHODS

Introduction

Matrix methods provide a simple way of representing and calculating the paraxial
properties of lenses and their actions on rays. These methods contain no physics beyond
that contained in the paraxial power and transfer equations, Eq. (136) and Eq. (142), but
they permit many useful results to be derived mechanically, and are especially useful for
lens combinations. The matrix description of systems is also useful in elucidating
fundamental paraxial properties. With the symbolic manipulation programs now available,
matrix methods also provide a means of obtaining useful expressions.
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The optical system is treated as a black box represented by a matrix. The axial positions
of the input and output planes are arbitrary. The matrix describes the relationship between
what enters and what leaves, but contains no information about the specifics of the system
within, and there is an infinity of systems with the same matrix representation.

The origin of matrix methods in optics is not clear. Matrices were used by Samson
(Samson 1897°*°) who referred to them as “‘schemes.” Matrices appear without comment
in a 1908 book (Leathem 1908°*°). Matrix methods are treated in papers (Halbach 1964,
Sinclair 1973*°*) and in many books (O'Neil 1963, Brouwer 1964,”'° Blaker 1971,>"
Longhurst 1973,”"> Gerrard & Burch 1974,”" Naussbaum & Phillips 1976,”"* Kogelnik
1979,>"* Klein & Furtak 1986, Moller 1988,”"” Guenther 1990°'"). Notation is not
standardized, and many treatments are complicated by notation that conceals the basic
structures.

This section is limited to rotationally symmetric lenses with homogeneous media.
References are provided for systems with cylindrical elements. This treatment is
monochromatic, with the wavelength dependence of index not made explicit.

The matrices are simplified by using reduced axial distances T =t/n and reduced angles
o = nu. The paraxial angles u are equivalent to direction cosines, and the reduced angles
are optical direction cosines in the paraxial limit. For brevity, w and 1 are usually referred
to in this section simply as “angle” and “distance.”

Basic Idea—Linearity

Paraxial optics is concerned with the paraxial heights and paraxial angles of rays. A
meridional ray entering a system has a given height y and angle w and leaves with another
height y’ and angle w'. Paraxial optics is linear, as discussed above, in the sense that both
the outgoing height and angle depend linearly on the incoming height and angle. Writing
Eq. (148) in terms of w's gives

ay’ ay’ do’ dw’

) :< y >y+<i>w and w’=< >y+( )w (243)
ay w ay Jw

The partial derivatives are constant for a given system. This linearity is the basis of the
matrix treatment, since these equations can be written in matrix form:

. ay’ 9y’
y —— \[
ay 9
=, (244)
, o' o’
w w
dy Jdw

Basic Operations

The basic operations in paraxial ray tracing are transfer, Eq. (136), between surfaces and
refraction or reflection at surfaces, Eq. (142).

Transfer Matrix

Transfer changes the height of a ray, in general, leaving the angle unchanged. In terms of
reduced quantities, the relationships are:

t
y=yt+ttu=y+-un=y+io and o' =w (245)
n
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The transfer matrix is:

i

For left-to-right transfer, 7 > 0. This gives a difference in signs between some of the terms
in expressions here and those in the gaussian section, where directed distances are
measured from a reference point related to the lens to the object.

Power Matrix

Refraction or reflection changes the angle of a ray, but not its height. The equations for
reduced quantities are

n'u'=nu—yp=0'=w-—-yp and y'=y (247)
Here ¢ =c(n' —n) for refraction and ¢ = —2nc for reflection, where ¢ is the surface
curvature, Eq. (143). The power matrix is:
1 0
< ) (248)

A planar reflecting or refracting surface has ¢ =0, so it is represented by the unit matrix.

Arbitrary System

A general system consists of a series of surfaces with powers ¢, ¢,, ... that are separated
from one another by distances 7y, T,, . ... Its matrix is the product

o V) D Vg, D6 ) @)

By convention, the successive matrices are concatenated from right to left, whereas ray
tracing is done left to right.
A special case is a succession of transfers, itself a transfer.

1 r,+rz+-~->

Succession of transfers: <O 1

(250)
Another is a series of refractions with no intervening transfer, itself a power operation.

1 0
Succession of powers: ( > (251)
(1t ot 1

Matrix Elements

Each matrix element has a physical significance, and the terms can be given mnemonic
symbols associated with the conditions under which they are zero. (This practice is not
standard.) If the initial ray angle is zero, the outgoing angles depend on the incident ray
heights and the power of the system, according to o' = —¢y, so dw’/dy = —¢. If the initial
surface is at the front focal plane, the outgoing ray angles depend only on the incident
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height, so dw'/dw = 0. This term is denoted by F for “front.” Similarly, if the final surface
is at the real focal plane, the outgoing ray heights depend only on the incoming angles, so
dy’/dy = R for ““rear.” If the initial and final planes are conjugate, then all incoming rays at
a given height y have the outgoing height y’ = my, regardless of their angle, so dy’'/dw =0
for conjugate planes. Since this term is related to the condition of conjugacy, dy’'/dw = C
for “conjugate.” With this notation, the general matrix is

9

Dimensions

The terms R and F are dimensionless. C has the dimensions of length, and those of ¢ are
inverse length. Dimensional analysis, as well as the consideration of Eq. (248), shows that
the F and R terms will always contain products of equal numbers of ¢,’s and 7,’s, such as
¢, 1. The ¢ expression contains terms like ¢, and T, ¢,¢,,, with one more power term than
distance terms. Similarly, C has terms like 7, and 7, 7;¢,,.

Determinant

Both the transfer and power matrices have unit determinants. Therefore, any product of
such matrices has a unit determinant, a fact that is related to the two-ray paraxial
invariant.

‘R C
-6 F

This provides an algebraic check. For afocal lenses and conjugate arrangements, FR = 1.

‘=FR+C¢=1 (253)

Possible Zeros

The possible arrangements of zeros in a system matrix is limited by the unit determinant
restriction. There can be a single zero anywhere. In this case, either C=1/¢ or F =1/R,
and the remaining nonzero term can have any value. There can be two zeros on either
diagonal. No row or column can contain two zeros, since a system represented by such a
matrix would violate conservation of brightness. A matrix with double zeros in the bottom
row would collimate all rays, regardless of their incoming position and direction. A matrix
with all zeros in the top row represents a system that would bring all incoming light to a
single point. A system whose matrix has double zeros in the first column would bring all
incoming light to a focus on the axis. For double zeros in the second row, the system would
concentrate all light diverging from an input point in a single output point with a single
direction.

Operation on Two Rays

Instead of considering a single input and output ray, the matrix formalism can be used to
treat a pair of rays, represented by a 2 X 2 matrix. In this case

G o=y P ) s
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Since the system matrix has a unit determinant, the determinants of the incoming and
outgoing ray matrices are identical:

Li,=yiw; = y:0{ = y10; = y20, (255)

This is the paraxial invariant, Eq. (149). It is possible to operate on more than two rays,
but never necessary, since any third ray is a linear combination of two, Eq. (154).
Operations on two rays can also be handled with a complex notation in which two ray
heights and two angles are each represented by a complex number (Marechal 1956,>"
Marechal 1961%%°).

Conjugate Matrix

For conjugate planes, y’ =my, so C=0, R =m, and F =1/m, giving
m 0 )
256
<—¢> 1/m (256)

The 1/m term gives the angular magnification, u'/u =n/n'm, Eq. (196). This matrix also
holds for afocal lenses, in which case ¢ = 0.

Translated Input and Output Planes

For a given system, the locations of the input and output planes are arbitrary. If the input
plane is translated by 7 and the output plane by 7', the resultant matrix is

<R :dr)’qb C+ TRF+_T’TI;— TT'¢>

Note that the object-space translation term 7 is grouped with F and the image-space term
7’ with R. The equation C=0=1R — 7'F — 11’ ¢ gives all pairs of 7 and 7’ for which the
input and output surfaces are conjugate.

(257)

Principal Plane-to-Principal Plane

If the input and output planes are the principal planes, then the matrix is a conjugate one,

for which m = +1.
1 0
258
(L 1) @)

This is also the matrix representing a thin lens.

Nodal Plane-to-Nodal Plane

The nodal points are conjugate, with unit angular magnification, so u’ =u and o' =n'w/n.

Thus
(”_/;’)/ ngn) 259)
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The transverse magnification my =n/n' equals unity when n =n’. This matrix has no
meaning for afocal lenses.

Focal Plane-to-Focal Plane

If the initial surface is at the front principal focal plane and the final surface is at the rear
focal plane, the matrix is

o

This is the “Fourier transform” arrangement, in which incident heights are mapped as
angles and vice versa.

Translation from Conjugate Positions

If the input plane is translated 7 from a plane associated with magnification m and the
output plane is translated a distance 7’ from the conjugate plane, the matrix is

(m -17'¢p mr+1/m— TT'¢>> (261)

—¢ 1/m —1¢

Setting C =0 gives an equation that locates all other pairs of conjugate planes relative to
the first one, Eq. (172).

Translation from Principal Planes

If the initial conjugate planes are the principal planes, then

<1 —_;d; T +lr’_—rdr)r’¢>

The equation for other conjugates is C=0=71+ 1’ — 7T’ ¢, corresponding to Eq. (170).
It follows that the distance from the input surface to the first principal plane is
T=(1~-F)/¢ and the distance from the output surface to the second principal plane is

T'=(1-R)/¢.

(262)

Translation from Focal Planes

If the input plane is a distance T from the front focal plane and the output plane a distance
7' from the rear focal plane, the matrix is

T (- o)
% e

Thus F and R are proportional to the distances of the input and output surfaces from the

(263)
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object space and image space focal planes. Using Newton’s formulas, this can also be
written
1 !
m' g <1 - ﬂ)
m
1 (264)
_d) —
m

Here m’ is the magnification that would obtain if the image point were as located by R,
and m is that if the object point were located by F. The conjugate term vanishes when

m=m'.

Conjugate Relative to Principal Focal Planes

If Eq. (263) is a conjugate matrix, it becomes

(7 )

(265)

The vanishing C term gives 0 =1/¢ — ¢17’, which is the Newton equation usually written
as zz' =ff'. The magnification terms are the other Newton’s equations, m = —¢7’ and

=—flz.

1/m = — 71, which are usually written as m = —z'/f’

Afocal Lens
For afocal lenses ¢ = 0. Since the determinant is unity, F = 1/R. And since the transverse

I‘IlaglllﬁCatIOH 1S COIlStaIlt, 12 =m, gl\/lng
0 /m

(266)

A ray with o =0 has y' =my, and o' = w/m for all y. At conjugate positions, an afocal

lens has the matrix
0
(m ) (267)

0 1/m

Performing a translation in both object and images spaces from the conjugate position

!

gives
T
m mr+—
m
268
0 1/m (268)
Setting C =0 gives T' = —m’T, which relates the location of a single conjugate pair to all

others, Eq. (200).
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Symmetrical Lenses

For lenses with symmetry about a central plane and symmetrically located input and
output surfaces, F = R, so the matrix has the form

%9

where B> =1 — ¢C. The conjugate matrix has m = +1.

Reversing Lenses

When a lens is flipped left to right, the matrix of the reversed system is obtained from that
of the original one by switching the F and R terms.

9

This reversal maintains the exterior references planes, that is, the input surface for the
initial system becomes the output surface for the flipped one and vice versa.

Inverse Systems

By the “inverse” of a lens is meant a second system that undoes the effect of a given one.
That is, the rays at the output surface of the second system have the same height and angle
as those at the input of the first system. The combination of a system and its inverse is
afocal with unit magnification. The matrix representing the inverse system is the inverse of

that representing the system.
F -C
< ) (271)

é R

The matrix provides no instruction as to how such a lens is made up. Alternatively, the
inverse matrix can be interpreted as that whose input is y’ and w’, with outputs y and w.

Series of Arbitrary Lenses
The matrix for two successive lenses is

<R1R2*C2¢1 C1R2+C2Fl) :< R, Cz)( R, C1> 272)

_¢1Fz_¢zR1 Fle_C1¢2 _¢2 Fz _¢1 Fl

For example, two given lenses separated by some distance have the matrix

e, w)lo U, %) @
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Multiplying from right to left gives a running product or “cumulative matrix,” that shows
the effect of the system up to a given plane.

Decomposition

Matrix multiplication is associative, so the system representation can be broken up in a
number of ways. For example, the portion of a lens before and after the aperture stop can
be used to find the pupil locations and magnifications. An arbitrary lens matrix can be
written as a product of three matrices (Macukow & Arsenault 1983%"):

(G #)=Com D6 ulo T) @
or
(B 7=l U g V) @

Thus a general lens is equivalent to a succession of three systems. One has power and
works at unit magnification. The second is a conjugate afocal matrix. The third is a
translation. Each of these systems is defined by one of the three terms, either R, ¢/R, C/R
or F, ¢/F, C/F. This is another manifestation of the three degrees of freedom of paraxial
systems.

Matrix Determination by Two-Ray Specification

If a two-ray input matrix is given along with the desired output, or the two input and
output rays are measured to determine the matrix of an unknown lens, Eq. (254) gives

R C ’ ! -1
( >: <)’1 J’z><)’1 J’2> (276)
-¢ F 0 0)/)\0, o,
SO
( R C) -1 (ylr’wz—yz”wl yz:yl —y{yz/> @77
-¢ F V12 = Y01 \WO1W; — W20 W) Yol

The denominator of the multiplicative factor is the paraxial invariant associated with the
two rays, Eq. (149). As a special case, the two rays could be the marginal and chief rays.
The input and output pairs must have the same invariant, or the matrix thus found will not
have a unit determinant.

Experimental Determination of Matrix Elements

The matrix elements for an unknown lens can, in principle, be determined experimentally.
One method, as mentioned in the preceding section, is to measure the heights and angles
of an arbitrary pair of rays. Another method is as follows. The power term is found in the
usual way by sending a ray into the lens parallel to the axis and measuring its outgoing
angle. To find C =9dy’'/dw, the input ray angle is varied, while its height is unchanged. If
the output height is graphed, its slope is C. Likewise, the other partial derivatives in Eq.
(243) can be found by changing one of the input parameters while the other is fixed. The
four measurements are redundant, the unit determinant providing a check of consistency.
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Angle Instead of Reduced Angle

The matrices above can be modified to use the angles u and u’, instead of the reduced
angles. In terms of matrix theory, this amounts to a change in basis vectors, which is
accomplished by multiplying by diagonal vectors with elements 1 and » or 1 and n’. The

result is
Y\ = f nCA [y (278)
n
u’ -——¢ —F u
n n

This matrix has a constant determinant n/n’. The form Eq. (252) is simpler.

Other Input-Output Combinations

Referring to Eq. (244), any pair of the four quantities y, w, y’, and o' can be taken as
inputs, with the other two as outputs, and the relationships can be expressed in matrix
form. The four matrices in this section cannot be multiplied to account for the
concatenation of lenses. If the angles are given, the heights are

1/F -1
G)=sli Zello) @)
y'/ ¢\1 —R/\w'
The matrix is undefined for afocal lenses, for which the relationship of w and w’ is
independent of heights. Similarly, the angles can be expressed as functions of the heights

by
()25 A0) 50

For conjugates the expression breaks down, since there is no fixed relationship between
heights and angles. If the input is a height on one side and an angle on the other, then

<i> %(; 1C><5> (281)

(3) :%(—2, ﬂ(f.,) (282)

The determinants of these matrices are, respectively, C, ¢, R, and F.

For the inverse situation,

Derivative Matrices

If the axial position of the input surface changes, the rate of change of the output
quantities is

dy’/dz) (0 R >(y>
= 283
(dw'/dz 0 —¢/\w (283)
If the axial position of the output surface can change, the rate of change of output
quantities is
i)~ (o" o))
= 284
<da)’/dz’ 0 0/\w (284)

Higher derivatives vanish.
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Skew rays

The matrix formalism can be used to treat a paraxial skew ray, represented by a 2 X2
matrix of x and y positions and directions « and B. In this case

’ ’ R C
R L S A s
n'a" n'B —¢ F/\na np
Since the lens matrix has a unit determinant, the determinants of the incoming and
outgoing ray matrices are identical:

n'(y'a’ —x'B") =n(ya —xp) (286)
From Eq. (73), this is the skew invariant.

Relationship to Characteristic Functions

A lens matrix can be related to any one of the four paraxial characteristic functions, Egs.
(34) through (37), each of which has three first coefficients, associated with the three
degrees of freedom of the matrix. Brouwer and Walther (Brouwer & Walther 1967°*%)
derive the paraxial matrices from more general matrices based on the point angle
characteristic function.

Nonrotationally Symmetric Systems

Systems comprised of cylindrical lenses can also be treated paraxially by matrices
(Arsenault 19792 Arsenault 1980,* Arsenault 1980, Keating 1981,>° Arsenault &
Macukow 1983, Macukow & Arsenault 1983,>*' Attard 1984**®). The more general case
of a treatment around an arbitrary ray is also represented by a 4 X4 matrix (Stone &
Forbes 1992**). This is treated by several of the references to the section “Images About
Known Rays.”

1.18 APERTURES, PUPILS, STOPS, FIELDS, AND
RELATED MATTERS

Introduction

This section is concerned with the finite sizes of lens and their fields, as expressed in
various limitations of linear dimensions and angles, and with some of the consequences of
these limits. (Other consequences, for example, resolution limitations, are in the domain of
wave optics.) Terminology in this area is not well defined, and the terms typically used are
insufficient for all the aspects of the subject, so this section deals considerably with
definitions.

Field Size and Field Stop

The field or field of view of a lens is the region of object space from which light is captured
or the region of image space that is used. The field size may be described in angular, linear,
or area units, depending on the circumstances. (It can be described in still other ways, e.g.,
the number of pixels.) In and of itself, a lens does not have a definite field size, but
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FIGURE 23 Axial ray cone and aperture stop. The
upper lens has an internal aperture, and the lower one
has an external aperture on the object side.

beyond a certain size, image quality diminishes, both with respect to aberration correction
and to light collection. A field stop is a physical delimiter of the field, which may be in
either object or image space. A detector may be the delimiter.

Aperture Stop

Each object point can be thought of as emitting rays in all directions. Since lenses are finite
in size, only some of the rays pass through them. The rays that do pass are referred to as
image-forming rays, the ensemble of which is the image-forming bundle, also called the
image-forming cone, although the bundle may not be conical. The bundle associated with
each object point is delimited by one or more physical structures of the lens. For axial
object points, the delimiting structure is called the aperture, the stop, or the aperture stop.
The aperture may be either within the lens or outside of it on either side, Fig. 23. The
aperture may be a structure whose sole purpose is delimiting the bundle, or it may be the
edge of an optical element or a lens mount. The aperture stop may be fixed or adjustable,
for instance an iris. Which structure acts as the aperture can change with object position,
Fig. 24. The size and position of the aperture do not effect the gaussian properties of the
lens, i.e., the cardinal points and the conjugate locations and magnifications. They do

I

APERTURE FOR/ APERTURE FOR
DISTANT POINTS NEAR POINTS

FIGURE 24 An example of change of aperture with axial object
position. For distant points the aperture is the nominal stop. For near
points the aperture is the rim of the lens.
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FIGURE 25 Schematic diagram of a lens with object and image planes, entrance and exit
pupils, and marginal and chief rays. The entrance pupil is located at E and the exit pupil at
E'. The chief ray passes through the edges of the fields and the centers of the pupils. The
marginal ray passes through the axial object and image points and the edges of the pupils.

affect the image irradiance, the aberrations, and the effects of defocus. The aperture is
most commonly centered on axis, but this is not always so. With visual instruments, the
aperture stop for the entire system may be either an aperture in the optics or the iris of the
observer’s eye.

Marginal Rays and Chief Rays

Field Angle

Ray bundles are described to a considerable extent by specifying their central and extreme
rays. For object planes perpendicular to the lens axis, there are two meridional rays of
particular importance, defining the extremities of field and aperture, Fig. 25. These rays
are reciprocal in that one is to the pupil what the other is to the field.

The marginal ray originates at the axial object point, intersects the conjugate image
point, and passes through the edge of the aperture. This term is also used for rays from
other field points that pass through the extremes of the aperture. The paraxial marginal ray
is the marginal ray in the paraxial limit.

The chief ray or principal ray originates at the edge of the object field, intersects the
edge of the image field, and passes approximately through the center of the aperture, and
hence approximately through the center of the pupils. (Here we use “chief ray,” since the
prefix “principal” is so commonly used for other entities.) The term is also used for the
central ray of other bundles. The paraxial chief ray passes exactly through the centers of
the aperture and both paraxial pupils.

The field angle is that subtended by the field of view at the lens. This term is ambiguous,
since several angles can be used, as well as angles in both object and image space. A nodal
ray angle is the same in both spaces. If the nodal points are not at the pupils, the chief ray
angle differs on the two sides. The ratio of paraxial chief ray angles is proportional to the
paraxial pupil magnification, as discussed later, Eq. (289). If the lens is telecentric, the
chief ray angle is zero. An afocal lens has no nodal points, and the paraxial ratio of output
angles to input angles is constant. The concept of field angle is most useful with objects
and/or images at large distances, in which case on the long conjugate side the various ray
angles are nearly identical. On the short conjugate side, ambiguity is removed by giving the



Pupils

GENERAL PRINCIPLES 1.83

focal length, the linear size of the detector, and the principal plane and exit pupil positions.
For finite conjugates, such information should be provided for both spaces.

The term pupil is used in several ways, and care should be taken to distinguish between
them. There are paraxial pupils, “real” pupils, pupils defined as ranges of angles, and pupil
reference spheres used for aberration definition and diffraction calculations. The entrance
pupil is the aperture as seen from object space—more precisely, as seen from a particular
point in object space. If the aperture is physically located in object space, the entrance
pupil is identical to the aperture. Otherwise, the entrance pupil is the image of the
aperture in object space formed by the portion of the lens on the object side of the
aperture. If the aperture is in image space, the entrance pupil is its image formed by the
entire lens. Similarly, the exit pupil is the aperture as seen from image space. A real pupil
is a physically accessible image of the aperture or the aperture itself, and a virtual pupil is
an inaccessible image. Visual instruments often have external pupils, where the user’s eye
is located. The axial entrance pupil point is denoted here by E and the exit pupil by E'.

The pupils can be located anywhere on axis, except that they cannot coincide with the
object or image. It is common to draw pupils as shown in Fig. 25, but they can also be on
the side of the object or image away from the lens. The pupils are usually centered on axis,
but not necessarily. Aberrations may shift pupils from nominal axial centration.

Both pupils are conjugate to the aperture, so they are conjugate to each other. The
term pupil imaging refers to the relationship of the pupils with respect to each other and to
the aperture. In pupil imaging, the chief ray of the lens is the marginal ray and vice versa.
The pupil magnification mp denotes the ratio of exit pupil size to entrance pupil size. The
size may be specificed as linear or an angular extent, and the pupil magnification may be a
transverse magnification, finite or paraxial, or a ratio of angular subtenses. In general,
there is pupil aberration, so the image of the aperture in each space is aberrated, as is that
of the imaging of one pupil to the other. Pupil imaging is subject to chromatic aberration,
so positions, sizes, and shapes of pupils may vary with wavelength.

There is ambiguity about pupil centers and chief rays for several reasons. The center
can be taken with respect to linear, angular, or direction cosine dimensions. Because of
spherical pupil aberration, a ray through the center of the pupil may not also pass through
the center of the aperture, and vice versa. The angular dimensions of pupils may change
with field position. Pupil aberrations cause the actual pupil shape to be different from that
of the paraxial pupil.

Pupils that are not apertures can have any linear size, since the aperture can be imaged
at any magnification. If the aperture is within the lens, there is no particular relationship
between the positions and linear sizes of the entrance and exit pupils, since the portions of
the lens that precede and follow the aperture have no specific relationship. There is a
relationship between the angular subtense of the pupils, as discussed below.

The angular size and shape of the pupils can vary with field position, and the pupils can
change position if the aperture changes with object position. If the lens changes internally,
as with a zoom, the sizes and positions of the pupils change.

Paraxial Description

The paraxial pupils are the paraxial images of the aperture. They are usually planar and
perpendicular to the axis and are implicitly free from aberration. The paraxial chief ray
passes through the center of both pupils and the aperture, and the paraxial marginal
ray through the edges. The object and pupil magnifications and the distances from object
to entrance pupil and from exit pupil to image are related by Eq. (194). If the object at O
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is imaged at O’ with magnification m, and the pupil magnification from entrance pupil at E
to exit pupil at E’ is m, then from Eq. (194)

’

O'E' =" mm,OE (287)
n

Paraxial Invariant for Full Field and Full Aperture

Let the height of the paraxial marginal ray be y,, at the entrance pupil and y,, at the exit
pupil, and that of the paraxial chief ray by y., at the object plane and y/ at the image
plane, Fig. 25. Let the angles of these rays be u,, uc, uy, ue. The two-ray paraxial
invariant, Eq. (149), is

L =nycuy =nyytic =n'yyuc =n'ycuy (288)

This relationship was rediscovered several times, so the conserved quantity is referred to
by a variety of names, including the Lagrange invariant, the Helmholtz invariant, the Smith
invariant, and with various hyphenated combinations of the proper names (Rayleigh
1886, Southall 1910>"). Further discussions are found in the sections on paraxial optics
and on the étendue. The paraxial transverse magnification and paraxial pupil magnifica-
tions are related to the paraxial marginal and chief ray angles by

’
Yo nuy Ym  Huc
m=—=—-— and mp==—=—

=—— (289)
Yo R Uy Ym NlUc

Pupil Directions

For some purposes, pupils are best described as ranges of directions, specified in direction
cosines, rather than by linear extents of aperture images. Here the term pupil directions
(NS) is used. This is particularly the case when dealing with a given region of the object.
The construction for this description is shown in Fig. 26. The x and y axes of the

UNIT
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THROUGH
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FIGURE 26 Construction for the description of the pupils with direction cosines. An x-y
plane is tangent to the object surface at the object point, and a unit sphere is centered on the
point. The intersections with the unit sphere of the rays are projected to the tangent plane to
give the pupil direction cosines.
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object-space coordinate system lie in the object surface, and the x’ and y’ axes. From a
point on the object plane, the extreme set of rays that passes through the lens is found. Its
intersection with a unit sphere about the object point is found, and perpendiculars are
dropped to the unit circle on (or tangent to) the object plane, giving the extent in direction
cosines.

The entrance pupil is delimited by a closed curve described by a relationship
0= P(a, B;x,y), and the exit pupil is likewise defined by 0= P'(a’, B'; x', y'). The spatial
argument is included to indicate that the shape varies, in general, with the field position.
There may be multiple regions, as in the case of central obstructions. It is usually
preferable to define the pupils relative to principal directions (NS) («y, B,) in object space
and («ag, Bg) in image space, where the two directions are those of the same ray in the two
spaces, usually a meridional ray. The principal directions are analogous to the chief rays.
The entrance pupil is then given by 0= Q(a — @y, B — Bo; x,y) and the exit pupil by
0=0Q'(a' —ag, B'— B, x', ¥"). For example, for a field point on the x =0 meridian, the
expression for the pupil might be well approximated by an ellipse, 0 = aa®+ b(8 — Bo)°,
where (0, B,) is the chief ray direction. If the imaging is stigmatic, the relationship between
entrance and exit pupil angular shapes is provided by the cosine condition, Eq. (104).

Q’(a/, B,;x/’ y,) = Q(mPa’ - Cl(;, mPB’ - Bé’ X, Y) (290)

The entrance and exit pupils have the same shapes when described in direction cosine
space. They are scaled according to the pupil angular magnification (NS) mp = n/n'm. The
orientations may be the same or rotated 180°. There is no particular relationship between
(ao, Bo) and (e, Bg), which can, for example, be changed by field lenses. The principal
directions are, however, usually in the same meridian as the object and image points, in
which case a,/B, = a/B}. If the field point is in the x meridian, and the central ray is in
this meridian, then a,=0 and «;=0. Even with aberrations, Eq. (290) usually holds to a
good approximation. The aberration pupil distortion refers to a deviation from this shape
constancy.

Pupil Directional Extent: Numerical Aperture and Its Generalizations

The angular extent of a pupil extent is limited by some extreme directions. In the example
above of the elliptical shape, for instance, there are two half widths

%(amax - amin) and %(Bmax - ﬁmin) (291)

For a rotationally symmetric lens with a circular aperture, the light from an axial object
point in a medium of index # is accepted over a cone whose vertex angle is 6,,,.. The object
space numerical aperture is defined as

NA = n Sin emax = n (az + Bz)max = namax = nBl]]'dX (292)

Likewise, on the image side, where the index is #n’ and the maximum angle is 6., the
image space numerical aperture is

NA, = n, Sin el;l‘dx = n, (alz + B,Z)max = n,al;]'dx = n’Bl":TdX (293)
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If the lens is free of coma, the sine condition, Eq. (106), gives for finite conjugates

n sin 6 NA
— 1510 Bimax _ 294
M sing. NA’ (294)

For infinite conjugates

Sin Qe = =22 or  p'sin By = NA" = 1By = — Vo (295)

f!

If there is coma, these relationships are still good approximations. For a given lens and a
given aperture size, the numerical aperture varies with the axial object position.

F-Number and Its Problems

The F-number is written in a variety of ways, including F/no. and F/#. It is denoted here
by FN. The F-number is not a natural physical quantity, is not defined and used
consistently in the literature, and is often used in ways that are both wrong and confusing
(Hatch 1980,*> Goodman 1993***). Moreover, there is no need to use the F-number, since
everything that it purports to describe or approximately describes is treated properly with
direction cosines. The most common definition for F-number, applied to the case of an
object at infinity, is

focal length 1

FN = (296)

entrance pupil diameter 2 tan 6’

where 6’ is the outgoing angle of the axial imaging done. In general, the F-number is
associated with the tangents of collinear transformations, rather than the sines (or
direction cosines) that are physically appropriate. It presumes that a nonparaxial ray
entering parallel to the axis at height y leaves the rear principal plane at the same height
and intersects the rear focal point, so that tan 8’ =y/f’. However, this particular
presumption contradicts Eq. (294), and in general, collineation does not accurately
describe lens behavior, as discussed above.

Other problems with F-number, as it is used in the literature, include the following: (1)
It is not defined consistently. For example, the literature also contains the definition
F-number = (focal length)/(exit pupil diameter). (2) For lenses used at finite conjugates,
the F-number is often stated for an object at infinity. In fact, given only the numerical
aperture for an object at infinity, that for other conjugates cannot be determined. (3)
There are confusing descriptions of variation of F-number with conjugates, for example,
the equation FN,, = (1 + m)FN.., where FN,, is the F-number for magnification m and FN..
is that for an object at infinity. In fact, numerical apertures for various magnification are
not so related. (4) The object and image space numerical apertures are related by Eq.
(293), but there is no such relationship for tangents of angles, except that predicted by
collineation, Eq. (232), which is approximate. (5) With off-axis field points and noncircular
pupils, the interpretation of F-number is more ambiguous. (6) Afocal systems have finite
numerical apertures when used at finite conjugates, but they have no analogue to Eq.
(295). (7) Object and image space refractive indices are not accounted for by the
F-number, whereas they are by the numerical aperture. (8) The F-number is often used as
a descriptor of radiometric throughput, rather than of ray angles per se.

A related quantity is the T-number (W. J. Smith 1992**%), which accounts for both the
convergence angle of the imaging cone and the fraction of power transmitted by the lens.
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This is useful as a single-number descriptor, but it is subject to all the confusion associated
with the F-number.

Image Irradiance for Lambertian Objects

If the light from a region of an object is lambertian with a power/area M, then the emitted
power per angle with angle according to (M/m)cos 8dw =(M/m) da dB. The power
captured by the entrance pupil from a small object area dA is

1
dP=-MdA J de dp (297)

entrance pupil

(For a full hemisphere [da dB =, giving dP = M dA.) If there are no losses within the
lens, the power reaching the conjugate image region dA’ is the same. Using the
conservation of étendue equation, Eq. (72), the image irradiance is

dP 1 _n"”
:dA’z}M? » >lda’dB’ (298)
exit pupi

E

The image irradiance does not depend explicitly on the magnification, but magnification is
included implicitly, since, for a given lens, the subtense of the exit pupil varies with
conjugates.

This equation obtains everywhere in the field, and it applies to arbitrary object surface
positions and orientations, so long as the direction cosines are defined with respect to the
local object and image surface normals. These equations apply regardless of the chief ray
angles, so they are applicable, for example, with telecentricity. In general, the pupil shape
and principal direction vary with field position, so there is a gradation of irradiance in the
image of a uniform lambertian object.

These equations do not account for all that influences image irradiance, for example
lens absorption and reflection. These effects can be included in the above expressions by
adding an appropriate weighting function of angle and field in the above integrals, giving

n/z

P 1
E@,y) == M) [t gix, vy da dp (299)

where 1(a’, B';x’, y') is the lens transmittance as a function of the direction cosines for
the image point (x’,y’). With externally illuminated objects that are not lambertian
scatterers, these relationships do not hold. For example, in optical projectors the
illumination is matched to the object and imaging lens to give nominally uniform image
irradiance.

Axial Image Irradiance for Lambertian Objects

In the special case of circular pupils and axial object surfaces perpendicular to the axis, the
collected power and image irradiance given above are

2

dP=MdAsin’® and E=M"—sin> @’ (300)
n
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Power /Pixel

From wave optics, a lens working at the ‘“‘resolution limit” has an image pixel size
gA/n’sin @', where A is the vacuum wavelength and ¢ is a dimensionless factor, typically of
the order of unity. Applying Eq. (300), this gives

/\ 2
Power/pixel = ¢°M (*) (301)
n

M(A/n)” is the energy emitted per square wavelength of object area. This is a fundamental
radiometric quantity. Increasing g gives a greater numerical aperture than is nominally
required for resolution, but in practice the aberration correction may be such that the
actual resolution is not greater.

Cosine-to-the-Fourth Approximation

For distant, planar, uniform lambertian objects perpendicular to the lens axis, if the
entrance pupil is well approximated by a circle, then the image irradiance varies
approximately with the object space field angle ¢ according to the cosine-to-the-fourth
relationship

E(§) = Eycos' ¢ (302)

where E, is the axial irradiance. There are three contributions to this dependence. (1) The
angular distribution of a lambertian emitter varies as cos . (2) The distance from the field
point to the entrance pupil varies as 1/d” = cos” . (3) Insofar as the pupil behaves as a
rigid circle, its projected solid angle varies approximately as cos . The cosine-to-the-
fourth relationship should be used only as a guideline, since ray tracing permits more
accurate calculations, and because of the ambiguities in the meaning of the field angle, as
discussed above, and elsewhere (Kingslake 1945, Reiss 1945,° Gardner 1947, Reiss
1948,7* Kingslake 1965**). For example, field angle is meaningless with telecentricity.
Some lenses, especially wide-angle ones, are specifically designed so the pupil subtense
increases with the field angle in order to compensate for effects (1) and (2) above, to
produce a sufficiently uniform image (Slyusarev 1941°*°).

Total Lens Etendue

The total amount of power from a lambertian object that can be transferred through a lens
is

1
7TM dx dy dadp (303)

field pupil

The pupil integral may vary over the field. If the pupil is round and constant over the field,
the étendue is proportional to A(NA)?, where A is the area of the field. This quantity is
also related to the total number of pixels in the field, and the ability of the lens to transfer
information (Gabor 1961**"). The term *area-solid angle product” is sometimes used, but
this is an approximation. The total etendue is proportional paraxially to ~L? where L is
given by Eq. (288).
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FIGURE 27 Example of vignetting. The dashed ray passes through the
aperture, but misses the lens.

Vignetting

Vignetting occurs when an image-forming bundle is truncated by two or more physical
structures in different planes, Fig. 27. Typically, one is the nominal aperture and another is
the edge of a lens. Another case is that of central obstructions away from the aperture.
When vignetting occurs, the image irradiance is changed, and its diminution with field
height is faster than it otherwise would be. Aberration properties are also changed, so
vignetting is sometimes used to eliminate light that would unacceptably blur the image.

Lens Combinations and Field Lenses

When lenses are used to relay images, the light is transferred without loss only if the exit
pupil of one corresponds with the entrance pupil of the next. An example of the failure
to meet this requirement is shown in Fig. 28. The axial point is reimaged satisfactorily, but
off-axis bundles are vignetted. To transfer the light properly, a field lens in the vicinity
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FIGURE 28 A pair of lenses relaying an image with and without a field lens. In the
top figure, there is no field lens, and some of the light forming the intermediate image
does not pass through the second lens. The amount lost depends on the two numerical
apertures and increases with distance from the axis. In the lower figure, a field lens at
the intermediate image forms an image of the exit pupil of the first lens into the
entrance pupil of the next. No light is lost unless the numerical aperture of the second
lens is less than that of the first.
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Defocus

of the intermediate image is used to image the exit pupil of the preceding lens into the
entrance pupil of the next one. If the field lens is a thin lens in the image plane, then its
magnification with respect to the image is unity. In practice, the field lens is usually shifted
axially, so scratches or dust on its surface are out of focus. Its magnification then differs
from unity. The focal length of a thin field lens in air is given by 1/f’ =1/a + 1/b, where a
is the distance from exit pupil of first lens to the field lens, and b is that from field lens to
the entrance pupil of the second lens. The exit pupil is reimaged with a magnification b/a.
If the sizes of the various pupils and their images are not matched, then the aperture of the
combination is determined by the smallest. Field lenses affect aberrations.

When the object and image-receiving surface are not conjugate there is defocus. If either
the object or the receiving surface is considered to be correctly positioned, the defocus is
associated with the other. Another situation is that in which the object and receiving
surfaces are conjugate, but both are wrongly located, so that the image is sharp but the
magnification is not what is desired, a condition that might be called misfocus (NS).

Defocus has two basic geometric effects, if there are no aberrations, Fig. 29. One is
blurring, since the rays from an object point do not converge to a single point on the
receiving surface. The blur size varies linearly with the axial defocus in image space and
with the cone angle of the image-forming bundle. The shape of the blur is that of the exit
pupil, projected on the receiving surface. The other effect of defocus is a lateral shift in
position of the blur’s centroid relative to that of the correctly focused point. The shift
depends on the chief ray angle on the side of the lens where the defocus occurs. In the
simplest case, the shift is approximately linear with field height, so acts as a change of
magnification. If the object is tilted or is not flat, the effects of defocus vary across the field
in a more complicated way. Aberrations affect the nature of the blur. With some
aberrations, the blur is different on the two sides of focus. With spherical aberration, the
blur changes in quality, and with astigmatism the orientation of the blur changes.

In considering the geometrical imaging of a small region of a lambertian object, there is
an implict assumption that the pupil is filled uniformly with light. In imaging an extended
object that is externally illuminated, the light from a given region may not fill the pupil
uniformly, so the character of the blurring is affected by the angular properties of the
illumination and scattering properties of the object.

The amount of defocus can be described in either object or image space, and it can be
measured in a variety of ways, for example, axial displacement, displacement along a chief
ray, geometrical blur size, and wavefront aberration. The axial displacements in object

-

FIGURE 29 Defocus of the receiving surface. A receiving surface is
shown in focus and shifted axially. The image of a point on the shifted
surface is blurred, and its centroid is translated radially.
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and image space differ, in general, and are related by the longitudinal magnification. As
expressed in wavefront aberration, i.e., optical path length, defocus is the same in both
spaces. There are also various functional measurements of defocus, for example, the sizes
of recorded images through focus.

Telecentricity

A lens is telecentric if the chief rays are parallel to one another. Most commonly, they are
also parallel to the lens axis and perpendicular to the object and/or image planes that are
perpendicular to the axis, Fig. 30. Telecentricity is often described by speaking of pupils at
infinity, but the consideration of ray angles is more concrete and more directly relevant. A
lens is telecentric in object space if the chief rays in object space are parallel to the axis,
a, =0 and B,=0. In this case the image of the aperture formed by the portion of the lens
preceding it is at infinity and the aperture is at the rear focal plane of the portion preceding
it. Similarly, a lens is telecentric in image space if the aperture is at the front focal point of
the subsequent optics, so ag =0 and B;=0. More generally, but less commonly, the chief
rays can be parallel to each other, but not necessarily to the axis, and not necessarily
perpendicular to a (possibly tilted) object or image plane.

With tilted object and image surfaces and nonaxial pupils, the chief rays are not
perpendicular to the object and/or image surfaces, but their angles are everywhere the
same, so defocus can result in a rigid shift of the entire image.

A focal lens can be nontelecentric or telecentric on either side, but it cannot be doubly
telecentric. An afocal lens can be nontelecentric, or doubly telecentric, but it cannot be
telecentric on one side. A doubly telecentric lens must be afocal, and a singly telecentric
lens cannot be afocal.

For a lens that is telecentric in image space, if the receiving surface is defocused, the
image of a point is blurred, but its centroid is fixed. However, if it is not telecentric in
object space, then the scale changes if the object is defocused. The converse holds for
object-space telecentricity without image-space telecentricity. For a doubly telecentric lens,
an axial shift of either the object or the receiving plane produces blurring without a
centroid shift. Although the magnification of an afocal lens does not change with
conjugates, there can be an effective change with defocus if it is not telecentric. If the pupil
is not on the axis or if the object and image planes are tilted, there can be telecentricity
without the chief rays being perpendicular to the object and/or image planes. In these
cases, defocus results in a rigid shift of the entire image.

Nominal telecentricity can be negated in several ways. Pupil aberrations may change
the chief ray angles across the field. For an extended object that is externally illuminated
the pupil may not be filled uniformly by light from a given region, so defocus can product a
lateral image shift.

=

FIGURE 30 Example of telecentricity. The lens shown is telecentric in
image space, in which ray bundles are parallel to the axis. An axial shift in
the receiving surface results in blurring, but does not translate the
centroid, so there is no change in image scale.
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Depth of Focus and Depth of Field

The depth of focus and depth of field are the amounts of defocus that the receiving surface
or object may undergo before the recorded image becomes unacceptable. The criterion
depends on the application—the nature of the object, the method of image detection, and
so on, and there are both ray and wave optics criteria for goodness of focus. For example,
a field of separated point objects differs from that of extended objects. Depth of focus is
usually discussed in terms of blurring, but there are cases where lateral shifts become
unacceptable before blurring. For example, in nature photography blurring is more critical
than geometrical deformation, while the opposite may be true in metrology.

Range of Focus and Hyperfocal Distance

In some cases, a geometrical description of defocus is applicable, and the allowable blur is
specified as an angle (Ray 1988,** Kingslake 1992,>® W. Smith 1992***). The hyperfocal
distance is

diameter of the entrance pupil

Hyperfocal distance = =dy (304)

maximum acceptable angular blur Bl

Let the object distance at which the lens is focused be d, the nearest distance at which the
image is acceptable be dy, and the furthest distance be d.. All of these quantities are
positive definite. The following relations obtain:

dyd dyd
d. = d dy = 305
Ty —d N, +d (305)
The distances to either side of best focus are
d? d?
dr —d = d d—dy= 306
¢ dy—d " N d,+d (306)
The total range of focus is
2d*d 2d
dp —dy= = (307)

T —d® (duldy—1

For d >d, the above quantities involving d, are infinite (not negative). If the lens is
focused at the hyperfocal distance or beyond, then everything more distant is adequately
focused. If the lens is focused at the hyperfocal distance, i.e., d = dj,, the focus is adequate
everywhere beyond half this distance, and this setting gives the greatest total range. If the
lens is focused at infinity, then objects beyond hyperfocal distance are adequately focused.
The hyperfocal distance decreases as the lens is stopped down.

1.19 GEOMETRIC ABERRATIONS OF POINT IMAGES—DESCRIPTION

Introduction

In instrumental optics, the term aberration refers to a departure from what is desired,
whether or not it is physically possible. Terms such as “perfect system’ and ‘“‘ideal system”
indicate what the actual is compared to, and these terms themselves are not absolute, but
depend on what is wished for. The ideal may be intrinsically impossible, in which case a
deviation therefrom is not a defect. A further distinction is between aberrations inherent in
a design and those that result from shortcomings in fabrication.
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This section considers only the description of aberrations of point images, with the lens
treated as a black box, whose action with respect to aberrations is accounted for by what
leaves the exit pupil. A full consideration of aberrations involves, among other things, their
causes, their correction, their various manifestations, and their evaluation. Aberrated
images of extended objects are formed by overlapping blurs from the individual points.
The analysis of such images is object- and application-dependent, and is beyond the scope
of this section. Aberrations do vary with wavelength, but most of this discussion involves
monochromatic aberrations, those at a single wavelength. In addition, aberrations vary
with magnification. Aberrations are discussed to some extent in many books that treat
geometric optics (Conrady 1929,>** H. Hopkins 1950,>*° Buchdahl 1954, Herzberger
1958,>* Kingslake 1978,>*® Born & Wolf 1980,**° Slyusarev 1984,>° Welford 1986,
Welford 1986, W. Smith 1992°%).

Aberration has many manifestations, and can be described in a variety of ways. For
example, geometric wavefronts, path lengths, ray angles, and ray intersection points can all
differ from the nominal (and in wave optics there are additional manifestations). Terms
such as ‘““wavefront aberration” and ‘“ray aberration” do not refer to fundamentally
different things, but to different aspects of the same thing. Often, a single manifestation of
the aberration is considered, according to what is measurable, what best describes the
degradation in a particular application, or what a lens designer prefers to use for
optimization during the design process.

Aberrations are classified and categorized in a variety of ways. These include pupil
dependence, field dependence, order, evenness and oddness, pupil and field symmetry, and
the nature of change through focus—symmetrical and unsymmetrical. In addition, there
are natural groupings, e.g., astigmatism and field curvature. The classification systems
overlap, and the decompositions are not unique. The complete aberration is often
described as a series of terms, several schemes being used, as discussed below. The names
of aberrations, such as “spherical,” “coma,” and ‘“‘astigmatism,” are not standardized, and
a given name may have different meanings with respect to different expansions.
Furthermore, the effects of aberrations are not simply separated. For example, “pure
coma’ can have effects usually associated with distortion. Defocus is sometimes taken to
be a type of aberration, and it is useful to think of it in this way, since it is represented by a
term in the same expansion and since the effects of aberrations vary with focus. The
number of terms in an expansion is infinite, and familiar names are sometimes associated
with unfamiliar terms. To improve clarity, it is recommended that all the terms in an
expansion be made explicit up to agreed-upon values too small to matter, and that, in
addition, the net effect be shown graphically. Further, it is often helpful to show more than
one of an aberration’s manifestations.

Pupil and Field Coordinates

In this section, all the quantities in the equation are in image space, so primes are omitted.
Field coordinates are x and y, with A>=x>+y?, and (x, y) is the nominal image point in a
plane z =0. Direction cosines equally spaced on the exit pupil should be used for pupil
coordinates but, in practice, different types of coordinates are used, including linear
positions, spatial frequencies, and direction cosines. Here the pupil coordinates are & and
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1, which are dimensionless, with p> = £ + 0> The overall direction of the pupil may vary
with field. Here the (&, n) = (0, 0) is always taken at the pupil center, the meaning of which
may not be simple, as discussed in the section on pupils above. The angle of a meridian in
the pupil is ¢. Entrance and exit pupil coordinates must be distinguished. For diffraction
calculations, the exit pupil should be sampled at equal intervals in direction cosines, but a
set of rays from an object point that is equally spaced in direction cosines may leave with
uneven spacing, as a result of aberrations.

Wavefront Aberration

If an object point is imaged stigmatically, then the optical path lengths of all rays from the
object point to its image are identical, and the geometric wavefronts leaving the exit pupil
are spherical. In the presence of aberrations, the wavefront is no longer spherical. Rather
than describing the wavefront shape, it is usually preferable to consider the difference
between the actual wavefront, and a nominal wavefront, often called the reference sphere,
centered at a reference point that is usually the nominal image point. This reference sphere
is usually taken to intersect the center of the pupil, since this gives the most accurate
diffraction calculations. The wavefront aberration W is the optical path length from
reference sphere to wavefront, or vice versa, according to the convention used, Fig. 31.
Two sign conventions are in use; a positive wavefront aberration may correspond either to
a wavefront which lags or leads the reference sphere. For each nominal image point
(x, v, z), the wavefront aberration is a function of the pupil coordinates (& n), so the
functional form is W (¢, n;x, y, z), with the z usually suppressed, since the image plane is
usually taken to be fixed. For a given lens prescription, W is found by tracing a set of rays
from each object point to the reference sphere and calculating their path lengths. If the
absolute path length is unimportant, the choice of the reference sphere’s radius is not
critical. Considered from the point of view of wave optics, the image of a point is degraded
by phase differences across the reference sphere, so absolute phase is of no consequence,
and the zero of the wavefront aberration can be chosen arbitrarily. By convention and
convenience, the zero is usually taken at the center of the pupil, so W(0, 0, x, y)=0.

NOMINAL
| o IMAGE
| POINT
|

\\ W
WAVEFRONT

REFERENCE
SPHERE

FIGURE 31 Wavefront aberration. The reference
sphere is concentric with the nominal image point. The
wavefront is taken that is tangent to the reference
sphere in the center of the pupil. The wavefront
aberration function is the distance from the reference
sphere to the wavefront as a function of pupil
coordiantes.
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Absolute optical path lengths are significant for imaging systems with paths that separate
between object and image in cases where there is coherence between the various image
contributions. An error in absolute optical path length is called piston error. This results in
no ray aberrations, so it is omitted from some discussions.

Ray Aberrations

In the presence of aberrations, the rays intersect any surface at different points than they
would otherwise. The intersection of the rays with the receiving surface, usually a plane
perpendicular to the axis, is most often of interest. The transverse ray aberration is the
vectorial displacement (g,, £,) between a nominal intersection point and the actual one.
The displacement is a function of the position of the nominal image point (x, y) and the
position in the pupil through which the ray passes (& n). A complete description of
transverse ray aberrations is given by

(& mx,y)  and g (& nix,y) (308)

The longitudinal aberration is the axial displacement from nominal of an axial
intersection point. This description is useful for points on the axis of rotationally
symmetrical systems, in which case all rays intersect the axis. Such aberrations have both
transverse and longitudinal aspects. The intersection with a meridian can also be used. The
diapoint is the point where a ray intersects the same meridian as that containing the object
point (Herzberger 1958>*7). For an image nominally located at infinity, aberrations can be
described by the slope of the wavefront relative to that of the nominal, that is, by ray
angles rather than intersection points. A hypothetical ideal focusing lens can also be
imagined to convert to transverse aberrations.

A ray intercept diagram shows the intersection points of a group of rays with the
receiving surface (O’Shea 1994>*). The rays are usually taken to arise from a single object
point and to uniformly sample the pupil, with square or hexagonal arrays commonly used.
The ray intercept diagrams can suffer from artifacts of the sampling array, which can be
checked for by using more than one type of array. Other pupil loci, for instance, principal
meridians and annuli, can be employed to show particular aspects of the aberration.
Intercept diagrams can also be produced for a series of surfaces through focus. Image
quality may be better than ray diagrams suggest, since destructive interference can reduce
the irradiance in a region relative to that predicted by the ray density.

Relationship of Wavefront and Ray Aberrations

Since rays are normal to geometric wavefronts, Fig. 32, transverse ray aberrations are
proportional to the slope of the wavefront aberration function. For systems of rotation

/ NOMINAL

IMAGE
l':' —————— —— — —*  POINT
|

[1exiey)

FIGURE 32 Ray aberration. Rays intersect the receiving
plane at positions shifted from the nominal.
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with image space index n and marginal ray angle 6, the transverse aberrations are to a
good approximation (Welford 1986>")

LW 1w
* nsin @ 9¢ Y nsin 0y

(309)

The refractive index appears since W is an optical path length. If the rays are nominally
parallel, then the partial derivatives give the angular ray errors

1 oW 1 oW
a=——"" AB=—— (310)
np ¢ np an

where p is the linear radius of the exit pupil, which cannot be infinite if the image is at
infinity. These expressions may also have a multiplicative factor of —1, depending on the
sign conventions. A sum of wavefront aberrations gives a transverse aberration that is the
sum of the contributing ones.

Ray Densities
The density of rays near the nominal image point is (Welford 1986>")
W\ (0 W \?
=) ) ~2agan) @i
€ an d€an

Caustics are the surfaces where ray densities are infinite. Here, geometric optics predicts
infinite power/area, so the ray model is quantitatively inaccurate in this case.

iy
o
Density

Change of Reference Points

The center of the reference sphere may be displaced from the nominal image point. If the
reference point is changed by linear displacement (8x, 8y, 6z), then the wavefront
aberration function changes from W to W’ according to

W'(& m3x, 3 8x, 8y, 82) = W(E mix, y) + Wb + Wom + W.(87 + %) (312)
where W, = n sin 0 éx,
W, = n sin 6 8y (313)
W, = insin” 6 67
The transverse ray aberration ¢, and ¢, with respect to the new reference points are
& =¢ +8x +sin 08z g =¢€,+ 8y +sin 68z (314)

The change through focus is accounted for by varying &z. Setting &, =&, =0 gives the
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parametric equations x(8z) and y(8z) for a ray with pupil coordinates (¢, ), relative to
the nominal ray near the nominal image point.

Aberration Symmetries for Systems with Rotational Symmetry

If the lens, including the aperture, is a figure of rotation, only certain aberration forms are
possible. For object points on axis, the wavefront aberration and the image blur are figures
of revolution. For off-axis points, both wavefront aberration and blur are bilaterally
symmetrical about the meridional plane containing the object point. For object points on a
circle centered on the axis, the wavefront and ray aberrations are independent of azimuth,
relative to the local meridian. In practice, there is always some imperfection, so the
symmetries are imperfect and additional aberration forms arise.

Wavefront Aberration Forms for Systems with Rotational Symmetry

Here the pupil is taken to be circular, with the coordinate zero taken at the center. The
field coordinates are normalized so x>+ y®>=h>=1 at the edge of the field. The pupil
coordinates are normalized, so that & + 1> = p® =1 on the rim of the pupil. The algebra is
simplified by using dimensionless coordinates. To add dimensions and actual sizes, replace
the & by £/&,.. and likewise for other variables. The simplest combinations of pupil and
field coordinates with rotational symmetry are

Xy =nt E4n’=p" &ty (315)

The general wavefront aberration function can be expressed as a series of such terms
raised to integral powers,

W,y & m) = > W+ )€+ )Y (xé+yn)™ (316)

L,M,N=0

where L, M, N are positive integers. The terms can be grouped in orders according to the
sum L+ M + N, where, by convention, the order equals 2(L + M + N) —1. The order
number refers more directly to ray aberration forms than to wavefront forms, and it is
always odd. The first-order terms are those for which L + M + N =1, for the third-order
terms the sum is two, and so on. The number of terms in the Qth order is
1+(Q +1)(Q +17)/8. For orders 1, 3, 5, 7, 9 the number of terms is 3, 6, 10, 15, 21. For
each order, one contribution is a piston error, which is sometimes excluded from the count.

The expression of Eq. (316) is related to the characteristic function for a rotationally
symmetrical system, Eq. (32). If the spatial coordinates are taken to be those of the object
point, this is the point-angle characteristic function. In the hamiltonian optics viewpoint,
the characteristic function is a sum of two parts. The first-order terms specify the nominal
properties, and those of higher orders the deviation therefrom. This is discussed in the
references given in that section. The term for which L = M = N =0 has to do with absolute
optical path length.

Since there is bilateral symmetry about all meridians, the expansion can be simplified by
considering object points in a single meridian, customarily taken to be that for which x = 0.
Doing so and letting the fractional field height be y =/ gives the wavefront aberration
function

W(hip,m)= > Wonwh®™™p™n™ = 3 Wisch*pn© (317)
L,M,N=0 A,B,C

where A=2L+ N, B=2M, C =N, and the order equals (A + B + C) — 1. Another form
is obtained with the fractional pupil radius p and the pupil azimuth ¢, the angle from
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the x =0 meridian, so 7 = p cos . With these pupil variables the wavefront aberration
function is

W(h;p, ) = E Weah® N p? N cos™ o = 2 Wischp® cos® i (318)

L,M,N=0 A,B,C

where A=2L+ N, B=2M + N, C =N, and the order is A + B — 1. For orders above the
first, the Wy v, Wige, and Wi are the wavefront aberration coefficients.

For a given field position, the wavefront aberration function for circular pupils can also
be decomposed into the Zernike polynomials, also called circle polynomials, a set of
functions complete and orthonormal on a circle (Zernike 1934,”>® Kim & Shannon 1987,°
Malacara 1978,>7 Born & Wolf 1980°*).

Third-Order Aberrations and Their Near Relatives

There are six third-order terms. The Seidel aberrations are spherical, coma, astigmatism,
field curvature, distortion, and there is also a piston-error term. Expressions for these
aberrations are given below, along with some higher-order ones that fall in the same
classification. The terminology of higher-order aberrations is not standardized, and there
are forms that do not have third-order analogues. This section uses the notation of the
second expression of Eq. (318), without the primes on the coefficients.

It is useful to include defocus as a term in aberration expansions. Its wavefront
aberration and transverse ray aberrations are

W= %zopz £, < 2Wioé €, < 2Wiom (319)

Coefficient Wy, is identical to W,, Eq. (313).

In spherical aberration the wavefront error is a figure of revolution in the pupil. The
individual terms of the expansion have the form p*". The form that appears on axis, and
which is independent of field position is

W= VV020P2 + VVO40P4 + VVOGOPG t (320)

where defocus has been included. The W,,, term is the third-order term, the Wy, is the
fifth-order term, etc. The ray aberrations are

&, < 2Wono& + 4Wouopé + 6Woeop € + - - - (321)
Ey o 2‘/VO2077 + 4VVO40p27] + 6VVO60P47] + ...

There are also higher-order off-axis terms, called oblique spherical aberration, with forms
h*"p>™. Spherical is an even aberration.

In coma, the wavefront aberration varies linearly with field height, so the general form
is hp*n = hp®™*' cos . Coma is an odd aberration. The wavefront expansion is

W =(Wiip® + Wisip* + - - )nh = (Wiz1p° + Wisip” + - - ) cos g (322)
The ray aberrations are

£, < [Wis,(28m) + 4W,5, (8 + nDén + - - ]k

(323)
&, < [Wisy (& +31%) + Wi (€ + 580" + 6m*) + - - -]h

In astigmatism the wavefront aberration is cylindrical. The third-order term is

W= "szzhznz = "szzthz cos’ 1 (324)
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with ray aberration
e, =0 &, ©2Wanh’n (325)

Field curvature, also known as Petzval curvature, is a variation of focal position in the
axial direction with field height. In its presence, the best image of a planar object lies on a
nonplanar surface. Its absence is called field flatness. The wavefront aberration form is

W= (szzoh2 + Wiaoh* + Wigoh + - - ‘)P2 (326)
with symmetrical blurs given by

E X (Vszoh2 + Wioh + Weyoh® + - - €

&, x (Vszo]’l2 + Winoh* + Wepoh® + - - In

(327)

The curvature of the best focus surface may have the same sign across the field, or there
may be curvatures of both signs.

Astigmatism and field curvature are often grouped together. Combining defocus,
third-order astigmatism, and third-order field curvature, the wavefront aberration can be
written

W = Woao(€* + 0°) + [Wazg & + (Wasg + Waro)’]1? (328)
The resultant ray aberration is
£, < [Wopo + Vszohzlf &, x [Wozo + (Wano + vvzzo)hz]"'] (329)

A tangential fan of rays, one that lies in the x =0 meridian, has £ =0, so & =0. The
tangential focus occurs where &, = 0, which occurs for a defocus of Wi,y = —(Wayy + Wan)h>.
Combining this result with Eq. (314) gives 8§z « h’, the equation for the tangential focal
surface. A sagittal fan of rays crosses the pupil in the n = 0 meridian, so &, = 0. The sagittal
focus occurs where &, =0, i.e., on the surface given by Wy,, = —Wa,0h?.

In general, distortion is a deviation from geometric similarity between object and image.
For rotationally symmetrical lenses and object and image planes perpendicular to the axis,
the error is purely radial, and can be thought of as a variation of magnification with field
height. The aberration forms are

W:(m11h+‘)‘/311h3+w/511h5+' <)n (330)
with
e, =0 &, x Wi h + W h> + Wo B2+ - - - (331)

In pincushion distortion the magnitude of magnification increases monotonically with
field height, so the image is stretched radially. In barrel distortion the magnitude decreases,
so the image is squeezed. In general, the aberration coefficients can be both positive and
negative, so the direction of distortion can change as a function of field height and the
distortion may vanish for one or more field heights.

For piston error the wavefront differs uniformly across the pupil from its nominal in a
way that varies with field height.

W = Wy + vvzooh2 + VV4(,Oh4 + va)()h6 R e =¢=0 (332)

There are no transverse ray aberrations.
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Chromatic Aberrations

In general, the properties of optical systems vary with wavelength. The term chromatic
aberration often refers to the variation in paraxial properties as a function of wavelength.
Thus, axial color is related to differences of focal length and principal plane location with
wavelength, and lateral color is related to variations of magnification with wavelength.
Also, the monochromatic aberrations vary in magnitude with wavelength. Reflective
systems have identical ray properties at all wavelengths, but their wave properties vary
with color, since a given variation in path length has an effect on phase that varies with
wavelength.

Stop Size and Aberration Variation

For a given system, if the size of the aperture is changed, the marginal ray is changed, but
not the chief ray. If the aperture is reduced, depth of focus and depth of field increase and
image irradiance decreases. The rays from axial object points are more nearly paraxial, so
the imaging tends to be better corrected. For off-axis points, some aberrations are changed
and others are not. Distortion, as defined with respect to the chief ray, is not changed.
Field curvature per se does not change, since the aperture size does not change the
location of the best image surface (if there are no other aberrations), but the depth of
focus does change, so a flat detector can cover a larger field.

Stop Position and Aberration Variation

For a given system, if the aperture is moved axially, the image-forming bundle passes
through different portions of the lens elements. Accordingly, some aberrations vary with
the position of the stop. Lens design involves an operation called the stop shift, in which
the aperture is moved axially while its size is adjusted to keep the numerical apertures
constant. In this operation, the marginal ray is fixed, while the chief ray is changed. This
does not change the aberrations on axis. Most of those for off-axis points are changed, but
third-order field curvature is unchanged.
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GEOMETRIC OPTICS

Douglas S. Goodman
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Cambridge, Massachusetts

1.1 GLOSSARY

(NS) indicates nonstandard terminology

italics definition or first usage
\Y gradient (8/dx, 8/dy, 9/9z)

prime, unprime before and after, object and image space (not derivatives)

A auxiliary function for ray tracing

AA area, total field areas, object and image points

AB directed distance from A to B
a unit axis vector, vectors
ap, dg, 4, coefficients in characteristic function expansion

B matrix element for symmetrical systems
B auxiliary function for ray tracing

B, B’ arbitrary object and image points
b binormal unit vector of a ray path
B interspace (between) term in expansion
C matrix element for conjugacy

C(0, B, F) characteristic function

c speed of light in vacuum
c surface vertex curvature, spherical surface curvature
s sagittal curvature
¢ tangential curvature
D auxiliary distance function for ray tracing
d distance from origin to mirror
d nominal focal distance

d,d’ arbitrary point to conjugate object, image points

d'=A'0'
d,d’ axial distances, distances along rays
du hyperfocal distance

AO,
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QU
z

dA
ds

E,
E E'

(2 ey) e

F F'
FN

FN,,
F()
F(x,y,2)
L

&8
h, h'

LI

my,
o
mg
my
mp
no
m,, my, nm,

N, N’
NA, NA'

near focal distance

far focal distance

differential area

differential geometric path length
image irradiance

axial image irradiance

entrance and exit pupil locations
eccentricity

coefficients for collineation
matrix element for front side
front and rear focal points
F-number

F-number for magnification m
general function

general surface function

front and rear focal lengths f = PF, f'=P'F'

diffraction order
focal lengths in tilted planes

ray heights at objects and images, field heights, Vx> + y*

hamiltonian

incidence angles

unit matrix

paraxial incidence angles

image space term in characteristic function expansion

surface x-direction cosine
paraxial invariant

principal points to object and image axial points / = PO, I’ =P'O’

axial distances from vertices of refracting surface [ = VO, I

lagrangian for heterogeneous media
lambertian emittance

surface z-direction cosine

transverse magnification

longitudinal magnification

angular magnification

paraxial pupil magnification

nodal point magnification = n/n’

pupil magnification in direction cosines
magnification at axial point
magnifications in the x, y, and z directions
surface z-direction cosine

nodal points

numerical aperture

refractive index

Vo'
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0,0’

0

P

P, P’

P(a, B;x,y)
P'(a’, B'sx',y")
P

P

p

P> Py, Pz

O(a, Bsx,y)
O'(a’, B5x",y")

]
<

» o= o~ N2

L U

S(x, y,x',y

ig
[

g

T(e, B;a’, B')
t

tt

t

t

u,u’

u, u’

Uy

Uc

Uy, Uy, Us, Uy
\%

V(x;x')

v, v’
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normal unit vector of a ray path
axial object and image points
object space term in expansion
power (radiometric)

principal points

pupil shape functions

period of grating

ray vector, optical direction cosine p=nr=(p,, p,, p.)
pupil radius

optical direction cosines

pupil shape functions relative to principal direction cosines

resolution parameter

coordinate for Lagrange equations
derivative with respect to parameter
auxiliary functions for collineation

unit vector along grating lines

matrix element for rear side

radius of curvature, vertex radius of curvature
ray unit direction vector r = («, B, v)
surface normal S = (L, M, N)

point eikonal V (x, y, zo; X', ', zo')
geometric length

axial length

distances associated with sagittal foci
skew invariant

angle characteristic function

thickness, vertex-to-vertex distance
distances associated with tangential foci
time

tangent unit vector of a ray path
meridional ray angles relative to axis
paraxial ray angles relative to axis
paraxial marginal ray angle

paraxial chief ray angle

homogeneous coordinates for collineation
optical path length

point characteristic function

vertex points
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v speed of light in medium
Wi~ wavefront aberration term
W, W,, W, wavefront aberration terms for reference shift
W( n;x,y,2) wavefront aberration function
Wi a, B;x',y") angle-point characteristic function
W(x,y;a’, B") point-angle characteristic function
x=(x,y,2z) position vector
x(0) parametric description of ray path
x(o) derivative with respect to parameter
X(o) second derivative with respect to parameter

y meridional ray height, paraxial ray height

Ym

Ye

Yoy Vb

Z

z(p)
Zsphere
Zconic

z, 7’

a B,y

a B,y
a,’ B” ‘y,
a, Bo
aq, Ba
Amaxs Xmin

ﬁmax’ Bmin
r

éx, 8y, 6z
Aa, AB
Ax, Ay, Az
€

&, &

&Em

paraxial marginal ray height

paraxial chief ray height

paraxial ray height at the principal planes

axis of revolution
surface sag
sag of a sphere

sag of a conic

focal point to object and image distances z = FO, z' = F'O’

ray direction cosines

entrance pupil directions

exit pupil direction cosines
principal direction of entrance pupil
principal direction of exit pupil
extreme pupil directions
extreme pupil directions
n'cosl'—ncosl

reference point shifts

angular aberrations

shifts

surface shape parameter
transverse ray aberrations
pupil coordinates—not specific

ray angle to surface normal
marginal ray angle
plane tilt angle
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K conic parameter
K curvature of a ray path
A wavelength
aximuth angle
field angle
o) power, surface power
azimuth
p radius of curvature of a ray path

distance from axis
radial pupil coordinate

T ray path parameter
general parameter for a curve

T reduced axial distances
torsion of a ray path

T(a', B5x',y") pupil transmittance function
w, o' reduced angle w =nu, o' =n'u’

do differential solid angle

1.2 INTRODUCTION

The Subject

The Contents

Geometrical optics is both the object of abstract study and a body of knowledge necessary
for design and engineering. The subject of geometric optics is small, since so much can be
derived from a single principle, that of Fermat, and large since the consequences are
infinite and far from obvious. Geometric optics is deceptive in that much that seems simple
is loaded with content and implications, as might be suggested by the fact that some of the
most basic results required the likes of Newton and Gauss to discover them. Most of what
appears complicated seems so because of obscuration with mathematical terminology and
excessive abstraction. Since it is so old, geometric optics tends to be taken for granted and
treated too casually by those who consider it to be ‘“understood.” One consequence is that
what has been long known can be lost if it is not recirculated by successive generations of
textbook authors, who are pressed to fit newer material in a fairly constant number of

pages.

The material in this chapter is intended to be that which is most fundamental, most
general, and most useful to the greatest number of people. Some of this material is often
thought to be more esoteric than practical, but this opinion is less related to its essence
than to its typical presentation. There are no applications per se here, but everything is
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Terminology

Notation

References

applicable, at least to understanding. An effort has been made to compensate here for
what is lacking elsewhere and to correct some common errors. Many basic ideas and useful
results have not found their way into textbooks, so are little known. Moreover, some basic
principles are rarely stated explicitly. The contents are weighted toward the most common
type of optical system, that with rotational symmetry consisting of mirrors and/or lens
elements of homogeneous materials. There is a section on heterogeneous media, an
application of which is gradient index optics discussed in another chapter. The treatment
here is mostly monochromatic. The topics of caustics and anisotropic media are omitted,
and there is little specifically about systems that are not figures of revolution. The section
on aberrations is short and mostly descriptive, with no discussion of lens design, a vast field
concerned with the practice of aberration control. Because of space limitations, there are
too few diagrams.

Because of the complicated history of geometric optics, its terminology is far from
standardized. Geometric optics developed over centuries in many countries, and much of it
has been rediscovered and renamed. Moreover, concepts have come into use without being
named, and important terms are often used without formal definitions. This lack of
standardization complicates communication between workers at different organizations,
each of which tends to develop its own optical dialect. Accordingly, an attempt has been
made here to provide precise definitions. Terms are italicized where defined or first used.
Some needed nonstandard terms have been introduced, and these are likewise italicized, as
well as indicated by “NS” for ‘“‘nonstandard.”

As with terminology, there is little standardization. And, as usual, the alphabet has too few
letters to represent all the needed quantities. The choice here has been to use some of the
same symbols more than once, rather than to encumber them with superscripts and
subscripts. No symbol is used in a given section with more than one meaning. As a general
practice nonprimed and primed quantities are used to indicate before and after, input and
output, and object and image space.

No effort has been made to provide complete references, either technical or historical.
(Such a list would fill the entire section.) The references were not chosen for priority, but
for elucidation or interest, or because of their own references. Newer papers can be found
by computer searches, so the older ones have been emphasized, especially since older work
is receding from view beneath the current flood of papers. In geometric optics, nothing
goes out of date, and much of what is included here has been known for a century or
so—even if it has been subsequently forgotten.

Communication

Because of the confusion in terminology and notation, it is recommended that communica-
tion involving geometric optics be augmented with diagrams, graphs, equations, and
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numeric results, as appropriate. It also helps to provide diagrams showing both first order
properties of systems, with object and image positions, pupil positions, and principal
planes, as well as direction cosine space diagrams, as required, to show angular subtenses
of pupils.

1.3 FUNDAMENTALS

What Is a Ray?

Geometric optics, which might better be called ray optics, is concerned with the light ray,
an entity that does not exist. It is customary, therefore, to begin discussions of geometric
optics with a theoretical justification for the use of the ray. The real justification is that,
like other successful models in physics, rays are indispensable to our thinking, not-
withstanding their shortcomings. The ray is a model that works well in some cases and not
at all in others, and light is necessarily thought about in terms of rays, scalar waves,
electromagnetic waves, and with quantum physics—depending on the class of phenomena
under consideration.

Rays have been defined with both corpuscular and wave theory. In corpuscular theory,
some definitions are (1) the path of a corpuscle and (2) the path of a photon. A difficulty
here is that energy densities can become infinite. Other efforts have been made to define
rays as quantities related to the wave theory, both scalar and electromagnetic. Some are
(1) wavefront normals, (2) the Poynting vector, (3) a discontinuity in the electromagnetic
field (Luneburg 1964,' Kline & Kay 1965%), (4) a descriptor of wave behavior in short
wavelength or high frequency limit, (Born & Wolf 1980%) (5) quantum mechanically
(Marcuse 1989*). One problem with these definitions is that there are many ordinary and
simple cases where wavefronts and Poynting vectors become complicated and/or meaning-
less. For example, in the simple case of two coherent plane waves interfering, there is no
well-defined wavefront in the overlap region. In addition, rays defined in what seems to be
a reasonble way can have undesirable properties. For example, if rays are defined as
normals to wavefronts, then, in the case of gaussian beams, rays bend in a vacuum.

An approach that avoids the difficulties of a physical definition is that of treating rays as
mathematical entities. From definitions and postulates, a variety of results is found, which
may be more or less useful and valid for light. Even with this approach, it is virtually
impossible to think “purely geometrically”—unless rays are treated as objects of geometry,
rather than optics. In fact, we often switch between ray thinking and wave thinking without
noticing it, for instance in considering the dependence of refractive index on wavelength.
Moreover, geometric optics makes use of quantities that must be calculated from other
models, for example, the index of refraction. As usual, Rayleigh (Rayleigh 1884%) has put
it well: “We shall, however, find it advisable not to exclude altogether the conceptions of
the wave theory, for on certain most important and practical questions no conclusion can
be drawn without the use of facts which are scarcely otherwise interpretable. Indeed it is
not to be denied that the too rigid separation of optics into geometrical and physical has
done a good deal of harm, much that is essential to a proper comprehension of the subject
having fallen between the two stools.”

The ray is inherently ill-defined, and attempts to refine a definition always break down.
A definition that seems better in some ways is worse in others. Each definition provides
some insight into the behavior of light, but does not give the full picture. There seems to
be a problem associated with the uncertainty principle involved with attempts at definition,
since what is really wanted from a ray is a specification of both position and direction,
which is impossible by virtue of both classical wave properties and quantum behavior. So
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the approach taken here is to treat rays without precisely defining them, and there are few
reminders hereafter that the predictions of ray optics are imperfect.

Refractive Index

For the purposes of this chapter, the optical characteristics of matter are completely
specified by its refractive index. The index of refraction of a medium is defined in
geometrical optics as

_ speed of light in vacuum _ ¢

- )

a speed of light in medium v

A homogeneous medium is one in which n is everywhere the same. In an
inhomogeneous or heterogeneous medium the index varies with position. In an isotropic
medium n is the same at each point for light traveling in all directions and with all
polarizations, so the index is described by a scalar function of position. Anisotropic media
are not treated here.

Care must be taken with equations using the symbol #, since it sometimes denotes the
ratio of indices, sometimes with the implication that one of the two is unity. In many cases,
the difference from unity of the index of air (=1.0003) is important. Index varies with
wavelength, but this dependence is not made explicit in this section, most of which is
implicitly limited to monochromatic light. The output of a system in polychromatic light is
the sum of outputs at the constituent wavelengths.

Systems Considered

The optical systems considered here are those in which spatial variations of surface
features or refractive indices are large compared to the wavelength. In such systems ray
identity is preserved; there is no “‘splitting” of one ray into many as occurs at a grating or
scattering surface.

The term lens is used here to include a variety of systems. Dioptric or refractive systems
employ only refraction. Catoptric or reflective systems employ only reflection. Catadioptric
systems employ both refraction and reflection. No distinction is made here insofar as
refraction and reflection can be treated in a common way. And the term lens may refer
here to anything from a single surface to a system of arbitrary complexity.

Summary of the Behavior and Attributes of Rays

Reversibility

Rays propagate in straight lines in homogeneous media and have curved paths in
heterogeneous media. Rays have positions, directions, and speeds. Between any pair of
points on a given ray there is a geometrical path length and an optical path length. At
smooth interfaces between media with different indices rays refract and reflect. Ray paths
are reversible. Rays carry energy, and power per area is approximated by ray density.

Rays are reversible; a path can be taken in either direction, and reflection and refraction
angles are the same in either direction. However, it is usually easier to think of light as
traveling along rays in a particular direction, and, of course, in cases of real instruments
there usually is such a direction. The solutions to some equations may have directional
ambiguity.
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Groups of Rays

Certain types of groups of rays are of particular importance. Rays that originate at a single
point are called a normal congruence or orthotomic system, since as they propagate in
isotropic media they are associated with perpendicular wavefronts. Such groups are also of
interest in image formation, where their reconvergence to a point is important, as is the
path length of the rays to a reference surface used for diffraction calculations. Important in
radiometric considerations are groups of rays emanating from regions of a source over a
range of angles. The changes of such groups as they propagate are constrained by
conservation of brightness. Another group is that of two meridional paraxial rays, related
by the two-ray invariant.

Invariance Properties

Individual rays and groups of rays may have invariance properties—relationships between
the positions, directions, and path lengths—that remain constant as a ray or group of rays
passes through an optical system (Welford 1986, chap. 6°). Some of these properties are
completely general, e.g., the conservation of etendue and the perpendicularity of rays to
wavefronts in isotropic media. Others arise from symmetries of the system, e.g., the skew
invariant for rotationally symmetric systems. Other invariances hold in the paraxial limit.
There are also differential invariance properties (Herzberger 1935,” Stavroudis 1972, chap.
13%). Some ray properties not ordinarily thought of in this way can be thought of as
invariances. For example, Snell’s law can be thought of as a refraction invariant # sin /.

Description of Ray Paths

A ray path can be described parametrically as a locus of points x(o), where o is any
monotonic parameter that labels points along the ray. The description of curved rays is
elaborated in the section on heterogeneous media.

Real Rays and Virtual Rays

Direction

Since rays in homogeneous media are straight, they can be extrapolated infinitely from a
given region. The term real refers to the portion of the ray that “really” exists, or the
accessible part, and the term virtual refers to the extrapolated, or inaccessible, part.

At each position where the refractive index is continuous a ray has a unique direction. The
direction is given by that of its unit direction vector r, whose cartesian components are
direction cosines («, B, y), i.e.,

r=(a,B,7)
where [f> =’ + B>+ y*=1. (2)

The three direction cosines are not independent, and one is often taken to depend
implicitly on the other two. In this chapter it is usually vy, which is

y(a, B)=V1—a’— g’ 3)
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Another vector with the same direction as r is

p =nr = (na, nB, ny) = (p, py, P:)
where |p|° = n’ 4)

Several names are used for this vector, including the optical direction cosine and the ray
vector.

Geometric Path Length

Geometric path length is geometric distance measured along a ray between any two points.
The differential unit of length is

ds = Vdx* + dy* + dz” Q)

The path length between points x; and x, on a ray described parametrically by x(o’), with
derivative x(o) = dx(o)/do is

s(xy;%,) = fz ds = LX25%do = fxz Vix(o)P do (6)

1 1 x

Optical Path Length

The optical path length between two points x, and x, through which a ray passes is
. 2 ds
Optical path length = V(x;x,) = f n(x)ds=c J —=c J dt (7
x| v

The integral is taken along the ray path, which may traverse homogeneous and
inhomogeneous media, and include any number of reflections and refractions. Path length
can be defined for virtual rays. In some cases, path length should be considered positive
definite, but in others it can be either positive or negative, depending on direction (Forbes
& Stone 1993°). If x,, X, and x, are three points on the same ray, then

V (X0, X2) = V(X0 X;) + V(x5 X5) ®)
Equivalently, the time required for light to travel between the two points is

tical path length V 1 (™ 2 d,
_ optical path leng :*:EJ n(x) ds = VS ©)

1 X1

Time
C c

In homogeneous media, rays are straight lines, and the optical path length is V =n [ds =
(index) X (distance between the points).

The optical path length integral has several interpretations, and much of geometrical
optics involves the examination of its meanings. (1) With both points fixed, it is simply a
scalar, the optical path length from one point to another. (2) With one point fixed, say x,,
then treated as a function of x, the surfaces V(x,; x) = constant are geometric wavefronts
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for light originating at x,. (3) Most generally, as a function of both arguments V(x;; x,) is
the point characteristic function, which contains all the information about the rays between
the region containing x, and that containing x,. There may not be a ray between all pairs of
points.

Fermat’s Principle

According to Fermat’s principle (Magie 1963,'° Fermat 1891,'""> Feynman 1963, Rossi
1956,'* Hecht 1987"%) the optical path between two points through which a ray passes is an
extremum. Light passing through these points along any other nearby path would take
either more or less time. The principle applies to different neighboring paths. The optical
path length of a ray may not be a global extremum. For example, the path lengths of rays
through different facets of a Fresnel lens have no particular relationship. Fermat’s principle
applies to entire systems, as well as to any portion of a system, for example to any section
of a ray. In a homogeneous medium, the extremum is a straight line or, if there are
reflections, a series of straight line segments.

The extremum principle can be described mathematically as follows (Klein 1986'°).
With the end points fixed, if a nonphysical path differs from a physical one by an amount
proportional to 8§, the nonphysical optical path length differs from the actual one by a
quantity proportional to 8> or to a higher order. If the order is three or higher, the first
point is imaged at the second-to-first order. Roughly speaking, the higher the order, the
better the image. A point is imaged stigmatically when a continuum of neighboring paths
have the same length, so the equality holds to all orders. If they are sufficiently close, but
vary slightly, the deviation from equality is a measure of the aberration of the imaging. An
extension of Fermat’s principle is given by Hopkins (H. Hopkins 1970").

Ray and wave optics are related by the importance of path length in both (Walther
1967, Walther 1969'%). In wave optics, optical path length is proportional to phase change,
and the extremum principle is associated with constructive interference. The more alike
the path lengths are from an object point to its image, the less the differences in phase of
the wave contributions, and the greater the magnitude of the net field. In imaging this
connection is manifested in the relationship of the wavefront aberration and the eikonal.

Fermat’s principle is a unifying principle of geometric optics that can be used to derive
laws of reflection and refraction, and to find the equations that describe ray paths and
geometric wavefronts in heterogeneous and homogeneous media. Fermat’s is one of a
number of variational principles based historically on the idea that nature is economical, a
unifying principle of physics. The idea that the path length is an extremum could be used
mathematically without interpreting the refractive index in terms of the speed of light.

Geometric Wavefronts
For rays originating at a single point, a geometric wavefront is a surface that is a locus of
constant optical path length from the source. If the source point is located at x, and light
leaves at time t,, then the wavefront at time t is given by
V(xo; X) = c(t — to) (10)
The function V(x;x,), as a function of x, satisfies the eikonal equation
aV\* AV (9V\?
n(x)* = (—) + <—) + (—)
0x ady 9z

= VV(x: %)) (1)
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This equation can also be written in relativistic form, with a four-dimensional gradient as
0=3(dV/dx;)* (Landau & Lifshitz 1951, sec. 7.1*°).

For constant refractive index, the eikonal equation has some simple solutions, one of
which is V =n[a(x —x,) + B(y — ) + y(z — z0)], corresponding to a parallel bundle of
rays with directions (a, B,y). Another is V =n[(x —x,)°+(y —yo)> + (z — 20)°]"%,
describing rays traveling radially from a point (x,, yo, Zo)-

In isotropic media, rays and wavefronts are everywhere perpendicular, a condition
referred to as orthotomic. According to the Malus-Dupin principle, if a group of rays
emanating fron a single point is reflected and/or refracted any number of times, the
perpendicularity of rays to wavefronts is maintained. The direction of a ray from x, at x is
that of the gradient of V(x,; x)

p=nr=VV
or
A% A% A%
=" =— = 12
na =" np ay ny P (12)

In a homogeneous medium, all wavefronts can be found from any one wavefront by a
construction. Wavefront normals, i.e., rays, are projected from the known wavefront, and
loci of points equidistant therefrom are other wavefronts. This gives wavefronts in both
directions, that is, both subsequent and previous wavefronts. (A single wavefront contains
no directional information.) The construction also gives virtual wavefronts, those which
would occur or would have occurred if the medium extended infinitely. This construction is
related to that of Huygens for wave optics. At each point on a wavefront there are two
principal curvatures, so there are two foci along each ray and two caustic surfaces
(Stavroudis 1972,% Kneisly 1964°").

The geometric wavefront is analogous to the surface of constant phase in wave optics,
and the eikonal equation can be obtained from the wave equation in the limit of small
wavelength (Born & Wolf 1980, Marcuse 1989*). A way in which wave optics differs from
ray optics is that the phase fronts can be modified by phase changes that occur on
reflection, transmission, or in passing through foci.

Fields of Rays

In many cases the optical direction cosine vectors p form a field, where the optical path
length is the potential, and the geometric wavefronts are equipotential surfaces. The
potential changes with position according to

dV =nadx +nBdy +nydz =nr-dx=p-dx (13)
If dx is in the direction of a ray, then dV /dx = n, the maximum rate of change. If dx is
perpendicular to a ray, then dV/dx =0. The potential difference between any two
wavefronts is
X2
vi-vi=[ av (14)
X

where x, and x, are any two points on the respective wavefronts, and the integrand is
independent of the path. Other relationships for rays originating at a single point are

0=VXxp=VX(nr) and 0=3€p-dx (15)

where the integral is about a closed path (Born & Wolf 1980%). These follow since p is a
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gradient, Eq. (13). In regions where rays are folded onto themselves by refraction or
reflections, p and V are not single-valued, so there is not a field.

1.4 CHARACTERISTIC FUNCTIONS

Introduction

Characteristic functions contain all the information about the path lengths between pairs of
points, which may either be in a contiguous region or physically separated, e.g., on the two
sides of a lens. These functions were first considered by Hamilton (Hamilton 1931%%), so
their study is referred to as hamiltonian optics. They were rediscovered in somewhat
different form by Bruns (Bruns 1895,” Schwarzschild 1905**) and referred to as eikonals,
leading to a confusing set of names for the various functions. The subject is discussed in a
number of books (Czapski-Eppenstein 1924, Steward 1928,”° Herzberger 1931,” Synge
1937,%® Caratheodory 1937,” Rayleigh 1908, Pegis 1961, Luneburg 1964, Brouwer and
Walther 1967,>* Buchdahl 1970,** Born & Wolf 1980, Herzberger 1958%).

Four parameters are required to specify a ray. For example, an input ray is defined in
the z =0 plane by coordinates (x,y) and direction (a, B). So four functions of four
variables specify how an incident ray emerges from a system. In an output plane z' =0, the
ray has coordinates x'=x'(x,y,a,B), y' =y'(x,y,a, B), and directions a'=
a'(x,y,a,B), B'=B'(x,y, a, B). Because of Fermat’s principle, these four functions are
not independent, and the geometrical optics properties of a system can be fully
characterized by a single function (Luneburg 1964, sec. 19°%).

For any given system, there is a variety of characteristic functions related by Legendre
transformations, with different combinations of spatial and angular variables (Buchdahl
1970**). The different functions are suited for different types of analysis. Mixed
characteristic functions have both spatial and angular arguments. Those functions that are
of most general use are discussed below. The others may be useful in special circum-
stances. If the regions have constant refractive indices, the volumes over which the
characteristic functions are defined can be extended virtually from physically accessible to
inaccessible regions.

From any of its characteristic functions, all the properties of a system involving ray
paths can be found, for example, ray positions, directions, and geometric wavefronts. An
important use of characteristic functions is demonstrating general principles and fun-
damental limitations. Much of this can be done by using the general properties, e.g.,
symmetry under rotation. (Unfortunately, it is not always known how closely the
impossible can be approached.)

Point Characteristic Function

The point characteristic function is the optical path integral V(x;x") =V (x,y, z;x',y', z')
taken as a function of both points x and x'. At point x where the index is 7,

)% )% )%
—noa =— —-npB=— —-ny=—

= -p=VV 16
ax ay 0z or P (16)
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Similarly, at x’, where the index is n’,

n'a'= n'g' = n'y' = or p=VV 17)

It follows from the above equations and Eq. (4) that the point characteristic satisfies two
conditions:

n2 — |VV|2 and an — |Vrv|2 (18)

Therefore, the point characteristic is not an arbitrary function of six variables. The total
differential of V is

dvV(x;x')=p’-dx' —p-dx (19)

“This expression can be said to contain all the basic laws of optics” (Herzberger 1958°).

Point Eikonal

If reference planes in object and image space are fixed, for which we use z, and z{, then
the point eikonal is S(x,y;x',y")=V(x,y, z0;x',y’, z¢).- This is the optical path length
between pairs of points on the two planes. The function is not useful if the planes are
conjugate, since more than one ray through a pair of points can have the same path length.
The function is arbitrary, except for the requirement (Herzberger 1936™) that

7S S S 9°S

’ ’ - ! ’ (20)
dx dx’'dy dy’ ox dy' ox’ dy
The partial derivatives of the point eikonal are
aS aS aS
—na =— -npB=— and n'a'=— n'p' =— (21)
0x ay ox dy

The relative merits of the point characteristic function and point eikonal have been
debated. (Herzberger 1936, Herzberger 1937,%° Synge 1937%).

Angle Characteristic

The angle characteristic function T(a, B;a’, B'), also called the eikonal, is related to the
point characteristic by

T(e, Bsa', BY=V(x,y,z;x",y',2') + n(ax + By + yz)

_n/(a/xl _,’_B/y/ + ,y/z/) (22)

Here the input plane z and output plane z' are fixed and are implicit parameters of 7.
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FIGURE 1 Geometrical interpretation of the angle characteristic function for
constant object and image space indices. There is, in general, a single ray with
directions (a, B, ¥) in object space and (', B’, y') in image space. Point O is the
coordinate origin in object space, and O’ is that in image space. From the origins,
perpendiculars to the ray are constructed, which intersect the ray at Q and Q'. The
angle characteristic function 7'(«, 8; «’, B') is the path length from Q to Q'.

This equation is really shorthand for a Legendre transformation to coordinates p, = 9V /dx,
etc. In principle, the expressions of Eq. (16) are used to solve for x and y in terms of « and
B, and likewise Eq. (17) gives x’ and y' in terms of a’ and B’, so

I(a, Bsa', B') =V (x(a, B), y(a, B), z:x'(a', B'), y'(a', B'), 2")
+nlax(a, B) + By(a, B) + V1 —a’ - B’z]
— 'l (@, B+ B (o, B+ VI—a = B2 (23)
The angle characteristic is an arbitrary function of four variables that completely specify
the directions of rays in two regions. This function is not useful if parallel incoming rays
give rise to parallel outgoing rays, as is the case with afocal systems, since the relationship

between incoming and outgoing directions is not unique. The partial derivatives of the
angular characteristic function are

oT_ (@ oT_ _E)

aa—n<x yz) 0B n<y yz (24)
aT?_/ /_a7,/ aT:_/ /_E’ /)
Rl ) Il (R aE (s)

These expressions are simplified if the reference planes are taken to be z =0 and z' =0.
The geometrical interpretation of 7 is that it is the path length between the intersection
point of rays with perpendicular planes through the coordinate origins in the two spaces, as
shown in Fig. 1 for the case of constant n and n'. If the indices are heterogeneous, the
construction applies to the tangents to the rays. Of all the characteristic functions, T is
most easily found for single surfaces and most easily concatenated for series of surfaces.

Point-Angle Characteristic

The point-angle characteristic function is a mixed function defined by
Wy, z;a', B)=V(xy z;x,y, 2" ) —n'(a'x" + By +v'2')
=T(a, B: ', B') —n(ax + By + yz) (20)

As with Eq. (22), this equation is to be understood as shorthand for a Legendre
transformation. The partial derivatives with respect to the spatial variables are related by
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equations like those of Eq. (16), so n>=|VW/, and the derivatives with respect to the
angular variables are like those of Eq. (25). This function is useful for examining
transverse ray aberrations for a given object point, since W /da’, oW /9B’ give the
intersection points (x’, y') in plane z for rays originating at (x, y) in plane z.

Angle-Point Characteristic
The angle-point characteristic function is
Wi(a, B;x',y', 2 )=V (x,y,z;x",y",2") + n(ax + By + yz)
=T(a, B:a', B") —n'(a’x" +B'y" +v'z2) @7)

Again, this is shorthand for the Legendre transformation. This function satisfies relation-
ships like those of Eq. (17) and satisfies n'> = |V'W'[". Derivatives with respect to spatial
variables are like those of Eq. (21). It is useful when input angles are given, and output
angles are to be found.

Expansions About an Arbitrary Ray

If two points on a ray that are not conjugate are taken as coordinate origins, and the z axes
of the coordinate systems are taken to lie along the rays, then the expansion to second
order of the point eikonal about these points is

S(XI; Y15 X2, )’2) =v+ alx? +bx, yito y? + 02x§ + b2x2YZ + Cz)’%
+dx,x, +ey, y, + fx x, + gyix, (28)

The other characteristic functions have similar expansions. These expansions have three
types of terms, those associated with the input space, the output space, and ‘‘interspace”
terms. From the coefficients, information about imaging along a known ray is obtained.
This subject is treated in the references for the section “Images About Known Rays.”

Expansions About the Axis
For rotationally symmetric systems, the building blocks for an expansion about the axis are
Object space term: O=x>+y> or &’ + 8’ (29)
Image space term: $=x"+y”> or a”+B"7 (30)
Interspace term: B =xx'+yy’ or aa’ + BB’ or xa' +yB’
or ax' + By’ 31)

(Here % = “between.””) The interspace term combines the variables included in 0 and .$.
The general form can be written as a series

C(0, B, )= > a,ynO"B" I (32)

LMN
To second order, the expansion is
C(O, B, F) = ao+ 1000+ a010B + Ago1 I + A2000” + Ao B + 02 I
+a,100B+ a,,0F +ag, BI+ -+ - (33)
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The constant term is the optical path length between coordinate origins in the two spaces.
It is often unimportant, but it does matter if two systems are used in parallel, as in an
interferometer. The three first-order terms give the paraxial approximation. For imaging
systems, the second-order terms are associated with third-order ray aberrations, and so on
(Rayleigh 1908). It is also possible to expand the characteristic functions in terms of three
linear combinations of O, %, and . These combinations can be chosen so that the
characteristic function of an aberration-free system depends on only one of the three
term§, and the other two describe the aberrations (Steward 1928,° Smith 1945,*7 Pegis
1961°").

Paraxial Forms for Rotationally Symmetric Systems

These functions contain one each of the object space, image space, and interspace terms,
with coefficients a,, a,, and az. The coefficients of the object and image space terms
depend on the input and output plane locations. That of the interspace term depends on
the system power. Point eikonal:

S, ysx,y)=a+ao(x®+y?) +az(xx’ +yy) +a;(x”+y"?) (34)
Angle characteristic:
T(a', B';a, B)=a+ao(a”+ B>+ ag(aa’ + BB) +a(a’>+ B7) (35)
Point-angle characteristic:
W(x,y;a', B =a+ao(x*>+y*) +ag(xa’ +yB') +a,(a”+ B'%) (36)
Angle-point characteristic:
W'(a, B, x',y")=a+ao(a®+ B +ag(ax’ + By’) + a;(x> +y"?) 37)
The coefficients in these expressions are different. The familiar properties of paraxial and

gaussian optics can be found from these functions by taking the appropriate partial
derivatives.

Some Ideal Characteristic Functions

For a system that satisfies certain conditions, the form of a characteristic function can
sometimes be found. Thereafter, some of its properties can be determined. Some examples
of characteristic functions follow, in each of which expression the function F is arbitrary.

For maxwellian perfect imaging (defined below) by a rotationally symmetric system
between planes at z =0 and z’'=0 related by transverse magnification m, the point
characteristic function, defined for z’ #0, is

V', y',2'x,y) = F(x +y°) +[(x" —mx)* + (' —my)* +2"]"” (38)

Expanding the expression above for small x, x', y, y’ give the paraxial form, Eq. (34). The
form of the point-angle characteristic is

W(x, y;a',B') = F(x*+y?) —m(n'a’x +n'B'y) (39)



1.20 GEOMETRIC OPTICS

The form of the angle-point characteristic is
! ’ ’ 2 72 1 ’ ’
Wi(a, B;x',y") = F(x"" +y") + —(nax' + npy’) (40)
m

The functions F are determined if the imaging is also stigmatic at one additional point, for
example, at the center of the pupil (Steward 1928,”° T. Smith 1945, Buchdahl 1970,
Velzel 1991*"). The angular characteristic function has the form

T(a, B:a', B') = F((na —mn'a’)* + (nf —mn'B')’) (41)

where F is any function.
For a lens of power ¢ that stigmatically images objects at infinity in a plane, and does so
in either direction,

nn'

¢

Partially differentiating with respect to the appropriate variables shows that for such a
system, the heights of point images in the rear focal plane are proportional to the sines of
the incident angles, rather than the tangents.

SC,y;x’,y)=—¢x"+yy) and  T(a,B;a’,B)=——(aa'+BB") (42)

1.5 RAYS IN HETEROGENEOUS MEDIA

Introduction

This section provides equations for describing and determining the curved ray paths in a
heterogeneous or inhomogeneous medium, one whose refractive index varies with
position. It is assumed here that n(x) and the other relevant functions are continuous and
have continuous derivatives to whatever order is needed. Various aspects of this subject
are discussed in a number of books and papers (Heath 1895, Herman 1900, Synge
1937,** Luneburg 1964, Stavroudis 1972,* Ghatak 1978," Born & Wolf 1980,* Marcuse
1989*). This material is often discussed in the literature on gradient index lenses
(Marchand 1973,° Marchand 1978,”' Sharma, Kumar, & Ghatak 1982, Moore 1992,
Moore 1994°*) and in discussions of microwave lenses (Brown 1953, Cornbleet 1976,
Cornbleet 1983, Cornbleet 1984°%).

Differential Geometry of Space Curves

A curved ray path is a space curve, which can be described by a standard parametric
description, x(o) = (x(a), y(), z(0)), where o is an arbitrary parameter (Blaschke 1945,
Kreyszig 1991, Stoker 1969,°" Struik 1990, Stavroudis 1972%°).

Different parameters may be used according to the situation. The path length s along
the ray is sometimes used, as is the axial position z. Some equations change form according
to the parameter, and those involving derivatives are simplest when the parameter is s.
Derivatives with respect to the parameter are denoted by dots, so x(o)=dx(o)/do
= (¥(0), y(0), 2(0)). A parameter other than s is a function of s, so dx(o)/ds
= (dx/do)(do/ds).

Associated with space curves are three mutually perpendicular unit vectors, the tangent
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vector t, the principal normal n, and the binormal b, as well as two scalars, the curvature
and the torsion. The direction of a ray is that of its unit tangent vector

_Xo) _
' k(o)

The tangent vector t is the same as the direction vector r used elsewhere in this chapter.
The rate of change of the tangent vector with respect to path length is

x(s) = (@, B, v) (43)

. . da dp dv)
=t(s) = = (== ZF 27 44
kn=i(s) =x(s) = (55,2 ()
The normal vector is the unit vector in this direction
X(s)
n=-— 45
(o) )

The vectors t and n define the osculating plane. The curvature k =|X(s)| is the rate of
change of direction of t in the osculating plane.

The radius of curvature is p =1/k. Perpendicular to the osculating plane is the unit
binormal vector

b=txn=M 47)

[X(s)I
The torsion is the rate of change of the normal to the osculating plane

dn(s) _ (x(0) X %(0)) -%(o) _ (5(s) X5(5)) K()

T T k() xK(o)P ()

(48)

The quantity 1/7 is the radius of torsion. For a plane curve, T =0 and b is constant. The
rates of change of t, n, and b are given by the Frenet equations:

t(s)=kn  0(s)=—kt+71h  b(s)=—-Tn (49)

In some books, 1/k and 1/1 are used for what are denoted here by « and T.

Differential Geometry Equations Specific to Rays

From the general space curve equations above and the differential equations below specific
to rays, the following equations for rays are obtained. Note that »n here is the refractive
index, unrelated to n. The tangent and normal vectors are related by Eq. (59), which can
be written

Vlogn =«kn+ (Vlogn - t)t (50)

The osculating plane always contains the vector Va. Taking the dot product with n in the
above equation gives

_dlogn

Y, n-Vlogn=b-(xXxVlogn) (51)

K
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The partial derivative d/dN is in the direction of the principal normal, so rays bend toward
regions of higher refractive index. Other relations (Stavroudis 1972*°) are

n = px(s) X (Vlogn X x(s)) (52)
b = px(s) X Vlogn and 0=b-Vn (53)

_ (X(s) X Vn) - Vn

Vi X x(s)]? (54)

Variational Integral

Written in terms of parameter o, the optical path length integral, Eq. (7) is

V=Jnds:f<n£>d0=f$d0 (55)

The solution for ray paths involves the calculus of variations in a way analogous to that
used in classical mechanics, where the time integral of the lagrangian £ is an extremum
(Goldstein 1980%). If & has no explicit dependence on o, the mechanical analogue to the
optics case is that of no explicit time dependence.

Differential Equations for Rays

General Differential Equations. Because the optical path length integral is an extremum,
the integrand % satisfies the Euler equations (Stavroudis 1972*°). For an arbitrary
coordinate system, with coordinates g, ¢g,, g; and the derivatives with respect to the
parameter ¢; = dq;/do, the differential equations for the path are

do¥ o d( ads\ o ( ds
0= dcig g do\"sg,de) g, \"ds) 712 56
dodq;, dq; do <n 8qidg> g <ndo-) i=1,23 (56)

Cartesian Coordinates with Unspecified Parameter. In cartesian coordinates
ds/do = (¥* + y* + #%)'”, so the x equation is

0

d < i) ds) dson d [ nx
n =—
doix do

:% &% (x2+y2+z-2)1/2

a

:| _ (xz +y2 + Z-Z)l/Zl (57)
ax

Similar equations hold for y and z.

Cartesian Coordinates with Parameter o =s. With o =s, so ds/do =1, an expression,
sometimes called the ray equation, is obtained (Synge 1937°%).

d dx(s)) d’x(s)  dn(x(s)) dx(s)
Vi =— = + 58
" ds <n ds " ds® ds ds (58)
Using dn/ds = Vn - %, the ray equation can also be written
Vn=nx+(Vn-%)x or Vlogn =%+ (Vlogn - x)x (59)

Only two of the component equations are independent, since [X| = 1.
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Cartesian Coordinates with Parameter o = [ ds[n. The parameter o = [ ds/n, for which
ds/do =n and n*> =¥+ y* + 72, gives (Synge 1937*)
d’x
102~ VG (60)
This equation is analogous to Newton’s law of motion for a particle, F = m d’x/dt>, so the
ray paths are like the paths of particles in a field with a potential proportional to n’*(x).
This analogy describes paths, but not speeds, since light travels slower where n is greater,

whereas the particles would have greater speeds (Arnaud 1979, Evans & Rosenquist
1986%).

Euler Equations for Parameter o=z 1If o=z, then ds/do=(*+y>+1)" and
F=L(x,y;%, y;z). This gives (Luneburg 1964, Marcuse 1989*)

d < d ds) dson d [ nx
n .
dz ox dz

:E aa (1 +x2+)}2)1/2

0
} A+ 61)
ax
with a similar equation for y. The equations can also be written (Moore 1975,°° Marchand
1978, app. A’") as

‘L”_a”-> ny:(1+x2+y2)<(?*n—@)7> (62)

..:1+.2+.2< i
n=(1+% y)ax azx Jdy 9z

This parameter is particularly useful when 7 is rotationally symmetric about the z axis.

Hamilton’s Equations with Cartesian Coordinates for Parameter o =z. A set of
Hamilton’s equations can also be written in cartesian coordinates using z as the parameter.
(Luneburg 1964, Marcuse 1989*°) The canonical momenta in cartesian coordinates are
the optical direction cosines

_oZL_
0

_aZ_

Ps = =np (63)
Y

na Py

The hamiltonian is

(X, y, 1 Pes Py 2) =3p. +3p, — L= —Vn*(x,y,2) = (p3+p)) (64)
Hamilton’s equations are

de_od dy_ o dp,_ 9% dp, K

dz  dp, dz ap, dz dx dz ady

(65)

It is not possible to write a set of Hamilton’s equations using an arbitrary parameter and
three canonical momenta, since they are not independent (Forbes 19917). Another
equation is

a%_dx_1on

66
dz dz vyoz (66)

Paraxial Form of Hamilton’s Equations for o =z. In the paraxial limit, if n, is the
average index, the above set of equations gives (Marcuse 1989*)

d’x(z) _1on  d’()_1dn
dz>  nyox dz’>  nydy

(67)
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Other Forms. A variety of additional differential equations can be obtained with various
parameters (Forbes 1991%7). Time cannot be used as a parameter (Landau & Lifshitz
1951°). The equations can also be expressed in a variety of coordinate systems (Buchdahl
1973,% Cornbleet 1976, Cornbleet 1978, Cornbleet 1979,”" Cornbleet 1984°).

Refractive Index Symmetries

When the refractive index has symmetry or does not vary with one or more of the spatial
variables, the above equations may simplify and take special forms. If, in some coordinate
system, n does not vary with a coordinate ¢, so dn/dq; =0, and if, in addition,
d/3q;(ds/do) =0, then

0
—=0 and

0¥ ) (ds
“Z_, L
99, aq aq

7) = constant (68)
do

There is an associated invariance of the ray path (Synge 1937,* Cornbleet 1976,>° 1984,
Marcuse 1989*). (This is analogous to the case in mechanics where a potential does not
vary with some coordinate.) A more esoteric approach to symmetries involves Noether’s
theorem (Blaker 1974,” Joyce 19757%). There are a number of special cases.

If the index is rotationally symmetric about the z axis, n=n(x>+y? z), then
0%/d¢ =0, where ¢ is the azimuth angle, and the constant of motion is analogous to that
of the z component of angular momentum in mechanics for a potential with rotational
symmetry. The constant quantity is the skew invariant, discussed elsewhere.

If the refractive index is a function of radius, n =n(r), there are two constants of
motion. The ray paths lie in planes through the center (r =0) and have constant angular
motion about an axis through the center that is perpendicular to this plane, so x X p is
constant. If the plane is in the x-y plane, then n(ay — Bx) is constant. This is analogous to
motion of a particle in a central force field. Two of the best-known examples are the
Maxwell fisheye (Maxwell 1854,” Born & Wolf 1980*%) for which n(r) « (14 r*)™', and the
Luneburg lens (Luneburg 1964, Morgan 19587), for which n(r) = V2 —r* for r =1 and
n=1forr>1.

If n does not vary with z, then # = ny is constant for a ray as a function of z, according
to Eq. (66).

If the medium is layered, so the index varies in only the z direction, then na and ng are
constant. If 6 is the angle relative to the z axis, then n(z) sin 6(z) is constant, giving Snell’s
law as a special case.

The homogeneous medium, where 9n/dx =dn/dy =on/dz =0, is a special case in
which there are three constants of motion, na, nB, and nvy, so rays travel in straight lines.

1.6 CONSERVATION OF ETENDUE

If a bundle of rays intersects a constant z plane in a small region of size dx dy and has a
small range of angles da dB, then as the light propagates through a lossless system, the
following quantity remains constant:

n*dxdydedB =n>dA dedB =n”dA cos 0dw = dx dy dp, dp, (69)
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Here dA = dx dy is the differential area, dw is the solid angle, and 6 is measured relative to
the normal to the plane. The integral of this quantity

andxdydadBZInsz da defnsz cos 9dw=dedydpx dp, (70)

is the étendue, and is also conserved. For lambertian radiation of radiance L., the
total power transferred is P = [ L.n”> da dB dx dy. The étendue and related quantities are
known by a variety of names (Steel 19747°), including generalized Lagrange invariant,
luminosity, light-gathering power, light grasp, throughput, acceptance, optical extent, and
area-solid-angle-product. The angle term is not actually a solid angle, but is weighted.
It does approach a solid angle in the limit of small extent. In addition, the integrations
can be over area, giving n’>da dB [ dA, or over angle, giving n’>dA [ da dB. A related
quantity is the geometrical vector flux (Winston 197977), with components
(Jdp, dp., [dp,dp., [dp.dp,). In some cases these quantities include a brightness factor,
and in others they are purely geometrical. The étendue is related to the information
capacity of a system (Gabor 19617%).
As special case, if the initial and final planes are conjugate with transverse magnification
m =dx'[dx = dy'/dy, then
n*dadB =n"m*da’ dB’ (71)

Consequently, the angular extents of the entrance and exit pupil in direction cosine
coordinates are related by

n? f dadB =n"m? da' dB’' (72)
entrance pupil

exit pupil

See also the discussion of image irradiance in the section on apertures and pupils.

This conservation law is general; it does not depend on index homogeneity or on axial
symmetry. It can be proven in a variety of ways, one of which is with characteristic
functions (Welford & Winston 1978, Welford 1986, Welford & Winston 1989*'). Phase
space arguments involving Liouville’s theorem can also be applied (di Francia 1950,%
Winston 1970, Jannson & Winston 1986, Marcuse 1989%). Another type of proof
involves thermodynamics, using conservation of radiance (or brightness) or the principal of
detailed balance (Clausius 1864, Clausius 1879,” Helmholtz 1874,% Liebes 1969%).
Conversely, the thermodynamic principle can be proven from the geometric optics one
(Nicodemus 1963, Boyd 1983,” Klein 1986°%). In the paraxial limit for systems of
revolution the conservation of etendue between object and image planes is related to the
two-ray paraxial invariant, Eq. (152). Some historical aspects are discussed by Rayleigh
(Rayleigh 1886%) and Southall (Southall 1910°%).

1.7 SKEW INVARIANT

In a rotationally symmetric system, whose indices may be constant or varying, a skew ray is
one that does not lie in a plane containing the axis. The skewness of such a ray is

F=n(ay — Bx) =nay —npx =p.y —p,x (73)

As a skew ray propagates through the system, this quantity, known as the skew invariant,
does not change (T. Smith 1921,” H. Hopkins 1947,”° Marshall 1952,”” Buchdahl 1954, sec.
4,® M. Herzberger 1958,” Welford 1968,'” Stavroudis 1972, p. 208,'"' Welford 1974, sec.
5.4,'” Welford 1986, sec. 6.4'” Welford & Winston 1989, p. 228'™). For a meridional ray,
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one lying in a plane containing the axis, ¥ = 0. The skewness can be written in vector form
as

F=a-(xXp) (74)

where a is a unit vector along the axis, x is the position on a ray, and p is the optical cosine
and vector at that position.

This invariance is analogous to the conservation of the axial component of angular
momentum in a cylindrical force field, and it can be proven in several ways. One is by
performing the rotation operations on «, B, x, and y (as discussed in the section on
heterogeneous media). Another is by means of characteristic functions. It can also be
demonstrated that & is not changed by refraction or reflection by surfaces with radial
gradients. The invariance holds also for diffractive optics that are figures of rotation.

A special case of the invariant relates the intersection points of a skew ray with a given
meridian. If a ray with directions («, ) in a space of index »n intersects the x = 0 meridian
with height y, then at another intersection with this meridian in a space with index n’, its
height y’ and direction cosine «’ are related by

nay=n'a'y’ (75)

The points where rays intersect the same meridian are known as diapoints and the ratio
y'/y as the diamagnification (Herzberger 1958%).

1.8 REFRACTION AND REFLECTION AT INTERFACES BETWEEN
HOMOGENEOUS MEDIA

Introduction

The initial ray direction is specified by the unit vector r= (a, 3, v). After refraction or
reflection the direction is r' = (a’, B', y'). At the point where the ray intersects the
surface, its normal has direction S = (L, M, N).

The angle of incidence I is the angle between a ray and the surface normal at the
intersection point. This angle and the corresponding outgoing angle I’ are given by

lcos I| = |r - S| = |aL + BM + yN|
lcosI'|=[t' -S| =|a’'L+B'M +y'N

(76)

In addition
sin I| = |r X S| |sinI’| =[x’ X S| (77)

The signs of these expressions depend on which way the surface normal vector is directed.
The surface normal and the ray direction define the plane of incidence, which is
perpendicular to the vector cross product S Xr=(My— NB, No — Ly, LB — Ma). After
refraction or reflection, the outgoing ray is in the same plane. This symmetry is related to
the fact that optical path length is an extremum.

The laws of reflection and refraction can be derived from Fermat’s principle, as is done
in many books. At a planar interface, the reflection and refraction directions are derived
from Maxwell’s equations using the boundary conditions. For scalar waves at a plane
interface, the directions are related to the fact that the number of oscillation cycles is the
same for incident and outgoing waves.



Refraction

GENERAL PRINCIPLES 1.27

At an interface between two homogeneous and isotropic media, described by indices n and

!

n', the incidence angle I and the outgoing angle I' are related by Snell’s law (Magie
1963'%):

n'sinl’ =nsin/ (78)

If sin I’ >1, there is total internal reflection. Another relationship is

n'cosl'=Vn?—n*sin’I=Vn'>—n®>—n’cos’ [ (79)
Snell’s law can be expressed in a number of ways, one of which is
nr+(x-S)S]=n'[r' +(r'-S)S] (80)
Taking the cross product of both sides with S gives another form
n'(Sxr)=n(Sxr) (81)
A quantity that appears frequently in geometrical optics (but which has no common name
or symbol) is
I'=n'cosI'—ncosl (82)

It can be written several ways

I'=(r—n't')-S=—-ncosl+Vn?—n*sin>I=—-ncosl+Vn?>—n*+n>cos’1 (83)

In terms of I, Snell’s law is
n't' =nr+TS (84)
or
n'a'=na+ LT n'B' =nB +MT n'y' =ny+ NI (85)

The outgoing direction is expressed explicitly as a function of incident direction by

n't' =nr+S[nr-S —Vn'?>—n?+ (nr- S)’] (86)
If the surface normal is in the z direction, the equations simplify to
n'a’ =na n'B'=np n'y' =Vn'?—n®+n?y? (87)

If B =0, this reduces to n'a’ = ne, the familiar form of Snell’s law, written with direction
cosines, with n'y’ = (n'> — n’a?)"?, corresponding to Eq. (79). Another relation is

n'a’—na_n'B'—nB _n'y'—ny
L M N

r (88)

All of the above expressions can be formally simplified by using p=nr and p’ =n'r’. For a
succession of refractions by parallel surfaces,

nysinl,=n,sinL,=n;ysinlL="--- (89)
so the angles within any two media are related by their indices alone, regardless of the

intervening layers. Refractive indices vary with wavelength, so the angles of refraction do
likewise.
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Reflection

The reflection equations can be derived from those for refraction by setting the index of
the final medium equal to the negative of that of the incident medium, i.e., n’ = —n, which
gives I'= —2n cos I. The angles of incidence and reflection are equal

I'=1I (90)

The incident and reflected ray directions are related by

Sxr =-Sxr 91)
Another expression is
r=r—(2S-r)S=r—(2cosI)S (92)
The components are
a'=a—2LcosI B'=B—2Mcosl v' =y —2NcosI (93)

This relationship can be written in terms of dyadics (Silberstein 1918'°°) as r' = (I — SS) - r.
This is equivalent to the matrix form (T. Smith 1928,'"”” Luneburg 1964,'” R. E. Hopkins
1965,'” Levi 1968,"'° Tongshu 1991''")

a’ 1-21 —2LM —2LN\ /[«
g |=| —2LM 1-2M> —2MN || B (94)
y' —2LN —2MN 1-2N*/ \y

Each column of this matrix is a set of direction cosines and is orthogonal to the others, and
likewise for the rows. The matrix associated with a sequence of reflections from plane
surfaces is calculated by multiplying the matrices for each reflection. Another relationship
is

o' —a BB _y' v

95
L M N ©3)
If the surface normal is in the z direction, so (L, M, N) = (0, 0, 1), then

a'=a  B'=B ¥y =-v (96)

Reflection by a Plane Mirror—Positions of Image Points

If light from a point (x,y, z) is reflected by a plane mirror whose distance from the
coordinate origin is d, and whose surface normal has direction (L, M, N), the image point
coordinates (x', y’, z') are given by

x' 1-2L> —-2LM —2LN 2dL\ /x
y'| | —2LM 1-2M*> —2MN 2dM || y 97)
4 —2LN —2MN 1-2N*> 2dN z
1 0 0 0 1 1

This transformation involves both rotation and translation, with only the former effect
applying if d = 0. It is an affine type of collinear transformation, discussed in the section on
collineation. The effect of a series of reflections by plane mirrors is found by a product of
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such matrices. The transformation can also be formulated in terms of quaternions (Wagner
1951,""* Levi 1968, p. 367'"").

Diffractive Elements

The changes in directions produced by gratings or diffractive elements can be handled in
an ad hoc geometrical way (Spencer & Murty 1962,'"* di Francia 1950'"*)

A
n'r; XS=nrxS+G-—q (98)
p

Here A is the vacuum wavelength, p is the grating period, q is a unit vector tangent to the
surface and parallel to the rulings, and G is the diffraction order. Equations (81) and (91)
are special cases of this equation for the Oth order.

1.9 IMAGING

Introduction

Image formation is the principal use of lenses. Moreover, lenses form images even if this is
not their intended purpose. This section provides definitions, and discusses basic concepts
and limitations. The purposes of the geometric analysis of imaging include the following:
(1) discovering the nominal relationship between an object and its image, principally the
size, shape, and location of the image, which is usually done with paraxial optics; (2)
determining the deviations from the nominal image, i.e., the aberrations; (3) estimating
image irradiance; (4) understanding fundamental limitations—what is inherently possible
and impossible; (5) supplying information for diffraction calculations, usually optical path
lengths.

Images and Types of Images

A definition of image (Webster 1934'"%) is: “The optical counterpart of an object produced
by a lens, mirror, or other optical system. It is a geometrical system made up of foci
corresponding to the parts of the object.” The point-by-point correspondence is the key,
since a given object can have a variety of different images.

Image irradiance can be found only approximately from geometric optics, the degree of
accuracy of the predictions varying from case to case. In many instances wave optics is
required, and for objects that are not self-luminous, an analysis involving partial coherence
is also needed.

The term image is used in a variety of ways, so clarification is useful. The light from an
object produces a three-dimensional distribution in image space. The aerial image is the
distribution on a mathematical surface, often that of best focus, the locus of points of the
images of object points. An aerial image is never the final goal; ultimately, the light is to be
captured. The receiving surface (NS) is that on which the light falls, the distribution of
which there can be called the received image (NS). This distinction is important in
considerations of defocus, which is a relationship, not an absolute. The record thereby
produced is the recorded image (NS). The recorded image varies with the position of the
receiving surface, which is usually intended to correspond with the aerial image surface. In
this section, ““image’” means aerial image, unless otherwise stated.
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Object Space and Image Space

The object is said to exist in object space; the image, in image space. Each space is infinite,
with a physically accessible region called real, and an inaccessible region, referred to as
virtual. The two spaces may overlap physically, as with reflective systems. Corresponding
quantities and locations associated with the object and image spaces are typically denoted
by the same symbol, with a prime indicating image space. Positions are specified by a
coordinate system (x, y, z) in object space and (x', y’, z’) in image space. The refractive
indices of the object and image spaces are n and n'.

Image of a Point

An object point is thought of as emitting rays in all directions, some of which are captured
by the lens, whose internal action converges the rays, more or less, to an image point, the
term ‘“‘point” being used even if the ray convergence is imperfect. Object and image points
are said to be conjugate. Since geometric optics is reversible, if A" is the image of A, then
A is the image of A’

Mapping Object Space to Image Space

If every point were imaged stigmatically, then the entire object space would be mapped
into the image space according to a transformation

x'=x'(x,y,z) Yy =y@xyz2) z2'=7(xy72) (99)

The mapping is reciprocal, so the equations can be inverted. If n and n' are constant, then
the mapping is a collinear transformation, discussed below.

Images of Extended Objects

An extended object can be thought of as a collection of points, a subset of the entire space,
and its stigmatic image is the set of conjugate image points. A surface described by
0= F(x, y, z) has an image surface

0=F'(x",y" 2") =F(x(x',y', 2'), y(x', y", 2'), 2(x", ', 7)) (100)
A curve described parametrically by x(o) = (x(o), y(0), z(o)) has an image curve

X'(0) = (x'(x(0), y(0), 2(0)), y'(x(0), y(0), 2(0)), 2 (x(0), y(0), 2(0)))  (101)

Rotationally Symmetric Lenses

Rotationally symmetric lenses have an axis, which is a ray path (unless there is an
obstruction). All planes through the axis, the meridians or meridional planes, are planes
with respect to which there is bilateral symmetry. An axial object point is conjugate to an
axial image point. An axial image point is located with a single ray in addition to the axial
one. Off-axis object and image points are in the same meridian, and may be on the same or
opposite sides of the axis. The object height is the distance of a point from the axis, and the
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image height is that for its image. It is possible to have rotational symmetry without
bilateral symmetry, as in a system made of crystalline quartz (Buchdahl 1970''°), but such
systems are not discussed here. For stigmatic imaging by a lens rotationally symmetric
about the z axis, Eq. (99) gives

x'=x'(x,z) Yy =y'(yz) 2'=7(2) (102)

Planes Perpendicular to the Axis

The arrangement most often of interest is that of planar object and receiving surfaces, both
perpendicular to the lens axis. When the terms object plane and image plane are used here
without further elaboration, this is the meaning. (This arrangement is more common for
manufactured systems with flat detectors, than for natural systems, for instance, eyes, with
their curved retinas.)

Magnifications

The term magnification is used in a general way to denote the ratio of conjugate object and
image dimensions, for example, heights, distances, areas, volumes, and angles. A single
number is inadequate when object and image shapes are not geometrically similar. The
term magnification implies an increase, but this is not the case in general.

Transverse Magnification

With object and image planes perpendicular to the axis, the relative scale factor of length
is the transverse magnification or lateral magnification, denoted by m, and usually referred
to simply as ‘“‘the magnification.” The transverse magnification is the ratio of image height
to object height, m = h'/h. Tt can also be written in differential form, e.g., m = dx’/dx or
m = Ax'/Ax. The transverse magnification is signed, and it can have any value from —o to
+. Areas in such planes are scaled by m”. A lens may contain plane mirrors that affect
the image parity or it may be accompanied by external plane mirrors that reorient images
and change their parity, but these changes are independent of the magnification at which
the lens works.

Longitudinal Magnification

Along the rotational axis, the longitudinal magnification, m,, also called axial
magnification, is the ratio of image length to object length in the limit of small lengths, i.e.,
m, =dz'/dz.

Visual Magnification

With visual instruments, the perceived size of the image depends on its angular subtense.
Visual magnification is the ratio of the angular subtense of an image relative to that of the
object viewed directly. Other terms are used for this quantity, including ‘“‘magnification,”
“power,” and “‘magnifying power.” For objects whose positions can be controlled, there is
arbitrariness in the subtense without the instrument, which is greatest when the object is
located at the near-point of the observer. This distance varies from person to person, but
for purposes of standardization the distance is taken to be 250 mm. For instruments that
view distant objects there is no arbitrariness of subtense with direct viewing.
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Ideal Imaging and Disappointments in Imaging

Terms such as perfect imaging and ideal imaging are used in various ways. The ideal varies
with the circumstances, and there are applications in which imaging is not the purpose, for
instance, energy collection and Fourier transformation. The term desired imaging might be
more appropriate in cases where that which is desired is fundamentally impossible. Some
deviations from what is desired are called aberrations, whether their avoidance is possible
or not. Any ideal that can be approximated must agree in its paraxial limit ideal with what
a lens actually does in its paraxial limit.

Maxwellian Ideal for Single-Plane Imaging

The most common meaning of perfect imaging is that elucidated by Maxwell (Maxwell
1858'"7), and referred to here as maxwellian ideal or maxwellian perfection. This ideal is
fundamentally possible. The three conditions for such imaging of points in a plane
perpendicular to the lens axis are: (1) Each point is imaged stigmatically. (2) The images of
all the points in a plane lie on a plane that is likewise perpendicular to the axis, so the field
is flat, or free from field curvature. (3) The ratio of image heights to object heights is the
same for all points in the plane. That is, transverse magnification is constant, or there is no
distortion.

The Volume Imaging ldeal

A more demanding ideal is that points everywhere in regions of constant index be imaged
stigmatically and that the imaging of every plane be flat and free from distortion. For
planes perpendicular to the lens axis, such imaging is described mathematically by the
collinear transformation, discussed below. It is inherently impossible for a lens to function
in this way, but the mathematical apparatus of collineation is useful in obtaining
approximate results.

Paraxial, First-Order, and Gaussian Optics

The terms “paraxial,” “first order,” and “gaussian” are often used interchangeably, and
their consideration is merged with that of collineation. The distinction is often not made,
probably because these descriptions agree in result, although differing in approach. One of
the few discussions is that of Southall (Southall 1910''¥). A paraxial analysis has to do with
the limiting case in which the distances of rays from the axis approach zero, as do the
angles of the rays relative to the axis. The term first order refers to the associated
mathematical approximation in which the positions and directions of such rays are
computed with terms to the first order only in height and angle. Gaussian refers to certain
results of the paraxial optics, where lenses are black boxes whose properties are
summarized by the existence and locations of cardinal points. In the limit of small heights
and angles, the equations of collineation are identical to those of paraxial optics. Each of
these is discussed in greater detail below.

Fundamental Limitations

There are fundamental geometrical limitations on optical systems, relating to the fact that
a given ray passes through many points and a given point lies on many rays. So the images
of points on the same line or plane, or on different planes, are not independent. A set of
rays intersecting at several points in object space cannot be made to satisfy arbitrary
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requirements in image space. Such limitations are best studied by the methods of
hamiltonian optics.

Stigmatic Imaging

If all rays from an object point converge precisely to an image point, the imaging of this
point is said to be stigmatic. The optical path lengths of all rays between two such points is
identical. A stigmatic image point is located by the intersection of any two rays that pass
through the points. An absolute instrument is one which images all points stigmatically
(Born & Wolf 1980'"%). For such imaging

néx=n'édx' ndy=n'éy’ néz=n'édz' (103)

where conjugate length elements are éx and 6x’, 8y and 8y’, 6z and 6z'.

Path Lengths and Conjugate Points

All the rays from an object point to its stigmatic image point have the same optical path
length. For focal lenses, the paths lengths for different pairs of conjugate points in a plane
perpendicular to the axis are different, except for points on circles centered on the axis.
For afocal lenses path lengths are nominally the same for all points in planes perpendicular
to the axis. For afocal lenses with transverse magnification +n/n’, path lengths can be the
same for all points. In general, the path lengths between different points on an object and
image surface are equal only if the shape of the image surface is that of a wavefront that
has propagated from a wavefront whose shape is that of the object surface.

The Cosine Condition

The cosine condition relates object space and image space ray angles, if the imaging is
stigmatic over some area (T. Smith 1922,"*° Steward 1928,"*' Buchdahl 1970''°). Let the x-y
plane lie in the object surface and the x’-y’ plane in the conjugate surface (Fig. 2). Two

FIGURE 2 The cosine condition. A small area in object space about the origin
in the x-y plane is imaged to the region around the origin of the x’-y’ plane in
image space. A pair of rays from the origin with direction cosines («,, 8;) and
(a,, B,) arrive with (af, B;) and (as, B;). The direction cosines and the
transverse magnification in the planes are related by Eq. (104).



1.34 GEOMETRIC OPTICS

rays leaving a point in the object region have direction cosines («;, 8;) and (a,, B,), and
the rays on the image side have (a7, B7) and (a3, B;). If the imaging is stigmatic, with local
transverse magnification m on the surface, then

_n(a;—ay)  n(Bi—Bo)

m= = 104
n(ai—a) n(B- B (109
In the limit as &, — a, and B, — B,, the cosine condition gives
d d
nda  ndp (105)

M da’ 0 dp

This condition also holds in the more general case of isoplanatic imaging, where there is
aberration that is locally constant across the region in question (Welford 1976,'* Welford
1986, sec. 94'%).

The Abbe Sine Condition

The sine condition or Abbe sine condition (Abbe 1879,"** Born & Wolf 1980'") is a special
case of the cosine condition for object and image planes perpendicular to the axis in
regions about the axis. For a plane with transverse magnification m, let 8 be the angle
relative to the axis made by a ray from an axial object point, and 8’ be that in image space.
If the lens is free of coma

_nsinf  na  np

" n'sin@ n'a’ n'B’ (106)
for all 8 and O'. There are signs associated with 6 and 6’, so that m >0 if they have the
same sign, and m <0 if the signs are opposite. This equation is sometimes written with m
replaced by the ratio of paraxial angles. There is sometimes the implication that 8 and 6’
refer only to the extreme angles passing through the lens, when in fact the sine condition
dictates that the ratio of the sines is the constant for all angles. For an object at infinity, the
sine condition is

sin@ =—2 or n'B'=-yo (107)

fl

where y is the height of a ray parallel to the axis, ¢ is the power of the lens, and f’ is the
rear focal length. These relationships hold to a good approximation in most lenses, since
small deviations are associated with large aberrations. A deviation from this relationship is
called offense against the sine condition, and is associated with coma (Conrady 1992,' H.
Hopkins 1946,'*° T. Smith 1948, H. Hopkins 1950,'”® Welford 1986'*’). The sine
condition does not apply where there are discontinuities in ray behavior, for example, in
devices like Fresnel lenses, or to diffraction-based devices like zone plates.

The Herschel Condition

The Herschel condition is a relationship that holds if the imaging is stigmatic for nearby

points along the axis (Herschel 1821," H. Hopkins 1946,"° Born & Wolf 1980'"°). The
two equivalent relations are

n sin (36) nsin® (30)  n(1-17y)

m=-r and my = iaN 7 ’

n'sin (36") n'sin®(30') n'(1—7y')

(108)
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The Herschel condition is inconsistent with the sine condition unless m +n/n’. So, in
general, stigmatic imaging in one plane precludes that in others.

Sine and Herschel Conditions for Afocal Systems

For afocal systems the sine condition and Herschel condition are identical. For rays
entering parallel to the axis at y and leaving at y’ they are

m=> (109)

That is, the ratio of incoming and outgoing heights is independent of the incoming height.
(H. Hopkins,"”® Chap. III “The Sine Condition and Herschel’s Condition.”)

Stigmatic Imaging Possibilities

For object and image spaces with constant refractive indices, stigmatic imaging is only
possible for the entire spaces for afocal lenses with identical transverse and longitudinal
magnifications m = £n/n’ and |m,| = |m|. Such lenses re-create not only the intersection
points, but the wavefronts, since the corresponding optical path lengths are the same in
both spaces, Eq. (103). For other lenses with constant object and image space indices, the
maxwellian ideal can be met for only a single surface. In addition, a single point elsewhere
can be imaged stigmatically (T. Smith 1948,'”” Velzel 1991"*"). Nonplanar surfaces can be
imaged stigmatically, a well-known example being the imaging of spherical surfaces by a
spherical refracting surface, for a particular magnification (Born & Wolf 1980, sec.
4.2.3"%). For systems with spherical symmetry, it is possible that two nonplanar surfaces be
stigmatically imaged (T. Smith 1927'*%). In addition, various systems with heterogeneous
indices can image stigmatically over a volume.

1.10 DESCRIPTION OF SYSTEMS OF REVOLUTION

Introduction

This section is concerned with the optical description of lens and mirror systems that are
figures of revolution."”>*> From a mechanical viewpoint, optical systems are comprised of
lenses and mirrors. From the point of view of the light, the system is regions of media with
different indices, separated by interfaces of various shapes. This section is limited to
homogeneous isotropic media. It is further restricted to reflecting and refracting surfaces
that are nominally smooth, and to surfaces that are figures of revolution arranged so their
axes are collinear, so the entire system is a figure of revolution about the lens axis. (The
often-used term ‘“‘optical axis” is also used in crystallography. Moreover, the axis is often
mechanical as well as “optical.”’) The lens axis is the z axis of an orthogonal coordinate
system, with the x-y plane perpendicular. The distance from a point to the axis is
p =Vx*+y> Along the axis, the positive direction is from left to right.
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Terminology

A meridian or meridional plane contains the axis, all such planes being equivalent.
Meridional planes are planes of bilateral symmetry if the indices are homogeneous and
isotropic. Some optical systems are comprised of pieces of surfaces of revolution, in which
case it is still useful to discuss the behavior about the axis.

Reflection, Unfolded Diagrams

Light passes through refractive systems more or less in the same direction relative to the
axis. In reflective and catadioptric systems, the light may change directions. (It may not, in
the case of grazing incidence optics.) In order to consider all types of systems in a unified
way, pictorially and algebraically, reflections can often be ‘“‘unfolded,” i.e., represented
pictorially as transmission, with mirrors replaced by hypothetical lenses with the same
properties, Figs. 3 and 18. Some structures must be taken into account several times in
unfolding. For example, a hole may block light at one point along a ray and transmit it at
another. (In some considerations, unfolding can be misleading—for instance, those
involving stray light.)

Description of Surfaces

A surface is an interface between media with different refractive indices—either refracting
or reflecting. The surface is the optical element, produced by a lens, which is a mechanical
element. Surfaces can be described mathematically in many ways. (For example, conics
can be described as loci of points with certain relationships.) In optical instruments, the
entire surface is rarely used, and the axial region is usually special, so the description
usually begins there and works out. The vertex of a figure of revolution intersects with

i
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—
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ri? |

FIGURE 3 Example of an unfolded diagram. The two-mirror system above
has an unfolded representation below. The reflective surfaces are replaced by
thin lens equivalents. Their obstructions and the finite openings are accounted
for by dummy elements.
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FIGURE 4 Description of a surface of revolution.
The distance from the axis is p, and the sag z(p) is
the distance from the vertex tangent plane to the
surface.

the axis, and is a local extremum. The plane perpendicular to the axis and tangent to the
vertex will be referred to as the vertex plane (NS). A surface can be described by its sag,
the directed distance z(p) from the vertex plane to the surface, Fig. 4. The vertex is usually
taken to have z(0) = 0. The vertex curvature or paraxial curvature ¢ and radius of curvature
r are given by
2

_L_zlp) (110)
r ap p=0

For an arbitrary surface, this curvature is identical to that of the sphere which is a best fit
on axis. The sign convention for curvature and radius is that ¢ and r are positive if the
center of curvature is to the right of the vertex, as in the case shown in Fig. 4. In general,
the curvature is mathematically more foolproof than radius, since curvature can be zero,
but it is never infinite, whereas radius is never zero, but may be infinite.

Spherical Surfaces

The spherical surface is the most common in optics, since it is most naturally produced.
Spherical is the default, and is assumed when no other mention is made. Aspheres are
thought of as deviating from spheres, rather than spheres as special cases of more general
forms. The equation for a sphere with radius r, curvature ¢, and a vertex at z =0 is

p’+(z—r)Y=r (111)
The sag is given by
2
cp
z2(p)=r—=Vrr—p*=r(1-V1-c%*?) = 112
(p) p-=r( P Vicey (112)

The Taylor expansion is

2(p) = hep” + KDt + D+ 5o+ e (113)
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At the point (x, y, z) on the surface of the sphere, the surface normal has direction cosines

PLE) (a1 (114)
rr r

(L, M, N)=<

Conics of Rotation

The general form of a conic of rotation about the z axis is

2(p) = g (1= V1—ecp?) = (115)

cp
1+ V1—ec?p®

The value of ¢ determines the type of conic, as given in the table below. It is common in
optics to use «, the conic parameter or conic constant, related by

k=¢g—1 or e=1+« (116)

Another parameter used to describe conics is the eccentricity e, used in the polar
coordinate form for conics about their focus: r(8) = a/(1 + e cos 6) where ¢ = —k. In the
case of paraboloids, the first form of Eq. (115) breaks down. A cone can be approximated
by a hyperbola with k = —sec” 8, where 0 is the cone half angle.

Conic Type and Value of Parameter

Parameter € K e
Oblate ellipsoid e>1 k>0 —
Sphere e=1 k=0 0
Prolate ellipsoid 0<e<l1 -1<k<0 0<e<l1
Paraboloid e=0 k=-1 e=1
Hyperboloid e<0 k<-1 e>1

The Taylor expansion for the sag is

z2(p) = scp® + sec’p* + 1£°C%p® + e’ p® + 557 p 0+ - - - (117)
The surface normals are

(L, M, N)=[1-2c(e — 1)z + c*e(e — 1)z*] "*(cx, cy, cz — 1) (118)

The sagittal and tangential curvatures are

Cc Cc

R s L (R "

General Asphere of Revolution

For an arbitrary figure of revolution all of whose derivatives are continuous, the Taylor
expansion is

2(p) =5’ +qup* +qep° + - - (120)
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An asphere is often treated as a sphere that matches at the vertex and a deviation
therefrom:

2(p) = Zopnere(p) T asp” +agp®+ - - (121)
Alternatively, nonconic aspheres can be treated as conics and a deviation therefrom:

2(P) = Zeonie(p) + bap* +bep®+ - - - (122)
The expansion coefficients are different in each case. Additional information on the

coefficients is given by Malacara (Malacara 1992'**) and Brueggemann (Brueggemann
1968'**). The sagittal and tangential curvatures are given in general by

i(p) e—_ ) (123)

el ey YT )T

Here Z(p) = dz(p)/dp and Z(p) = d’z(p)/dp>.

1.11 TRACING RAYS IN CENTERED SYSTEMS OF SPHERICAL

SURFACES

Introduction

Ray tracing is the process of calculating the paths of rays through optical systems. Two
operations are involved, propagation from one surface to the next and refraction or
reflection at the surfaces. Exact equations can be written for spherical surfaces and conics
of revolution with homogeneous media (Spencer & Murty 1962,'*® Welford 1974, chap.
4,'¥ Kingslake 1978,'** Kinglake 1983, Slyusarev 1984,'° Klein & Furtak 1986, sec.
3.1,"" Welford 1986, chap. 4,"> W. J. Smith 1992, chap. 10"**). Conics are discussed by
Welford (Welford 1986, sec. 4.7'%%). For general aspheres, the intersection position is found
by iterating (Nussbaum & Phillips, p. 95,"** W. J. Smith 1992, sec. 10.5'**). Nonsymmetric
systems are discussed by Welford (Welford 1986, chap. 5'%).

Description and Classification of Rays in a Lens

For optical systems with rotational symmetry, rays are typically described in terms of the
axial parameter z. A ray crosses each constant z plane at a point (x, y) with direction
cosines (a, B, v), where vy is not independent. Thus a ray is described by (x(z), y(z)) and
(a(z), B(2)).

For systems that are figures of revolution, meridional rays are those lying in a
meridional plane, a plane that includes the axis, and other rays are skew rays. The axial ray
corresponds to the axis of revolution. Rays are also classified according to their proximity
to the axis. Paraxial rays are those in the limit of having small angles and small distances
from the axis. Nonparaxial rays are sometimes referred to as finite rays or real rays. Ray
fans are groups of rays lying in a plane. A tangential fan lies in a meridian, and intersects
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Transfer

at a tangential focus. A sagittal fan lies in a plane perpendicular to a meridian, and
intersects at a sagittal focus.

In propagating through a homogeneous medium, a ray originating at (x,, y;, z;) with
directions (a, B, ) intersects a z, plane at

o
x2:x1+;(22_zl) and )’2:)’1+€(Zz_zl) (124)

Intersection Points

Let the intersection points of the ray with the vertex plane at z =0 be (x,, o, 0), Fig. 5.
Define auxiliary functions

Alxo, yos , Bic) =y —claxo+ By)  and  B(xy, yo, ) =c(xg+y5)  (125)
The distance D along the ray from this point to the surface is given by

B

cD=A-VA>-B=— —— 126
A+VA B (126)
The intersection point has the coordinates
X=xy+aD y=yo+BD z=vD (127)
The incidence angle [ at the intersection point is given by
cosI=VA’-B (128)
SO
I'=-nVA>— B+ Vn?—n*>+n?(A*> - B) (129)

Mathematically, double intersection points are possible, so they must be checked for. If

z

(G,B-Y)

n N\

FIGURE 5 Intersection points. A ray with direc-
tion cosines («, B, y) intersects the vertex tangent
plane at (x,,y, 0) and the optical surface at
(x,y,z). The distance between these points is D,
given by Eq. (126).
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the ray misses the surface, then A*><B. If there is total internal reflection, the second
square root in Eq. (129) is imaginary.

Refraction and Reflection by Spherical Surfaces

Rays refract or reflect at surfaces with reference to the local normal at the intersection
point. The surface normal given by Eq. (114) is substituted in the general form for
refraction, Eq. (85), to give

n'a'=na—Tcx n'B' =np —Tcy n'y'=ny —T(1—-cz) (130)

For reflection, the above equations are used, with n’ = —n, so I'=2n cos I =2nVA* — B.

Meridianal Rays

The meridian is customarily taken to be that for which x =0, so the direction cosines are
(0, B, v). Let U be the angle between the axis and the ray, so 8 =sin U and y = cos U. The
transfer equation, Eq. (124) becomes

Y2=y +tan U(zo — 21) (131)
The second equation of Eq. (130) can be written

n'sinU' —nsin U= —cy(n'cosl' —ncosl) (132)

If the directed distance from the vertex to the intersection point of the incident ray with
the axis is /, the outgoing angle is

U’ = U + arcsin [(Ic — 1) sin U] — arcsin [ﬁ/ (Ic — 1) sin U] (133)
n

The directed distance [’ from the vertex to the axial intersection of the refracted ray is
given by

in U
ol =1+ (cl —1) =22 (134)
n'sin U
For reflection, setting n’ = —n gives
U' = U +2arcsin [(Ic — 1) sin U] (135)

1.12 PARAXIAL OPTICS OF SYSTEMS OF REVOLUTION

Introduction

The term paraxial is used in different ways. In one, paraxial rays are those whose distances
from the axis and whose angles relative to the axis are small. This leaves questions of how
small is small enough and how this varies from system to system. The other interpretation
of the term, which is used here, is that paraxial rays represent a limiting case in which the
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distances from the axis and angles relative to the axis vanish. Paraxial optics then describes
the behavior of systems in this limit. The ray-tracing equations in the paraxial limit are
linear in angle and in distance from the axis, hence the term first-order optics, which is
often considered equivalent to paraxial. (There are no Oth-order terms since the expansion
is taken about the axis, so a ray with an initial height and angle of zero, i.e., a ray along the
axis, has the same outgoing height and angle.) The linearity of the paraxial equations
makes them simple and understandable, as well as expressible in matrix form. Paraxial ray
tracing is discussed to some extent by almost every book that treats geometrical optics.

Paraxial ray tracing is done to determine the gaussian properties of lenses, to locate
image positions and magnifications, and to locate pupils and determine their sizes. Another
use of paraxial ray tracing, not discussed here, is the computation of third-order
aberrations (W. Smith 1992'%%).

Paraxial imaging is perfect in the sense that it agrees with the Maxwell ideal and with
that of collineation. Point images everywhere are stigmatic, fields are flat, and there is no
distortion. Aberration is often thought of as the difference between the behavior of finite
rays and that of paraxial rays. If this approach is taken, then in the process of lens design,
finite rays are made to agree, insofar as possible, with the paraxial ones, which cannot be
similarly changed. In the paraxial limit, surfaces are described by their vertex curvatures,
so conics, aspheres, and spheres are indistinguishable, the difference being in the fourth
power and above. Consequently, aberrations can be altered by changing the surface
asphericity without changing paraxial properties. A paraxial treatment can be done even if
a system is missing the axial region, as in the case with central obstructions and off-axis
sections of figures of revolution.

This section is concerned with systems of mirrors and lenses with rotational symmetry
and homogeneous refractive indices. In this case, it suffices to work in a single meridian.
Generalizations are found in the sections in this chapter on images about known rays and
rays in heterogeneous media. Other generalizations involve expansions about given rays in
systems that are not rotationally symmetric.

The Paraxial Limit

Transfer

The lens axis is the z axis, and rays in the x = 0 meridian are considered. Ray heights are y,
and angles relative to the axis are u. In the paraxial limit, the quantities u, tanu, and
sin u = B are indistinguishable. The z-direction cosine is y = cos u = 1. Since the ray angles
and heights are small, incidence angles are likewise, so i =sini, cos /=1, cos/' =1, and
I'=n'cosl'"—ncosl=n'—n.

In traversing a distance ¢ between two planes, the height of a meridional ray changes from
y to y’ according to Eq. (124), y’ =y +tB/y. In the paraxial limit, this equation becomes

y'=y-+tu (136)

If a ray travels from one curved surface to the next, the distance ¢ equals the vertex
separation to first order, since the correction for the surface sag is of second order in
height and angle. This term is given above in Eq. (127).



GENERAL PRINCIPLES 1.43

Refraction
The paraxial form of Snell’s law, Eq. (78), is
n'i' =ni (137)

Reflection

The law of reflection is the same for paraxial as for finite rays,
i'=-—i (138)

Angle of Incidence at a Surface

A ray with an angle u, which intersects a surface of curvature c at height y, makes an angle
i with the local surface normal of the surface given by

i=u+yc (139)
This equation is easily remembered from two special cases. When y = 0, the intersection is
at the vertex, so i = u. When u = —cy, the ray is directed through the center of curvature,
soi=0.

Refraction at a Surface
The above equation combined with that for Snell’s law gives
n'u’' =nu—yc(n' —n) (140)

This equation can also be obtained from the exact equation, n'B’ =nf — I'cy, Eq. (125). In
the paraxial limit, I'=n’ — n, and the intersection height y is that in the vertex plane.

Reflection at a Surface

The relationship between incident and outgoing angles at a reflecting surface is found by
combining Egs. (138) and (139), to be

u'=—u—2cy (141)

Refraction and Reflection United—Surface Power

Reflection and refraction can be treated the same way mathematically by thinking of
reflection as refraction with n’ = —n, in which case Eq. (140) gives Eq. (141). A reflecting
surface can be represented graphically as a thin convex-plano or concave-plano thin lens
with index —n, where n is the index of the medium, Fig. 18. For both refraction and
reflection,

n'u' =nu—ye (142)
where the surface power ¢ is

b=c(n'—n) (143)

If the surface is approached from the opposite direction, then n and n' are switched, as is
the sign of ¢, so ¢ is the same in both directions. Thus ¢ is a scalar property of the
interface, which can be positive, negative, or zero. The power is zero if n’ =n or ¢ =0. If
n' = n, the surface is “invisible,” and the rays are not bent. If ¢ =0, the rays are bent. For
a planar refracting surface n'u’ = nu, and a planar reflecting surface gives u' = —u.
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Principal Focal Lengths of a Surface

A ray approaching a surface parallel to the axis (u =0) with a height y has an outgoing
angle given by
n'u'=—y¢ (144)

This ray intercepts the axis at the rear focal point, whose directed distance from the vertex
is f' =y/u’ =n'/$. This directed distance is the rear focal length. Similarly, a ray entering
from the right with u’ =0 intercepts the axis at the front focal point, a directed distance
from the vertex of f=y/u = —n/¢, the front focal length. Thus, a surface has a single
power and two focal lengths, among which the following relationships hold:

n n n n' f' n'
I I (145)
¢ ¢ rr foon
For a refracting surface, the signs of f' and f are opposite. For a reflecting surface f' = f.

Axial Object and Image Locations for a Single Surface

A ray from an axial point a directed distance / from the vertex of a surface that makes an
angle u with the axis intersects the surface at height y = —[/u. After refraction or
reflection, the ray angle is u’, and the ray intersects the axis at a distance /' = —y/u’ from
the vertex, Fig. 6. Substituting for u and u’ in Eq. (142), the relationship between axial
object and image distances is

!

’[’—,:?Jr b (146)

o1-2)-oi-)

This is a special case of the equations below for imaging about a given ray. The transverse
magnification is m =1'/L.

This can also be written

Paraxial Ray Tracing

Paraxial rays are traced through an arbitrary lens by a sequence of transfers between
surfaces and power operations at surfaces. Each transfer changes height but not angle, and
each power operation changes angle but not height. An image can be found by applying
Eq. (136) and Eq. (142) successively. Alternatively, matrix methods described below can
be used.

FIGURE 6 Refraction at a single spherical surface with center C and radius r. Axial object
point O is imaged at O'.
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Linearity of Paraxial Optics

For both the transfer and power operations, the outgoing heights and angles depend
linearly on the incoming heights and angles. So a system described by a sequence of such
operations is also linear. Therefore, a ray that enters with height y and angle u leaves with
y'(y,u) and u'(y, u) given by

y,:<6y )y-i—(ay >u and u'=<au >y+<8u )u (148)
ady ou ay ou

These equations can also be thought of as the first terms of Taylor expansions of exact
expressions for y'(y, u) and u'(y, u). These partial derivatives depend on the structure of
the system, and they can be determined by tracing two rays through the system. The
partial derivatives, other than du’/dy, also depend on the axial locations of the input and

output surfaces. The changes with respect to these locations are treated easily by matrix
methods.

The Two-Ray Paraxial Invariant

The various rays that pass through a lens are not acted upon independently, so there are
several invariants that involve groups of rays. Consider two meridional paraxial rays that
pass through a lens. At a given plane, where the medium has an index n, one ray has
height y, and angle u,, and the other has y, and u,. The quantity

L = ny,u, — ny,uy, = n(yu, — y,uy) (149)

which we refer to as the paraxial invariant (NS), is unchanged as the rays pass through the
system. Applying Eq. (136) and Eq. (142) to the above expression shows that this quantity
does not change upon transfer or upon refraction and reflection. The invariant is also
related to the general skew invariant, Eq. (73), since a paraxial skew ray can be
decomposed into two meridional rays.

Another version of the invariance relationship is as follows. Two objects with heights y,
and y, are separated axially by d,,. If their image heights are y; and y;, and the image
separation is d{,, then

Ny, ,y{)’2'
n——=n'=—"-

150
di di> (130)

An additional version of the invariance relationship is

(o)) -GoE) =2 s
dy / \ou ou/\ dy
where the partial derivatives, Eq. (148), describe the action of any system.

The invariant applies regardless of the system. Thus, for example, if the lens changes,
as with a zoom system, so that both of the outgoing rays change, their invariant remains.
The invariant arises from basic physical principles that are manifested in a variety of ways,
for example, as conservation of brightness and Liouville’s theorem, discussed above in the
section on conservation of etendue. This invariance shows that there are fundamental
limits on what optical systems can do. Given the paraxial heights and angles of two input
rays, only three of the four output heights and angles can be chosen arbitrarily. Likewise,
only three of the four partial derivatives above can be freely chosen. The invariant is not
useful if it vanishes identically. This occurs if the two rays are scaled versions of one
another, which happens if both #, =0 and u, =0 for some z, or if both rays pass through
the same axial object point, in which case y, =0 and y, =0. The invariant also vanishes if
one of the rays lies along the axis, so that y, =0 and u, =0.
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FIGURE 7 An object and image plane with ray 1 through the axial points and ray 2 through off-axis
points. The location and magnification of an image plane can be found by tracing a ray from the axial
object point O to axial image point O’. The magnification is given by Eq. (153). In the case pictured,
u, and u; have opposite signs, so the transverse magnification is negative.

Image Location and Magnification

To locate an image plane, any ray originating at the axial object point can be traced
through the system to determine where it again intersects the axis, Fig. 7. The
magnification for these conjugates can be found in two ways. One is to trace an arbitrary
ray from any off-axis point in the object plane. The ratio of its height in the image plane to
that in the object plane is the transverse magnification.

Alternately, the magnification can be found from the initial and final angles of the ray
through the axial points. Let ray 1 leave the axial object point, so y, = 0. Let ray 2 originate
in the object plane some distance from the axis. At the object plane L = ny,u,, and at the
image plane y, =0, so L =n'y,u;. Therefore,

L = ny,u, = n'y;u{ (152)
So the magnification is
m=22=T00 (153)
¥, n'uj

The relative signs of u and 1’ determine that of the magnification. Equation (153) is a paraxial
form of the sine condition Eq. (106). Squaring this equation gives L*> = n’y3u3, which is
proportional to a paraxial form of the etendue. These matters are discussed further in the
sections on conservation of etendue and on apertures. The quantity ny,u, is sometimes

referred to as the invariant, but it is not the most general form.

Three-Ray Rule

A further consequence of the paraxial invariant and of the linearity of paraxial optics, is
that once the paths of two paraxial meridional rays has been found, that of any third ray is
determined. Its heights and angles are a linear combination of those of the other two rays.
Given three rays, each pair has an invariant: L, =n(y,u, — y,uy), Ly =n(yus — ysu,),
and L;, = n(ysu, — y,us). Therefore, in every plane

L23 L’i

=22, 43 and Us=——u,+—u 154

y3 ]2y1 ]2y2 ? L12 ! L12 z ( )

This assumes that no pair of the three rays are simply scaled versions of one another, i.e.
that both L,;# 0 and L5, #0.

Switching Axial Object and Viewing Positions

If an axial object and axial viewing position are switched, the apparent size of the image is
unchanged. Put more precisely, let an object lie in a plane intersecting the axial point A
and let its image be viewed from an axial point B’ in image space that is not conjugate to
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A. If the object and viewing positions are switched, so the eye is at A and the object plane
is at B', the subtense of the object as seen by the eye is unchanged. (Rayleigh 1886,'>
Southall 1910,"” Herzberg 1935,”® Brouwer 1967'%).

1.13 IMAGES ABOUT KNOWN RAYS

Given a ray, referred to here as the central ray (also “‘base ray’’), other rays from a point on
the central ray making a small angle with respect to it are focused at or near other points
on the central ray. These foci can be determined if the path of a central ray is known, as
well as the indices of the media through which it passes, and the principal curvatures at
the surfaces where it intersects. Here indices are constant. At each intersection point with an
optical surface, the wavefront has two principal curvatures, as does the surface. After refraction
or reflection, the wavefront has two different principal curvatures. Accordingly, if a single point
isimaged, there are two astigmatic focal lines at some orientation. These foci are perpendicular,
but they do not necessarily lie in planes perpendicular to that of the central ray. The imaging of a
small extended region is generally skewed, so, for example, a small square in a plane
perpendicular to the central ray can be imaged as a rectangle, parallelogram, or trapezoid.

This is a generalization of paraxial optics, in which the central ray is the axis of a system
of revolution. While not difficult conceptually, the general case of an arbitrary central ray
and an arbitrary optical system is algebraically complicated. This case can also be analyzed
with a hamiltonian optics approach, using an expansion of a characteristic function about
the central ray, like that of Eq. (28). The subject is sometimes referred to as parabasal
optics, and the central ray as the base ray. This subject has been discussed by numerous
authors'®™'* under various names, e.g., “narrow beams,” “narrow pencils,” “first order.”

The following is limited to the case of meridional central rays and surfaces that are
figures of revolution. The surface, at the point of intersection, has two principal curvatures
¢, and c,. [See Eqgs. (119), (123).] For spherical surfaces, ¢, = ¢, = ¢, and for planar surfaces
¢ =0. There is a focus for the sagittal fan and one for the tangential one, Fig. 8, the two

EERNT3
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REFRACTING
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OBJECT
POINT

FIGURE 8 Astigmatic imaging of a point by a single refracting surface. The
distance from the surface to the object point along the central ray of the bundle
is s =t. The distances from the surface to the sagittal focus is s’, and that to the
tangential focus is ¢/, as given by Eq. (155).
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foci coinciding if the imaging is stigmatic. After one or more surfaces are encountered, the
separated foci are the sources for subsequent imaging. Let s and ¢ be the directed distances
from the intersection point of the central ray and the surface to the object point, and s’
and ¢’ be the distances from intersection point to the foci. The separation |s’ —¢'| is known
as the astigmatic difference.

For refraction

’

n' n n'cos’I’ ncos’l
—=—+cI and =

s' s t t

+el (155)

where I'=n'cosl’ —ncosl, Eq. (82). The sagittal equation is simpler, providing a
mnemonic for remembering which equation is which: “S” =sagittal = simpler. If the
surface is spherical, and the ray fan makes an arbitrary angle of ¢ with the meridian, then
(H. Hopkins 1950'7%)

’

c% (1 —cos® ¢sin®I') = Z (1 = cos® ¢ sin® I) + cT (156)

where d and d’ are the distances along the central ray from the surface to the object and
image points. For normal incidence at a spherical surface I'=n' —n, so both equations
become

’

n n
T =Chcen - 1
g7 g e —m (157)

This also applies to surfaces of revolution if the central ray lies along the axis. This
equation is identical to the paraxial equation, Eq. (146).

The corresponding relations for reflection are obtained by setting n’ = —n and I' =1 in
the refraction equations, giving
1 1 1 1 2
—=——+2¢,cosl and —=——+ < (158)
s s t t cosl/

For stigmatic imaging between the foci of reflective conics, s = ¢ is the distance from one
focus to a point on the surface, and s’ =¢' is that from the surface to the other focus.
Therefore, ¢, = ¢, cos” I. The reflection analogue to Eq. (156), for a spherical surface is

1 1 2ccosl
—=——t 159
d’ d 1—cos®ysin® I (159)
These equations are known by several names, including Coddington’s equations,
Young’s astigmatic formulae, and the s- and t-trace formulae.

1.14 GAUSSIAN LENS PROPERTIES

Introduction

The meaning of the term gaussian optics is not universally agreed upon, and it is often
taken to be indistinguishable from paraxial optics or first-order optics, as well as
collineation. Here the term is considered to apply to those aspects of paraxial optics
discovered by Gauss (Gauss 1840'®7), who recognized that all rotationally symmetric
systems of lens elements can be described paraxially by certain system properties. In
particular, lenses can be treated as black boxes described by two axial length parameters
and the locations of special points, called cardinal points, also called Gauss points. Once a
lens is so characterized, knowledge of its actual makeup is unnecessary for many purposes,
and repeated ray traces need not be performed. For example, given the object location, the
image location and magnification are determined from the gaussian parameters. From the
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gaussian description of two or more lenses, that of a coaxial combination can be found.
Another consequence of Gauss’s discovery is that there is an infinity of specific
embodiments for any external prescription.

The lenses considered in this section are figures of revolution with uniform object space
and image space indices n and n’. All quantities discussed in this section are paraxial, so
the prefix “paraxial” is not repeated. For the purposes of this section, no distinction is
made between real and virtual rays. Those in each space are considered to extend
infinitely, and intersection points may be either accessible or inaccessible. The quantities
used in this section are found in Table 1.

Lenses, and Afocal Lenses

A paraxial ray entering a lens parallel to the axis height y leaves with some angle u’, Fig. 9.
Likewise, a ray entering from the opposite side with height y’ leaves with angle u. The
power of the lens is defined by

u' u

b=-n'"—=n- (160)

y oy

The outgoing ray can have any angle, and the power can be positive, negative, or zero.
If u'=0, then ¢ =0 and the lens is afocal or telescopic. Lenses for which ¢ #0 are
referred to here as focal, although the term ‘“nonafocal” is more common. Afocal lenses
are fundamentally different from focal ones, and are treated separately below. Power is the
same in both directions, i.e. whether the ray enters from left to right or from right to left.
The lens in Fig. 9 has ¢ >0, and that in Fig. 10 has ¢ <0. Diagrams such as Fig. 11 show
the location of the principal focal point, but not the sign of the power; two rays enter and
two leave, but there is no indication of which is which. (Note that some negative lenses
have accessible rear focal points.) Another expression for power involves two rays at
arbitrary angles and heights. If two incident rays have (y,, u,) and (y, u,), and a nonzero
invariant L = n(y,u, — y,u,), and the outgoing ray angles are u; and u;, then

’

nn
¢ = —T(u{u2 — u3u,) (161)

Focal lenses are those for which ¢ # 0. Their cardinal points are the principal focal points,
the principal points, and the nodal points. These points may be located anywhere on axis
relative to the physical lens system. If they are inside a lens, then the intersection points
referred to below are virtual. The cardinal points are pairs consisting of a member in
object space and one in image space. The one in object space is often referred to as front,
and the one in image space as rear, but this terminology may be misleading, since the
points can be any sequence along the axis.

Principal Focal Points. Rays entering a lens parallel to its axis cross the axis at the
principal focal points or focal points. Rays parallel to the axis in object space intersect the
axis at the rear focal point F' in image space and those parallel in image space intersect at
the front focal point F in object space, Fig. 9. The principal focal planes or focal planes are
the planes perpendicular to the axis at the focal points. The terms focal point and focal
plane are often used to refer to the images of any point or plane. In this chapter, image
point is used for other points where rays are focused and image plane for other planes.

Principal Planes. The principal planes are the conjugate planes for which the transverse
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TABLE 1 Gaussian Notation and Definitions

By convention, in the diagrams the object space is to the left of the lens, image space is to the right,
and rays go left to right. Object space quantities are unprimed, and image space quantities are primed,
and quantities or positions that correspond in some way have same symbol, primed and unprimed.
This correspondence can have several forms, e.g., the same type of thing or conjugate. The term front
refers to object space, or left side, and rear to image space, or right side. A “front” entity may actually
be behind a “rear”” one. For example, a negative singlet has its object space focal point behind lens.

Scalars

n and n' object and image space refractive indices

¢ power

m transverse magnification

m, nodal point magnification =n/n’

m; longitudinal magnification

m,, angular magnification

u and u' paraxial ray angles (the positive direction is counterclockwise from the axis)
y and y' paraxial ray heights

yp paraxial ray height at the principal planes =y,

Axial points

Cardinal points:
Focal points F and F’, not conjugate
Principal points P and P’, conjugate m = +1
Nodal points N and N’, conjugate my =n/n’

Other points:
Axial object and image points O and O’, conjugate
Arbitrary object and image points A and A’, B and B’
Vertices V and V', not conjugate, in general

Directed axial distances

These distances here are between axial points and are directed.

Their signs are positive if from left to right and vice versa.

Types of distances: entirely in object or image space, between spaces

Principal focal lengths: f = PF and f' = P'F’

Principal points to object and image axial points: / = PO and I’ = P'O’

Front and rear focal points to object and image axial points: z = FO and z' = F'O’
Relations: [=f+zand I'=f"+ 7’

Arbitrary point to conjugate object and image points: d = AO and d' = A'O’

Distances between object space and image space points involve distances within both spaces, as well as
a distance between the spaces, e.g., PP, FF', VV', and OO'. The distances between spaces depend on
the particular structure of the lens. They can be found by paraxial ray tracing.

magnification is unity, Fig. 12. The intersections of the principal planes and the axis are the
principal points, denoted by P and P’'. The rear principal plane is the locus of intersections
between u = 0 rays incident from the left and their outgoing portions, Fig. 9. Likewise, the
front principal plane is the intersection so formed with the rays for which u’'=0. A ray
intersecting the first principal plane with height y, and angle u leaves the second principal
plane with height y’ =y, and an angle given by

n'u' =nu—yp¢d (162)
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FIGURE 9 Diagrams for determining power, focal points, and focal
lengths. Rays parallel to the axis in one space cross the axis in the
other space at the focal points. The principal planes are at the
intersections of entering and leaving rays. The power is given by Eq.
(159). The lens in this diagram has positive power, a positive rear
focal length, and a negative front focal length.

FIGURE 10 A lens with negative power and negative rear
focal length. An incoming ray parallel to the axis with a
positive height leaves the lens with a positive angle. The
rear focal plane precedes the rear principal plane.

FIGURE 11 An ambiguous diagram. Two rays that
enter a lens parallel to its axis converge at the rear
focal point F’'. Without specifying which ray is which,
the sign of the power is not known.

1.51



1.52

GEOMETRIC OPTICS

FIGURE 12 Principal planes as effective ray-bending surfaces. In-
coming and outgoing paraxial rays intersect the object and image space
principal planes at the same height y,. The angles are related by Eq.
(161).

The lens behaves as if the incoming ray intercepts the front principal plane, is transferred
to the second with its height unchanged, and is bent at the second by an amount
proportional to its height and to the power of lens. The power of the lens determines the
amount of bending. For rays passing through the principal points, y, =0, so u'/u =n/n’.

Principal Focal Lengths. The focal lengths, also called effective focal lengths, are the
directed distances from the principal points to the focal points. The front and rear focal
lengths are

n n
PF=f=—— and PF =f"=— 163)
¢ ! ¢ (
The two focal lengths are related by
n n' f n
b=——=— and o= (164)
rr A

This ratio is required by the paraxial invariant (Kingslake 1965, p. 214'®). If n =n’, then
f'=—fIftn=n'=1, then
1

===y (165)

The focal lengths are the axial scaling factors for the lens, so axial distances in all equations
can be scaled to them.

Nodal Points. The nodal points are points of unit angular magnification. A paraxial ray
entering the object space nodal point N leaves the image space point N' at the same angle,
Fig. 13. The planes containing the nodal points are called nodal planes. A nodal ray is one
that passes through the nodal points. Such a ray must cross the axis, and the point where it
does so physically is sometimes called the lens center. In general, this point has no special
properties. (Gauss suggested an alternate “lens center,” the point midway between the

FIGURE 13 Nodal points. A paraxial ray through the
object space nodal point N passes through image space
nodal point N" with the same angle.
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principal points. Rotating a lens front to rear about this point would leave object and
image positions and magnifications unchanged.)

If the refractive indices of the object space and image space are the same, the nodal
points correspond to the principal points. If not, both nodal points are shifted according to

’

PN:P’N’:%=f +f (166)

The distances from the nodal points to the focal points are
N'F'=—f and NF = —f' (167)
The nodal points are conjugate, and the transverse magnification of the nodal planes is

o (168)

'

n

These equations can be recalled by the simple example of the single refracting surface, for
which both nodal points correspond to the center of curvature.

Conjugate Equations. For an object plane perpendicular to the axis at point O, there is
an image plane perpendicular to the axis at O’, in which the transverse magnification is m.
Note that specifying magnification implies both object and image positions. There is a
variety of conjugate equations (NS) that relate their positions and magnifications. The
equations differ in which object space and image space reference points are used from
which to measure the directed distances to the object and image. These equations can be
written in several ways, as given below, and with reference to Fig. 14. Axial distances can
be scaled to the focal lengths, or the distances can be scaled to the indices, with a common
power term remaining.

The simplest conjugate equation is Newton’s equation, for which the reference points
are the focal points and the lengths therefrom are z = FO and z' = F'O’. The equation can
be written in several forms:

'z _ Z'z_1

"=ff’ or =1 =— 169

2z’ =ff Fr o T (169)

More generally, if A and A’ are any pair of axial conjugate points, as are B and B’, then
FAXF'A'"=FBXF'B’ (170)

Another form is that for which the reference points are the principal points and the
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If the reference points are arbitrary conjugates with magnification m, and the axial
distances are d = AO and d' = A’O’, then

ng
n 1n d’ Af
n_ln, a1 172
TV A S ()
A
f

This equation also relates the curvatures of a wavefront at conjugate points. For a point
source at A the radius of the wavefront at O is d, so at O’ the radius is d’.
If the reference points are the nodal points, m, = m, =n/n’, and the axial distances are
d=NO and d’' = N'O’, then
f f n n'
1=-"—-+4+=— or —=—+4+ 173
d! d d/ d ¢ ( )
The most general equation relating conjugate points is obtained when both reference
points are arbitrary. Let the reference point in object space be a point A, at which the
magnification is m,, and that in image space be B’, associated with magnification my. If
d=AO0 and d' = B'O’, then

1 N1
7<1—m3):—d—ml;d’+¢dd’ or
¢ my ny
Ld+<mé_1>l (174)
d,:mA my ¢
dd—my

All the other conjugate equations are special cases of this one with the appropriate choice
of m, and my.

If the reference point in object space is the focal point, and that in image space is the
principal plane, then m, = © and my =1, giving

"o "
’7 =i)+1 or ]i,=7+1 (175)

¢ n 2 f
Likewise, if the object space reference point is P and the image space reference is F’', then
n_ o Loiig (176)

I'¢ n I f

A relationship between distances to the object and image from the principal points and
those from the focal points is
'z F'O FO
l=—+-= +— 177
' I PO PO (77

Transverse Magnification. In planes perpendicular to the axis, the transverse
magnification, usually referred to simply as the magnification, is

!

x'y' dx' _dy’

X y_dx_dy

(178)

There are several equations for magnification as a function of object position or image
position, or as a relationship between the two. Newton’s equations are

f__2_f _f-r

z ff-l S

(179)
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Other relationships are
nl' fr z'l
=——=—"—=— 180
m nl l f/ l ll Z ( )
If n=n', then m =1'/l. Another form, with respect to conjugate planes of magnification
m, is
_nd_Jd

“dn' df’ (181)

mm,

If d and d’ are distances from the nodal points, m =d’/d. The change of magnification
with respect to object or image positions with conjugacy maintained is
d 1 d 2
”}:——,:ﬂ, and ﬂ:é:ﬁ:”j (182)
dz 'z dz z f z

Images of Distant Objects. If an object at a great distance from the lens subtends an
angle ¢ from the axis at the lens, then its paraxial linear extent is y = z¢. The image height
is

dy' n
dy n'

yi=my=Ty——p =Sy and & (183)

b4
If a distant object moves perpendicularly to the axis, then its image moves in the opposite
direction if f' >0 and in the same direction if f' <0, so long as n and n' have the same
sign.

Distance Between Object and Image. The directed distance from an axial object point to
its image contains three terms, one in object space, one in image space, and one relating
the two spaces. The first two depend on the magnification and focal lengths. The interspace
term depends on the particular structure of the lens, and is found by paraxial ray tracing.
The most commonly used interspace distance is PP’, since it equals zero for a thin lens,
but the equations using FF' are simpler. Newton’s equations give z = —f/m and
z' = —mf’, so the object-to-image distance is

1
OO’=FF’—Z+z’=FF’—f’m+£:FF’—*<n’m+£) (184)
m o) m

This is the basic equation from which all others are derived. If the reference points are the
principal points, then

00’ =PP' +f'(1 - m) —f(l —i) = pp’ +i [n’(l —m) +n<1 —iﬂ (185)

If the object-to-image distance is given, the magnification is

1
5 (T4 Vg® —4nn’)

where ¢ = $(OO' — PP')—n—n'. (186)

m=

There are two magnifications for which OO’ is the same. The magnitude of their product is
n/n'. The derivative of the object-to-image distance with respect to the magnification is

doorep S T L (n
dmOO_ f m? f ¢<m2 n) (187)
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Extrema occur at m + Vn/n', giving m = £1 if n =n’. The extrema are

00' —FF' = :I:i\/nn’ = 12V ff’ (188)
or
OO’—PP’=é(n+n’i2\/nn’)=f’—fi2\/—ff’ (189)

For the common case of n’ = n, the object-to-image distance is
1
OO’=PP’+f’<2—m—f> (190)
m

OO’ is the same for magnifications m and 1/m. For a lens with f’ >0, the extremum
object-to-image distances are OO’ — PP’ =4f" with m= -1 and OO'—PP' =0 for
m=+1. If the object-to-image distance and the focal length are given, then the
magnification is

m=—is+Vi?—1
1
where s :};(00’ —PP')—2. (191)

The two values of m are reciprocal.

Axial Separations and Longitudinal Magnification. Two axial points A and B are
imaged at A’ and B’ with magnifications m, and mz. Newton’s equations give the object
separation

mymeg

Az=zp—z5=—" 192
7=24"2p mB—mAf (192)

The separation of their images is
Az' =2/ —zp=(mg —my)f’ (193)
The ratio of the image and object separations is
Az' zi—zp A'B' n’ !

= = =—muMg = —"—"Mum 194
N AB n ULl f ANp ( )

If m, and my have different signs, then the direction of A’B’ is opposite that of AB. This
occurs when A and B are on opposite sides of the front focal point. In the limit as the
separation between A and B vanishes, m, and mz both approach the same magnification
m. The longitudinal magnification m, is the ratio of axial separations in the limit of small
separations

_LIMITA’B,_dZ’_n, 2 __ Z/
mp= a-s AB dz n m e (195)

This quantity is also called the axial magnification. Since m” is always positive, as an object
moves axially in a given direction, its image moves in a constant direction. There is a
discontinuity in image position when the object crosses the focal point, but the direction of
motion stays the same. At the nodal points, the transverse and longitudinal magnifications
are equal.

Angular Magnification. The ratio of the outgoing to incoming ray angles, u'/u is
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sometimes called the angular magnification m,. If the ray passes through conjugate axial
points with magnification m, then the angular magnification is

! 1

ma==" (196)
u n'm

If the ray leaves an object point with height y in a plane for which the magnification is m,

the outgoing ray angle is given by

1 1
n'u'=—nu—yp=—(nu—y'ep) (197)
m m
The ratio u'/u is not constant unless y =0 or ¢ =0.

Relationship Between Magnifications. The transverse, angular, and longitudinal mag-
nifications are related by

m,m; =m (198)
This relationship is connected to the paraxial invariant and also holds for afocal lenses.

Reduced Coordinates. Many relationships are formally simplified by using reduced axial
distances T=z/n and T’ = z'/n’ and reduced angles w = nu, ' =n'u’, which are paraxial
optical direction cosines. For example, the angular magnification is '/ =1/m, and the

longitudinal magnification is d1'/dT = m>.

Mechanical Distances. The cardinal points can be located anywhere on axis relative to
the physical structure of the lens. The vertex of a lens is its extreme physical point on axis.
The object space vertex is denoted by V and the image space vertex by V'. The two
vertices are not, in general, conjugate. The front focal distance FV is that from the vertex
to the front focal point, and the rear focal distance V'F' is that from the rear vertex to the
rear focal point. Likewise, the front working distance OV is the distance from the object to
the vertex, and the rear working distance V'O’ is that from the vertex to the image. These
lengths have no significance to the gaussian description of a lens. For example, a lens of a
given focal length can have any focal distance and vice versa. For a telephoto lens the focal
length is greater than the focal distance, and for a retrofocus lens the focal distance is
greater than the focal length.

Afocal Lenses

An afocal or telescopic lens (Wetherell 1987," Wetherell 1994,"° Goodman 1988'") is one
for which ¢ =0. A ray entering with u =0 leaves with u’ =0, Fig. 15. There are no

—_—

FIGURE 15 Afocal lens. Paraxial rays entering parallel
to the axis leave parallel, in general at a different height.
The ratio of the heights is the transverse magnification,
which is constant.
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FIGURE 16 Afocal lens. Groups of paraxial rays
entering parallel leave parallel, in general at a different
angle. The ratio of the angles is the angular magnifica-
tion, which is constant.

principal focal points or focal lengths. In general, the u =0 ray leaves at a different height
than that at which it enters. The ratio y'/y is the same for all such rays, so the transverse
magnification m is constant. Likewise, the longitudinal magnification is constant, equaling
m; = (n'/n)m?, as is the angular magnification u'/u =m, =n/(n'm). A parallel bundle of
rays entering at angle u leaves as a parallel bundle at u’ =m,u, Fig. 16. Summarizing:

’

n n 1
m=const m,=—m’=const m,=—,—=const m=mym, (199)
n n'm

«

Any two of these magnifications provide the two scaling factors that describe the system. If
m=n/n', then m, =m and m, =1, so image space is a scaled version of object space.

Afocal lenses differ fundamentally from focal lenses. Objects at infinity are imaged by
afocal lenses at infinity, and objects at finite distances are imaged at finite distances. An
afocal lens has no cardinal points and the focal length is undefined. Afocal lenses have no
principal planes. If m # 1 there are no unit magnification conjugates, and if m =1 there is
only unit magnification. Likewise, there are no nodal points; the angular magnification is
either always unity or always differs from unity. It is sometimes stated or implied that an
afocal lens is a focal one with an infinite focal length, but this description is dubious. For
example, the above equations relating magnification and conjugate positions to focal
length are meaningless for afocal lenses, and they cannot be made useful by substituting
f = . The equations for the afocal lenses can be obtained from those for focal lenses with
a limiting process, but for most purposes this approach is not helpful.

If the positions for a single axial conjugate pair A and A’ are known, other pairs are
located from the property of constant longitudinal magnification. If O and O’ are another
pair of conjugates, then

A'O'=m, A0 (200)
As a function of distance AO, the object-to-image distance OO’ is
00'=AA"+ (m,—1)AO (201)

where AA' is the separation between the initially known conjugates. If m, =1, the
object-to-image distance is constant. Otherwise, it can take any value. For all afocal lenses,
except those for which m, =1, there is a position, sometimes called the center, at which
00’ =0, so the object and image planes coincide.

A principal use of afocal lenses is in viewing distant objects, as with binoculars. An
object of height h a great distance d from the lens subtends an angle s =h/d. The
image height is 4’ = mh, and the image distance is approximately d’ = m”d. So the image
subtends an angle ' =my = y/m,. Thus a telescope used visually produces an image
which is actually smaller, but which is closer by a greater factor, so the subtense increases.
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Determination of Gaussian Parameters

If a lens prescription is given, its gaussian properties can be obtained by paraxially tracing
any two meridional rays whose invariant is not zero. A common choice for focal lenses is
the rays with u =0 and u’ =0, which give F, P, F', and P’. If a lens is known to be afocal,
a single ray not parallel to the axis suffices, since such a ray gives a pair of conjugates and
the angular magnification. If it is not known that the lens is afocal, two rays show that it is,
as well as giving the required information about conjugates. Alternately, a matrix
representation of the lens can be determined, from which the cardinal points are found, as
described in the matrix section. The gaussian properties can also be determined
experimentally in a number of ways.

Basic Systems

Single Refracting Surface. Media of indices n and n’' are separated by a surface of
curvature ¢ and radius r. The power is ¢ = (n' —n)c. The principal points coincide at the
vertex. The nodal points coincide at the center of curvature. The distance from principal
points to nodal points is r.

Thick Lens. The term thick lens usually denotes a singlet whose vertex-to-vertex distant
is not negligible, where negligibility depends on the application. For a singlet of index » in
vacuum with curvatures ¢, and ¢, and thickness ¢, measured from vertex to vertex

1
=];=(n —1)|:61—C2—7
A given power may be obtained with a variety of curvatures and indices. For a given

power, higher refractive index gives lower curvatures. The principal planes are located
relative to the vertices by

b tcy cz] (202)

n—1tc, n—1tc
= — d V'P'=— — 203
P an Pa—) (203)

These equations can be derived by treating the lens as the combination of two refracting
surfaces. Two additional relationships are

VP

noldate) g VPR o (204)

n b VP rn ¢

PP =VV'—

Thin Lens. A thin lens is the limiting case of a refracting element whose thickness is
negligible, so the principal planes coincide, and the ray bending occurs at a single surface,
Fig. 17. In the limit as t — 0, for a lens in vacuum the thick lens expressions give

(b:fl,:(n—l)(cl_CZ) VP=V'P'=0 PP'=0 (205)

Single Reflecting Surface. A reflecting surface has power ¢ =2n/r =2nc. The principal
points are located at the vertex. The nodal points are at the center of curvature.

Mirror as a Thin Lens. In unfolding systems, a mirror can be thought of as a convex or
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P,P' \

n -n n

FIGURE 17 The thin lens approximation. The FIGURE 18 Reflecting surface represented un-
thickness of the lens is negligible, and the principal  folded. A convex mirror is represented as a convex-
planes are coincident, so rays bend at the common  plano thin lens with index n' = —n, where n is the
plane. index of the medium. Snell’s law gives I' = —1.

concave plano thin lens, with an index —n, where 7 is the index of the medium in which it
works, Fig. 18. All the thin lens equations apply, as well as those for third-order aberration
equations, which are not discussed here.

1.15 COLLINEATION

Introduction

Collineation is a mathematical transformation that approximates the imaging action of a
lens with homogeneous refractive indices in both spaces. This transformation takes points
to points, lines to lines, and planes to planes. With an actual lens, incoming rays become
outgoing rays, so lines go exactly to lines. In general, however, rays that interest in object
space do not intersect in image space, so points do not go to points, nor planes to planes.
The collinear transformation is an approximate description of image geometry with the
intervening optical system treated as a black box, not a theory that describes the process of
image formation. Collineation is also referred to as projective transformation. The
historical development of this approach, which was first applied to optics by Mobius
(Mobius 1855'%), is discussed by Southall (Southall, 1910'"). Several authors give
extensive discussions (Czapski 1893,'** Drude 1901'* Southall 1910,'” Wandersleb 1920,'”°
Chrétien 1980"”). Projective transformation is used in computer graphics, and is discussed
in this context in a number of recent books and papers.

The imaging described by collineation is, by definition, stigmatic everywhere, and
planes are imaged without curvature. And for rotationally symmetric lenses, planes
perpendicular to the axis are imaged without distortion. So the three conditions of
maxwellian perfection are satisfied for all conjugates. Consequently, collineation is often
taken as describing ideal imaging of the entire object space. However, it is physically
impossible for a lens to image as described by collineation, except for the special case of an
afocal lens with m =m, =n/n'. The putative ray intersections of collineation violate the
equality of optical path lengths for the rays involved in the imaging of each point. The
intrinsic impossibility manifests itself in a variety of ways. As an example, for axial points
in a plane with transverse magnification m and ray angles 8 and 8’ relative to the axis,
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collineation gives m o tan 8/tan 6’, but optical path length considerations require that
m o sin B/sin 6’. Another violation is that of the skew invariant & = n(ay — Bx). The ratio
of this quantity before and after collineation is not unity, but ¥'/% = y’/y, where v is the
axial direction cosine in object space and vy’ is that in image space.

The expressions for collineation do not contain refractive indices, another manifestation
of their not accounting for optical path length. Rather than the refractive index ratio n'/n,
which occurs in many imaging equations, the expressions of collineation involve ratios of
focal lengths. For afocal lenses there are ratios of transverse and longitudinal magnifica-
tions or ratios of the focal lengths of the lenses making up the afocal system.

The expressions for actual ray behavior take the form of collineation in the paraxial,
and, more generally, parabasal limits. So paraxial calculations provide the coefficients of
the transformation for any particular system.

Collineation is most often treated by starting with the general form, and then reducing
its complexity by applying the symmetries of a rotationally symmetric system, to give
familiar simple equations such as Newton’s (Born & Wolf 1980'*®%). Alternatively, it is
possible to begin with the simple forms and to derive the general ones therefrom with a
succession of images, along with translations and rotations. However, the more important
use of these properties is in treating lenses lacking rotational symmetry. This includes
those comprised of elements that are arbitrarily oriented, that is, tilted or decentered—
either intentionally or unintentionally. Other examples are nonplanar objects, tilted object
planes, and arbitrary three-dimensional object surfaces.

Lenses, along with plane mirror systems, can form a succession of images and can
produce translations and rotations. Correspondingly, a succession of collinear transforma-
tions is a collinear transformation, and these transformations form a group. It is
associative, corresponding to the fact that a series of imaging operations can be associated
pairwise in any way. There is a unit transformation, correspondingly physically to nothing
or to a unit magnification afocal lens. There is an inverse, so an image distorted as a result
of object or lens tilt can be rectified by an appropriately designed system—to the extent
that collineation validly describes the effects.

General Equations
The general form of the collinear transformation is

_ax+byt+cz+d , _Wmx+bytcztd, ,_asx +byy+ciz+ds

ax +by +cz+d y - ax +by +cz+d ©7 ax +by +cz+d

!

(206)

At least one of the denominator coefficients, a, b, ¢, d, is not zero. The equations can be
inverted, so there is a one-to-one correspondence between a point (x, y, z) in object space
and a point (x’, y’, z') in image space. The inverted equations are formally identical, and
can be written by replacing unprimed quantities with primed ones and vice versa in the
above equation. It is seen that a plane is transformed to a plane, since a’x’ +b'y’ +c¢'z’ +
d’ =0 has the same form as a function of (x, y, z). An intersection of two planes gives a
line. It can also be shown that a line transforms to a line by writing the equation for a line
in parametric form, with parameter o, x(o)=x,+ ao, y(o)=y,+ Bo, z(o) =2z, + yo.
Substituting in the transformation equations, it is found that dx'/dy’ = (dx'/do)/(dy'/do)
is constant, as are other such ratios.

These equations contain 16 coefficients, but it is possible to divide all three equations
through by one of the coefficients, so there are 15 independent coefficients in general.
Since the location of an image point is described by three coordinates, five points that are
not coplanar determine the transformation.
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The ratios of the coefficient dimensions are determined by the fact that x, y, z and x’,
y', z' are lengths. A variety of schemes can be used and, in the expressions below, a given
symbol may have different dimensions.

There are two major categories of the transformation, according to whether the
denominator varies or is constant. That with a varying denominator corresponds to focal
lenses. For afocal lenses, the demonimator is constant, and the general form of the
transformation is

x'"=ax+by+cz+d y' =a,x +b,y+c,z+d, ' =asx +byy tciz +ds
(207)

Here coefficient d has been normalized to unity. Such a transformation is called affine or
telescopic.

Coordinate Systems and Degrees of Freedom

The transformation involves two coordinate systems. The origin of each is located by three
parameters, as is the orientation of each. This leaves three parameters that describe the
other aspects of the transformation for the most general case of no symmetry. The number
is reduced to two if there is rotational symmetry.

In addition to considering the transformation of the entire space, there are other cases,
especially the imaging of planes. In each situation, there are specific coordinate systems in
which the aspects of the relationship, other than position and orientation, are most simply
expressed. Accordingly, different coordinate systems are used in the following sections.
Thus, for example, the z axis in one expression may not be the same as that for another.

Simplest Form of the General Transformation
For focal lenses, the denominators are constant for a set of parallel planes
ax + by + ¢z + d = constant (208)

Each such plane is conjugate to one of a set of parallel planes in the other space. Within
each of these planes, the quantities dx'/dx, dx’'/dy, ox’/dz are constant, as are the other
such derivatives. Therefore, magnifications do not vary with position over these planes,
although they do vary with direction. There is one line that is perpendicular to these planes
in one space whose conjugate is perpendicular to the conjugate planes in the other space.
It can be taken to be the z axis in one space and the z’ axis in the other. The aximuths of
the x-y and x'-y’ axes are found by imaging a circle in each space, which gives an ellipse in
the other. The directions of the major and minor axes determine the orientations of these
coordinate axes. The principal focal planes, are the members of this family of planes for
which

O=ax +by+cz+d (209)

Lines that are parallel in one space have conjugates that intersect at the principal focal
plane in the other. The principal focal points are the intersection of the axes with the focal
planes.
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Using these simplifying coordinate systems, the general transformation is

ax b,y ¢z +d;
= = =2t 10 210
cz+d Y cz+d z cz+d (210)

r—

One of the six coefficients can be eliminated, and two of the others are determined by the
choice of origins for the z axis and z’ axis. If the origins are taken to be at the principal
focal points, the transformation equations are

x'=— 'y (211)

’ exx ’ zeyy ’ g
z Z z

where e,, e,, e, are constants. Unless e, = e,, the images of shapes in constant z planes vary
with their orientations. Squares in one orientation are imaged as rectangles, and in others
as parallelograms. Squares in planes not perpendicular to the axes are imaged, in general,
with four unequal sides.

For afocal lenses, the simplest form is

x'=m.x y' =m,y z'=m.z (212)

Spheres in one space are imaged as ellipsoids in the other. The principal axes of the
ellipsoids give the directions of the axes for which the imaging equations are simplest.

Conjugate Planes

A pair of conjugate planes can be taken to have x =0 and x'=0, so the general
transformation between such planes is

’

_byytcz+d , _bsytciztd;

213
by tcz+d ¢ by tcz+d @13)

There are eight independent coefficients, so four points that are not in a line define the
transformation. In each space, two parameters specify the coordinate origins and one the
orientation. Two parameters describe the other aspects of the transformation.

The simplest set of coordinates is found by a process like that described above. For
focal lenses, constant denominators define a line set of parallel lines

by + cz +d = constant (214)

with similar conjugate lines in the other space. There is a line that is perpendicular to this
family in one space, whose conjugate is perpendicular in the other, which can be taken as
the z axis on one side and the z’ axis on the other. There is a principal focal line in the
plane in each space, and a principal focal point, at its intersection with the axis. In this
coordinate system the transformation is

,_ by z,_c3z+d3
cz+d cz+d

y (215)

Of the five coefficients, four are independent and two are fixed by the choice of origins. If
z=0and z’' =0 are at the principal focal points, then

lzeyy ’ ez

7'== (216)
z z

where e, and e, are constants.
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For afocal lenses, the general transformation between conjugate planes is
y' =byy+cz+d, 7' =bsy +c3z +d; (217)
The simplest form of the transformation is
Yy =m,y z'=m.z (218)

where m, and m_ are constants.

Conjugate Lines
A line can be taken to have x =0, y =0, x’ =0, y' =0, so its transformation is

¢z t+d;
cz+d

!

(219)

There are three independent coefficients, so three points determine them. The origins in
the two spaces account for two of the parameters, leaving one to describe the relative
scaling. The simplest forms are

Focal: z'=%  Afocal: z'=m.z (220)
Z

There is a relationship between distances along a line (or ray) that is unchanged in
collineation (Southall 1910,'”* Southall 1933'*°). If four points on a line A, B, C, D have
images A’, B', C', D', the double ratio or cross ratio is invariant under projective
transformation, that is,

ACBD A'C'B'D
BCAD B'C'A'D

(221)

where AC is the distance from A to C, and likewise for other pairs.

Matrix Representation of the Transformation

The transformation can be expressed in linear form by using the variables (u,, u,, us, u,)
and (u, uj, uj, u;), where x =u,/u,, y=ulu,, z=us/us, and x' =uifui, y' =ului,
z' =ui/u,. These are referred to as homogeneous coordinates. The transformation can be

written
uy a by ¢ d; Uy
u, | @ b, ¢, d, U 220
us - as by ¢ d; Us (222)
U, a b ¢ d Uy

In terms of the cartesian coordinates and an additional pair of terms g and ¢q’, the
transformation can be expressed as

q'x’ a, b, ¢ d, qx
q,’y,’ | @ b o 4| gy (223)
qz as by ¢ d; qz

q' a b ¢ d/ \q
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The dimensions of g and g’ depend on the choice of coefficient dimensions. Here
q'/q = ax + by + cz + d, the equation for the special set of planes.

Certain sections of the matrix are associated with various aspects the transformation
(Penna & Patterson 1986°”). The first three elements in the rightmost column have to do
with translation. This is shown by setting (x, y, z) = (0, 0, 0) to locate the conjugate in the
other space. The first three elements in the bottom row are related to perspective
transformation. The upper left-hand 3 X3 array expresses rotation, skew, and local
magnification variation.

For the simple form of the transformation expressed in Eq. (211), a,=e,, b,=¢,,
d;=e_, ¢ =1, and the rest of the coefficients vanish. The general matrix representation for
the afocal transformation is

' a, by ¢ 4,

! a, b, ¢, d, (224)

a; by ¢y ds
0 0 0 1

SRR T S
_N e =

The quantities g and g’ can also be included, in which case g’ = g. In the simplest afocal
form, Eq. (212), the matrix is diagonal with a, =m,, b, =m,, d;=m_, and the rest of the
nondiagonal coefficients vanishing. A succession of collineations can be treated by
multiplying the matrices that describe them (Chastang 1990*°"). To combine lenses with
arbitrary orientations and to change coordinate systems, compatible rotation and transla-
tion matrices are required. The transformation for a pure rotation with direction cosines
(L, M,N)is
x' 1-2L> —-2LM —2LN
! —-2LM 1-2M> —-2MN
Y= , (225)
z' —2LN —-2MN 1-2N
1 0 0 0

_ o O O
—_ N e R

The transformation for translation by (Ax, Ay, Az) is

1 0 0 Ax\ /x
01 0 Ay|ly
0 01 Az ]\ <z
0 0 0 1 1

x/
Y (226)
Z
1

The quantities ¢ and g’ can be included if necessary. The transformations associated
with conjugate planes can likewise be expressed with 3 X 3 matrices, and the transforma-
tions of lines with 2 X 2 matrices.

Rotationally Symmetric Lenses

For rotationally symmetric lenses, the simplest forms are obtained with the z and z’ axes
corresponding to the lens axis in the two spaces, and the x and x’ meridians corresponding.
There is one less degree of freedom than in the general case, and a, = b, in Eq. (210). The
general transformation is thus

bl o4y _G2tds

x_cz-i-d y cz+d z cz+d

(227)

There are four degrees of freedom, two associated with the lens and two with the
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choice of coordinate origins. For focal lenses, the two axial length parameters are f and f'.
If the coordinate origins are at the focal points,

RO i y,:_Q g (228)
z z z
If the coordinate origins are conjugate and related by magnification m,, then
r_ nmoyX ’ m()y - (f’/f)m(z)z (229)

R T T S g

The constant term in the numerator of the z' expression is the longitudinal magnification
for z =0, for which point dz'/dz = (f'/f)ms. A special case of these equations is that for
which the principal points are the origins, so n, = 1.

For rotationally symmetric afocal lenses, the two degrees of freedom are the transverse
magnification m, =m, =m, and the longitudinal magnification m, = m,. The simplest set
of transformation equations is

x'=mx y' =my '=mpz (230)

where z =0 and z’ =0 are conjugate. If m = +£1 and m, = +1 the image space replicates
object space, except possibly for orientation. If m; = m, the spaces are identical except for
overall scaling and orientation. The m and m, appear as functions of ratios of focal lengths
of the lenses that make up the afocal system.

Rays for Rotationally Symmetric Lenses

A skew ray with direction cosines («, B, v) in object space is described in parametric form
with parameter z as follows

X(z)=xo+ -z y(Z)=xe+Ez (231)
Y y

For a focal lens, if z =0 is taken to be the front focal plane, and z’ =0 is the rear focal
plane, the parametric form of the ray in image space is

v@) = (%)« (5 ver=(r8)+(-2) (23)
Y f Y f

So xg=—faly, yo=—fBly, «'/v' =—xo/f'", B'/y'=—y,/f'. For meridional rays with
x =0, if 6 and 6’ are the ray angles in the two spaces, then tan 6 = /v, tan 8’ = —y,/f’,
and

tan 6@ f’
== 2
tan 0" f " (233)

where m is the transverse magnification in a plane where the meridional ray crosses the
axis.

For afocal lenses, if z =0 and z’' =0 are conjugate planes, the ray in image space is
given by

m m
v =+ (P e =mr (22 (234
mpy mpvy
For meridianal rays with x =0,
tan6 mg

= 235
tan@ m (235)
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FIGURE 19 The image plane for a tilted object plane. The y-z plane is the
object plane and the y’-z’ plane is the image plane. The angles between the
planes and the lens axis are 8 and 6’, which are related by Eq. (232). The
conjugate points in these planes are related by Eq. (235).

Tilted Planes with Rotationally Symmetric Lenses

A plane making an angle 6 with the lens axis in object space has an image plane that
makes an angle 6’, given by Eq. (233), the so-called Scheimpflug condition (Scheimpflug
1907, Sasian 1992°”). A tilted plane and its image are perpendicular to a meridian of the
lens, Fig. 19. There is bilateral symmetry on these planes about the intersection line with
the meridian, which is taken to be the z axis in object space and the z’ axis in image space.
The perpendicular, coordinates are y and y'. Letting m, be the transverse magnification for
the axial point crossed by the planes, the transform equations are

,_ Moy ,_(g'lg)miz

= 236
Y 1+z/g 1+z/g (236)

Here g and g’ are the focal lengths in the tilted planes, the distances from the principal
planes to the focal planes of the lens, measured along the symmetry line, so

’ ! 2 1
g= f A and &= \/<J;> cos® 8+ —;sin’ 6 (237)

" cos@ &= cos 6’ g o

As 6—90° g and g’ become infinite, and (g'/g)m,— 1, giving y'—m,y and z' — m,z.
(Forms like Newton’s equations may be less convenient here, since the distances from the
axes to the focal points may be large.)

For an afocal lens with transverse magnification m and longitudinal magnification m,,
the object and image plane angles are related by Eq. (235). The conjugate equations for
points in the planes are

y'=my  z'=(mj cos’ 8+m’sin’ 0)"*z (238)

Here the origins may be the axial intersection point, or any other conjugate points.
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Some General Properties

For all collinear transformations, points go to points, lines to lines, and planes to planes. In
general, angles at intersections, areas, and volumes are changed. The degree of a curve is
unchanged, so, for example, a conic is transformed into a conic. For focal systems, a
“closed” conic, an ellipse or circle, may be imaged as either a closed or an “open” one, a
parabola or hyperbola. For afocal systems, the closedness and openness are preserved.
With focal systems, the imaging of a shape varies with its location, but for afocal systems it
does not. For afocal systems parallelness of lines is maintained, but for focal systems the
images of parallel lines intersect. For afocal systems, equal distances along lines are imaged
as equal distances, but are different unless the magnification is unity.

1.16 SYSTEM COMBINATIONS—GAUSSIAN PROPERTIES

Introduction

This section deals with combinations of systems, each of which is of arbitrary complexity.
From a gaussian description of each lens and the geometry of the combination, the
gaussian description of the net system can be found. If two rotationally symmetric lenses
are put in series with a common axis, the resultant system is also rotationally symmetric.
Its gaussian description is found from that of the two constituent lenses and their
separations. The net magnification is the product of the two contributions, i.e., m =
m; X m,. Matrix methods are particularly convenient for handling such combinations, and
the results below can be demonstrated easily thereby. If two rotationally symmetric lenses
are combined so their axes do not coincide, the combination can be handled with
appropriate coordinate translations and rotations in the intermediate space, or by means of
collineation. In the most general case, where subsystems without rotational symmetry are
combined, the general machinery of collineation can be applied. There are three classes of
combinations: focal-focal, focal-afocal, and afocal-afocal.

Focal-Focal Combination—Coaxial

The first lens has power ¢, and principal points at P, and P;, Fig. 20. The index preceding
the lens is # and that following it is n,,. The second lens has power ¢, and principal points
at P, and P;, with preceding index n,, and following index n’. The directed distance from
the rear principal point of the first lens to the first principal point of the second lens is

M2 Py Ph
1

n O

AT T &

/ PP

F P P' F'
FIGURE 20 Coaxial combination of two focal lenses. The cardinal points of the two

lenses are shown above the axis and those of the system below. The directions in this
drawing are only one possible case.
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d = P{P;, which may be positive or negative, since the lenses may have external principal
planes. The power of the combination is

1
b=+ ¢,— nf dd, ¢, (239)

The two principal planes of the combination are located relative to those of the
contributing lenses by directed distances

pp=+"q%  ppo g

n, ¢ n, ¢ (240)

If ¢ =0, the combination is afocal and there are no principal planes. In applying these
equations, the inner-space index n,;, must be the same as that for which the two lenses are
characterized. For example, if two thick lenses are characterized in air and combined with
water between them, these equations cannot be used by simply changing 7,,. It would be
necessary to characterize the first lens with water following it and the second lens with
water preceding it.

Another set of equations involves the directed distance from the rear focal point of the
first lens to the front focal point of the second, s = F/F,. The power and focal lengths of the
combination are

v

1 ht )
p=——spid f=+"7  f'= (241)
niy s s
The focal points are located with respect to those of the contributing lenses by
FF=+Me_teli pp mme_ neff (242)
s n s so3 n' s

Another relationship is (F,F)(F;F') =ff'. The system is afocal if s =0. There are many
special cases of such combinations. Another case is that when the first principal point of
the second lens is at the rear focal point of the first, in which case the system focal length is
that of the first. These relationships are proven by Welford (Welford 1986, p. 35°%).

Focal-Afocal—Coaxial

A focal lens combined with an afocal lens is focal, Fig. 21. Here we take the afocal lens to
be to the left, with magnification m,. The focal lens to the right has power ¢, and rear

AFOCAL FOCAL

-

FIGURE 21 Coaxial combination of a focal lens and an afocal lens. In this drawing the
afocal lens has a transverse magnification 0 <m, <1 and the focal lens has a positive power.
The combination is a focal lens with focal length f’ = f,;/m,. The focal point on the side of the
focal lens is at the focal point of that lens alone.
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FIGURE 22 Coaxial combination of two afocal lenses. An internal point A’
has an object space conjugate A and an image space conjugate A”. These two
points can be used for position references in the overall object and image
spaces.

focal length f;. The power of the combination is ¢,m,, and the rear focal length of the
combination is f’ = f;/m,. On the side of the focal lens, the location of the principal focal
point is unchanged. On the side of the afocal lens, the system focal point is located at the
image of the focal point of the focal lens in the space between the two. Changing the
separation between the lenses does not change the power or the position of the principal
focal point relative to that of the focal lens. The principal focal point on the afocal lens
side does move.

Afocal-Afocal—Coaxial

The combination of two afocal lenses is itself afocal, Fig. 22. If the two lenses have
transverse magnifications m, and m,, the combination has m =m,;m,. A pair of conjugate
reference positions is found from the conjugates in the outer regions to any axial point in
the inner space. If the separation between the two lenses changes, the combination
remains afocal and the magnification is fixed, but the conjugate positions change. This
result extends to a combination of any number of afocal lenses.

Noncoaxial Combinations—General

The most general combinations can be handled by the machinery of collineation. The net
collineation can be found by multiplying the matrices that describe the constituents, with
additional rotation and translation matrices to account for their relative positions. After
obtaining the overall matrix, object and image space coordinate systems can be found in
which the transformation is simplest. This approach can also be used to demonstrate
general properties of system combinations. For example, by multiplying matrices for afocal
systems, it is seen that a succession of afocal lenses with any orientation is afocal.

1.17 PARAXIAL MATRIX METHODS

Introduction

Matrix methods provide a simple way of representing and calculating the paraxial
properties of lenses and their actions on rays. These methods contain no physics beyond
that contained in the paraxial power and transfer equations, Eq. (136) and Eq. (142), but
they permit many useful results to be derived mechanically, and are especially useful for
lens combinations. The matrix description of systems is also useful in elucidating
fundamental paraxial properties. With the symbolic manipulation programs now available,
matrix methods also provide a means of obtaining useful expressions.
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The optical system is treated as a black box represented by a matrix. The axial positions
of the input and output planes are arbitrary. The matrix describes the relationship between
what enters and what leaves, but contains no information about the specifics of the system
within, and there is an infinity of systems with the same matrix representation.

The origin of matrix methods in optics is not clear. Matrices were used by Samson
(Samson 1897°*°) who referred to them as “‘schemes.” Matrices appear without comment
in a 1908 book (Leathem 1908°*°). Matrix methods are treated in papers (Halbach 1964,
Sinclair 1973*°*) and in many books (O'Neil 1963, Brouwer 1964,”'° Blaker 1971,>"
Longhurst 1973,”"> Gerrard & Burch 1974,”" Naussbaum & Phillips 1976,”"* Kogelnik
1979,>"* Klein & Furtak 1986, Moller 1988,”"” Guenther 1990°'"). Notation is not
standardized, and many treatments are complicated by notation that conceals the basic
structures.

This section is limited to rotationally symmetric lenses with homogeneous media.
References are provided for systems with cylindrical elements. This treatment is
monochromatic, with the wavelength dependence of index not made explicit.

The matrices are simplified by using reduced axial distances T =t/n and reduced angles
o = nu. The paraxial angles u are equivalent to direction cosines, and the reduced angles
are optical direction cosines in the paraxial limit. For brevity, w and 1 are usually referred
to in this section simply as “angle” and “distance.”

Basic Idea—Linearity

Paraxial optics is concerned with the paraxial heights and paraxial angles of rays. A
meridional ray entering a system has a given height y and angle w and leaves with another
height y’ and angle w'. Paraxial optics is linear, as discussed above, in the sense that both
the outgoing height and angle depend linearly on the incoming height and angle. Writing
Eq. (148) in terms of w's gives

ay’ ay’ do’ dw’

) :< y >y+<i>w and w’=< >y+( )w (243)
ay w ay Jw

The partial derivatives are constant for a given system. This linearity is the basis of the
matrix treatment, since these equations can be written in matrix form:

. ay’ 9y’
y —— \[
ay 9
=, (244)
, o' o’
w w
dy Jdw

Basic Operations

The basic operations in paraxial ray tracing are transfer, Eq. (136), between surfaces and
refraction or reflection at surfaces, Eq. (142).

Transfer Matrix

Transfer changes the height of a ray, in general, leaving the angle unchanged. In terms of
reduced quantities, the relationships are:

t
y=yt+ttu=y+-un=y+io and o' =w (245)
n
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The transfer matrix is:

i

For left-to-right transfer, 7 > 0. This gives a difference in signs between some of the terms
in expressions here and those in the gaussian section, where directed distances are
measured from a reference point related to the lens to the object.

Power Matrix

Refraction or reflection changes the angle of a ray, but not its height. The equations for
reduced quantities are

n'u'=nu—yp=0'=w-—-yp and y'=y (247)
Here ¢ =c(n' —n) for refraction and ¢ = —2nc for reflection, where ¢ is the surface
curvature, Eq. (143). The power matrix is:
1 0
< ) (248)

A planar reflecting or refracting surface has ¢ =0, so it is represented by the unit matrix.

Arbitrary System

A general system consists of a series of surfaces with powers ¢, ¢,, ... that are separated
from one another by distances 7y, T,, . ... Its matrix is the product

o V) D Vg, D6 ) @)

By convention, the successive matrices are concatenated from right to left, whereas ray
tracing is done left to right.
A special case is a succession of transfers, itself a transfer.

1 r,+rz+-~->

Succession of transfers: <O 1

(250)
Another is a series of refractions with no intervening transfer, itself a power operation.

1 0
Succession of powers: ( > (251)
(1t ot 1

Matrix Elements

Each matrix element has a physical significance, and the terms can be given mnemonic
symbols associated with the conditions under which they are zero. (This practice is not
standard.) If the initial ray angle is zero, the outgoing angles depend on the incident ray
heights and the power of the system, according to o' = —¢y, so dw’/dy = —¢. If the initial
surface is at the front focal plane, the outgoing ray angles depend only on the incident
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height, so dw'/dw = 0. This term is denoted by F for “front.” Similarly, if the final surface
is at the real focal plane, the outgoing ray heights depend only on the incoming angles, so
dy’/dy = R for ““rear.” If the initial and final planes are conjugate, then all incoming rays at
a given height y have the outgoing height y’ = my, regardless of their angle, so dy’'/dw =0
for conjugate planes. Since this term is related to the condition of conjugacy, dy’'/dw = C
for “conjugate.” With this notation, the general matrix is

9

Dimensions

The terms R and F are dimensionless. C has the dimensions of length, and those of ¢ are
inverse length. Dimensional analysis, as well as the consideration of Eq. (248), shows that
the F and R terms will always contain products of equal numbers of ¢,’s and 7,’s, such as
¢, 1. The ¢ expression contains terms like ¢, and T, ¢,¢,,, with one more power term than
distance terms. Similarly, C has terms like 7, and 7, 7;¢,,.

Determinant

Both the transfer and power matrices have unit determinants. Therefore, any product of
such matrices has a unit determinant, a fact that is related to the two-ray paraxial
invariant.

‘R C
-6 F

This provides an algebraic check. For afocal lenses and conjugate arrangements, FR = 1.

‘=FR+C¢=1 (253)

Possible Zeros

The possible arrangements of zeros in a system matrix is limited by the unit determinant
restriction. There can be a single zero anywhere. In this case, either C=1/¢ or F =1/R,
and the remaining nonzero term can have any value. There can be two zeros on either
diagonal. No row or column can contain two zeros, since a system represented by such a
matrix would violate conservation of brightness. A matrix with double zeros in the bottom
row would collimate all rays, regardless of their incoming position and direction. A matrix
with all zeros in the top row represents a system that would bring all incoming light to a
single point. A system whose matrix has double zeros in the first column would bring all
incoming light to a focus on the axis. For double zeros in the second row, the system would
concentrate all light diverging from an input point in a single output point with a single
direction.

Operation on Two Rays

Instead of considering a single input and output ray, the matrix formalism can be used to
treat a pair of rays, represented by a 2 X 2 matrix. In this case

G o=y P ) s
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Since the system matrix has a unit determinant, the determinants of the incoming and
outgoing ray matrices are identical:

Li,=yiw; = y:0{ = y10; = y20, (255)

This is the paraxial invariant, Eq. (149). It is possible to operate on more than two rays,
but never necessary, since any third ray is a linear combination of two, Eq. (154).
Operations on two rays can also be handled with a complex notation in which two ray
heights and two angles are each represented by a complex number (Marechal 1956,>"
Marechal 1961%%°).

Conjugate Matrix

For conjugate planes, y’ =my, so C=0, R =m, and F =1/m, giving
m 0 )
256
<—¢> 1/m (256)

The 1/m term gives the angular magnification, u'/u =n/n'm, Eq. (196). This matrix also
holds for afocal lenses, in which case ¢ = 0.

Translated Input and Output Planes

For a given system, the locations of the input and output planes are arbitrary. If the input
plane is translated by 7 and the output plane by 7', the resultant matrix is

<R :dr)’qb C+ TRF+_T’TI;— TT'¢>

Note that the object-space translation term 7 is grouped with F and the image-space term
7’ with R. The equation C=0=1R — 7'F — 11’ ¢ gives all pairs of 7 and 7’ for which the
input and output surfaces are conjugate.

(257)

Principal Plane-to-Principal Plane

If the input and output planes are the principal planes, then the matrix is a conjugate one,

for which m = +1.
1 0
258
(L 1) @)

This is also the matrix representing a thin lens.

Nodal Plane-to-Nodal Plane

The nodal points are conjugate, with unit angular magnification, so u’ =u and o' =n'w/n.

Thus
(”_/;’)/ ngn) 259)
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The transverse magnification my =n/n' equals unity when n =n’. This matrix has no
meaning for afocal lenses.

Focal Plane-to-Focal Plane

If the initial surface is at the front principal focal plane and the final surface is at the rear
focal plane, the matrix is

o

This is the “Fourier transform” arrangement, in which incident heights are mapped as
angles and vice versa.

Translation from Conjugate Positions

If the input plane is translated 7 from a plane associated with magnification m and the
output plane is translated a distance 7’ from the conjugate plane, the matrix is

(m -17'¢p mr+1/m— TT'¢>> (261)

—¢ 1/m —1¢

Setting C =0 gives an equation that locates all other pairs of conjugate planes relative to
the first one, Eq. (172).

Translation from Principal Planes

If the initial conjugate planes are the principal planes, then

<1 —_;d; T +lr’_—rdr)r’¢>

The equation for other conjugates is C=0=71+ 1’ — 7T’ ¢, corresponding to Eq. (170).
It follows that the distance from the input surface to the first principal plane is
T=(1~-F)/¢ and the distance from the output surface to the second principal plane is

T'=(1-R)/¢.

(262)

Translation from Focal Planes

If the input plane is a distance T from the front focal plane and the output plane a distance
7' from the rear focal plane, the matrix is

T (- o)
% e

Thus F and R are proportional to the distances of the input and output surfaces from the

(263)
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object space and image space focal planes. Using Newton’s formulas, this can also be
written
1 !
m' g <1 - ﬂ)
m
1 (264)
_d) —
m

Here m’ is the magnification that would obtain if the image point were as located by R,
and m is that if the object point were located by F. The conjugate term vanishes when

m=m'.

Conjugate Relative to Principal Focal Planes

If Eq. (263) is a conjugate matrix, it becomes

(7 )

(265)

The vanishing C term gives 0 =1/¢ — ¢17’, which is the Newton equation usually written
as zz' =ff'. The magnification terms are the other Newton’s equations, m = —¢7’ and

=—flz.

1/m = — 71, which are usually written as m = —z'/f’

Afocal Lens
For afocal lenses ¢ = 0. Since the determinant is unity, F = 1/R. And since the transverse

I‘IlaglllﬁCatIOH 1S COIlStaIlt, 12 =m, gl\/lng
0 /m

(266)

A ray with o =0 has y' =my, and o' = w/m for all y. At conjugate positions, an afocal

lens has the matrix
0
(m ) (267)

0 1/m

Performing a translation in both object and images spaces from the conjugate position

!

gives
T
m mr+—
m
268
0 1/m (268)
Setting C =0 gives T' = —m’T, which relates the location of a single conjugate pair to all

others, Eq. (200).
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Symmetrical Lenses

For lenses with symmetry about a central plane and symmetrically located input and
output surfaces, F = R, so the matrix has the form

%9

where B> =1 — ¢C. The conjugate matrix has m = +1.

Reversing Lenses

When a lens is flipped left to right, the matrix of the reversed system is obtained from that
of the original one by switching the F and R terms.

9

This reversal maintains the exterior references planes, that is, the input surface for the
initial system becomes the output surface for the flipped one and vice versa.

Inverse Systems

By the “inverse” of a lens is meant a second system that undoes the effect of a given one.
That is, the rays at the output surface of the second system have the same height and angle
as those at the input of the first system. The combination of a system and its inverse is
afocal with unit magnification. The matrix representing the inverse system is the inverse of

that representing the system.
F -C
< ) (271)

é R

The matrix provides no instruction as to how such a lens is made up. Alternatively, the
inverse matrix can be interpreted as that whose input is y’ and w’, with outputs y and w.

Series of Arbitrary Lenses
The matrix for two successive lenses is

<R1R2*C2¢1 C1R2+C2Fl) :< R, Cz)( R, C1> 272)

_¢1Fz_¢zR1 Fle_C1¢2 _¢2 Fz _¢1 Fl

For example, two given lenses separated by some distance have the matrix

e, w)lo U, %) @
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Multiplying from right to left gives a running product or “cumulative matrix,” that shows
the effect of the system up to a given plane.

Decomposition

Matrix multiplication is associative, so the system representation can be broken up in a
number of ways. For example, the portion of a lens before and after the aperture stop can
be used to find the pupil locations and magnifications. An arbitrary lens matrix can be
written as a product of three matrices (Macukow & Arsenault 1983%"):

(G #)=Com D6 ulo T) @
or
(B 7=l U g V) @

Thus a general lens is equivalent to a succession of three systems. One has power and
works at unit magnification. The second is a conjugate afocal matrix. The third is a
translation. Each of these systems is defined by one of the three terms, either R, ¢/R, C/R
or F, ¢/F, C/F. This is another manifestation of the three degrees of freedom of paraxial
systems.

Matrix Determination by Two-Ray Specification

If a two-ray input matrix is given along with the desired output, or the two input and
output rays are measured to determine the matrix of an unknown lens, Eq. (254) gives

R C ’ ! -1
( >: <)’1 J’z><)’1 J’2> (276)
-¢ F 0 0)/)\0, o,
SO
( R C) -1 (ylr’wz—yz”wl yz:yl —y{yz/> @77
-¢ F V12 = Y01 \WO1W; — W20 W) Yol

The denominator of the multiplicative factor is the paraxial invariant associated with the
two rays, Eq. (149). As a special case, the two rays could be the marginal and chief rays.
The input and output pairs must have the same invariant, or the matrix thus found will not
have a unit determinant.

Experimental Determination of Matrix Elements

The matrix elements for an unknown lens can, in principle, be determined experimentally.
One method, as mentioned in the preceding section, is to measure the heights and angles
of an arbitrary pair of rays. Another method is as follows. The power term is found in the
usual way by sending a ray into the lens parallel to the axis and measuring its outgoing
angle. To find C =9dy’'/dw, the input ray angle is varied, while its height is unchanged. If
the output height is graphed, its slope is C. Likewise, the other partial derivatives in Eq.
(243) can be found by changing one of the input parameters while the other is fixed. The
four measurements are redundant, the unit determinant providing a check of consistency.
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Angle Instead of Reduced Angle

The matrices above can be modified to use the angles u and u’, instead of the reduced
angles. In terms of matrix theory, this amounts to a change in basis vectors, which is
accomplished by multiplying by diagonal vectors with elements 1 and » or 1 and n’. The

result is
Y\ = f nCA [y (278)
n
u’ -——¢ —F u
n n

This matrix has a constant determinant n/n’. The form Eq. (252) is simpler.

Other Input-Output Combinations

Referring to Eq. (244), any pair of the four quantities y, w, y’, and o' can be taken as
inputs, with the other two as outputs, and the relationships can be expressed in matrix
form. The four matrices in this section cannot be multiplied to account for the
concatenation of lenses. If the angles are given, the heights are

1/F -1
G)=sli Zello) @)
y'/ ¢\1 —R/\w'
The matrix is undefined for afocal lenses, for which the relationship of w and w’ is
independent of heights. Similarly, the angles can be expressed as functions of the heights

by
()25 A0) 50

For conjugates the expression breaks down, since there is no fixed relationship between
heights and angles. If the input is a height on one side and an angle on the other, then

<i> %(; 1C><5> (281)

(3) :%(—2, ﬂ(f.,) (282)

The determinants of these matrices are, respectively, C, ¢, R, and F.

For the inverse situation,

Derivative Matrices

If the axial position of the input surface changes, the rate of change of the output
quantities is

dy’/dz) (0 R >(y>
= 283
(dw'/dz 0 —¢/\w (283)
If the axial position of the output surface can change, the rate of change of output
quantities is
i)~ (o" o))
= 284
<da)’/dz’ 0 0/\w (284)

Higher derivatives vanish.
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Skew rays

The matrix formalism can be used to treat a paraxial skew ray, represented by a 2 X2
matrix of x and y positions and directions « and B. In this case

’ ’ R C
R L S A s
n'a" n'B —¢ F/\na np
Since the lens matrix has a unit determinant, the determinants of the incoming and
outgoing ray matrices are identical:

n'(y'a’ —x'B") =n(ya —xp) (286)
From Eq. (73), this is the skew invariant.

Relationship to Characteristic Functions

A lens matrix can be related to any one of the four paraxial characteristic functions, Egs.
(34) through (37), each of which has three first coefficients, associated with the three
degrees of freedom of the matrix. Brouwer and Walther (Brouwer & Walther 1967°*%)
derive the paraxial matrices from more general matrices based on the point angle
characteristic function.

Nonrotationally Symmetric Systems

Systems comprised of cylindrical lenses can also be treated paraxially by matrices
(Arsenault 19792 Arsenault 1980,* Arsenault 1980, Keating 1981,>° Arsenault &
Macukow 1983, Macukow & Arsenault 1983,>*' Attard 1984**®). The more general case
of a treatment around an arbitrary ray is also represented by a 4 X4 matrix (Stone &
Forbes 1992**). This is treated by several of the references to the section “Images About
Known Rays.”

1.18 APERTURES, PUPILS, STOPS, FIELDS, AND
RELATED MATTERS

Introduction

This section is concerned with the finite sizes of lens and their fields, as expressed in
various limitations of linear dimensions and angles, and with some of the consequences of
these limits. (Other consequences, for example, resolution limitations, are in the domain of
wave optics.) Terminology in this area is not well defined, and the terms typically used are
insufficient for all the aspects of the subject, so this section deals considerably with
definitions.

Field Size and Field Stop

The field or field of view of a lens is the region of object space from which light is captured
or the region of image space that is used. The field size may be described in angular, linear,
or area units, depending on the circumstances. (It can be described in still other ways, e.g.,
the number of pixels.) In and of itself, a lens does not have a definite field size, but
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FIGURE 23 Axial ray cone and aperture stop. The
upper lens has an internal aperture, and the lower one
has an external aperture on the object side.

beyond a certain size, image quality diminishes, both with respect to aberration correction
and to light collection. A field stop is a physical delimiter of the field, which may be in
either object or image space. A detector may be the delimiter.

Aperture Stop

Each object point can be thought of as emitting rays in all directions. Since lenses are finite
in size, only some of the rays pass through them. The rays that do pass are referred to as
image-forming rays, the ensemble of which is the image-forming bundle, also called the
image-forming cone, although the bundle may not be conical. The bundle associated with
each object point is delimited by one or more physical structures of the lens. For axial
object points, the delimiting structure is called the aperture, the stop, or the aperture stop.
The aperture may be either within the lens or outside of it on either side, Fig. 23. The
aperture may be a structure whose sole purpose is delimiting the bundle, or it may be the
edge of an optical element or a lens mount. The aperture stop may be fixed or adjustable,
for instance an iris. Which structure acts as the aperture can change with object position,
Fig. 24. The size and position of the aperture do not effect the gaussian properties of the
lens, i.e., the cardinal points and the conjugate locations and magnifications. They do

I

APERTURE FOR/ APERTURE FOR
DISTANT POINTS NEAR POINTS

FIGURE 24 An example of change of aperture with axial object
position. For distant points the aperture is the nominal stop. For near
points the aperture is the rim of the lens.



1.82 GEOMETRIC OPTICS

MARGINAL ]
RAY
(o} um ™ (IS
; \
n
Y N
CHIEF
RAY

U U
) b/
e ¢
/ E o
nl

n

FIGURE 25 Schematic diagram of a lens with object and image planes, entrance and exit
pupils, and marginal and chief rays. The entrance pupil is located at E and the exit pupil at
E'. The chief ray passes through the edges of the fields and the centers of the pupils. The
marginal ray passes through the axial object and image points and the edges of the pupils.

affect the image irradiance, the aberrations, and the effects of defocus. The aperture is
most commonly centered on axis, but this is not always so. With visual instruments, the
aperture stop for the entire system may be either an aperture in the optics or the iris of the
observer’s eye.

Marginal Rays and Chief Rays

Field Angle

Ray bundles are described to a considerable extent by specifying their central and extreme
rays. For object planes perpendicular to the lens axis, there are two meridional rays of
particular importance, defining the extremities of field and aperture, Fig. 25. These rays
are reciprocal in that one is to the pupil what the other is to the field.

The marginal ray originates at the axial object point, intersects the conjugate image
point, and passes through the edge of the aperture. This term is also used for rays from
other field points that pass through the extremes of the aperture. The paraxial marginal ray
is the marginal ray in the paraxial limit.

The chief ray or principal ray originates at the edge of the object field, intersects the
edge of the image field, and passes approximately through the center of the aperture, and
hence approximately through the center of the pupils. (Here we use “chief ray,” since the
prefix “principal” is so commonly used for other entities.) The term is also used for the
central ray of other bundles. The paraxial chief ray passes exactly through the centers of
the aperture and both paraxial pupils.

The field angle is that subtended by the field of view at the lens. This term is ambiguous,
since several angles can be used, as well as angles in both object and image space. A nodal
ray angle is the same in both spaces. If the nodal points are not at the pupils, the chief ray
angle differs on the two sides. The ratio of paraxial chief ray angles is proportional to the
paraxial pupil magnification, as discussed later, Eq. (289). If the lens is telecentric, the
chief ray angle is zero. An afocal lens has no nodal points, and the paraxial ratio of output
angles to input angles is constant. The concept of field angle is most useful with objects
and/or images at large distances, in which case on the long conjugate side the various ray
angles are nearly identical. On the short conjugate side, ambiguity is removed by giving the
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focal length, the linear size of the detector, and the principal plane and exit pupil positions.
For finite conjugates, such information should be provided for both spaces.

The term pupil is used in several ways, and care should be taken to distinguish between
them. There are paraxial pupils, “real” pupils, pupils defined as ranges of angles, and pupil
reference spheres used for aberration definition and diffraction calculations. The entrance
pupil is the aperture as seen from object space—more precisely, as seen from a particular
point in object space. If the aperture is physically located in object space, the entrance
pupil is identical to the aperture. Otherwise, the entrance pupil is the image of the
aperture in object space formed by the portion of the lens on the object side of the
aperture. If the aperture is in image space, the entrance pupil is its image formed by the
entire lens. Similarly, the exit pupil is the aperture as seen from image space. A real pupil
is a physically accessible image of the aperture or the aperture itself, and a virtual pupil is
an inaccessible image. Visual instruments often have external pupils, where the user’s eye
is located. The axial entrance pupil point is denoted here by E and the exit pupil by E'.

The pupils can be located anywhere on axis, except that they cannot coincide with the
object or image. It is common to draw pupils as shown in Fig. 25, but they can also be on
the side of the object or image away from the lens. The pupils are usually centered on axis,
but not necessarily. Aberrations may shift pupils from nominal axial centration.

Both pupils are conjugate to the aperture, so they are conjugate to each other. The
term pupil imaging refers to the relationship of the pupils with respect to each other and to
the aperture. In pupil imaging, the chief ray of the lens is the marginal ray and vice versa.
The pupil magnification mp denotes the ratio of exit pupil size to entrance pupil size. The
size may be specificed as linear or an angular extent, and the pupil magnification may be a
transverse magnification, finite or paraxial, or a ratio of angular subtenses. In general,
there is pupil aberration, so the image of the aperture in each space is aberrated, as is that
of the imaging of one pupil to the other. Pupil imaging is subject to chromatic aberration,
so positions, sizes, and shapes of pupils may vary with wavelength.

There is ambiguity about pupil centers and chief rays for several reasons. The center
can be taken with respect to linear, angular, or direction cosine dimensions. Because of
spherical pupil aberration, a ray through the center of the pupil may not also pass through
the center of the aperture, and vice versa. The angular dimensions of pupils may change
with field position. Pupil aberrations cause the actual pupil shape to be different from that
of the paraxial pupil.

Pupils that are not apertures can have any linear size, since the aperture can be imaged
at any magnification. If the aperture is within the lens, there is no particular relationship
between the positions and linear sizes of the entrance and exit pupils, since the portions of
the lens that precede and follow the aperture have no specific relationship. There is a
relationship between the angular subtense of the pupils, as discussed below.

The angular size and shape of the pupils can vary with field position, and the pupils can
change position if the aperture changes with object position. If the lens changes internally,
as with a zoom, the sizes and positions of the pupils change.

Paraxial Description

The paraxial pupils are the paraxial images of the aperture. They are usually planar and
perpendicular to the axis and are implicitly free from aberration. The paraxial chief ray
passes through the center of both pupils and the aperture, and the paraxial marginal
ray through the edges. The object and pupil magnifications and the distances from object
to entrance pupil and from exit pupil to image are related by Eq. (194). If the object at O
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is imaged at O’ with magnification m, and the pupil magnification from entrance pupil at E
to exit pupil at E’ is m, then from Eq. (194)

’

O'E' =" mm,OE (287)
n

Paraxial Invariant for Full Field and Full Aperture

Let the height of the paraxial marginal ray be y,, at the entrance pupil and y,, at the exit
pupil, and that of the paraxial chief ray by y., at the object plane and y/ at the image
plane, Fig. 25. Let the angles of these rays be u,, uc, uy, ue. The two-ray paraxial
invariant, Eq. (149), is

L =nycuy =nyytic =n'yyuc =n'ycuy (288)

This relationship was rediscovered several times, so the conserved quantity is referred to
by a variety of names, including the Lagrange invariant, the Helmholtz invariant, the Smith
invariant, and with various hyphenated combinations of the proper names (Rayleigh
1886, Southall 1910>"). Further discussions are found in the sections on paraxial optics
and on the étendue. The paraxial transverse magnification and paraxial pupil magnifica-
tions are related to the paraxial marginal and chief ray angles by

’
Yo nuy Ym  Huc
m=—=—-— and mp==—=—

=—— (289)
Yo R Uy Ym NlUc

Pupil Directions

For some purposes, pupils are best described as ranges of directions, specified in direction
cosines, rather than by linear extents of aperture images. Here the term pupil directions
(NS) is used. This is particularly the case when dealing with a given region of the object.
The construction for this description is shown in Fig. 26. The x and y axes of the

UNIT
CIRCLE

OBJECT
SURFACE >
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EXTREME

RAYS THAT
PASS

THROUGH
LENS

FIGURE 26 Construction for the description of the pupils with direction cosines. An x-y
plane is tangent to the object surface at the object point, and a unit sphere is centered on the
point. The intersections with the unit sphere of the rays are projected to the tangent plane to
give the pupil direction cosines.
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object-space coordinate system lie in the object surface, and the x’ and y’ axes. From a
point on the object plane, the extreme set of rays that passes through the lens is found. Its
intersection with a unit sphere about the object point is found, and perpendiculars are
dropped to the unit circle on (or tangent to) the object plane, giving the extent in direction
cosines.

The entrance pupil is delimited by a closed curve described by a relationship
0= P(a, B;x,y), and the exit pupil is likewise defined by 0= P'(a’, B'; x', y'). The spatial
argument is included to indicate that the shape varies, in general, with the field position.
There may be multiple regions, as in the case of central obstructions. It is usually
preferable to define the pupils relative to principal directions (NS) («y, B,) in object space
and («ag, Bg) in image space, where the two directions are those of the same ray in the two
spaces, usually a meridional ray. The principal directions are analogous to the chief rays.
The entrance pupil is then given by 0= Q(a — @y, B — Bo; x,y) and the exit pupil by
0=0Q'(a' —ag, B'— B, x', ¥"). For example, for a field point on the x =0 meridian, the
expression for the pupil might be well approximated by an ellipse, 0 = aa®+ b(8 — Bo)°,
where (0, B,) is the chief ray direction. If the imaging is stigmatic, the relationship between
entrance and exit pupil angular shapes is provided by the cosine condition, Eq. (104).

Q’(a/, B,;x/’ y,) = Q(mPa’ - Cl(;, mPB’ - Bé’ X, Y) (290)

The entrance and exit pupils have the same shapes when described in direction cosine
space. They are scaled according to the pupil angular magnification (NS) mp = n/n'm. The
orientations may be the same or rotated 180°. There is no particular relationship between
(ao, Bo) and (e, Bg), which can, for example, be changed by field lenses. The principal
directions are, however, usually in the same meridian as the object and image points, in
which case a,/B, = a/B}. If the field point is in the x meridian, and the central ray is in
this meridian, then a,=0 and «;=0. Even with aberrations, Eq. (290) usually holds to a
good approximation. The aberration pupil distortion refers to a deviation from this shape
constancy.

Pupil Directional Extent: Numerical Aperture and Its Generalizations

The angular extent of a pupil extent is limited by some extreme directions. In the example
above of the elliptical shape, for instance, there are two half widths

%(amax - amin) and %(Bmax - ﬁmin) (291)

For a rotationally symmetric lens with a circular aperture, the light from an axial object
point in a medium of index # is accepted over a cone whose vertex angle is 6,,,.. The object
space numerical aperture is defined as

NA = n Sin emax = n (az + Bz)max = namax = nBl]]'dX (292)

Likewise, on the image side, where the index is #n’ and the maximum angle is 6., the
image space numerical aperture is

NA, = n, Sin el;l‘dx = n, (alz + B,Z)max = n,al;]'dx = n’Bl":TdX (293)
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If the lens is free of coma, the sine condition, Eq. (106), gives for finite conjugates

n sin 6 NA
— 1510 Bimax _ 294
M sing. NA’ (294)

For infinite conjugates

Sin Qe = =22 or  p'sin By = NA" = 1By = — Vo (295)

f!

If there is coma, these relationships are still good approximations. For a given lens and a
given aperture size, the numerical aperture varies with the axial object position.

F-Number and Its Problems

The F-number is written in a variety of ways, including F/no. and F/#. It is denoted here
by FN. The F-number is not a natural physical quantity, is not defined and used
consistently in the literature, and is often used in ways that are both wrong and confusing
(Hatch 1980,*> Goodman 1993***). Moreover, there is no need to use the F-number, since
everything that it purports to describe or approximately describes is treated properly with
direction cosines. The most common definition for F-number, applied to the case of an
object at infinity, is

focal length 1

FN = (296)

entrance pupil diameter 2 tan 6’

where 6’ is the outgoing angle of the axial imaging done. In general, the F-number is
associated with the tangents of collinear transformations, rather than the sines (or
direction cosines) that are physically appropriate. It presumes that a nonparaxial ray
entering parallel to the axis at height y leaves the rear principal plane at the same height
and intersects the rear focal point, so that tan 8’ =y/f’. However, this particular
presumption contradicts Eq. (294), and in general, collineation does not accurately
describe lens behavior, as discussed above.

Other problems with F-number, as it is used in the literature, include the following: (1)
It is not defined consistently. For example, the literature also contains the definition
F-number = (focal length)/(exit pupil diameter). (2) For lenses used at finite conjugates,
the F-number is often stated for an object at infinity. In fact, given only the numerical
aperture for an object at infinity, that for other conjugates cannot be determined. (3)
There are confusing descriptions of variation of F-number with conjugates, for example,
the equation FN,, = (1 + m)FN.., where FN,, is the F-number for magnification m and FN..
is that for an object at infinity. In fact, numerical apertures for various magnification are
not so related. (4) The object and image space numerical apertures are related by Eq.
(293), but there is no such relationship for tangents of angles, except that predicted by
collineation, Eq. (232), which is approximate. (5) With off-axis field points and noncircular
pupils, the interpretation of F-number is more ambiguous. (6) Afocal systems have finite
numerical apertures when used at finite conjugates, but they have no analogue to Eq.
(295). (7) Object and image space refractive indices are not accounted for by the
F-number, whereas they are by the numerical aperture. (8) The F-number is often used as
a descriptor of radiometric throughput, rather than of ray angles per se.

A related quantity is the T-number (W. J. Smith 1992**%), which accounts for both the
convergence angle of the imaging cone and the fraction of power transmitted by the lens.
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This is useful as a single-number descriptor, but it is subject to all the confusion associated
with the F-number.

Image Irradiance for Lambertian Objects

If the light from a region of an object is lambertian with a power/area M, then the emitted
power per angle with angle according to (M/m)cos 8dw =(M/m) da dB. The power
captured by the entrance pupil from a small object area dA is

1
dP=-MdA J de dp (297)

entrance pupil

(For a full hemisphere [da dB =, giving dP = M dA.) If there are no losses within the
lens, the power reaching the conjugate image region dA’ is the same. Using the
conservation of étendue equation, Eq. (72), the image irradiance is

dP 1 _n"”
:dA’z}M? » >lda’dB’ (298)
exit pupi

E

The image irradiance does not depend explicitly on the magnification, but magnification is
included implicitly, since, for a given lens, the subtense of the exit pupil varies with
conjugates.

This equation obtains everywhere in the field, and it applies to arbitrary object surface
positions and orientations, so long as the direction cosines are defined with respect to the
local object and image surface normals. These equations apply regardless of the chief ray
angles, so they are applicable, for example, with telecentricity. In general, the pupil shape
and principal direction vary with field position, so there is a gradation of irradiance in the
image of a uniform lambertian object.

These equations do not account for all that influences image irradiance, for example
lens absorption and reflection. These effects can be included in the above expressions by
adding an appropriate weighting function of angle and field in the above integrals, giving

n/z

P 1
E@,y) == M) [t gix, vy da dp (299)

where 1(a’, B';x’, y') is the lens transmittance as a function of the direction cosines for
the image point (x’,y’). With externally illuminated objects that are not lambertian
scatterers, these relationships do not hold. For example, in optical projectors the
illumination is matched to the object and imaging lens to give nominally uniform image
irradiance.

Axial Image Irradiance for Lambertian Objects

In the special case of circular pupils and axial object surfaces perpendicular to the axis, the
collected power and image irradiance given above are

2

dP=MdAsin’® and E=M"—sin> @’ (300)
n
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Power /Pixel

From wave optics, a lens working at the ‘“‘resolution limit” has an image pixel size
gA/n’sin @', where A is the vacuum wavelength and ¢ is a dimensionless factor, typically of
the order of unity. Applying Eq. (300), this gives

/\ 2
Power/pixel = ¢°M (*) (301)
n

M(A/n)” is the energy emitted per square wavelength of object area. This is a fundamental
radiometric quantity. Increasing g gives a greater numerical aperture than is nominally
required for resolution, but in practice the aberration correction may be such that the
actual resolution is not greater.

Cosine-to-the-Fourth Approximation

For distant, planar, uniform lambertian objects perpendicular to the lens axis, if the
entrance pupil is well approximated by a circle, then the image irradiance varies
approximately with the object space field angle ¢ according to the cosine-to-the-fourth
relationship

E(§) = Eycos' ¢ (302)

where E, is the axial irradiance. There are three contributions to this dependence. (1) The
angular distribution of a lambertian emitter varies as cos . (2) The distance from the field
point to the entrance pupil varies as 1/d” = cos” . (3) Insofar as the pupil behaves as a
rigid circle, its projected solid angle varies approximately as cos . The cosine-to-the-
fourth relationship should be used only as a guideline, since ray tracing permits more
accurate calculations, and because of the ambiguities in the meaning of the field angle, as
discussed above, and elsewhere (Kingslake 1945, Reiss 1945,° Gardner 1947, Reiss
1948,7* Kingslake 1965**). For example, field angle is meaningless with telecentricity.
Some lenses, especially wide-angle ones, are specifically designed so the pupil subtense
increases with the field angle in order to compensate for effects (1) and (2) above, to
produce a sufficiently uniform image (Slyusarev 1941°*°).

Total Lens Etendue

The total amount of power from a lambertian object that can be transferred through a lens
is

1
7TM dx dy dadp (303)

field pupil

The pupil integral may vary over the field. If the pupil is round and constant over the field,
the étendue is proportional to A(NA)?, where A is the area of the field. This quantity is
also related to the total number of pixels in the field, and the ability of the lens to transfer
information (Gabor 1961**"). The term *area-solid angle product” is sometimes used, but
this is an approximation. The total etendue is proportional paraxially to ~L? where L is
given by Eq. (288).
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FIGURE 27 Example of vignetting. The dashed ray passes through the
aperture, but misses the lens.

Vignetting

Vignetting occurs when an image-forming bundle is truncated by two or more physical
structures in different planes, Fig. 27. Typically, one is the nominal aperture and another is
the edge of a lens. Another case is that of central obstructions away from the aperture.
When vignetting occurs, the image irradiance is changed, and its diminution with field
height is faster than it otherwise would be. Aberration properties are also changed, so
vignetting is sometimes used to eliminate light that would unacceptably blur the image.

Lens Combinations and Field Lenses

When lenses are used to relay images, the light is transferred without loss only if the exit
pupil of one corresponds with the entrance pupil of the next. An example of the failure
to meet this requirement is shown in Fig. 28. The axial point is reimaged satisfactorily, but
off-axis bundles are vignetted. To transfer the light properly, a field lens in the vicinity
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FIGURE 28 A pair of lenses relaying an image with and without a field lens. In the
top figure, there is no field lens, and some of the light forming the intermediate image
does not pass through the second lens. The amount lost depends on the two numerical
apertures and increases with distance from the axis. In the lower figure, a field lens at
the intermediate image forms an image of the exit pupil of the first lens into the
entrance pupil of the next. No light is lost unless the numerical aperture of the second
lens is less than that of the first.
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Defocus

of the intermediate image is used to image the exit pupil of the preceding lens into the
entrance pupil of the next one. If the field lens is a thin lens in the image plane, then its
magnification with respect to the image is unity. In practice, the field lens is usually shifted
axially, so scratches or dust on its surface are out of focus. Its magnification then differs
from unity. The focal length of a thin field lens in air is given by 1/f’ =1/a + 1/b, where a
is the distance from exit pupil of first lens to the field lens, and b is that from field lens to
the entrance pupil of the second lens. The exit pupil is reimaged with a magnification b/a.
If the sizes of the various pupils and their images are not matched, then the aperture of the
combination is determined by the smallest. Field lenses affect aberrations.

When the object and image-receiving surface are not conjugate there is defocus. If either
the object or the receiving surface is considered to be correctly positioned, the defocus is
associated with the other. Another situation is that in which the object and receiving
surfaces are conjugate, but both are wrongly located, so that the image is sharp but the
magnification is not what is desired, a condition that might be called misfocus (NS).

Defocus has two basic geometric effects, if there are no aberrations, Fig. 29. One is
blurring, since the rays from an object point do not converge to a single point on the
receiving surface. The blur size varies linearly with the axial defocus in image space and
with the cone angle of the image-forming bundle. The shape of the blur is that of the exit
pupil, projected on the receiving surface. The other effect of defocus is a lateral shift in
position of the blur’s centroid relative to that of the correctly focused point. The shift
depends on the chief ray angle on the side of the lens where the defocus occurs. In the
simplest case, the shift is approximately linear with field height, so acts as a change of
magnification. If the object is tilted or is not flat, the effects of defocus vary across the field
in a more complicated way. Aberrations affect the nature of the blur. With some
aberrations, the blur is different on the two sides of focus. With spherical aberration, the
blur changes in quality, and with astigmatism the orientation of the blur changes.

In considering the geometrical imaging of a small region of a lambertian object, there is
an implict assumption that the pupil is filled uniformly with light. In imaging an extended
object that is externally illuminated, the light from a given region may not fill the pupil
uniformly, so the character of the blurring is affected by the angular properties of the
illumination and scattering properties of the object.

The amount of defocus can be described in either object or image space, and it can be
measured in a variety of ways, for example, axial displacement, displacement along a chief
ray, geometrical blur size, and wavefront aberration. The axial displacements in object

-

FIGURE 29 Defocus of the receiving surface. A receiving surface is
shown in focus and shifted axially. The image of a point on the shifted
surface is blurred, and its centroid is translated radially.
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and image space differ, in general, and are related by the longitudinal magnification. As
expressed in wavefront aberration, i.e., optical path length, defocus is the same in both
spaces. There are also various functional measurements of defocus, for example, the sizes
of recorded images through focus.

Telecentricity

A lens is telecentric if the chief rays are parallel to one another. Most commonly, they are
also parallel to the lens axis and perpendicular to the object and/or image planes that are
perpendicular to the axis, Fig. 30. Telecentricity is often described by speaking of pupils at
infinity, but the consideration of ray angles is more concrete and more directly relevant. A
lens is telecentric in object space if the chief rays in object space are parallel to the axis,
a, =0 and B,=0. In this case the image of the aperture formed by the portion of the lens
preceding it is at infinity and the aperture is at the rear focal plane of the portion preceding
it. Similarly, a lens is telecentric in image space if the aperture is at the front focal point of
the subsequent optics, so ag =0 and B;=0. More generally, but less commonly, the chief
rays can be parallel to each other, but not necessarily to the axis, and not necessarily
perpendicular to a (possibly tilted) object or image plane.

With tilted object and image surfaces and nonaxial pupils, the chief rays are not
perpendicular to the object and/or image surfaces, but their angles are everywhere the
same, so defocus can result in a rigid shift of the entire image.

A focal lens can be nontelecentric or telecentric on either side, but it cannot be doubly
telecentric. An afocal lens can be nontelecentric, or doubly telecentric, but it cannot be
telecentric on one side. A doubly telecentric lens must be afocal, and a singly telecentric
lens cannot be afocal.

For a lens that is telecentric in image space, if the receiving surface is defocused, the
image of a point is blurred, but its centroid is fixed. However, if it is not telecentric in
object space, then the scale changes if the object is defocused. The converse holds for
object-space telecentricity without image-space telecentricity. For a doubly telecentric lens,
an axial shift of either the object or the receiving plane produces blurring without a
centroid shift. Although the magnification of an afocal lens does not change with
conjugates, there can be an effective change with defocus if it is not telecentric. If the pupil
is not on the axis or if the object and image planes are tilted, there can be telecentricity
without the chief rays being perpendicular to the object and/or image planes. In these
cases, defocus results in a rigid shift of the entire image.

Nominal telecentricity can be negated in several ways. Pupil aberrations may change
the chief ray angles across the field. For an extended object that is externally illuminated
the pupil may not be filled uniformly by light from a given region, so defocus can product a
lateral image shift.

=

FIGURE 30 Example of telecentricity. The lens shown is telecentric in
image space, in which ray bundles are parallel to the axis. An axial shift in
the receiving surface results in blurring, but does not translate the
centroid, so there is no change in image scale.
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Depth of Focus and Depth of Field

The depth of focus and depth of field are the amounts of defocus that the receiving surface
or object may undergo before the recorded image becomes unacceptable. The criterion
depends on the application—the nature of the object, the method of image detection, and
so on, and there are both ray and wave optics criteria for goodness of focus. For example,
a field of separated point objects differs from that of extended objects. Depth of focus is
usually discussed in terms of blurring, but there are cases where lateral shifts become
unacceptable before blurring. For example, in nature photography blurring is more critical
than geometrical deformation, while the opposite may be true in metrology.

Range of Focus and Hyperfocal Distance

In some cases, a geometrical description of defocus is applicable, and the allowable blur is
specified as an angle (Ray 1988,** Kingslake 1992,>® W. Smith 1992***). The hyperfocal
distance is

diameter of the entrance pupil

Hyperfocal distance = =dy (304)

maximum acceptable angular blur Bl

Let the object distance at which the lens is focused be d, the nearest distance at which the
image is acceptable be dy, and the furthest distance be d.. All of these quantities are
positive definite. The following relations obtain:

dyd dyd
d. = d dy = 305
Ty —d N, +d (305)
The distances to either side of best focus are
d? d?
dr —d = d d—dy= 306
¢ dy—d " N d,+d (306)
The total range of focus is
2d*d 2d
dp —dy= = (307)

T —d® (duldy—1

For d >d, the above quantities involving d, are infinite (not negative). If the lens is
focused at the hyperfocal distance or beyond, then everything more distant is adequately
focused. If the lens is focused at the hyperfocal distance, i.e., d = dj,, the focus is adequate
everywhere beyond half this distance, and this setting gives the greatest total range. If the
lens is focused at infinity, then objects beyond hyperfocal distance are adequately focused.
The hyperfocal distance decreases as the lens is stopped down.

1.19 GEOMETRIC ABERRATIONS OF POINT IMAGES—DESCRIPTION

Introduction

In instrumental optics, the term aberration refers to a departure from what is desired,
whether or not it is physically possible. Terms such as “perfect system’ and ‘“‘ideal system”
indicate what the actual is compared to, and these terms themselves are not absolute, but
depend on what is wished for. The ideal may be intrinsically impossible, in which case a
deviation therefrom is not a defect. A further distinction is between aberrations inherent in
a design and those that result from shortcomings in fabrication.
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This section considers only the description of aberrations of point images, with the lens
treated as a black box, whose action with respect to aberrations is accounted for by what
leaves the exit pupil. A full consideration of aberrations involves, among other things, their
causes, their correction, their various manifestations, and their evaluation. Aberrated
images of extended objects are formed by overlapping blurs from the individual points.
The analysis of such images is object- and application-dependent, and is beyond the scope
of this section. Aberrations do vary with wavelength, but most of this discussion involves
monochromatic aberrations, those at a single wavelength. In addition, aberrations vary
with magnification. Aberrations are discussed to some extent in many books that treat
geometric optics (Conrady 1929,>** H. Hopkins 1950,>*° Buchdahl 1954, Herzberger
1958,>* Kingslake 1978,>*® Born & Wolf 1980,**° Slyusarev 1984,>° Welford 1986,
Welford 1986, W. Smith 1992°%).

Aberration has many manifestations, and can be described in a variety of ways. For
example, geometric wavefronts, path lengths, ray angles, and ray intersection points can all
differ from the nominal (and in wave optics there are additional manifestations). Terms
such as ‘““wavefront aberration” and ‘“ray aberration” do not refer to fundamentally
different things, but to different aspects of the same thing. Often, a single manifestation of
the aberration is considered, according to what is measurable, what best describes the
degradation in a particular application, or what a lens designer prefers to use for
optimization during the design process.

Aberrations are classified and categorized in a variety of ways. These include pupil
dependence, field dependence, order, evenness and oddness, pupil and field symmetry, and
the nature of change through focus—symmetrical and unsymmetrical. In addition, there
are natural groupings, e.g., astigmatism and field curvature. The classification systems
overlap, and the decompositions are not unique. The complete aberration is often
described as a series of terms, several schemes being used, as discussed below. The names
of aberrations, such as “spherical,” “coma,” and ‘“‘astigmatism,” are not standardized, and
a given name may have different meanings with respect to different expansions.
Furthermore, the effects of aberrations are not simply separated. For example, “pure
coma’ can have effects usually associated with distortion. Defocus is sometimes taken to
be a type of aberration, and it is useful to think of it in this way, since it is represented by a
term in the same expansion and since the effects of aberrations vary with focus. The
number of terms in an expansion is infinite, and familiar names are sometimes associated
with unfamiliar terms. To improve clarity, it is recommended that all the terms in an
expansion be made explicit up to agreed-upon values too small to matter, and that, in
addition, the net effect be shown graphically. Further, it is often helpful to show more than
one of an aberration’s manifestations.

Pupil and Field Coordinates

In this section, all the quantities in the equation are in image space, so primes are omitted.
Field coordinates are x and y, with A>=x>+y?, and (x, y) is the nominal image point in a
plane z =0. Direction cosines equally spaced on the exit pupil should be used for pupil
coordinates but, in practice, different types of coordinates are used, including linear
positions, spatial frequencies, and direction cosines. Here the pupil coordinates are & and
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1, which are dimensionless, with p> = £ + 0> The overall direction of the pupil may vary
with field. Here the (&, n) = (0, 0) is always taken at the pupil center, the meaning of which
may not be simple, as discussed in the section on pupils above. The angle of a meridian in
the pupil is ¢. Entrance and exit pupil coordinates must be distinguished. For diffraction
calculations, the exit pupil should be sampled at equal intervals in direction cosines, but a
set of rays from an object point that is equally spaced in direction cosines may leave with
uneven spacing, as a result of aberrations.

Wavefront Aberration

If an object point is imaged stigmatically, then the optical path lengths of all rays from the
object point to its image are identical, and the geometric wavefronts leaving the exit pupil
are spherical. In the presence of aberrations, the wavefront is no longer spherical. Rather
than describing the wavefront shape, it is usually preferable to consider the difference
between the actual wavefront, and a nominal wavefront, often called the reference sphere,
centered at a reference point that is usually the nominal image point. This reference sphere
is usually taken to intersect the center of the pupil, since this gives the most accurate
diffraction calculations. The wavefront aberration W is the optical path length from
reference sphere to wavefront, or vice versa, according to the convention used, Fig. 31.
Two sign conventions are in use; a positive wavefront aberration may correspond either to
a wavefront which lags or leads the reference sphere. For each nominal image point
(x, v, z), the wavefront aberration is a function of the pupil coordinates (& n), so the
functional form is W (¢, n;x, y, z), with the z usually suppressed, since the image plane is
usually taken to be fixed. For a given lens prescription, W is found by tracing a set of rays
from each object point to the reference sphere and calculating their path lengths. If the
absolute path length is unimportant, the choice of the reference sphere’s radius is not
critical. Considered from the point of view of wave optics, the image of a point is degraded
by phase differences across the reference sphere, so absolute phase is of no consequence,
and the zero of the wavefront aberration can be chosen arbitrarily. By convention and
convenience, the zero is usually taken at the center of the pupil, so W(0, 0, x, y)=0.

NOMINAL
| o IMAGE
| POINT
|

\\ W
WAVEFRONT

REFERENCE
SPHERE

FIGURE 31 Wavefront aberration. The reference
sphere is concentric with the nominal image point. The
wavefront is taken that is tangent to the reference
sphere in the center of the pupil. The wavefront
aberration function is the distance from the reference
sphere to the wavefront as a function of pupil
coordiantes.
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Absolute optical path lengths are significant for imaging systems with paths that separate
between object and image in cases where there is coherence between the various image
contributions. An error in absolute optical path length is called piston error. This results in
no ray aberrations, so it is omitted from some discussions.

Ray Aberrations

In the presence of aberrations, the rays intersect any surface at different points than they
would otherwise. The intersection of the rays with the receiving surface, usually a plane
perpendicular to the axis, is most often of interest. The transverse ray aberration is the
vectorial displacement (g,, £,) between a nominal intersection point and the actual one.
The displacement is a function of the position of the nominal image point (x, y) and the
position in the pupil through which the ray passes (& n). A complete description of
transverse ray aberrations is given by

(& mx,y)  and g (& nix,y) (308)

The longitudinal aberration is the axial displacement from nominal of an axial
intersection point. This description is useful for points on the axis of rotationally
symmetrical systems, in which case all rays intersect the axis. Such aberrations have both
transverse and longitudinal aspects. The intersection with a meridian can also be used. The
diapoint is the point where a ray intersects the same meridian as that containing the object
point (Herzberger 1958>*7). For an image nominally located at infinity, aberrations can be
described by the slope of the wavefront relative to that of the nominal, that is, by ray
angles rather than intersection points. A hypothetical ideal focusing lens can also be
imagined to convert to transverse aberrations.

A ray intercept diagram shows the intersection points of a group of rays with the
receiving surface (O’Shea 1994>*). The rays are usually taken to arise from a single object
point and to uniformly sample the pupil, with square or hexagonal arrays commonly used.
The ray intercept diagrams can suffer from artifacts of the sampling array, which can be
checked for by using more than one type of array. Other pupil loci, for instance, principal
meridians and annuli, can be employed to show particular aspects of the aberration.
Intercept diagrams can also be produced for a series of surfaces through focus. Image
quality may be better than ray diagrams suggest, since destructive interference can reduce
the irradiance in a region relative to that predicted by the ray density.

Relationship of Wavefront and Ray Aberrations

Since rays are normal to geometric wavefronts, Fig. 32, transverse ray aberrations are
proportional to the slope of the wavefront aberration function. For systems of rotation

/ NOMINAL
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FIGURE 32 Ray aberration. Rays intersect the receiving
plane at positions shifted from the nominal.
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with image space index n and marginal ray angle 6, the transverse aberrations are to a
good approximation (Welford 1986>")

LW 1w
* nsin @ 9¢ Y nsin 0y

(309)

The refractive index appears since W is an optical path length. If the rays are nominally
parallel, then the partial derivatives give the angular ray errors

1 oW 1 oW
a=——"" AB=—— (310)
np ¢ np an

where p is the linear radius of the exit pupil, which cannot be infinite if the image is at
infinity. These expressions may also have a multiplicative factor of —1, depending on the
sign conventions. A sum of wavefront aberrations gives a transverse aberration that is the
sum of the contributing ones.

Ray Densities
The density of rays near the nominal image point is (Welford 1986>")
W\ (0 W \?
=) ) ~2agan) @i
€ an d€an

Caustics are the surfaces where ray densities are infinite. Here, geometric optics predicts
infinite power/area, so the ray model is quantitatively inaccurate in this case.

iy
o
Density

Change of Reference Points

The center of the reference sphere may be displaced from the nominal image point. If the
reference point is changed by linear displacement (8x, 8y, 6z), then the wavefront
aberration function changes from W to W’ according to

W'(& m3x, 3 8x, 8y, 82) = W(E mix, y) + Wb + Wom + W.(87 + %) (312)
where W, = n sin 0 éx,
W, = n sin 6 8y (313)
W, = insin” 6 67
The transverse ray aberration ¢, and ¢, with respect to the new reference points are
& =¢ +8x +sin 08z g =¢€,+ 8y +sin 68z (314)

The change through focus is accounted for by varying &z. Setting &, =&, =0 gives the
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parametric equations x(8z) and y(8z) for a ray with pupil coordinates (¢, ), relative to
the nominal ray near the nominal image point.

Aberration Symmetries for Systems with Rotational Symmetry

If the lens, including the aperture, is a figure of rotation, only certain aberration forms are
possible. For object points on axis, the wavefront aberration and the image blur are figures
of revolution. For off-axis points, both wavefront aberration and blur are bilaterally
symmetrical about the meridional plane containing the object point. For object points on a
circle centered on the axis, the wavefront and ray aberrations are independent of azimuth,
relative to the local meridian. In practice, there is always some imperfection, so the
symmetries are imperfect and additional aberration forms arise.

Wavefront Aberration Forms for Systems with Rotational Symmetry

Here the pupil is taken to be circular, with the coordinate zero taken at the center. The
field coordinates are normalized so x>+ y®>=h>=1 at the edge of the field. The pupil
coordinates are normalized, so that & + 1> = p® =1 on the rim of the pupil. The algebra is
simplified by using dimensionless coordinates. To add dimensions and actual sizes, replace
the & by £/&,.. and likewise for other variables. The simplest combinations of pupil and
field coordinates with rotational symmetry are

Xy =nt E4n’=p" &ty (315)

The general wavefront aberration function can be expressed as a series of such terms
raised to integral powers,

W,y & m) = > W+ )€+ )Y (xé+yn)™ (316)

L,M,N=0

where L, M, N are positive integers. The terms can be grouped in orders according to the
sum L+ M + N, where, by convention, the order equals 2(L + M + N) —1. The order
number refers more directly to ray aberration forms than to wavefront forms, and it is
always odd. The first-order terms are those for which L + M + N =1, for the third-order
terms the sum is two, and so on. The number of terms in the Qth order is
1+(Q +1)(Q +17)/8. For orders 1, 3, 5, 7, 9 the number of terms is 3, 6, 10, 15, 21. For
each order, one contribution is a piston error, which is sometimes excluded from the count.

The expression of Eq. (316) is related to the characteristic function for a rotationally
symmetrical system, Eq. (32). If the spatial coordinates are taken to be those of the object
point, this is the point-angle characteristic function. In the hamiltonian optics viewpoint,
the characteristic function is a sum of two parts. The first-order terms specify the nominal
properties, and those of higher orders the deviation therefrom. This is discussed in the
references given in that section. The term for which L = M = N =0 has to do with absolute
optical path length.

Since there is bilateral symmetry about all meridians, the expansion can be simplified by
considering object points in a single meridian, customarily taken to be that for which x = 0.
Doing so and letting the fractional field height be y =/ gives the wavefront aberration
function

W(hip,m)= > Wonwh®™™p™n™ = 3 Wisch*pn© (317)
L,M,N=0 A,B,C

where A=2L+ N, B=2M, C =N, and the order equals (A + B + C) — 1. Another form
is obtained with the fractional pupil radius p and the pupil azimuth ¢, the angle from
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the x =0 meridian, so 7 = p cos . With these pupil variables the wavefront aberration
function is

W(h;p, ) = E Weah® N p? N cos™ o = 2 Wischp® cos® i (318)

L,M,N=0 A,B,C

where A=2L+ N, B=2M + N, C =N, and the order is A + B — 1. For orders above the
first, the Wy v, Wige, and Wi are the wavefront aberration coefficients.

For a given field position, the wavefront aberration function for circular pupils can also
be decomposed into the Zernike polynomials, also called circle polynomials, a set of
functions complete and orthonormal on a circle (Zernike 1934,”>® Kim & Shannon 1987,°
Malacara 1978,>7 Born & Wolf 1980°*).

Third-Order Aberrations and Their Near Relatives

There are six third-order terms. The Seidel aberrations are spherical, coma, astigmatism,
field curvature, distortion, and there is also a piston-error term. Expressions for these
aberrations are given below, along with some higher-order ones that fall in the same
classification. The terminology of higher-order aberrations is not standardized, and there
are forms that do not have third-order analogues. This section uses the notation of the
second expression of Eq. (318), without the primes on the coefficients.

It is useful to include defocus as a term in aberration expansions. Its wavefront
aberration and transverse ray aberrations are

W= %zopz £, < 2Wioé €, < 2Wiom (319)

Coefficient Wy, is identical to W,, Eq. (313).

In spherical aberration the wavefront error is a figure of revolution in the pupil. The
individual terms of the expansion have the form p*". The form that appears on axis, and
which is independent of field position is

W= VV020P2 + VVO40P4 + VVOGOPG t (320)

where defocus has been included. The W,,, term is the third-order term, the Wy, is the
fifth-order term, etc. The ray aberrations are

&, < 2Wono& + 4Wouopé + 6Woeop € + - - - (321)
Ey o 2‘/VO2077 + 4VVO40p27] + 6VVO60P47] + ...

There are also higher-order off-axis terms, called oblique spherical aberration, with forms
h*"p>™. Spherical is an even aberration.

In coma, the wavefront aberration varies linearly with field height, so the general form
is hp*n = hp®™*' cos . Coma is an odd aberration. The wavefront expansion is

W =(Wiip® + Wisip* + - - )nh = (Wiz1p° + Wisip” + - - ) cos g (322)
The ray aberrations are

£, < [Wis,(28m) + 4W,5, (8 + nDén + - - ]k

(323)
&, < [Wisy (& +31%) + Wi (€ + 580" + 6m*) + - - -]h

In astigmatism the wavefront aberration is cylindrical. The third-order term is

W= "szzhznz = "szzthz cos’ 1 (324)
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with ray aberration
e, =0 &, ©2Wanh’n (325)

Field curvature, also known as Petzval curvature, is a variation of focal position in the
axial direction with field height. In its presence, the best image of a planar object lies on a
nonplanar surface. Its absence is called field flatness. The wavefront aberration form is

W= (szzoh2 + Wiaoh* + Wigoh + - - ‘)P2 (326)
with symmetrical blurs given by

E X (Vszoh2 + Wioh + Weyoh® + - - €

&, x (Vszo]’l2 + Winoh* + Wepoh® + - - In

(327)

The curvature of the best focus surface may have the same sign across the field, or there
may be curvatures of both signs.

Astigmatism and field curvature are often grouped together. Combining defocus,
third-order astigmatism, and third-order field curvature, the wavefront aberration can be
written

W = Woao(€* + 0°) + [Wazg & + (Wasg + Waro)’]1? (328)
The resultant ray aberration is
£, < [Wopo + Vszohzlf &, x [Wozo + (Wano + vvzzo)hz]"'] (329)

A tangential fan of rays, one that lies in the x =0 meridian, has £ =0, so & =0. The
tangential focus occurs where &, = 0, which occurs for a defocus of Wi,y = —(Wayy + Wan)h>.
Combining this result with Eq. (314) gives 8§z « h’, the equation for the tangential focal
surface. A sagittal fan of rays crosses the pupil in the n = 0 meridian, so &, = 0. The sagittal
focus occurs where &, =0, i.e., on the surface given by Wy,, = —Wa,0h?.

In general, distortion is a deviation from geometric similarity between object and image.
For rotationally symmetrical lenses and object and image planes perpendicular to the axis,
the error is purely radial, and can be thought of as a variation of magnification with field
height. The aberration forms are

W:(m11h+‘)‘/311h3+w/511h5+' <)n (330)
with
e, =0 &, x Wi h + W h> + Wo B2+ - - - (331)

In pincushion distortion the magnitude of magnification increases monotonically with
field height, so the image is stretched radially. In barrel distortion the magnitude decreases,
so the image is squeezed. In general, the aberration coefficients can be both positive and
negative, so the direction of distortion can change as a function of field height and the
distortion may vanish for one or more field heights.

For piston error the wavefront differs uniformly across the pupil from its nominal in a
way that varies with field height.

W = Wy + vvzooh2 + VV4(,Oh4 + va)()h6 R e =¢=0 (332)

There are no transverse ray aberrations.
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Chromatic Aberrations

In general, the properties of optical systems vary with wavelength. The term chromatic
aberration often refers to the variation in paraxial properties as a function of wavelength.
Thus, axial color is related to differences of focal length and principal plane location with
wavelength, and lateral color is related to variations of magnification with wavelength.
Also, the monochromatic aberrations vary in magnitude with wavelength. Reflective
systems have identical ray properties at all wavelengths, but their wave properties vary
with color, since a given variation in path length has an effect on phase that varies with
wavelength.

Stop Size and Aberration Variation

For a given system, if the size of the aperture is changed, the marginal ray is changed, but
not the chief ray. If the aperture is reduced, depth of focus and depth of field increase and
image irradiance decreases. The rays from axial object points are more nearly paraxial, so
the imaging tends to be better corrected. For off-axis points, some aberrations are changed
and others are not. Distortion, as defined with respect to the chief ray, is not changed.
Field curvature per se does not change, since the aperture size does not change the
location of the best image surface (if there are no other aberrations), but the depth of
focus does change, so a flat detector can cover a larger field.

Stop Position and Aberration Variation

For a given system, if the aperture is moved axially, the image-forming bundle passes
through different portions of the lens elements. Accordingly, some aberrations vary with
the position of the stop. Lens design involves an operation called the stop shift, in which
the aperture is moved axially while its size is adjusted to keep the numerical apertures
constant. In this operation, the marginal ray is fixed, while the chief ray is changed. This
does not change the aberrations on axis. Most of those for off-axis points are changed, but
third-order field curvature is unchanged.
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CHAPTER 2
INTERFERENCE

John E. Greivenkamp
Optical Sciences Center
University of Arizona
Tucson, Arizona

2.1 GLOSSARY

A amplitude
E electric field vector
r position vector
X, ¥, 2 rectangular coordinates
0] phase

2.2 INTRODUCTION

Interference results from the superposition of two or more electromagnetic waves. From a
classical optics perspective, interference is the mechanism by which light interacts with
light. Other phenomena, such as refraction, scattering, and diffraction, describe how light
interacts with its physical environment. Historically, interference was instrumental in
establishing the wave nature of light. The earliest observations were of colored fringe
patterns in thin films. Using the wavelength of light as a scale, interference continues to be
of great practical importance in areas such as spectroscopy and metrology.

2.3 WAVES AND WAVEFRONTS

The electric field vector due to an electromagnetic field at a point in space is composed of
an amplitude and a phase

E(x’ Y,z t) = A(xy Y,z t)eid)(x'y'zv’) (1)

or
E(r, 1) = A(r, 1) )
where r is the position vector and both the amplitude A and phase ¢ are functions of the

spatial coordinate and time. As described in Chap. 5, ““Polarization,” the polarization state
of the field is contained in the temporal variations in the amplitude vector.
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Plane Wave

This expression can be simplified if a linearly polarized monochromatic wave is
assumed:

E(x, y, 2, 1) = A(x, y, z)ell#e»2l 5
where w is the angular frequency in radians per second and is related to the frequency v by
o =271V @

Some typical values for the optical frequency are 5 X 10'* Hz for the visible, 10" Hz for the
infrared, and 10'° Hz for the ultraviolet. Note that in the expression for the electric field
vector, the time dependence has been eliminated from the amplitude term to indicate a
constant linear polarization. The phase term has been split into spatial and temporal terms.
At all locations in space, the field varies harmonically at the frequency .

The simplest example of an electromagnetic wave is the plane wave. The plane wave is
produced by a monochromatic point source at infinity and is approximated by a collimated
light source. The complex amplitude of a linearly polarized plane wave is

E(x,y, z,1) = E(r, 1) = Ae ! ®)

where k is the wave vector. The wave vector points in the direction of propagation, and its
magnitude is the wave number k =27/A, where A is the wavelength. The wavelength is
related to the temporal frequency by the speed of light v in the medium:

A=tmomi=Soon S (6)

where 7 is the index of refraction, and c is the speed of light in a vacuum. The amplitude A
of a plane wave is a constant over all space, and the plane wave is clearly an idealization.

If the direction of propagation is parallel to the z axis, the expression for the complex
amplitude of the plane wave simplifies to

E(x, y, z, t) = Ae'l* ] (7)

We see that the plane wave is periodic in both space and time. The spatial period equals
the wavelength in the medium, and the temporal period equals 1/v. Note that the
wavelength changes with index of refraction, and the frequency is independent of the
medium.

Spherical Wave

The second special case of an electromagnetic wave is the spherical wave which radiates
from an isotropic point source. If the source is located at the origin, the complex amplitude
is

E(r, t) = (A/r)e ] )

where r = (x> + y*> + z°)"2 The field is spherically symmetric and varies harmonically with
time and the radial distance. The radial period is the wavelength in the medium. The
amplitude of the field decreases as 1/r for energy conservation. At a large distance from
the source, the spherical wave can be approximated by a plane wave. Note that the vector
characteristics of the field (its polarization) are not considered here as it is not possible to
describe a linear polarization pattern of constant amplitude that is consistent over the
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FIGURE 1 Examples of wavefronts: (a) plane wave; (b) spherical wave; and (c) aberrated
plane wave.

entire surface of a sphere. In practice, we only need to consider an angular segment of a
spherical wave, in which case this polarization concern disappears.

Wavefronts represent surfaces of constant phase for the electromagnetic field. Since they
are normally used to show the spatial variations of the field, they are drawn or computed
at a fixed time. Wavefronts for plane and spherical waves are shown in Fig. 1a and b. The
field is periodic, and a given value of phase will result in multiple surfaces. These surfaces
are separated by the wavelength. A given wavefront also represents a surface of constant
optical path length (OPL) from the source. The OPL is defined by the following path
integral:
P
OPL=J n(s)ds )

S
where the integral goes from the source S to the observation point P, and n(s) is the index
of refraction along the path. Variations in the index or path can result in irregularities or
aberrations in the wavefront. An aberrated plane wavefront is shown in Fig. 1c. Note that
the wavefronts are still separated by the wavelength.

The local normal to the wavefront defines the propagation direction of the field. This
fact provides the connection between wave optics and ray or geometrical optics. For a
given wavefront, a set of rays can be defined using the local surface normals. In a similar
manner, a set of rays can be used to construct the equivalent wavefront.

2.4 INTERFERENCE

The net complex amplitude is the sum of all of the component fields,
E(x, 2R t) = 2 Ei(x; Y,z t) (10)

and the resulting field intensity is the time average of the modulus squared of the total
complex amplitude

I(x,y,z, 1) =(E(x, y, z, 1)) (1)
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where ( ) indicates a time average over a period much longer than 1/v. If we restrict
ourselves to two interfering waves E; and E,, this result simplifies to

I(x, y, z, 1) = (E,) + (Eo) + (E, - E$) + (Ef - Ey) (12)
or
I(x,y,z,t)=1 + L+ (E, - E¥) + (Ef - E,) (13)

where I, and L are the intensities due to the two beams individually, and the (x,y, z, t)
dependence is now implied for the various terms.

This general result can be greatly simplified if we assume linearly polarized mono-
chromatic waves of the form in Eq. (3):

Ei(x; y) Z} [) = Ai(x) y) Z)ei[witid)i(xvy’Z)] (14)
The resulting field intensity is

]()C, Y, Z, t) =L+L+ Z(Al : AZ) cos [(wl - wz)t - (d)l(x’ Y, Z) - ¢2(x) Y, Z))] (15)

The interference effects are contained in the third term, and we can draw two important
conclusions from this result. First, if the two interfering waves are orthogonally polarized,
there will be no visible interference effects, as the dot product will produce a zero
coefficient. Second, if the frequencies of the two waves are different, the interference
effects will be modulated at a temporal beat frequency equal to the difference frequency.

Interference Fringes

We will now add the additional restrictions that the two linear polarizations are parallel
and that the two waves are at the same optical frequency. The expression for the intensity
pattern now becomes

I(x,y,z) =1+ L+2VILLcos [Ad(x, y, z)] (16)
where A¢ =¢, — ¢, is the phase difference. This is the basic equation describing

interference. The detected intensity varies cosinusoidally with the phase difference
between the two waves as shown in Fig. 2. These alternating bright and dark bands in the

I3+ 1y + 2(1112) Y2 4

I3+ 12— 2(111)Y2 T

1 1
T 21 3n 41t 51 61T 7 A

»

FIGURE 2 The variation in intensity as a function of the phase difference between two
interfering waves.
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TABLE 1 The Phase Difference and OPD for
Bright and Dark Fringes (m an Integer)

A¢p OPD
Bright fringe 2mm mA
Dark fringe 2m+1)m (m+1/2)A

intensity pattern are referred to as interference fringes, and along a particular fringe, the
phase difference is constant.

The phase difference is related to the difference in the optical path lengths between the
source and the observation point for the two waves. This is the optical path difference
(OPD):

OPD =OPL, — OPL, = <%T) A¢ 17)
or

Ad = (2{) OPD (18)

The phase difference changes by 271 every time the OPD increases by a wavelength. The
OPD is therefore constant along a fringe.

Constructive interference occurs when the two waves are in phase, and a bright fringe or
maximum in the intensity pattern results. This corresponds to a phase difference of an
integral number of 277’s or an OPD that is a multiple of the wavelength. A dark fringe or
minimum in the intensity pattern results from destructive interference when the two waves
are out of phase by mor the OPD is an odd number of half wavelengths. These results are
summarized in Table 1. For conditions between these values, an intermediate value of the
intensity results. Since both the OPD and the phase difference increase with the integer m,
the absolute value of m is called the order of interference.

As we move from one bright fringe to an adjacent bright fringe, the phase difference
changes by 2 Each fringe period corresponds to a change in the OPD of a single
wavelength. It is this inherent precision that makes interferometry such a valuable
metrology tool. The wavelength of light is used as the unit of measurement. Interfero-
meters can be configured to measure small variations in distance, index, or wavelength.

When two monochromatic waves are interfered, the interference fringes exist not only
in the plane of observation, but throughout all space. This can easily be seen from Eq. (16)
where the phase difference can be evaluated at any z position. In many cases, the
observation of interference is confined to a plane, and this plane is usually assumed to be
perpendicular to the z axis. The z dependence in Eq. (16) is therefore often not stated
explicitly, but it is important to remember that interference effects will exist in other
planes.

Fringe Visibility
It is often more convenient to rewrite Eq. (16) as

I(XJ y) = IO(x) y){l + Y(X: y) €os [A¢(x’ Y, Z)]} (19)
or

1(x, y) = Iy(x, y){1 + v(x, y) cos [2TOPD(x, y)/A]} (20)
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where Iy(x, y) = Ii(x, y) + L(x, y), and

20 ) )]
Il(x’ y) + IZ(XJ y)
Since the cosine averages to zero, I,(x, y) represents the average intensity, and y(x, y) is

the local fringe contrast or visibility. The fringe visibility can also be equivalently calculated
using the standard formula for modulation:

y(x, y) (1)

Imax(xJ y) - Imin(x) y)
Imax(x’ Y) + ]min(x7 y)

where I, and I.;, are the maximum and minimum intensities in the fringe pattern.

The fringe visibility will have a value between 0 and 1. The maximum visibility will
occur when the two waves have equal intensity. Not surprisingly, the visibility will drop to
zero when one of the waves has zero intensity. In general, the intensities of the two waves
can vary with position, so that the average intensity and fringe visibility can also vary
across the fringe pattern. The average intensity in the observation plane equals the sum of
the individual intensities of the two interfering waves. The interference term redistributes
this energy into bright and dark fringes.

y(x, y) = (22)

Two Plane Waves

The first special case to consider is the interference of two plane waves of equal intensity,
polarization and frequency. They are incident at angles 6, and 6, on the observation plane,
as shown in Fig. 3. The plane of incidence is the x-z plane (the two k-vectors are contained
in this plane). According to Eq. (5), the complex amplitude for each of these plane waves
is

E.(x, y, z, 1) = Ag/letzcos(@)—kxsin(6))] )

where the dot product has been evaluated. For simplicity we will place the observation
plane at z =0, and the phase difference between the two waves is

Ap(x, y) =kx(sin 8, —sin 6,) = (2rx/A)(sin 8, — sin 6,) (24)

A r

~Y

FIGURE 3 The geometry for the interference of two plane waves.
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FIGURE 4 The interference of plane waves incident at + 6 resulting in straight fringes.

The resulting intensity from Eq. (19) is
I(x,y) = I,{1 + cos [(2rrc/A)(sin 6, — sin 6,)]} (25)

where I, =2A” is twice the intensity of each of the individual waves. Straight equispaced
fringes are produced. The fringes are parallel to the y axis, and the fringe period depends
on the angle between the two interfering beams.
The fringe period p is
A

_— 26
sin 6, — sin 6, (26)

p=

and this result can also be obtained by noting that a bright fringe will occur whenever the
phase difference equals a multiple of 27 A typical situation for interference is that the two
angles of incidence are equal and opposite, 8, = —0, = 6. The angle between the two
beams is 26. Under this condition, the period is

A A
2sin6 26

p= @7
and the small-angle approximation is given. As the angle between the beams gets larger,
the period decreases. For example, the period is 3.8\ at 15° (full angle of 30°) and is A at
30° (full angle of 60°). The interference of two plane waves can be visualized by looking at
the overlap or moiré of two wavefront patterns (Fig.4). Whenever the lines representing
the wavefronts overlap, a fringe will result. This description also clearly shows that the
fringes extend parallel to the z axis and exist everywhere the two beams overlap.

Plane Wave and Spherical Wave

A second useful example to consider is the interference of a plane wave and a spherical
wave. Once again the two waves have the same frequency. The plane wave is at normal
incidence, the spherical wave is due to a source at the origin, and the observation plane is
located at z = R. The wavefront shape at the observation plane will be a spherical shell of
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radius R. Starting with Eq. (8), the complex amplitude of the spherical wave in the
observation plane is

E(p, 1) = (A/R)ei[wr—k(R2+p2)|/2] ~ (A/R)ei[wr—k(R+p2/2R)] (28)

where p = (x*+y?)"? and the square root has been expanded in the second expression.
This expansion approximates the spherical wave by a parabolic wave with the same vertex
radius. An additional assumption is that the amplitude of the field A/R is constant over the
region of interest. The field for the plane wave is found by evaluating Eq. (23) at z = R and
0 =0. The phase difference between the plane and the sphere is then

2

Tip
A ~—— 29
bp)="0 29)
and the resulting intensity pattern is
I(p)=1L|1+ — 30
() = i 1+ cos (2 (30)

The fringe pattern is comprised of concentric circles, and the radial fringe spacing

decreases as the radius p increases. The intensities of the two waves have been assumed to

be equal at the observation plane. This result is valid only when p is much smaller than R.
The radius of the mth bright fringe can be found by setting A¢ =27mn:

o =V2mR (31)

where m is an integer. The order of interference m increases with radius. Figure 5 shows a
visualization of this situation using wavefronts. This fringe pattern is the Newton’s ring
pattern and is discussed in more detail later, under “Fizeau Interferometer.” This picture
also shows that the radii of the fringes increase as the square root of R.

The analysis of the spherical wave could also have been done by using the sag of a
spherical wavefront to produce an OPD and then converting this value to a phase
difference. The quadratic approximation for the sag of a spherical surface is p°/2R. This

T2y

y # 2

. Interference Pattern

FIGURE 5 The interference of a plane wave and a spherical wave.
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corresponds to the OPD between the spherical and planar wavefronts. The equivalent
phase difference [Eq. (18)] is then 7p*/AR, as before.

Two Spherical Waves

When considering two spherical waves, there are two particular geometries that we want to
examine. The first places the observation plane perpendicular to a line connecting the two
sources, and the second has the observation plane parallel to this line. Once again, the
sources are at the same frequency.

When the observations are made on a plane perpendicular to a line connecting the two
sources, we can use Eq. (28) to determine the complex amplitude of the two waves:

Ei(p, t) ~ (A/R)ei[wsz(Rﬁpz/ZRl-)] (32)

Let d = R, — R, be the separation of the two sources. For simplicity, we have also assumed
that the amplitudes of the two waves are equal (R is an average distance). The phase
difference between the two waves is

s (P w5 ()G 2

where the approximation R,R,=~ R> has been made. There are two terms to this phase
difference. The second is a quadratic phase term identical in form to the result obtained
from spherical and plane waves. The pattern will be symmetric around the line connecting
the two sources, and its appearance will be similar to Newton’s rings. The equivalent
radius of the spherical wave in Eq. (29) is R*/d. The first term is a constant phase shift
related to the separation of the two sources. If this term is not a multiple of 275 the center
of the fringe pattern will not be a bright fringe; if the term is 77, the center of the pattern
will be dark. Except for the additional phase shift, this intensity pattern is not
distinguishable from the result in the previous section. It should be noted, however, that a
relative phase shift can be introduced between a spherical wave and a plane wave to obtain
this same result.

An important difference between this pattern and the Newton’s ring pattern is that the
order of interference (Jm| defined by A¢ =27m) or phase difference is a maximum at the
center of the pattern and decreases with radius. The phase difference is zero at some finite
radius. The Newton’s ring pattern formed between a plane and a spherical wave has a
minimum order of interference at the center of the pattern. This distinction is important
when using polychromatic sources.

There are several ways to analyze the pattern that is produced on a plane that is parallel
to a line connecting the two sources. We could evaluate the complex amplitudes by using
Eq. (28) and moving the center of the spherical waves to +d/2 for the two sources. An
equivalent method is to compare the wavefronts at the observation plane. This is shown in
Fig. 6. The OPD between the two wavefronts is

[ +d/2)” +y?] [(x —d/2)’ +y’]
2L 2L

OPD(x, y) = (34)

where the quadratic approximation for the wavefront sag has been assumed, and L is the
distance between the sources and the observation plane. After simplification, the OPD and
phase differences are

OPD(x, y) = xL—d (35)
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FIGURE 6 The interference of two spherical waves on a plane parallel to the sources.

and

2mxd
A, y)="10¢ (36)

Straight equispaced fringes parallel to the y axis are produced. The period of the fringes is
AL/d. This fringe pattern is the same as that produced by two plane waves. Note that these
fringes increase in spacing as the distance from the sources increases. The approximations
used require that L be much larger than p and d.

Figure 7 shows the creation of the fringe patterns for two point sources. The full
three-dimensional pattern is a series of nested hyperboloids symmetric about the line
connecting the sources. Above the two sources, circular fringes approximating Newton’s
rings are produced, and perpendicular to the sources, the fringes appear to be straight and
equispaced.

Aberrated Wavefronts

When an aberrated or irregularly shaped wavefront is interfered with a reference
wavefront, an irregularly shaped fringe pattern is produced. However, the rules for
analyzing this pattern are the same as with any two wavefronts. A given fringe represents a
contour of constant OPD or phase difference between the two wavefronts. Adjacent
fringes differ in OPD by one wavelength or equivalently correspond to a phase difference
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FIGURE 7 The interference of two spherical waves.

of 27t If the reference is a plane wave, the absolute shape of the irregular wavefront is
obtained. If the reference is a spherical wave, or another aberrated wave, the measured
OPD or phase difference map represents the difference between the two wavefronts.

Temporal Beats

In Eq. (15) it was noted that if the waves are at different frequencies, the interference
effects are modulated by a beat frequency. Rewriting this expression assuming equal-
intensity parallel-polarized beams produces

I(x, y,t) = I,{1 + cos [2mAvt — Ad(x, y)]} 37)

where Av = v, — v,. The intensity at a given location will now vary sinusoidally with time
at the beat frequency Av. The phase difference A¢ appears as a spatially varying phase
shift of the beat frequency. This is the basis of the heterodyne technique used in a number
of interferometers. It is commonly used in distance-measuring interferometers.

In order for a heterodyne system to work, there must be a phase relationship between
the two sources even though they are at different frequencies. One common method for
obtaining this is accomplished by starting with a single source, splitting it into two beams,
and frequency-shifting one beam with a known Doppler shift. The system will also work in
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Coherence

reverse; measure the interferometric beat frequency to determine the velocity of the object
producing the Doppler shift.

Throughout this discussion of fringe patterns, we have assumed that the two sources
producing the two waves have the same frequency. In practice, this requires that both
sources be derived from a single source. Even when two different frequencies are used
[Eq. (37)] there must be an absolute phase relation between the two sources. If the source
has finite size, it is considered to be composed of a number of spatially separated,
independently radiating point sources. If the source has a finite spectral bandwidth, it is
considered to be composed of a number of spatially coincident point sources with different
frequencies. These reductions in the spatial or temporal coherence of the source will
decrease the visibility of the fringes at different locations in space. This is referred to as
fringe localization. These effects will be discussed later in this chapter and also in Chap. 4,
“Coherence Theory.”

There are two general methods to produce mutually coherent waves for interference.
The first is called wavefront division, where different points on a wavefront are sampled to
produce two new wavefronts. The second is amplitude division, where some sort of
beamsplitter is used to divide the wavefront at a given location into two separate
wavefronts. These methods are discussed in the next sections.

2.5 INTERFERENCE BY WAVEFRONT DIVISION

Along a given wavefront produced by a monochromatic point source, the wavefront phase
is constant. If two parts of this wavefront are selected and then redirected to a common
volume in space, interference will result. This is the basis for interference by wavefront
division.

Young'’s Double-Slit Experiment

In 1801, Thomas Young performed a fundamental experiment for demonstrating inter-
ference and the wave nature of light. Monochromatic light from a single pinhole
illuminates an opaque screen with two additional pinholes or slits. The light diffracts from
these pinholes and illuminates a viewing screen at a distance large compared to the pinhole
separation. Since the light illuminating the two pinholes comes from a single source, the
two diffracted wavefronts are coherent and interference fringes form where the beams
overlap.

In the area where the two diffracted beams overlap, they can be modeled as two
spherical waves from two point sources, and we already know the form of the solution for
the interference from our earlier discussion. Equispaced straight fringes are produced, and
the period of the fringes is AL/d, where L is the distance to the screen and d is the
separation of the pinholes. The fringes are oriented perpendicular to the line connecting
the two pinholes.

Even though we already know the answer, there is a classic geometric construction we
should consider that easily gives the OPD between the two wavefronts at the viewing
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FIGURE 8 Young’s double-slit experiment.

screen. This is shown in Fig. 8. S, illuminates both S, and S, and is equidistant from both
slits. The OPD for an observation point P at an angle 6 or position x is

OPD =S,P —S,P (38)

We now draw a line from S, to B that is perpendicular to the second ray. Since L is much
larger than d, the distances from B to P and S, to P are approximately equal. The OPD is
then

_ d
oprszB=dsmexdezzx 39)

and constructive interference or a bright fringe occurs when the OPD is a multiple of the
wavelength: OPD = mA\, where m is an integer. The condition for the mth order bright
fringe is

mA _mAL

Bright fringe: sin (0)=~0=—- or X

p P (40)

This construction is useful not only for interference situations, but also for diffraction
analysis.

Effect of Slit Width

The light used to produce the interference pattern is diffracted by the pinholes or slits.
Interference is possible only if light is directed in that direction. The overall interference
intensity pattern is therefore modulated by the single-slit diffraction pattern (assuming slit

apertures):
I(x) = I, sinc® <)%ic> [1 + y(x) cos (2)7‘Izd>] (41)

where D is the slit width, and a one-dimensional expression is shown. The definition of a
sinc function is
sin (7ia)

sinc (a) = -
(63

42)



2.16

PHYSICAL OPTICS

where the zeros of the function occur when the argument « is an integer. The intensity
variation in the y direction is due to diffraction only and is not shown. Since the two slits
are assumed to be illuminated by a single source, there are no coherence effects introduced
by using a pinhole or slit of finite size.

The term +y(x) is included in Eq. (41) to account for variations in the fringe visibility.
These could be due to unequal illumination of the two slits, a phase difference of the light
reaching the slits, or a lack of temporal or spatial coherence of the source S,.

Other Arrangements

Several other arrangements for producing interference by division of wavefront are shown
in Fig. 9. They all use a single source and additional optical elements to produce two
separate and mutually coherent sources. Fresnel’s biprism and mirror produce the two

(2)

So

gl

(b)

FIGURE 9 Arrangements for interference by division of wavefront: (a) Fresnel’s biprism; (b)
Fresnel’s mirror; (c) Billet’s split lens; and (d) Lloyd’s mirror.
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FIGURE 9 (Continued.)

virtual source images, Billet’s split lens produces two real source images, and Lloyd’s
mirror produces a single virtual source image as a companion to the original source.
Interference fringes form wherever the two resulting waves overlap (shaded regions). One
significant difference between these arrangements and Young’s two slits is that a large
section of the initial wavefront is used instead of just two points. All of these systems are
much more light efficient, and they do not rely on diffraction to produce the secondary
wavefronts.

In the first three of these systems, a bright fringe is formed at the zero OPD point
between the two sources as in the double-slit experiment. With Lloyd’s mirror, however,
the zero OPD point has a dark fringe. This is due to the 77 phase shift that is introduced
into one of the beams on reflection from the mirror.

Source Spectrum

The simple fringe pattern produced by the two-slit experiment provides a good example to
examine the effects of a source with a finite spectrum. In this model, the source can be
considered to be a collection of sources, each radiating independently and at a different
wavelength. All of these sources are colocated to produce a point source. (Note that this is
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an approximation, as a true point source must be monochromatic.) At each wavelength, an
independent intensity pattern is produced:

I(x, \)= 10[1 + cos (%ﬂ = 10[1 + cos <@>] (43)

where the period of the fringes is AL/d, and a fringe visibility of one is assumed. The total
intensity pattern is the sum of the individual fringe patterns:

I(x)= f: SMI(x, A)dr = f: S(WI(x, v)dv (44)

where S(A) or S(v) is the source intensity spectrum which serves as a weighting function.

The effect of this integration can be seen by looking at a simple example where the
source is composed of three different wavelengths of equal intensity. To further aid in
visualization, let’s use Blue (400 nm), Green (500 nm), and Red (600 nm). The result is
shown in Fig. 10a. There are three cosine patterns, each with a period proportional to the
wavelength. The total intensity is the sum of these curves. All three curves line up when
the OPD is zero (x =0), and the central bright fringe is now surrounded by two-colored
dark fringes. These first dark fringes have a red to blue coloration with increasing OPD.
As we get further away from the zero OPD condition, the three patterns get out of phase,
the pattern washes out, and the color saturation decreases. This is especially true when the
source is composed of more than three wavelengths.

It is common in white light interference situations for one of the two beams to undergo
an additional 77 phase shift. This is the situation in Lloyd’s mirror. In this case, there is a
central dark fringe at zero OPD with colored bright fringes on both sides. This is shown in
Fig. 10b, and the pattern is complementary to the previous pattern. In this case the first

I(x)

X
(®)
FIGURE 10 The interference pattern produced by a source with three separate wave-
lengths: (a) zero OPD produces a bright fringe; and (b) zero OPD produces a dark fringe.
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bright fringe shows a blue to red color smear. The dark central fringe is useful in
determining the location of zero OPD between the two beams.

The overall intensity pattern and resulting fringe visibility can be computed for a source
with a uniform frequency distribution over a frequency range of Av:

vo+Av/2 1 [ro+av2

1 [ (271’\/)(5[)]
I(x)="— I dv=-—— L1+ d 45
(X) AV vo—Av/2 (x’ V) Y AV Vo—Av/2 ’ cos cL Y ( )

where v, is the central frequency, and the 1/Av term is a normalization factor to assure
that the average intensity is [,. After integration and simplification, the result is

I(x)= 10[1 + sinc (xifv) cos <27‘[Cv72xd>] (46)

where the sinc function is defined in Eq. (42). A fringe pattern due to the average optical
frequency results, but it is modulated by a sinc function that depends on Av and x. The
absolute value of the sinc function is the fringe visibility y(x), and it depends on both the
spectral width and position of observation. The negative portions of the sinc function
correspond to a 77 phase shift of the fringes.

It is informative to rewrite this expression in terms of the OPD:

PD A 2 PD
I(x)= I(,[l + sinc <O . V) cos < n)c\) )} (47)
0

where ), is the wavelength corresponding to v,. Good fringe visibility is obtained only
when either the spectral width is small (the source is quasi-monochromatic) or the OPD is
small. The fringes are localized in certain areas of space. This result is consistent with the
earlier graphical representations. In the area where the OPD is small, the fringes are in
phase for all wavelengths. As the OPD increases, the fringes go out of phase since they all
have different periods, and the intensity pattern washes out.

This result turns out to be very general: for an incoherent source, the fringes will be
localized in the vicinity of zero OPD. There are two other things we should notice about
this result. The first is that the first zero of the visibility function occurs when the OPD
equals ¢/Av. This distance is known as the coherence length as it is the path difference over
which we can obtain interference. The second item is that the visibility function is a scaled
version of the Fourier transform of the source frequency spectrum. It is evaluated for the
OPD at the measurement location. The Fourier transform of a uniform distribution is a
sinc function. We will discuss this under “Coherence and Interference” later in the
chapter.

2.6 INTERFERENCE BY AMPLITUDE DIVISION

The second general method for producing interference is to use the same section of a
wavefront from a single source for both resulting wavefronts. The original wavefront
amplitude is split into two or more parts, and each fraction is directed along a different
optical path. These waves are then recombined to produce interference. This method is
called interference by amplitude division. There are a great many interferometer designs
based on this method. A few will be examined here, and many more will be discussed in
Chap. 21 of Vol. 2, “Interferometers.”



2.20

PHYSICAL OPTICS

Screen

< t —>
Index =n

FIGURE 11 Interference from a plane-parallel plate and a point source.

Plane-Parallel Plate

A first example of interference by amplitude division is a plane-parallel plate illuminated
by a monochromatic point source. Two virtual images of the point source are formed by
the Fresnel reflections at the two surfaces, as shown in Fig. 11. Associated with each of the
virtual images is a spherical wave, and interference fringes form wherever these two waves
overlap. In this case, this is the volume of space on the source side of the plate. The
pattern produced is the same as that found for the interference of two spherical waves
(discussed earlier under “Two Spherical Waves”’), and nonlocalized fringes are produced.
The pattern is symmetric around the line perpendicular to the plate through the source. If
a screen is placed along this axis, a pattern similar to circular Newton’s ring fringes are
produced as described by Eq. (33), where d =2t/n is now the separation of the virtual
sources. The thickness of the plate is ¢, its index is n, and the distance R is approximately
the screen-plate separation plus the source-plate separation. We have ignored multiple
reflections in the plate. As with the interference of two spherical waves, the order of
interference is a maximum at the center of the pattern.

The interference of two plane waves can be obtained by illuminating a wedged glass
plate with a plane wavefront. If the angle of incidence on the first surface is 8 and the
wedge angle is «, two plane waves are produced at angles 8 and 6 + 2n« due to reflections
at the front and rear surfaces. Straight equispaced fringes will result in the volume of space
where the two reflected waves overlap. The period of these fringes on a screen parallel to
the plate is given by Eq. (26), where the two reflected angles are used.

Extended Source

An extended source is modeled as a collection of independent point sources. If the source
is quasi-monochromatic, all of the point sources radiate at the same nominal frequency,
but without a phase relationship. Each point source will produce its own interference
pattern, and the net intensity pattern is the sum or integral of all the individual intensity
patterns. This is the spatial analogy to the temporal average examined earlier under
“Source Spectrum.”
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With an extended source, the fringes will be localized where the individual fringe
position or spacing is not affected by the location of the point sources that comprise the
extended source. We know from our previous examples that a bright fringe (or a dark
fringe, depending on phase shifts) will occur when the OPD is zero. If there is a location
where the OPD is zero independent of source location, all of the individual interference
patterns will be in phase, and the net pattern will show good visibility. In fact, the
three-dimensional fringe pattern due to a point source will tend to shift or pivot around
this zero-OPD location as the point source location is changed. The individual patterns will
therefore be out of phase in areas where the OPD is large, and the average intensity
pattern will tend to wash out in these regions as the source size increases.

The general rule for fringe visibility with an extended quasi-monochromatic source is
that the fringes will be localized in the region where the OPD between the two interfering
wavefronts is small. For a wedged glass plate, the fringes are localized in or near the
wedge, and the best visibility occurs as the wedge thickness approaches zero and is perhaps
just a few wavelengths. The allowable OPD will depend on the source size and the method
of viewing the fringes. This result explains why, under natural light, interference effects are
seen in thin soap bubbles but not with other thicker glass objects. An important exception
to this rule is the plane-parallel plate where the fringes are localized at infinity.

Fringes of Equal Inclination

There is no section of a plane-parallel plate that produces two reflected wavefronts with
zero OPD. The OPD is constant, and we would expect, based on the previous section, that
no high-visibility fringes would result with an extended source. If, however, a lens is used
to collect the light reflected from the plate, fringes are formed in the back focal plane of
the lens. This situation is shown in Fig. 12, and any ray leaving the surface at a particular
angle O is focused to the same point P. For each incident ray at this angle, there are two
parallel reflected rays: one from the front surface and one from the back surface. The
reflections from different locations on the plate at this angle are due to light from different
points in the extended source. The OPD for any pair of these reflected rays is the same
regardless of the source location. These rays will interfere at P and will all have the same
phase difference. High-visibility fringes result. Different points in the image plane
correspond to different angles. The formation of these fringes localized at infinity depends
on the two surfaces of the plate being parallel.

The OPD between the reflected rays is a function of the angle of incidence 6, the plate
index n, and thickness ¢:

OPD = 2nt cos 6’ (48)

where 8’ is the internal angle. Taking into account the half-wave shift due to the phase
change difference of 77 between an internal and an external reflection, a dark fringe will
result for angles satisfying

A
2nt cos 8’ =mA or cos ' =2 (49)
2nt

where m is an integer. Since only the angle of incidence determines the properties of the
interference (everything else is constant), these fringes are called fringes of equal
inclination. They appear in the back focal plane of the lens and are therefore localized at
infinity since infinity is conjugate to the focal plane. As the observation plane is moved
away from the focal plane, the visibility of the fringes will quickly decrease.

When the axis of the lens is normal to the surfaces of the plate, a beamsplitter
arrangement is required to allow light from the extended source to be reflected into the
lens as shown in Fig. 13. Along the axis, 8 =8’ =90°, and symmetry requires that the
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FIGURE 12 The formation of fringes of equal inclination.

fringes are concentric about the axis. In this special case, these fringes are called Haidinger
fringes, and they are identical in appearance to Newton’s rings [Eq. (30)]. If there is an
intensity maximum at the center, the radii of the other bright fringes are proportional to
the square roots of integers. As with other fringes formed by a plane-parallel plate
(discussed earlier), the order of interference decreases with the observation radius on the
screen. As 6’ increases, the value of m decreases.

Fringes of Equal Thickness

The existence of fringes of equal inclination depends on the incident light being reflected
by two parallel surfaces, and the angle of incidence is the mechanism which generates
changes in the OPD. There are many arrangements with an extended source where the
reflections are not parallel, and the resulting changes in OPD dominate the angle-of-
incidence considerations. The fringes produced in this situation are called fringes of equal



INTERFERENCE 2.23

Plane
parallel
plate

B.S.

\\\\\/ N \/ S

Screen

Source

FIGURE 13 The formation of Haidinger fringes.

thickness, and we have stated earlier that they will be localized in regions where the OPD
between the two reflections is small.

An example of fringes of equal thickness occurs with a wedged glass plate illuminated
by a quasi-monochromatic extended source. We know that for each point in the source, a
pattern comprised of equispaced parallel fringes results, and the net pattern is the sum of
all of these individual patterns. However, it is easier to examine this summation by looking
at the OPD between the two reflected rays reaching an observation point P from a source
point S. This is shown in Fig. 14. The wedge angle is «, the thickness of the plate at this

S S s S s S S S S

FIGURE 14 The ray path between a point source and an observation point
for a wedged plate.
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Thin Films

location is ¢, its index is n, and the internal ray angle is 8’. The exact OPD is difficult to
calculate, but under the assumption that « is small and the wedge is sufficiently thin, the
following result for the OPD is obtained:

OPD = 2nt cos 6’ (50)

As other points on the source are examined, the reflection needed to get light to the
observation point will move to a different location on the plate, and different values of
both ¢ and 8’ will result. Different source points may have greatly different OPDs, and in
general the fringe pattern will wash out in the vicinity of P.

This reduction in visibility can be avoided if the observation point is placed in or near
the wedge. In this case, all of the paths between S and P must reflect from approximately
the same location on the wedge, and the variations in the thickness ¢ are essentially
eliminated. The point P where the two reflected rays cross may be virtual. The remaining
variations in the OPD are from the different 8’s associated with different source points.
This variation may be limited by observing the fringe pattern with an optical system having
a small entrance pupil. This essentially limits the amount of the source that is used to
examine any area on the surface. A microscope or the eye focused on the wedge can be
used to limit the angles. If the range of values of 8’ is small, high-visibility fringes will
appear to be localized at the wedge. The visibility of the fringes will decrease as the wedge
thickness increases.

It is common to arrange the system so that the fringes are observed in a direction
approximately normal to the surface. Taking into account the additional phase shift
introduced at the reflection from one of the surfaces, the conditions for bright and dark
fringes are then

A
Bright: 2nt — 5= mA (51)

and
Dark: 2nt=mA\ (52)

where m is an integer greater than or equal to zero. Since ¢ increases linearly across the
wedge, the observed pattern will be straight equispaced fringes.

These same conditions hold for any plate where the two surfaces are not parallel. The
surfaces may have any shape, and as long as the surface angles are small and the plate is
relatively thin, high-visibility fringes localized in the plate are observed. Along a given
fringe the value of m is constant, so that a fringe represents a contour of constant optical
path length nt. If the index is constant, we have fringes of equal thickness. The fringes
provide a contour map of the plate thickness, and adjacent fringes correspond to a change
of thickness of A/2n. An irregularly shaped pattern will result from the examination of a
plate of irregular thickness.

With the preceding background, we can easily explain the interference characteristics of
thin films. There are two distinct types of films to consider. The first is a thin film of
nonuniform thickness, and examples are soap bubbles and oil films on water. The second
type is a uniform film, such as would be obtained by vacuum deposition and perhaps used
as an antireflection coating. Both of these films share the characteristic of being extremely
thin—usually not more than a few wavelengths thick and often just a fraction of a
wavelength thick.

With a nonuniform film, fringes of equal thickness localized in the film are produced.
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There will be a dark fringe in regions of the film where it is substantially thinner than a
half wave. We are assuming that the film is surrounded by a lower-index medium such as
air so that there is an extra 7T phase shift. If white light is used for illumination, colored
bands will be produced similar to those diagramed in Fig. 10b (the curves would need to be
modified to rescale the x axis to OPD or film thickness). Each color will produce its first
maximum in intensity when the optical thickness of the film is a quarter of that
wavelength. As the film thickness increases, the apparent fringe color will first be blue,
then green, and finally red. These colored fringes are possible because the film is very thin,
and the order of interference m is often zero or one [Egs. (51) and (52)]. The interference
patterns in the various colors are just starting to get out of phase, and interference colors
are visible. As the film thickness increases, the various wavelength fringes become
jumbled, and distinct fringe patterns are no longer visible.

When a uniform thin film is examined with an extended source, fringes of equal
inclination localized at infinity are produced. These fringes will be very broad since the
thickness of the film is very small, and large angles will be required to obtain the necessary
OPD for a fringe [Eq. (49)]. A common use of this type of film is as an antireflection
coating. In this application, a uniform coating that has an optical thickness of a quarter
wavelength is applied to a substrate. The coating index is lower than the substrate index,
so an extra phase shift is not introduced. A wave at normal incidence is reflected by both
surfaces of the coating, and these reflected waves are interfered. If the incident wavelength
matches the design of the film, the two reflected waves are out of phase and interfere
destructively. The reflected intensity will depend on the Fresnel reflection coefficients at
the two surfaces, but will be less than that of the uncoated surface. When a different
wavelength is used or the angle of incidence is changed, the effectiveness of the
antireflection coating is reduced. More complicated film structures comprised of many
layers can be produced to modify the reflection or transmission characteristics of the film.

Fizeau Interferometer

The Fizeau interferometer compares one optical surface to another by placing them in close
proximity. A typical arrangement is shown in Fig. 15, where the extended source is filtered
to be quasi-monochromatic. A small air gap is formed between the two optical surfaces,
and fringes of equal thickness are observed between the two surfaces. Equations (51) and
(52) describe the location of the fringes, and the index of the thin wedge is now that of air.
Along a fringe, the gap is of constant thickness, and adjacent fringes correspond to a
change of thickness of a half wavelength. This interferometer is sometimes referred to as a
Newton interferometer.

This type of interferometer is the standard test instrument in an optical fabrication
shop. One of the two surfaces is a reference or known surface, and the interferometric
comparison of this reference surface and the test surface shows imperfections in the test
part. Differences in radii of the two surfaces are also apparent. The fringes are easy to
interpret, and differences of as little as a twentieth of a wavelength can be visually
measured. These patterns and this interferometer are further discussed in Chap. 30, Vol. 2,
“Optical Testing.” The interferometer is often used without the beamsplitter, and the
fringes are observed in the direct reflection of the source from the parts.

The classic fringe pattern produced by a Fizeau interferometer is Newton’s rings. These
are obtained by comparing a convex sphere to a flat surface. The parabolic approximation
for the sag of a sphere of radius R is

sag (p) =1 (53)

and p is the radial distance from the vertex of the sphere. If we assume the two surfaces
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FIGURE 15 Fizeau interferometer.

are in contact at p =0, the OPD between the reflected waves is twice the gap, and the
condition for a dark fringe is

p=VmAR (54)

Circular fringes that increase in radius as the square root of p are observed. Note that a
dark fringe occurs at the center of the pattern. In reflection, this point must be dark, as
there is no interface at the contact point to produce a reflection.

Michelson Interferometer

There are many two-beam interferometers which allow the surfaces producing the two
wavefronts to be physically separated by a large distance. These instruments allow the two
wavefronts to travel along different optical paths. One of these is the Michelson
interferometer diagramed in Fig. 16a. The two interfering wavefronts are produced by the
reflections from the two mirrors. A plate beamsplitter with one face partially silvered is
used, and an identical block of glass is placed in one of the arms of the interferometer to
provide the same amount of glass path in each arm. This cancels the effects of the
dispersion of the glass beamsplitter and allows the system to be used with white light since
the optical path difference is the same for all wavelengths.

Figure 16b provides a folded view of this interferometer and shows the relative optical



INTERFERENCE 2.27

Compensating
glass plate

M2

Extended
source

Plate B.S. /

Screen
(a)

FIGURE 16 Michelson interferometer: (a) schematic view; and (b) folded view
showing the relative optical position of the two mirrors.

position of the two mirrors as seen by the viewing screen. It should be obvious that the two
mirrors can be thought of as the two surfaces of a ““glass” plate that is illuminated by the
source. In this case, the index of the fictitious plate is one, and the reflectivity at the two
surfaces is that of the mirrors. Depending on the mirror orientations and shapes, the
interferometer either mimics a plane-parallel plate of adjustable thickness, a wedge of
arbitrary angle and thickness, or the comparison of a reference surface with an irregular or
curved surface. The type of fringes that are produced will depend on this configuration, as
well as on the source used for illumination.

When a monochromatic point source is used, nonlocalized fringes are produced, and
the imaging lens is not needed. Two virtual-source images are produced, and the resulting
fringes can be described by the interference of two spherical waves (discussed earlier). If
the mirrors are parallel, circular fringes centered on the line normal to the mirrors result as
with a plane-parallel plate. The source separation is given by twice the apparent mirror
separation. If the mirrors have a relative tilt, the two source images appear to be laterally
displaced, and hyperbolic fringes result. Along a plane bisecting the source images, straight
equispaced fringes are observed.

When an extended monochromatic source is used, the interference fringes are localized.
If the mirrors are parallel, fringes of equal inclination or Haidinger fringes (as described
earlier) are produced. The fringes are localized at infinity and are observed in the rear
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FIGURE 16 (Continued.)

focal plane of the imaging lens. Fringes of equal thickness localized at the mirrors are
generated when the mirrors are tilted. The apparent mirror separation should be kept
small, and the imaging lens should focus on the mirror surface.

If the extended source is polychromatic, colored fringes localized at the mirrors result.
They are straight for tilted mirrors. The fringes will have high visibility only if the apparent
mirror separation or OPD is smaller than the coherence length of the source. Another way
of stating this is that the order of interference m must be small to view the colored fringes.
As m increases, the fringes will wash out. The direct analogy here is a thin film. As the
mirror separation is varied, the fringe visibility will vary. The fringe visibility as a function
of mirror separation is related to the source frequency spectrum (see under “Source
Spectrum” and “Coherence and Interference’’), and this interferometer forms the basis of
a number of spectrometers. This topic is further discussed in Chap. 29, Vol. 2,
“Metrology.” When the source spectrum is broad, chromatic fringes cannot be viewed with
the mirrors parallel. This is because the order of interference for fringes of equal
inclination is a maximum at the center of the pattern.

An important variation of the Michelson interferometer occurs when monochromatic
collimated light is used. This is the Twyman-Green interferometer, and is a special case of
point-source illumination with the source at infinity. Plane waves fall on both mirrors, and
if the mirrors are flat, nonlocalized equispaced fringes are produced. Fringes of equal
thickness can be viewed by imaging the mirrors onto the observation screen. If one of the
mirrors is not flat, the fringes represent changes in the surface height. The two surfaces
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are compared as in the Fizeau interferometer. This interferometer is an invaluable tool for
optical testing.

2.7 MULTIPLE BEAM INTERFERENCE

Throughout the preceding discussions, we have assumed that only two waves were being
interfered. There are many situations where multiple beams are involved. Two examples
are the diffraction grating and a plane-parallel plate. We have been ignoring multiple
reflections, and in some instances these extra beams are very important. The net electric
field is the sum of all of the component fields. The two examples noted above present
different physical situations: all of the interfering beams have a constant intensity with a
diffraction grating, and the intensity of the beams from a plane-parallel plate decreases
with multiple reflections.

Diffraction Grating

A diffraction grating can be modeled as a series of equispaced slits, and the analysis bears a
strong similarity to the Young’s double slit (discussed earlier). It operates by division of
wavefront, and the geometry is shown in Fig. 17. The slit separation is d, the OPD between
successive beams for a given observation angle 6 is d sin (8), and the corresponding phase
difference A¢ =27 sin (6)/A. The field due to the nth slit at a distant observation point is

E(6) = Ae'V 14 i=1,2,...,N (55)
where all of the beams have been referenced to the first slit, and there are N total slits. The
net field is

N N ) )
E(6) =2 E(6) =AY (¢**y (56)
j=1 j=1

e S1

i

OPD

FIGURE 17 Diffraction grating: multiple-beam interference by
division of wavefront.
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FIGURE 18 The interference patterns produced by gratings with 2 and 5 slits.
which simplifies to
1 — iNA®
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The resulting intensity is
. (NA¢> . (Nr[d sin (9)>
sin N sin T
10)=L| ———— | =1 58
(6)=1, .2<A¢> g .2<mm(e)> (58)
s 7 s T

where [, is the intensity due to an individual slit.

This intensity pattern is plotted in Fig. 18 for N =5. The result for N =2, which is the
double-slit experiment, is also shown. The first thing to notice is that the locations of the
maxima are the same, independent of the number of slits. A maximum of intensity is
obtained whenever the phase difference between adjacent slits is a multiple of 27z These
maxima occur at the diffraction angles given by

sin (6) = %A (59)

where m is an integer. The primary difference between the two patterns is that with
multiple slits, the intensity at the maximum increases to N° times that due to a single slit,
and this energy is concentrated into a much narrower range of angles. The full width of a
diffraction peak between intensity zero corresponds to a phase difference A¢ of 4m/N.
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The number of intensity zeros between peaks is N — 1. As the number of slits increases,
the angular resolution or resolving power of the grating greatly increases. The effects of a
finite slit width can be added by replacing I, in Eq. (58) by the single-slit diffraction
pattern. This intensity variation forms an envelope for the curve in Fig. 18.

Plane-Parallel Plate

The plane-parallel plate serves as a model to study the interference of multiple waves
obtained by division of amplitude. As we shall see, the incremental phase difference
between the interfering beams is constant but, in this case, the beams have different
intensities. A plate of thickness ¢ and index n with all of the reflected and transmitted
beams is shown in Fig. 19. The amplitude reflection and transmission coefficients are p and
p', and T and 7', where the primes indicate reflection or transmission from within the
plate. The first reflected beam is 180° out of phase with the other reflected beams since it is
the only beam to undergo an external reflection, and p = —p’. Note that p’ occurs only in
odd powers for the reflected beams. Each successive reflected or transmitted beam is
reduced in amplitude by p>. The phase difference between successive reflected or
transmitted beams is the same as we found when studying fringes of equal inclination from
a plane-parallel plate:
’
AG = [w] (60)
A

where 8’ is the angle inside the plate.

The transmitted intensity can be determined by first summing all of the transmitted

amplitudes:
E(A¢) =2 E;=ATT' Y, (pPey ! (61)
j=1 j=1
where the phase is referenced to the first transmitted beam. The result of the summation is
ATT
E(Ad) = (w) (62)
A
TT'p'A T p'3A

Plane-parallel

S
AN

A T p'zA T p‘4A

FIGURE 19 Plane-parallel plate: multiple-beam interference by division of amplitude.
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The transmitted intensity I, is the squared modulus of the amplitude which, after
simplification, becomes

. . (63)

by (1 pr2>2sin2 (Ad/2)

where [, is the incident intensity. We have also assumed that there is no absorption in the
plate, and therefore 77’ + p”>=1. Under this condition of no absorption, the sum of the
reflected and transmitted light must equal the incident light: 7, + I, = I,. The expressions for
the transmitted and reflected intensities are then

I 1

= 4
I, 1+ Fsin®(A¢/2) 64)
and
I, Fsin®(A¢/2)
I, 1+ Fsin®(Ad/2) (65)
and F is defined as
20 \?
pe(-2) .
v (6)

F is the coefficient of finesse of the system and is a function of the surface reflectivity only.
The value of F will have a large impact on the shape of the intensity pattern. Note that the
reflected intensity could also have been computed by summing the reflected beams.

A maximum of transmitted intensity, or a minimum of reflected intensity, will occur
when A¢/2 =mm, where m is an integer. Referring back to Eq. (60), we find that this
corresponds to the angles

, _mA

cos 6 ot (67)
This is exactly the same condition that was found for a plane-parallel plate with two beams
[Eq. (49)]. With an extended source, fringes of equal inclination are formed, and they are
localized at infinity. They must be at infinity since all of the reflected or transmitted beams
are parallel for a given input angle. The fringes are observed in the rear focal plane of a
viewing lens. If the optical axis of this lens is normal to the surface, circular fringes about
the axis are produced. The locations of the maxima and minima of the fringes are the same
as were obtained with two-beam interference.

The shape of the intensity profile of these multiple beam fringes is not sinusoidal, as it
was with two beams. A plot of the transmitted fringe intensity [Eq. (64)] as a function of
A¢ is shown in Fig. 20 for several values of F. When the phase difference is a multiple of
27, we obtain a bright fringe independent of F or p. When F is small, low-visibility fringes
are produced. When F is large, however, the transmitted intensity is essentially zero unless
the phase has the correct value. It drops off rapidly for even small changes in A¢. The
transmitted fringes will be very narrow bright circles on an essentially black background.
The reflected intensity pattern is one minus this result, and the fringe pattern will be very
dark bands on a uniform bright background. The reflected intensity profile is plotted in
Fig. 21 for several values of F.

The value of F is a strong function of the surface reflectivity R = p>. We do not obtain
appreciable values of F until the reflectivity is approximately one. For example, R = 0.8
produces F =80, while R =0.04 gives F =0.17. This latter case is typical for uncoated
glass, and dim broad fringes in reflection result, as in Fig. 21. The pattern is approximately
sinusoidal, and it is clear that our earlier assumptions about ignoring multiple reflections
when analyzing a plane-parallel plate are valid for many low-reflectivity situations.
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FIGURE 20 The transmitted intensity of a multiple-beam interference pattern produced by a
plane-parallel plate.
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FIGURE 21 The reflected intensity of a multiple-beam interference pattern produced by a
plane-parallel plate.
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The multiple beam interference causes an energy redistribution much like that obtained
from a diffraction grating. A strong response is obtained only when all of the reflected
beams at a given angle add up in phase. The difference between this pattern and that of a
diffraction pattern is that there are no oscillations or zeros between the transmitted
intensity maxima. This is a result of the unequal amplitudes of the interfering beams. With
a diffraction grating, all of the beams have equal amplitude, and the resultant intensity
oscillates as more beams are added.

Multiple-beam fringes of equal thickness can be produced by two high-reflectivity
surfaces in close proximity in a Fizeau interferometer configuration. The dark fringes will
narrow to sharp lines, and each fringe will represent a contour of constant OPD between
the surfaces. As before, a dark fringe corresponds to a gap of an integer number of half
wavelengths. The area between the fringes will be bright. The best fringes will occur when
the angle and the separation between the surfaces is kept small. This will prevent the
multiple reflections from walking off or reflecting out of the gap.

Fabry-Perot Interferometer

The Fabry-Perot interferometer is an important example of a system which makes use of
multiple-beam interference. This interferometer serves as a high-resolution spectrometer
and also as an optical resonator. In this latter use, it is an essential component of a laser.
The system is diagrammed in Fig. 22, and it consists of two highly reflective parallel
surfaces separated by a distance . These two separated reflective plates are referred to as a
Fabry-Perot etalon or cavity, and an alternate arrangement has the reflected coatings
applied to the two surfaces of a single glass plate. The two lenses serve to collimate the
light from a point on the extended source in the region of the cavity and to then image this
point onto the screen. The screen is located in the focal plane of the lens so that fringes of
equal inclination localized at infinity are viewed. As we have seen, light of a fixed
wavelength will traverse the etalon only at certain well-defined angles. Extremely sharp
multiple-beam circular fringes in transmission are produced on the screen, and their profile
is the same as that shown in Fig. 20.

If the source is not monochromatic, a separate independent circular pattern is formed
for each wavelength. Equation (67) tells us that the location or scale of the fringes is
dependent on the wavelength. If the source is composed of two closely spaced
wavelengths, the ring structure is doubled, and the separation of the two sets of rings
allows the hyperfine structure of the spectral lines to be evaluated directly. More

Source \ ) Screen
Fabry-Perot
Cavity
FIGURE 22 Fabry-Perot interferometer.
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complicated spectra, usually composed of discrete spectral lines, can also be measured.
This analysis is possible even though the order of interference is highest in the center of
the pattern. If the phase change A¢ due to the discrete wavelengths is less than the phase
change between adjacent fringes, nonoverlapping sharp fringes are seen.

A quantity that is often used to describe the performance of a Fabry-Perot cavity is the
finesse . It is a measure of the number of resolvable spectral lines, and is defined as the
ratio of the phase difference between adjacent fringes to the full width-half maximum
FWHM of a single fringe. Since the fringe width is a function of the coefficient of finesse,
the finesse itself is also a strong function of reflectivity. The phase difference between
adjacent fringes is 275, and the half width-half maximum can be found by setting Eq. (64)
equal to 5 and solving for A¢. The FWHM is twice this value, and under the assumption
that F is large,

4
FWHMZQ? (68)

and the finesse is
2 nVF_ mp  nVR
FWHM 2 1-p> 1—-R

g

(69)

where p is the amplitude reflectivity, and R is the intensity reflectivity. Typical values for
the finesse of a cavity with flat mirrors is about 30 and is limited by the flatness and
parallelism of the mirrors. There are variations in A¢ across the cavity. Etalons consisting
of two curved mirrors can be constructed with a much higher finesse, and values in excess
of 10,000 are available.

Another way of using the Fabry-Perot interferometer as a spectrometer is suggested by
rewriting the transmission [Eq. (64)] in terms of the frequency v:

=t ! (70)
I, 1+ Fsin®(2mv/c)

where Eq. (60) relates the phase difference to the wavelength, ¢ is the mirror separation,
and an index of one and normal incidence (6’ =0) have been assumed. This function is
plotted in Fig. 23, and a series of transmission spikes separated in frequency by c/2¢t are

TA
FSR

J;L Jl IL 1L IL -

me (m+1)c {m + 2)c (m + 3)c (m + 4)c
2t 2t 2t ot P

FIGURE 23 The transmission of a Fabry-Perot cavity as a function of frequency.
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seen. A maximum occurs whenever the value of the sine is zero. The separation of these
maxima is known as the free spectral range, FSR. If the separation of the mirrors is
changed slightly, these transmission peaks will scan the frequency axis. Since the order of
interference m is usually very large, it takes only a small change in the separation to move
the peaks by one FSR. In fact, to scan one FSR, the required change in separation is
approximately ¢/m. If the on-axis transmitted intensity is monitored while the mirror
separation is varied, a high-resolution spectrum of the source is obtained. The source
spectrum must be contained within one free spectral range so that the spectrum is probed
by a single transmission peak at a time. If this were not the case, the temporal signal would
contain simultaneous contributions from two or more frequencies resulting from different
transmission peaks. Under this condition there are overlapping orders, and it is often
prevented by using an auxiliary monochromator with the scanning Fabry-Perot cavity to
preselect or limit the frequency range of the input spectrum. The resolution Av of the trace
is limited by the finesse of the cavity.

For a specific cavity, the value of m at a particular transmission peak, and some physical
insight into the operation of this spectrometer, is obtained by converting the frequency of a
particular transmission mode mc/2¢t into wavelength:

A=— or t=m— (71)
m 2

For the mth transmission maximum, exactly m half waves fit across the cavity. This also
implies that the round-trip path within the cavity is an integer number of wavelengths.
Under this condition, all of the multiply-reflected beams are in phase everywhere in the
cavity, and therefore all constructively interfere. A maximum in the transmission occurs.
Other maxima occur at different wavelengths, but these specific wavelengths must also
satisfy the condition that the cavity spacing is an integer number of half wavelengths.

These results also allow us to determine the value of m. If a 1-cm cavity is used and the
nominal wavelength is 500 nm, m =40,000 and FSR =1.5x10""Hz. The wavelength
interval corresponding to this FSR is 0.0125nm. If a 1-mm cavity is used instead, the
results are m =4000 and FSR=1.5X10""Hz=0.125nm. We see now that to avoid
overlapping orders, the spectrum must be limited to a very narrow range, and this range is
a function of the spacing. Cavities with spacings of a few tens of um’s are available to
increase the FSR. Increasing the FSR does have a penalty. The finesse of a cavity depends
only on the reflectivities, so as the FSR is increased by decreasing ¢, the FWHM of the
transmission modes increases to maintain a constant ratio. The number of resolvable
spectrum lines remains constant, and the absolute spectral resolution decreases.

A mirror translation of a half wavelength is sufficient to cover the FSR of the cavity.
The usual scanning method is to separate the two mirrors with a piezoelectric spacer. As
the applied voltage is changed, the cavity length will also change. An alternate method is
to change the index of the air in the cavity by changing the pressure.

2.8 COHERENCE AND INTERFERENCE

The observed fringe visibility is a function of the spatial and temporal coherence of the
source. The classical assumption for the analysis is that every point on an extended source
radiates independently and therefore produces its own interference pattern. The net
intensity is the sum of all of the individual intensity patterns. In a similar manner, each
wavelength or frequency of a nonmonochromatic source radiates independently, and the
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temporal average is the sum of the individual temporal averages. Coherence theory allows
the interference between the light from two point sources to be analyzed, and a good
visual model is an extended source illuminating the two pinholes in Young’s double slit.
We need to determine the relationship between the light transmitted through the two
pinholes. Coherence theory also accounts for the effects of the spectral bandwidth of the
source.

With interference by division of amplitude using an extended source, the light from
many point sources is combined at the observation point, and the geometry of the
interferometer determines where the fringes are localized. Coherence theory will,
however, predict the spectral bandwidth effects for division of amplitude interference.
Each point on the source is interfered with an image of that same point. The temporal
coherence function relates the interference of these two points independently of other
points on the source. The visibility function for the individual interference pattern due to
these two points is computed, and the net pattern is the sum of these patterns for the
entire source. The temporal coherence effects in division of amplitude interference are
handled on a point-by-point basis across the source.

In this section, the fundamentals of coherence theory as it relates to interference are
introduced. Much more detail on this subject can be found in Chap. 4, “Coherence
Theory.”

Mutual Coherence Function

We will consider the interference of light from two point sources or pinholes. This light is
derived from a common origin so that there may be some relationship between the
complex fields at the two sources. We will represent these amplitudes at the pinholes as
E,(t) and E,(t), as shown in Fig. 24. The propagation times between the two sources and
the observation point are ¢, and ¢,, where the times are related to the optical path lengths
by t; = OPL;/c. The two complex amplitudes at the observation point are then E,(t —t,)
and E,(t —t,), where the amplitudes have been scaled to the observation plane. The
time-average intensity at the observation point can be found by returning to Eq. (13),
which is repeated here with the time dependence:

I= Il + Iz + <E1(t - tl)Ef(t - t2)> + <E;k(t - tl)EZ(t - t2)> (72)

where [, and L, are the intensities due to the individual sources. If we now shift our time
origin by ¢,, we obtain

I=1+L+(E(t+1)EX(t)) + (EF(t + T)E,(2)) (73)

8y 10

Ei(t-t)

Ex(t-1p)

S2
Ea(t)

FIGURE 24 Geometry for examining the mutual coherence of two sources.
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where
_ OPL,—OPL; OPD
c c

T=t,—1 (74)

The difference in transit times for the two paths is 7. The last two terms in the expression
for the intensity are complex conjugates, and they contain the interference terms.
We will now define the mutual coherence function I'\,(T):

L'io(7) = (E\(t + T)EZ(1)) (75)

which is the cross correlation of the two complex amplitudes. With this identification, the
intensity of the interference pattern is

I=1+L+T,(1) +T%(1) (76)

or, recognizing that a quantity plus its complex conjugate is twice the real part,
I=1L+L+2Re{l'y(1)} 77)
It is convenient to normalize the mutual coherence function by dividing by the square root

of the product of the two self-coherence functions. The result is the complex degree of
coherence:

_ I(7) _ I(7) _ I'(1)
7D VT OA0)  VIEOFEWD  VbL ®
and the intensity can be rewritten:
I=1+L+2VLLRe{y(1)} 79

We can further simplify the result by writing y,,(7) as a magnitude and a phase:
Yia(T) = [y1a(T)] €127 = |y 1o(1)] @120 72O (80)

where a,(T) is associated with the source, and A¢(T) is the phase difference due to the
OPD between the two sources and the observation point [Eq. (18)]. The quantity |y,,(T)| is
known as the degree of coherence. The observed intensity is therefore

I=1+L+2VLL |y(7T)| cos [a,(T) — Ad(T)] (81)

The effect of a,(7) is to add a phase shift to the intensity pattern. The fringes will be
shifted. A simple example of this situation is Young’s double-slit experiment illuminated
by a tilted plane wave or a decentered source. With quasi-monochromatic light, the
variations of both |y;,(T)| and a;,(T) with T are slow with respect to changes of A¢(T), so
that the variations in the interference pattern in the observation plane are due primarily to
changes in A¢ with position.

A final rewrite of Eq. (81) leads us to the intensity pattern at the observation point:

2V,

L a0l eos[an(n) - 200 )

I:]O{l +

where I, = I, + L. The fringe visibility is therefore

2VILL
Y1) =777

I+ 1 [v12(T)| (83)

and is a function of the degree of coherence and 7. Remember that 7 is just the temporal
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measure of the OPD between the two sources and the observation point. If the two
intensities are equal, the fringe visibility is simply the degree of coherence: y(T) = |y,,(T)|.
The degree of coherence will take on values betwen 0 and 1. The source is coherent when
|v12(7)] =1, and completely incoherent when |y;,(7)| =0. The source is said to be partially
coherent for other values. No fringes are observed with an incoherent source, and the
visibility is reduced with a partially coherent source.

Spatial Coherence

The spatial extent of the source and its distance from the pinholes will determine the
visibility of the fringes produced by the two pinhole sources (see Fig. 25). Each point on
the source will produce a set of Young’s fringes, and the position of this pattern in the
observation plane will shift with source position. The value of a,,(7) changes with source
position. The existence of multiple shifted patterns will reduce the overall visibility. As an
example, consider a quasi-monochromatic source that consists of a several point sources
arranged in a line. Each produces a high modulation fringe pattern in the observation
plane (Fig. 26a), but there is a lateral shift between each pattern. The net pattern shows a
fringe with the same period as the individual patterns, but it has a reduced modulation due
to the shifts (Fig.26b). This reduction in visibility can be predicted by calculating the
degree of coherence |y,,(7)| at the two pinholes.

Over the range of time delays between the interfering beams that are usually of
interest, the degree of coherence is a slowly varying function and is approximately equal to
the value at 7=0: |y15(T)| =|y12(0)| = |y12l. The van Cittert—Zernike theorem allows the
degree of coherence in the geometry of Fig. 25 to be calculated. Let 8 be the angular
separation of the two pinholes as seen from the source. This theorem states that degree of
coherence between two points is the modulus of the scaled and normalized Fourier
transform of the source intensity distribution:

fJ’ I(f, n)e[(zn/,\)(gex+r,ey)d§dn
s

e | JLI(& m) dédn 0

\ X
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[ ] 82
Pinholes

FIGURE 25 An extended source illuminating two pinholes.
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FIGURE 26 The interference pattern produced by a linear source: (a) the individual fringe
patterns; and (b) the net fringe pattern with reduced visibility.

where 6, and 6, are the x and y components of the pinhole separation 6, and the integral is

over the source.

Two cases that are of particular interest are a slit source and a circular source. The
application of the van Cittert—Zernike theorem yields the two coherence functions:

7]
Slit source of width w: |y,| = |sinc <b>‘ = |sinc <Wa)‘ (83)
A Az
mdo nd
(50| (200
Z
Circul f diameter d: = - %
ircular source of diameter (28 1de, Tida (%0
A Az

where a is the separation of the pinholes, z is the distance from the source to the pinholes,
the sinc function is defined by Eq. (42), and J; is a first-order Bessel function. The pinholes
are assumed to be located on the x-axis. These two functions share the common
characteristic of a central core surrounded by low-amplitude side lobes. We can imagine
these functions of pinhole spacing mapped onto the aperture plane. The coherence
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function is centered on one of the pinholes. If the other pinhole is then within the central
core, high-visibility fringes are produced. If the pinhole spacing places the second pinhole
outside the central core, low-visibility fringes result.

Michelson Stellar Interferometer

The Michelson stellar interferometer measures the diameter of stars by plotting out the
degree of coherence due to the light from the star. The system is shown in Fig. 27. Two
small mirrors separated by the distance a sample the light and serve as the pinholes. The
spacing between these mirrors can be varied. This light is then directed along equal path
lengths into a telescope, and the two beams interfere in the image plane. To minimize
chromatic effects, the input light should be filtered to a small range of wavelengths. The
modulation of the fringes is measured as a function of the mirror spacing to measure the
degree of coherence in the plane of the mirrors. This result will follow Eq. (86) for a
circular star, and the fringe visibility will go to zero when a = 1.22Aa, where a = d/z is the
angular diameter of the star. We measure the mirror separation that produces zero
visibility to determine «. In a similar manner, this interferometer can be used to measure
the spacing of two closely spaced stars.

AT

Y
L] Image Plane
f
v =

FIGURE 27 Michelson stellar interferometer.
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Temporal Coherence

When examining temporal coherence effects, we use a source of small dimensions (a point
source) that radiates over a range of wavelengths. The light from this source is split into
two beams and allowed to interfere. One method to do this is to use an amplitude-splitting
interferometer. Since the two sources are identical, the mutual coherence function
becomes the self-coherence function I'\,(T). Equal-intensity beams are assumed. The
complex degree of temporal coherence becomes

T(1) _(Ei(t + DEH0)
ra0) (EOP

yu(T) = (87)

After manipulation, it follows from this result that vy,(7) is the normalized Fourier
transform of the source intensity spectrum S(v):

FT{S(v)} :fo S(v)e®™ dv

J:S(v)dv J:S(v)dv

yu(T) = (88)

The fringe visibility is the modulus of this result. Since vy,,(7) has a maximum at 7 =0, the
maximum fringe visibility will occur when the time delay between the two beams is zero.
This is consistent with our earlier observation under “Source Spectrum” that the fringes
will be localized in the vicinity of zero OPD.

As an example, we will repeat the earlier problem of a uniform source spectrum:

S(v) =rect (%) (89)

where v, is the average frequency and Av is the bandwidth. The resulting intensity pattern
is

I=1{1+ Re {y,(1)}} = I[1 + sinc (TAv) cos 2mTV,)] (90)
where the sinc function is the Fourier transform of the rect function. Using T = OPD/c

from Eq. (74), we can rewrite this equation in terms of the OPD to obtain the same result
expressed in Eq. (47).

Laser Sources

The laser is an important source for interferometry, as it is a bright source of coherent
radiation. Lasers are not necessarily monochromatic, as they may have more than one
longitudinal mode, and it is important to understand the unique temporal coherence
properties of a laser in order to get good fringes. The laser is a Fabry-Perot cavity that
contains a gain medium. Its output spectrum is therefore a series of discrete frequencies
separated by ¢/2nL, where L is the cavity length. For gas lasers, the index is approximately
equal to one, and we will use this value for the analysis. If G(v) is the gain bandwidth, the
frequency spectrum is

S(v) = G(v) comb (21647‘) 91)
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A Visibility

2L 4L 6L OPD
FIGURE 28 The fringe visibility versus OPD for a laser source.

where a comb function is a series of equally spaced delta functions. The number of modes
contained under the gain bandwidth can vary from 1 or 2 up to several dozen. The
resulting visibility function can be found by using Eq. (88):

~ cT ~ OPD
V()= ()1 = |G comb (57 )| = | G(1) comb (572 @)
where G (1) is the normalized Fourier transform of the gain bandwidth, and = indicates
convolution. This result is plotted in Fig. 28, where G(7) is replicated at multples of 2L.
The width of these replicas is inversely proportional to the gain bandwidth. We see that as
long as the OPD between the two optical paths is a multiple of twice the cavity length,
high-visibility fringes will result. This condition is independent of the number of

longitudinal modes of the laser. If the laser emits a single frequency, it is a coherent source
and good visibility results for any OPD.
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DIFFRACTION
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3.1 GLOSSARY

amplitude
electric field
focal length
Green function
irradiance

direction cosines

=
®»om e~ Qo =

spatial vector
Poynting vector

time

~

dielectric constant

m

permeability
frequency

wave function

y & < F

Fourier transform

3.2 INTRODUCTION

Starting with waves as solutions to the wave equation obtained from Maxwell’s equations,
basics of diffraction of light are covered in this article. The discussion includes those
applications where the geometry permits analytical solutions. At appropriate locations
references are given to the literature and/or textbooks for further reading. The discussion
is limited to an explanation of diffraction, and how it may be found in some simple cases
with plots of fringe structure.

3.1
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3.3 LIGHT

Selection of topics is not easy, some topics that are normally included in textbooks may
not be found in this chapter. One thing that is not covered is Cornu’s spiral and all
associated phasor diagrams. These form convenient tools but are not absolutely necessary
to understand the results. Material on these topics is in all of the textbooks listed in the
article. Derivations are here excluded. Use of the two-pinhole experiments to describe the
influence of partial coherence of light on the visibility of fringes is not mentioned
[Thompson, B. J., and E. Wolf, “Two-Beam Interference with Partially Coherent Light,”
J. Opt. Soc. Am. 47(10):895-902 (1957)]. So also the diffractive effect of the finite size of
the apertures on this experiment is not described [Marathay, A. S., and D. B. Pollock,
“Young’s Interference Fringes with Finite-Sized Sampling Apertures,” J. Opt. Soc. Am. A,
1:1057-1059 (1984)]. Walls of mathematics and computer programs and/or plots have been
avoided. These are found in the current literature, vector-diffraction calculation being a
case in point.

Closely related chapters in the handbook are Chap. 1 by Douglas Goodman, Chap. 2 by
J. Greivenkamp, Chap. 4, by William H. Carter, Chap. 5 by Bennett, Chap. 6 by Bohren,
and Vol. II, Chap. 5 by Zissis. Appropriate chapters will be cross-referenced as needed.

WAVES

Light waves propagate through free space or a vacuum. They exhibit the phenomenon of
diffraction with every obstacle they encounter. Maxwell’s equations form a theoretical
basis for describing light in propagation, diffraction, scattering and, in general, its
interaction with material media. Experience has shown that the electric field E plays a
central role in detection of light and interaction of light with matter. We begin with some
mathematical preliminaries.

The electric field E obeys the wave equation in free space or a vacuum

1 6°E
VZE—C—Zyzo €))

where c is the velocity of light in a vacuum. Each cartesian component E;, (j =x, y, z)
obeys the equation and, as such, we use a scalar function y(r,?) to denote its solutions,
where the radius vector r has components, r = ix +Jy + kz.

The wave equation is a linear second-order partial differential equation. Linear
superposition of its two linearly independent solutions offers the most general solution. It
has plane waves, spherical waves and cylindrical waves as solutions. These solutions
represent optical wave forms. A frequently used special case of these solutions is the time
harmonic version of these waves. We start with the Fourier transform on time,

P(r, 1) = f J(r, v) exp (—i2mve) dv 2)

where v is a temporal (linear) frequency in Hz. The spectrum 4 (r, v) obeys the Helmholtz
equation,
V2 + k=0 3)

with the propagation constant k = 27/A =27mv/c = w/c, where A is the wavelength and  is
the circular frequency. A Fourier component traveling in a medium of refractive index
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n = Ve, where ¢ is the dielectric constant, is described by the Helmholtz equation with k*
replaced by n’k> The effect of each component with proper account of dispersion, 7 as a
function of frequency, is superimposed as dictated by the Fourier integral to yield the field
P(rx, ).

As a further special case, a wave may be harmonic in time as well as in space (see Chap.
2).

d(r,t)=Acos (k-r— wf) 4)

where k=k§, § is a unit vector in the direction of propagation and A is a constant. An
expanding spherical wave may be written in the form,

Y(r, t)= é cos (kr — wt) %)

For convenience of operations, a complex form frequently is used. For example, we write
Wi, 1) = Aexp ik - — )] ©)

in place of Eq. (4) bearing in mind that only its real part corresponds to the optical wave
form. The function (r, t) is called the optical “disturbance” while the coefficient A is the
amplitude.

In the general discussion of diffraction phenomena throughout this chapter several
classic source books have been used."” This discussion is a blend of ideas contained in
these sources.

The mathematical solutions described heretofore, although ideal, are nevertheless often
approximated. A suitable experimental arrangement with a self-luminous source and a
condensing lens to feed light to a small enough pinhole fitted with a narrowband spectral
filter serves as a quasi-monochromatic, or almost monochromatic, point source. In Fig. 1,
light behind the pinhole S is in the form of ever-expanding spherical waves. These waves
are of limited spatial extent; all are approximately contained in a cone with its apex at the
pinhole. When intercepted by a converging lens, L,, with the pinhole on its axis and at the
front focal point, these spherical waves are converted to plane waves behind L,. These
plane waves also are limited spatially to the extent dictated by the aperture of the
converging lens. A second converging lens, L,, is behind the first converging lens and is
oriented so that both lenses have a common optical axis and can form an image of the
pinhole. The image S’ is on the axis at the focal point behind the second lens and is formed
by converging spherical waves. These waves, which converge toward the image, are

el T e
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FIGURE 1 Experimental layout to describe the notation used for spherical and plane waves.
S: pinhole source. L,, L,: lenses. S': image.
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limited spatially to the extent dictated by the aperture of the second lens and are
approximately contained in a cone with its apex at the image of the pinhole.

It is necessary to clarify that ““a small enough pinhole” means that the optics behind the
pinhole is not able to resolve its structure.'" A “narrowband filter” means that its pass
band, Av, is much smaller than the mean frequency ¥, that is, Av « v. In this situation, the
experimental arrangement may be described by a quasi-monochromatic theory, provided
that the path differences, A/, of concern in the optics that follows the pinhole are small
enough, as given by, Al =c/Av. If the path differences Al involved are unable to obey this
condition, then a full polychromatic treatment of the separate Fourier components
contained within Av is necessary, even if Av <« ¥. See, for example, Beran and Parrent'
and Marathay."

Limiting the extent of plane waves and spherical waves, as discussed before, causes
diffraction, a topic of primary concern in this chapter. The simplifying conditions stated
above are assumed to hold throughout the chapter, unless stated otherwise.

As remarked earlier, the electric field E [V /m] plays a central role in optical detection
(see Chap. 16). There are detectors that attain a steady state for constant incident beam
power [W], and there are those like the photographic plate that integrate the incident
power over a certain time (see Chap. 20). For a constant beam power, the darkening of the
photographic plate depends on the product of the power and exposure time. Since
detectors inherently take the time average, the quantity of importance is the average
radiant power ®[W]. Furthermore, light beams have a finite cross-sectional area, so it is
meaningful to talk about the average power in the beam per unit area of its cross section
measured in square meters or square centimeters. In the radiometric nomenclature this
sort of measurement is called irradiance [Wm™?]. For a plane wave propagating in free
space, the irradiance, I, may be expressed in terms of the Poynting vector, S by

o) e

0

The constants given in Eq. (7) may not be displayed with every theoretical result. (We
have used the symbol I; however, the radiometrically accepted symbol E is easily confused
with the electric field E.) The Poynting vector and irradiance are discussed further in Ref.
11 (pp. 280-285).""

Light is properly described by a transverse vector field (see Chap. 6). Nevertheless, a
scalar field is a convenient artifice to use in understanding the wave nature of light without
the added complication of the vector components. The transverse nature of the field will
be accounted for when the situation calls for it.

3.4 HUYGENS-FRESNEL CONSTRUCTION

Without the benefit of a fundamental theory based on Maxwell’s equations and the
subsequent mathematical development, Huygens sought to describe wave propagation in
the days before Maxwell. Waves are characterized by constant-phase surfaces, called
wavefronts. If the initial shape at time ¢ of such a wavefront is known in a vacuum or in any
medium, Huygens proposed a geometrical construction to obtain its shape at a later time,
t + At. He regarded each point of the initial wavefront as the origin of a new disturbance
that propagates in the form of secondary wavelets in all directions with the same speed as
the speed v of propagation of the initial wave in the medium. These secondary wavelets of
radii v At are constructed at each point of the initial wavefront. A surface tangential to all
these secondary wavelets, called the envelope of all these wavelets, is then the shape and
position of the wavefront at time ¢+ Ar. With this construct Huygens explained the
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phenomena of reflection and refraction of the wavefront. To explain the phenomenon of
diffraction, Fresnel modified Huygens’ construction by attributing the property of mutual
interference to the secondary wavelets (see Chap. 2). The modified Huygens construction
is called the Huygens-Fresnel construction. With further minor modifications it helps
explain the phenomenon of diffraction and its various aspects, including those that are not
so intuitively obvious.

We will begin with the Huygens-Fresnel construction and will show how it explains
some simple optical experiments on diffraction. This will be followed by the Fresnel-
Kirchhoff formula and related topics.

Fresnel Zones

Let P, be a point source of light that produces monochromatic spherical waves. A typical
spherical wave, A/r,exp [—i(wt — kry)], of radius r, at time ¢ is shown in Fig. 2. The
coefficient A stands for the amplitude of the wave at unit distance from the source F,. At a
later time this wave will have progressed to assume a position passing through a point of
observation P with radius, 7, + b. Fresnel zone construction on the initial wave offers a way
to obtain the wave in the future by applying the Huygens-Fresnel construction. The zone
construction forms a simple basis for studying and understanding diffraction of light.
From the point of observation P, we draw spheres of radii b, b+ A/2, b +2A/2,
b+3A/2,..., b+jA/2,..., to mark zones on the wave in its initial position, as shown in
Fig. 2. The zones are labeled z,, z, . .. z;.. . The zone boundaries are successively half a
wavelength away from the point of observation P. By the Huygens-Fresnel construction,
each point of the wave forms a source of a secondary disturbance. Each secondary source
produces wavelets that are propagated to the point P. A linear superposition of the
contribution of all such wavelets yields the resulting amplitude at the point P. It is
reasonable to expect that the contribution of the secondary wavelets is not uniform in all
directions. For example, a wavelet at C is in line with the source F, and the point of
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FIGURE 2 Fresnel zone construction. P,: point source. S: wavefront. r,: radius of
the wavefront b: distance CP. s: distance QP. (After Born and Wolf'.)
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observation P, while a wavelet at O sees the point P at an angle x with respect to the
radius vector from the source F,. To account for this variation, an obliquity or inclination
factor K(x) is introduced. In the phenomenological approach developed by Fresnel, no
special form of K(x) is used. It is assumed to have the value unity at C where x =0, and it
is assumed to decrease at first slowly and then rapidly as x increases. The obliquity factors
for any two adjacent zones are nearly equal and it is assumed that it becomes negligible for
zones with high enough index j.

The total contribution to the disturbance at P is expressed as an area integral over the
primary wavefront,

W(P)= A exp [—i(r(:t — kry)] ff exps(iks)K(X) is ®)

where dS is the area element at . The subscript S on the integrals denotes the region of
integration on the wave surface. The integrand describes the contribution of the secondary
wavelets. Fresnel-zone construction provides a convenient means of expressing the area
integral as a sum over the contribution of the zones.

For optical problems, the distances involved, such as r, and b, are much larger than the
wavelength, A. This fact is used very effectively in approximating the integral. The phases
of the wavelets within a zone will not differ by more than 7= The zone boundaries are
successively A/2 further away from the point of observation P. The average distance of
successive zones from P differs by A/2; the zones, therefore, are called half-period zones.
Thus, the contributions of the zones to the disturbance at P alternate in sign,

YP)=d =+ s —+ s — st ... O]

where ¢; stands for the contribution of the jth zone, j=1,2,3,... The contribution of
each annular zone is directly proportional to the zone area and is inversel