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Preface

Since Fall of 1993, when we completed the manuscript of our book “Semi-
conductor-Laser Physics” [W.W. Chow, S.W. Koch, and M. Sargent III
(Springer, Berlin, Heidelberg, 1994)] many new and exciting developments
have taken place in the world of semiconductor lasers. Novel laser and ampli-
fier structures were developed, and others, for example, the VCSEL (vertical
cavity surface emitting laser) and monolithic MOPA (master oscillator power
amplifier), made the transition from research and development to production.
When investigating some of these systems, we discovered instances when de-
vice performance, and thus design depend critically on details of the gain
medium properties, e.g., spectral shape and carrier density dependence of
- the gain and refractive index.

New material systems were also introduced, with optical emission wave-
lengths spanning from the mid-infrared to the ultraviolet. Particularly note-
worthy are laser and light-emitting diodes based on the wide-bandgap
group-III nitride and II-VI compounds. These devices emit in the visible
to ultra-violet wavelength range, which is important for the wide variety of
optoelectronic applications. While these novel semiconductor-laser materi-
als show many similarities with the more conventional near-infrared systems,
they also possess rather different material parameter combinations. These dif-
ferences appear as band structure modifications and as increased importance
of Coulomb effects, such that, e.g., excitonic signatures resulting from the at-
tractive electron-hole interaction are generally significantly more prominent
in the wide bandgap systems.

On the theoretical side, important progress was made concerning the long-
standing problem of the semiconductor laser lineshape. The solution of this
problem may be obtained on the basis of a systematic analysis of carrier
damping and dephasing processes. This improved level of theoretical analysis
led to quantitative agreement between experimentally measured and theor-
etically predicted gain/absorption and refractive index spectra for a wide
variety of semiconductor-laser materials. Since it can be used directly in the
engineering of laser and amplifier structures, the improved gain medium the-
ory is of more than academic interest.

The success and usefulness of the new gain medium theory in explain-
ing experiments and designing devices, combined with the complexity in
implementing the calculations provided motivation for the present book,
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“Semiconductor-Laser Fundamentals: Physics of the Gain Materials”. To pro-
vide the background of introducing the new developments, we integrated
into this book the material related part of our original “Semiconductor-Laser
Physics” book. Besides some of the basic chapters, that have been updated
and reorganized, we extensively cover band structure engineering aspects and
the microscopic theory of the semiconductor gain materials in order to ad-
equately account for the recent progress in materials and theoretical under-
standing. We included a wealth of examples, involving many different material
combinations that are used in quantum-well laser systems. All of these results
are obtained consistently at the level of the full microscopic many-body the-
ory, and we expect a good degree of quantitative and predictive value from
these numerical examples. As a guide for people interested in reproducing
our numerical results, we included a variety of technical details involved with
the coding of the set of many-body equations.

As always, this book could not have been written without the interac-
tion and collaboration with numerous colleagues, including (in alphabetical
order) K. Choquette, M. Crawford, A. Girndt, F. Jahnke, E. Jones, A. Knorr,
J. Moloney and A. Wright. It is our pleasure to thank Murray Sargent III
for his collaboration on the first book, and we are very sorry that his new
job does not allow him the time to continue working in this area. Special
thanks are due to Renate Schmid for her expert technical help in preparing
the manuscript and handling the extensive e-mail exchanges between Mar-
burg and Albuquerque. SWK thanks Sandia National Laboratories for the
hospitality during the three months when this book was finished.

The research has been funded by the Deutsche Forschungsgemeinschaft,
partly through the Leibniz prize, and by the U. S. Department of Energy
under Contract DE-AC04-94AL85000.

Albuquerque, NM W.W. Chow
Marburg S.W. Koch
October 1998
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1. Basic Concepts

This chapter reviews some background material on semiconductor lasers and
lays the theoretical foundation for the development of a theory for the gain
media in these lasers. We begin with a brief summary of the historical back-
ground of semiconductor laser development in Sect. 1.1. Section 1.2 describes
the basic laser structure and discusses how an inversion is created. Section
1.3 introduces the concept of heterostructures. Some basic aspects of the
semiconductor band structure are presented in Sect. 1.4. A more detailed
band-structure analysis including the modifications caused by quantum con-
finement and strain effects is presented in Chaps. 5, 6. Section 1.5 briefly
discusses cgs and MKS units, both of which are used extensively in the semi-
conductor laser literature. The problem is that MKS has been used tradition-
ally for lasers, while cgs is often used in semiconductor theory. Hence, the
marriage of the fields requires a familiarity with both systems of units. Sec-
tion 1.6 discusses the Fermi-Dirac distributions of the carrier probabilities.
Section 1.7 introduces the concept of quantum confinement and Sect. 1.8
makes contact with the laser electric field by outlining a derivation of the
slowly varying electromagnetic-field equations. This shows how the field am-
plitude and phase are influenced by an induced polarization of the medium.
Section 1.9 begins our discussion of this induced polarization using a quantum
mechanical description of the semiconductor medium. This lays the founda-
tions for later chapters, which derive the polarization of the semiconductor
medium with increasing levels of accuracy and complexity.

1.1 Historical Background

The concept of a semiconductor laser was introduced by Basov et al. (1961)
who suggested that stimulated emission of radiation could occur in semicon-
ductors by the recombination of carriers injected across a p-n junction. The
first semiconductor lasers appeared in 1962, when three laboratories inde-
pendently achieved lasing. After that, progress was slow for several reasons.
One reason was the need to develop a new semiconductor technology. Semi-
conductor lasers could not be made from silicon where a mature fabrication
technology existed. Rather, they require direct bandgap materials which were
found in compound semiconductors. At the time compound semiconductors
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were less well understood. There were also problems involving high threshold
currents for lasing, which limited laser operation to short pulses at cryogenic
temperatures, and low efficiency, which led to a high heat dissipation. A big
stride toward solving the above problems was made in 1969, with the in-
troduction of heterostructures. In a heterostructure laser, one replaces the
simple p-n junction with multiple semiconductor layers of different composi-
tions. Constant wave (cw) operation at room temperature became possible
because of better carrier and optical confinement. Laser performance con-
tinued to improve as more advanced heterostructures, such as quantum wells
and strained quantum wells were used as gain media.

Two factors are largely responsible for the transformation of semiconduc-
tor lasers from laboratory devices operating only at cryogenic temperatures
into practical opto-electronic components capable of running continuously at
room temperature. One is the exceptional and fortuitous close lattice match
between AlAs and GaAs, which allows heterostructures consisting of layers
of different compositions of Al,Ga;—,As to be grown. The second is the pres-
ence of several important opto-electronic applications where semiconductor
lasers are uniquely well suited because they have the smallest size (several
cubic millimeters), highest efficiency (often as much as 50 % or even more)
and the longest lifetime of all existing lasers. This enables the field of semi-
conductor lasers to draw the attention and resources that are necessary for
its development.

One such application is optical-fiber communication, where device design
is simplified by the fact that the laser output can be modulated simply by
modulating the injection current. Gigahertz information transmission rates
are now possible. Optical fiber communication also motivated the develop-
ment of semiconductor lasers at 1.3 wm, where optical fiber loss is mini-
mum, and at 1.5 wm, where dispersion in the fiber is minimum. The need
for repeaters led to the development of laser amplifiers, the introduction of
underwater optical communication lines necessitate improvements in device
reliability, and frequency multiplexing of transmissions led to distributive
feedback (DFB) and Bragg reflector (BR) lasers for frequency stability.

There are other applications of semiconductor lasers as well. The opti-
cal memory (audio and video discs) industry has generated a large enough
demand of semiconductor lasers to help in reducing laser cost. High power
semiconductor lasers are being used in printers and copiers. When even higher
power is reliably available, the list of applications will expand to include, e.g.,
line-of-sight communications, laser radar and fuzing. Schemes for increasing
laser power are plentiful. They involve widening the active region (broad-area
lasers), phase locking many narrow active regions (arrays and external cavity
lasers) and optically pumping a solid state laser with a stack of semiconduc-
tor lasers. In addition to high output power, external cavity lasers can also
be designed to have very narrow linewidths. While a semiconductor laser by
itself does not make a good high energy pulse laser because its gain medium
performs badly in terms of energy storage due to a short carrier recombina-
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tion time, it can be used to optically pump a Q-switched solid state laser.
Diode pumped YAG lasers have produced high energy (over 1 joule) short
(tens of nanoseconds) pulses. They also have the advantages over conventional
flashlamp pumped ones by being more efficient and compact.

Advances are continually being made. For example, vertical-cavity surface-
emitting lasers (VCSELSs) now rival conventional edge-emitting laser diodes
in efficiency, and surpass them by a wide margin in threshold current. Lasing
has been demonstrated in II-VI and group-III nitride compounds. In ad-
dition to the many applications for these visible and potentially ultraviolet
light sources, there are interesting material sciences and basic physics issues
as well. So, we see that semiconductor lasers have many applications. Impor-
tant applications drive the need for better and newer lasers, which generate

more applications, which in turn support the development of even better and
more versatile lasers.

1.2 Laser Device

The semiconductor laser looks different to different people. An electrical en-
gineer may think of it as a forward biased p-n junction, while a crystal grower
may see mainly the heterostructure. The laser fabricator’s view probably in-
volves too much engineering detail for the solid-state physicist. Since this
book is primarily concerned with the theory of the semiconductor laser gain
medium, we structure this and the following sections to provide the back-
ground for constructing useful theoretical models.

The basic features of the experimental device are shown in Fig. 1.1, which
is a vastly simplified diagram of a semiconductor laser. A semiconductor laser
is usually fabricated by growing a p-doped layer on top of an n-doped semi-
conductor substrate. The n- and p-doping are results of donor and accep-
tor impurities, respectively, in the semiconductor medium. In an n-doped

p-doped layer

p-n junction
/ n-doped

substrate

Electrodes

Heat sink Fig. 11 Schematic diagram of
a semiconductor laser. The ac-
tive region is indicated by the
shaded area
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medium, the donor levels lie well within a thermal energy kg7 of the conduc-
tion band, so that they are effectively ionized, yielding conduction electrons,
i.e., negatively charged current carriers. (Here kg is Boltzmann’s constant and
T is the absolute temperature.) n-doped media can conduct well, compared
to intrinsic semiconductors, which do not have impurity levels and derive
conductivity only by carriers that manage to bridge the whole bandgap, an
energy large compared to the thermal energy. In the GaAs semiconductor,
a popular donor impurity is Se from column VI in the periodic table, which
has one more valence electron (6) than As, which is in column V. Similarly,
in a p-doped medium, the acceptor impurity level lies well within a thermal
energy of the valence band, allowing an electron from the valence band to fall
into the level, thereby creating a hole in the valence band. This creates pos-
itively charged current carriers, which gives the name p-doped. In the GaAs
semiconductor, a popular acceptor impurity is Zn from column II, which has
one valence electron less (2) than Ga from column III. Note that the doped
media by themselves are electrically neutral, that is, they are not charged
positively or negatively, even though they have current carriers.

Current is injected via two electrodes, one of which is electrically con-
nected to a heat sink. Lasing occurs in the active (gain) region between the
electrodes as indicated by the shaded area in Fig. 1.1. This shaded area repre-
sents the depletion region in a simple p-n junction or the specially fabricated
intrinsic layer in a heterostructure laser (Sect. 1.3). The optical resonator is
formed by two parallel facets that are made by cleaving the substrate along
crystal planes. Owing to the high gain in the active region, resonator facets
are often left uncoated, which gives a Fresnel reflectivity of about 30 %, since
the semiconductor index of refraction is about 3.5 compared to unity outside.
The laser in Fig. 1.1 is mounted p-side up. For more efficient heat removal,
semiconductor lasers are sometimes mounted p-side down, so that the active
region is closer to the heat sink. Typical sizes of the active region are 1000 A
thick by 10 pm wide by 250 wm long. Much smaller lasers can be fabricated
easily with interesting special properties as we discuss in later chapters.

Several refinements may be incorporated into the laser of Fig. 1.1 to at-
tain certain desirable characteristics: e.g., low threshold, cw operation, op-
eration at high temperature, narrow linewidth (even single mode) spectra,
or high output power. All semiconductor lasers are now fabricated with het-
erostructures in order to have the low thresholds necessary for cw or room
temperature operation. The heterostructure widths may be chosen to pro-
duce either a bulk or a quantum-well gain medium. In most semiconductor
lasers on the market, the lateral variations (y direction in Fig. 1.1) of the
light are gain guided, that is limited in y extent to the region having ap-
preciable current flow. Some lasers are fabricated more intricately to achieve
index guiding, which allows them to operate in a single mode. Combinations
of high and low reflection coatings are often used to optimize the optical res-
onator quality factor, Q. Nonabsorbing facet technology, which increases the
facet damage threshold, is instrumental in the development of high-power
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p-doped n-doped

(a)

e A

p-doped

(b)

Fig. 1.2a, b. Electron energy and occupation perpendicular to the p-n junction
(a) without an applied voltage and (b) with a forward biased applied voltage

single-mode lasers. Some semiconductor lasers are fabricated with narrow
stripes for single transverse-mode operation, while others are fabricated with
broad active areas for high output power.

To see how an inversion is created at a p-n junction, we plot in Fig. 1.2 the
energy bands and electron occupation as functions of position in the trans-
verse x direction, i.e., perpendicular to the junction plane. This figure shows
that in the absence of an applied voltage across the electrodes, the chemical
potential (Fermi energy) is constant throughout the entire structure, as shown
in Fig. 1.2a, resulting in no net flow of carriers. More importantly, there is
no region containing both electrons in the conduction band and holes in the
valence band, which is necessary to obtain an inverted population. When
a voltage is applied so that the p-doped region is positive relative to the
n-doped region, the electron energies are altered as shown in Fig. 1.2b. The
voltage drop across the junction is reduced (forward biased). When the for-
ward bias approximately equals the bandgap potential, an inverted or active
region is created within the junction. Inside this region, stimulated emission
occurs due to electron-hole recombination. At steady state, the inversion is
maintained by the injection of carriers, via the electrodes, by an external
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power supply. Lasing occurs when the rate of stimulated emission due to
electron-hole recombination approximately equals the total rate of optical
losses.

1.3 Heterostructures

The first semiconductor lasers were homostructure devices where each laser
was fabricated with only one semiconductor material. These lasers had high
threshold current densities, even when operated at low temperature where
the gain is higher and the carrier density necessary for reaching transparency
is lower than at room temperature. In addition to not working at room tem-
perature, these lasers also could not operate cw.

The methods which drastically improve semiconductor laser performance
may be understood with the following discussion. A laser’s threshold gain is
often estimated from the unity round-trip condition

R1R2 ez(FGf,h_aabs)L =1 , (11)

where R; and R, are the facet reflectivities, I" is the confinement factor,
which is a measure of the overlap between the lasing mode and the active
region cross section, L is the laser length, and aabs accounts for the optical
losses. Solving (1.1) for the threshold gain, G, we have

o 1 . ln(Rle)
Gth—f(aabs 51 ) . (1.2)

For a bulk gain medium, and under very restrictive conditions, as will
become clear later in this book, one can sometimes approximate the gain as

G =Ag (N - Ng) , (1.3)

where Ag is the gain coefficient and Ny is the carrier density needed to reach
transparency in the gain medium. A, and Ny depend on both the gain ma-
terial (via relaxation rates, band structure, etc.) and the laser configuration
(via the lasing frequency, temperature, etc). In the more phenomenological
approaches, one takes their values from experiment. In later chapters we de-
rive more precise gain formulas, which when reduced to the form of (1.3)
give the functional form of A; and Ng. Note that although (1.3) displays no
tuning dependence, it clearly shows that with too few carriers, the medium
absorbs radiation instead of amplifying it.

Another approximation, which can be used under some conditions, is to
relate the injected carrier density to the injection current density by

N=_I1_ (1.4)
e’yeffd

where e is the electron charge, J.s is an effective carrier recombination rate,

d is the active region thickness (or depth), and 7 is the quantum efficiency

with which the injected carriers arrive in the active region and contribute to

the inversion. Since N is inversely proportional to d, the gain (1.3) increases
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as d decreases for a given J. More specifically, solving (1.3) for N using the
threshold gain of (1.2), we find the threshold injection current density

Jin = e’Y:Yd {Ng + A:—F I:aabs — i ln(Rle)} } . (15)
We note that the threshold current density is a strong function of the active
region thickness. In a homostructure laser, d is the distance traveled by a con-
duction electron going from the n-doped region to the p-doped region before
it recombines with a hole. In a homostructure GaAs laser, d ~ 1 wm. Reduc-
tion of this thickness reduces the threshold current density proportionately,
unless I is changed.

The method that is now generally adopted for decreasing the active layer
thickness involves blocking the carrier flow with a layer of material that has
a higher bandgap energy than the active region. The resulting structure is
called single heterostructure if only one blocking layer is used, and double
heterostructure if a blocking layer is used on either side of the active region
(Fig. 1.3). With a heterostructure laser, the thickness of the active region is
determined during growth, and active region thicknesses of 0.1 wm or less can
readily be achieved.

Heterostructures may only be grown epitaxially with crystals that have
sufficiently similar lattices. For example, one may use GaAs and AlAs because
both are face-centered cubic crystals, with almost equal lattice constants of
5.652 and 5.662 A at room temperature, respectively. One can then grow lay-
ers of (GaAs);_;(AlAs), which is also written as Al,Ga;_,As. For > .45,
this compound has an indirect bandgap, which is not useful as a gain medium.
For smaller values of z, the bandgap energy of such a layer is given empirically
by

g0 = 1.424 + 1.266 + 0.2662> . (1.6)

For two materials that can form a stable heterostructure, the larger bandgap
material usually has a lower refractive index. According to experimental data,
the refractive index of Al,Ga;_;As may be approximated by

n = 3.590 — 0.710z + 0.091z> . (1.7)

el

Fig. 1.3. Electron en-

ergy and occupation for

a double heterostructure
X laser
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Therefore, the double heterostructure also provides an optical waveguide for
the laser field, resulting in a higher confinement factor. Equally important,
because of their wider bandgap, the blocking layers are transparent to the
laser field, thus reducing optical losses. The improvement in laser performance
due to the introduction of heterostructures is largely responsible for making
semiconductor lasers into practical devices.

Once lasing is achieved, the next goals are usually to increase output
power and lower laser threshold current. For the double heterostructure laser
just described, scaling to higher power is a problem. The reason is that both
the carriers and the laser mode are confined to within the same thin region.
While we would like the carriers to be in a thin layer to maximize the density,
we would also like the radiation field to be in a thick layer to ensure that
its intensity is below the material damage threshold. It turns out that we
can have both with more complicated heterostructure configurations. Exam-
ples are the large optical cavity (LOC) structure shown in Fig. 1.4a, or the
separate confinement heterostructure (SCH) shown in Fig. 1.4b. These het-
erostructures involve either one or two barrier layers for carrier confinement,
and two cladding layers for optical confinement. The flexibility of the LOC
and SCH designs makes them widely used in semiconductor lasers.

Present state of the art fabrication techniques allow one to reduce the
active layer thickness even to the dimension of the order of or less than an
electron de Broglie wavelength, which is about 120 A in GaAs. We then have
a quantum-well laser where the carriers are confined to a square well in the
transverse dimension and move freely in the other two dimensions. As later
chapters show, the change from a three-dimensional to a two-dimensional
free-particle density of states causes a quantum-well gain medium to behave
differently from a bulk gain medium. A useful property of a quantum-well
layer is that it is thin enough to form stable heterostructures with semicon-
ductors of noticeably different lattice constants. The necessary deformation
(strain) in the quantum-well lattice structure produces stress in the neigh-
borhood of the interface which significantly alters the band structure. The
change in band structure can lead to a reduction of laser threshold current
density. This and other features of strained layer quantum-well gain media
are discussed in Chaps. 6, 7.

Additional improvements of the semiconductor laser performance appear
possible if one reduces the dimensionality of the gain medium even further
than in the quasi-two-dimensional quantum wells. Instead of having carrier
confinement only in one space dimension, one may produce structures where
the quantum confinement occurs in two or even all three space dimensions.
These quasi-one-dimensional or quasi-zero-dimensional nanostructures are re-
ferred to as quantum wires or quantum dots, respectively. Simple density-of-
state arguments indicate that the reduced dimensionality leads to a more
efficient inversion and, hence, to the possibility of ultra low threshold laser
operation. However, more recent studies show that the Coulomb interaction
effects among the charge carriers become increasingly more important for
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Fig. 1.4a, b. Schematic diagram of (a) the large optical cavity (LOC) structure,
(b) the separate confinement heterostructure (SCH)

a decreased dimensionality of the semiconductor structure. These Coulomb
effects seem to, at least partially, remove the advantages gained by the mod-
ified density of states. Furthermore, the manufacturing of quantum-wire or
quantum-dot laser structures is still in its infancy. Therefore, we do not dis-
cuss the potentially very interesting quantum-wire or quantum-dot laser de-
vices in this book. For more information we refer the interested reader to the
literature at the end of this chapter.
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1.4 Elementary Aspects of Band Structures

In a simple picture of a semiconductor, an electronic state is identified by its
momentum, k, and z-component of spin, s,. The allowed electronic energies
are a result of the interaction of the electron with the regular lattice of ions.
The resulting band structure describes how the energy of an electron in the
ionic lattice is related to the carrier momentum in the absence of other mobile
carriers. Figure 1.5 shows, as an example, the electronic band structure for
GaAs. We see that it is quite complicated. There are regions with continuous
distributions (or bands) of energies and regions where electronic states are
forbidden (bandgaps). The figure identifies two types of bands: conduction
bands, which consist of unoccupied states; and valence bands, which consist
of occupied states. GaAs is an example of a direct bandgap semiconductor,
for which the conduction-band energy minimum and the valence-band energy
maximum have the same momentum. If the band extrema occur at different
momentum values, the semiconductor has an indirect bandgap. Most I1I-V
and II-VI compounds (the numerals refer to columns in the Periodic Table)
are direct bandgap materials. Examples of indirect bandgap materials are Si
and Ge (both column IV), and AlAs (III-V). Direct bandgap materials tend
to have high radiative transition rates, whereas indirect bandgap materials
do not. Since the abscissa in Fig. 1.5 covers the full Brillouin zone, it gives
the complete description of the electronic band structure. In general, a semi-
conductor electronic band structure has numerous bands with asymmetric
shapes and sometimes several energy maxima and minima.

Fortunately, for optical transitions with frequencies in the visible or near
infrared, it is often sufficient to consider only a small portion of the band
structure shown in Fig. 1.5. This simplification is due to two factors. One
is that optical transitions are direct transitions, i.e., the momenta of the
initial and final electronic states are essentially equal. This is because from

6 P—\-
4
s o
o Of
A
5 al
£ ol
z St
w -gt
-10} GaAs Fig. 1.5. Band structure of GaAs. The
\/ hatched region is the region of interest for
-12f optical transitions. I', X and L are high

X symmetry points in the first Brillouin zone,
the I' point is the zone center
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the conservation of momentum, the difference in electron momenta must
equal the momentum of the photon involved in the transition. The photon
momentum is

hK = i‘an , (1.8)
where hv is the photon energy, K is the magnitude of the photon wavevector,
n is the refractive index of the semiconductor, and c is the speed of light in
vacuum. For GaAs, hiv ~ 1.4 eV and n ~ 3.6, so that K =~ 2.54 x 107/ m,
which is negligible on the scale (= 10'°/ m) of the electronic band structure
(Brillouin zone). Therefore, we only need to consider a narrow region of the
band structure around the bandgap minimum, where optical transitions are
most likely to occur. If the region of interest is sufficiently narrow, it is often
reasonable to approximate the energy bands in that region as symmetric and
parabolic in shape. We discuss deviations from this simple parabolic band
approximation in Chaps. 5 to 7.

Another important simplifying factor is that all low lying, completely filled
bands do not contribute directly to the optical transitions in the frequency
range of interest. Hence, the electronic band structure that we have to con-
sider usually involves only a very small portion of the entire band structure
indicated by the hatched area in Fig. 1.5.

Particularly, when we get into the theory of strained quantum-well devices
(Chap. 6), it is useful to know roughly why there are three valence bands and
one conduction band in Fig. 1.5. The single conduction band in the figure
results from a 4s-state of the GaAs “molecule”, while the three valence bands
come from a 4p-state. More precisely, there are two spin states for each k in
the conduction band. The spin-orbit interaction in the valence band leads
to the total angular momentum j with values j = 3/2 and j = 1/2. The
lowest valence band in Fig. 1.5 corresponds to the two spin states of j = 1/2,
the highest valence band corresponds to the states m; = 3/2, and the middle
valence band (degenerate with the highest at k£ = 0) corresponds to m; = 1/2
belonging to j = 3/2. The lowest band is variously known as the split-off band
or the spin-orbit band. The upper valence bands are called the heavy-hole
and light-hole bands corresponding to the reciprocals of their curvatures, as
described below.

Most semiconductor lasers may be described by a band structure con-
sisting of one conduction band and several valence bands. Sometimes, even
a simple two-band model (one conduction and one valence band) is sufficient
to illustrate the physics of semiconductor laser behavior. In this chapter we
limit our discussions to such a two-band model. Generalization to the case of
multiple valence bands involves introducing a valence band index, something
we do in the later chapters.

In the absence of dopant atoms, thermal energy, and pumping processes
such as interaction with an optical field, the valence bands of a semiconductor
are completely full and the conduction band is empty. As such no states are
free for electrons to move to within their respective band, and hence no
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current can flow. The band structure is calculated for this case of unexcited
electrons. As discussed above, if the portion of the band structure of interest
is sufficiently small, we may use the effective-mass approximation, where the
detailed conduction and valence band structures are approximated by the
simple parabolae

h%k?
Eck = e +€g0 (1.9)
h2k?
vk = . 1.10
ek = 5 (1.10)

Here m. and m, are the effective masses of the electrons in the conduction
and valence bands, respectively, and €40 is the bandgap energy in the absence
of excited electrons. The band-structure diagram is shown in Fig. 1.6. The
effective masses are defined by the reciprocals of the band curvatures, that
is, by the second derivatives
1 1 d2%eix

m; B2 dR? |,

i=c,v (1.11)

of the conduction- or valence-band energies. As a consequence of the negative
valence-band curvature, m, is negative, while m, is positive.

ot

Conduction band edge —

Valence band edge \ ‘

Y
=

Fig. 1.6. Two-band model of a direct bandgap semiconductor. The electron and
hole kinetic energies €or and enx are measured from their respective bandedges,
with electron (hole) energy increasing upwards (downwards). pe and pn are the
quasi-equilibrium chemical potentials described in Sect. 1.6
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If an electron in the full valence band absorbs light, it is excited into
the empty conduction band leaving behind a missing electron in the valence
band. For simplicity, we refer to the conduction electrons simply as electrons
and the missing valence-band electrons as holes. Since all states are vacant in
the conduction band except the one occupied by the excited electron, a tiny
one-electron current can flow in the conduction band. As such the excited
electron is called a charge carrier. Similarly, an electron in the valence band
can move into the hole, which moves the hole, so that the hole too is a charge
carrier with a charge +e opposite that of the electron.

For an optical (vertical) transition, the transition energy at the carrier
momentum k is given by

hwg = €k + Enk + €0 (1.12)
where the electron and hole energies are
h2k?
ek = 2me )
h2k?
= 1.13
Ehk th ) ( )

and m. and my are the effective masses of the electron and hole, respec-
tively. The electron mass m. equals m.. In this electron-hole description of
a semiconductor, the energy of the hole may be thought of as the energy of
the completely filled valence band minus the energy of the valence band with
a vacant electronic state. In this case, an increase in the hole momentum
leads to an increase in the hole energy. Therefore, whereas the effective elec-
tron mass in the valence band is negative, the effective hole mass is positive.
The relationship between my and m, requires taking into consideration the
Coulomb interaction among carriers, which is of course different for a com-
pletely filled valence band and for a valence band with a vacancy, see Sect. 3.1
for details.

The resonance energies for the optical transitions can be changed by the
Coulomb interaction, which for low densities leads to the creation of exci-
tons. Here the Coulomb attraction can bind an excited electron and hole pair
into an exciton, which is a hydrogen-like “atom” with a finite lifetime. The
exciton life is terminated through electron-hole recombination, which trans-
fers the exciton energy to light (radiative recombination), or to the lattice,
impurities, etc. (nonradiative recombination). By replacing the proton mass
by the reduced electron-hole mass, we can use the Bohr hydrogen model to
describe an exciton. The radius of the lowest exciton state is given by the
exciton Bohr radius (in cgs units)

hzeb

e2m,

ap = , (1.14)
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and the energy of the lowest state is given by the exciton Rydberg energy
h?
2m.a?

e2

ER =

2€b(l0

e*m,

= & (1.15)
2e2h2

where €, is the background dielectric constant and m; is the reduced electron-

hole mass defined by

1 1 1
. S (1.16)
my Me My

or from (1.15)

o 26%?7?61:{

r =
et

In GaAs, ag = 124 A compared to 0.5 A in the H atom, and eg = 4.2 meV,
which is tiny compared with 13.6 eV for the H atom and small compared
to room temperature thermal energy kT = 25 meV. Whether excitons are
important in the description of semiconductor behavior depends on ay com-
pared to the mean distance between electron-hole pairs and the screening
length, and eg compared to kg7T'. The screening length is a measure of the
effectiveness of the screening of the Coulomb interaction between two car-
riers by other carriers. As the carrier density increases (due to an injection
current or optical absorption), the Coulomb potential becomes increasingly
screened, and for sufficiently high densities the excitons are completely ion-
ized. Similarly, for increasing density the mean particle separation decreases,
leading to increasing overlap of the electrons and holes in the excitons. Since
electrons and holes are Fermions, each quantum state cannot be occupied by
more than one particle (Pauli exclusion principle). Hence, different electrons
(holes) compete for the available phase space. Phase-space filling effectively
reduces the electron-hole attraction, quite similar to screening. One sees this
explicitly in Chaps. 3 and 4, where the many-body effects are treated.
There is some discussion about the values of m. and m;, to use. For
example, for GaAs one may see me = 1.127mg, my = 8.82my, and m, =
0.05896m, where mg is the mass of the electron in free space. Alternatively,
in this book we usually use m. = 1.176m, (= 0.0665m¢), mp = 6.669m;
(= 0.377myg), and m, = 0.05653m¢, which agrees with the Luttinger Hamil-
tonian discussion in Chap. 5 provided one uses the heavy-hole mass myy for
my. The corresponding light-hole mass is my, = 0.09my. Part of the problem
arises in attempting to use a two-band theory when three bands (one con-
duction and two valence bands) participate. For example, the reduced mass
m, given by (1.16) based on measurements of er and €, probably does not
exactly agree with that based on using the heavy-hole effective mass from the
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Luttinger theory. Crystal strain existing in heterostructures with lattice mis-
match can mix valence bands in ways that destroy the accuracy of parabolic
band effective mass approximations altogether. Nevertheless, the simplicity
of the two-band model merits our careful consideration.

At this point, we need to remind ourselves that the carrier-density inde-
pendent band structure discussed so far assumes that only one conduction
band electron and one valence-band hole are present in the semiconductor. In
the presence of more electrons and holes, many-body interactions cause the
band structure to change. This band-structure change is a result of changes
in the Coulomb repulsion among carriers within the same band, because of
screening and exchange interactions which are a consequence of the quantum
statistics. One effect of the many-body carrier-carrier interactions is a re-
duction in the optical transition energy with increasing carrier density. This
change is called bandgap renormalization, and it modifies (1.12) to

hwyg = €ck + Enk + €g0 + 05 (1.17)

where the renormalization energy de, is often assumed to be independent of
electron momentum. Bandgap renormalization explains why the laser diode
typically oscillates at frequencies just below the zero-density bandgap en-
ergy, €g0, and has consequences in predictions concerning the laser linewidth
and antiguiding. Coulomb attraction between electrons and holes affects
semiconductor behavior by reshaping the semiconductor gain spectrum in
a way called Coulomb enhancement. These many-body effects are discussed
in Chaps. 3, 4.

1.5 Units

As we can see from (1.14, 15), the question of the choice of units arises early
in any discussion on semiconductor lasers. If we deal with laser physics alone,
we would encounter no arguments with using MKS units. However semicon-
ductor physicists often use cgs units. Hence, we have the problem of using
cgs versus MKS units.

For this book, we propose the following compromise: The exciton Bohr
radius often plays the role of a characteristic length scale in semiconductors
and the Rydberg energy is the natural energy unit. Expressing results in
terms of ap and egr helps to side step the units problem. This is important
because semiconductor lasers are of interest in both solid-state physics and
engineering communities. For example, in MKS units, the e? in (1.14 15)
should be replaced by
o2

e? >

i (1.18)

where € is the MKS permittivity of free space.
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1.6 Fermi-Dirac Distributions

A very important effect of the Coulomb interaction is carrier-carrier scat-
tering. This has a counterpart in gas lasers known as velocity-changing col-
lisions, but it is a much stronger effect in semiconductors. In conventional
near-infrared semiconductor lasers, the excitons are ionized at the densities
high enough to get gain (> 10'® cm™3). The carrier-carrier scattering drives
the electron and hole distributions each into Fermi-Dirac distributions, pro-
vided external forces like light fields vary little in the typical carrier-carrier
scattering time of a picosecond or less. These distributions are called quasi-
equilibrium distributions because they result from the equilibration of the
carriers within their bands, but not among bands. In true thermodynamic
equilibrium, the electrons are described by a single Fermi-Dirac distribution,
which for typical temperatures gives filled valence bands and empty conduc-
tion bands, that is, a semiconductor in its ground state. Quasi-equilibrium
occurs on a time scale long compared to the carrier-carrier scattering time
but short compared to interband relaxation times, which are on the order of
nanoseconds. It can be maintained in a steady state by pumping the elec-
trons from the valence band to the conduction band with current injection
or through optical field pumping.

The rapid carrier equilibration into Fermi-Dirac distributions greatly sim-
plifies the analysis of the semiconductor medium. Instead of having to follow
the carrier densities on an individual k basis, we may only need to determine
the total carrier density N. The individual k-dependent carrier population
probabilities are then given by

1
fak = e—‘m = fa(gak) s (1-19)

where o = e(h) for electrons (holes), 5 = 1/kgT, and p is the carrier
quasi-chemical potential, which is chosen to yield the total carrier density N.
We measure the chemical potentials from their respective band edges. From
(1.19), we see that independent of temperature, when 4 = o, the Fermi-
Dirac distribution fq(te) = % For €4k < [ta, the occupation probability is
therefore > 1/2 . A negative chemical potential, o < 0, indicates that band
a does not contain enough carriers to fill any state with 1/2 probability. At
T = 0 K, the chemical potential equals the Fermi energy, which is the upper
most level filled by carriers. Figure 1.7 is a plot of the Fermi-Dirac distri-
butions for different temperatures. At T = 0 K, the Fermi-Dirac distribution
is a step function, such that all states with energy below the chemical po-
tential are completely filled and those above are completely empty. As the
temperature is increased carriers begin to occupy energetically higher states.
Except for high temperatures, the changes in the occupation of the states
occur primarily in the energy range kg7 around piq-

As mentioned earlier; the chemical potential is determined by the tem-
perature and by the total number of carriers. In the absence of doping, the

1.6 Fermi-Dirac Distributions 17
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fe)

e/u
Fig. 1.7. Fermi-Dirac distributions versus normalized energy £/u. The curves are

for the normalized temperatures ksT'/p = 0 (dotted), 0.1 (dashed), 0.3 (dot-dashed),
and 0.5 (solid)

total carrier density is the same for electrons and holes. Denoting this by N,
Lo is determined by the condition

1
N=2 3 far (1.20)
states
where V' is the volume of the sample. In a bulk semiconductor, the electron or
hole states are specified by the momenta, k., ky, k, and spin component s,
so that the summation over states gives

1
N:V;;;Zm . (1.21)

z

The z-component of the wavefunction, for example, is

r, () = elf= (1.22)

1
VLg
where L, is the length of the semiconductor crystal in the x direction. Assum-
ing periodic boundary conditions within the semiconductor, k, is quantized
according to

_27mn

bo=T (1.23)

where n is an integer ranging from —oo to co. For L, sufficiently large, we
can assume an essentially continuous range of values for k,. Then we can
replace the summation over k; by an integral
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& dn
— 1.24
Z - / dks dk, ’ ( )

ka -0
where

dn &

dk, 27’

is the number of states within the interval k,, and k;,+dk,. Using an equivalent
argument for the other two components of k gives

1
N = Vzk:fak

2 oo 00 o5}

where the factor of 2 comes from the s, summation and the 1/V has been can-
celled out by the product L L, L. If the integrand is spherically symmetric,
then

o0 o0 oo o0
/ dk, / dk, / dk, — / dk4nk? | (1.26)
oo o0 — 0 0

with k% = k2 + k2 + k2, so that

_[" ROTAE 1.27
N /Ode(k)fk (1.27)

where D, (k) = (k/m)? is the momentum density of states of a bulk semicon-
ductor giving the number of states between k and k + dk.

We can convert the integration variable from k in (1.27) to the energy
€a = h2k?/2m,, so that

N = /00 deq Do(ea) fa(Ea) (1.28)
and
Dalen) = 30z (5°) Ve (1.29)

is the energy density of states in a bulk semiconductor giving the number of
states between e, and €, + deo. Whenever it is obvious if we are referring
to the energy or momentum density of states, the functional dependence
is usually omitted. The energy density of states is often more useful than
the momentum density of states because transitions involve states that are
within a range of energy instead of momentum. Specifically, the initial and
final states that contribute strongest to a transition are those with energy
separation Ae within the range hv + Ay, where v and v are the transition
frequency and linewidth, respectively.

We can use (1.28) to check the validity of the two-band model, i.e., the
use of the heavy-hole band alone. In quasi-equilibrium, both valence bands
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share the same chemical potential, uy. The total carrier density for the holes
is the sum of the light and heavy hole band densities

N = Np + Nun

V2 ( 3/2 3/2)/0°°d \/E

= W myy, +mhh Em

b

giving

3
Nin my '\ 2
Nop ( — ) . (1.30)
For the values mp, = 0.377mo and my, = 0.09mg, this gives 12 % of the
holes in the light-hole band, which is small enough to neglect for our simpler
modeling.

In general, the determination of the chemical potential for a given carrier
density has to be done numerically, because there is no analytical solution
of the integrals in (1.27, 28). The chemical potential can always be found by
iteration, with the necessary integrations done numerically. However there
are approximate analytic expressions relating the chemical potential to carrier
density for some cases. One such case occurs when only the high energy tail of
the Fermi-Dirac distribution is within the band. In other words, the chemical
potential lies sufficiently far inside the bandgap (is sufficiently negative) that

Eak — fho > kT . (1.31)
Then the exponential term may dominate the 1 in the denominator of (1.19)
and

fak =~ Pra g™ Fear (1.32)

which is a Maxwell-Boltzmann distribution. Equation (1.28) then can be
readily evaluated as (setting ¢ = 8h%/2m,, for typographical simplicity)

1 % 2
N ~ — ke / dk k2 e~

u 0
1 o [ 2
— _— oBua L ke 9
7r2e 3(1/0 dke
1V g, 0 1
w2 2 09 \/q
3
1 QkaBT 2
=i (M) e -0

Hence .
b

2
Bra = 4N 7T_h =N
e (2makBT =N , (1.34)

or .
Bpa =In(N) (1.35)

where we introduce the normalized total carrier density N.
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The Maxwell-Boltzmann distribution is sometimes a good approximation
for the hole distribution because the high effective mass of the heavy hole
band gives rise to a high density of states. This in turn makes it difficult to
generate a signifcant hole population in the valence band. Figure 1.8 com-
pares the Fermi-Dirac and Maxwell-Boltzmann distributions for electrons and
holes in GaAs. We see that the hole distribution agrees rather well with the
Maxwell-Boltzmann approximation, whereas for these parameters the elec-
trons clearly exhibit near degenerate Fermi-Dirac statistics, which cannot be
reproduced by a Boltzmann distribution. To force a fit would yield values of
fe > 1, a truely unphysical result!
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Fig. 1.8a, b. Fermi-Dirac (solid lines) and Maxwell-Boltzmann (dashed lines) dis-
tributions as functions of carrier energy ¢, for N = 3x 107*® em ™ and T = 300 K.
(a) shows the electron population, while (b) shows the hole population. We assume
bulk GaAs parameters with an electron effective mass m. = 0.0665m., and a hole
effective mass myn = 0.52me
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For T — 0, 8 = 1/kgT — oo, for which the Fermi-Dirac distribution
becomes a step function, truncating the integral (1.28) to

9 2\3/2 pla
N = @re/i) / dea vEa
0

_ 1 2Mafia :
~ 3m2 h2
Inverting this, we have the chemical potential

h2
Ho = 2myg,

(372N)3 . (1.36)

1.7 Quantum Confinement

GaAs does not occur in nature and as such can be considered a “designer
material”. Thanks to modern crystal growth techniques, one can not only
determine the composition of semiconductors with remarkable precision, but
can also determine their shape virtually on an atomic scale. In particular, it
is possible to fabricate microstructures so small that their electronic and op-
tical properties deviate substantially from those of bulk materials. The onset
of pronounced quantum confinement effects occur when one or more dimen-
sions of a structure become comparable to the characteristic length scale of
the elementary excitations. Quantum confinement may be in one spatial di-
mension, as in quantum wells, in two spatial dimensions as in quantum wires,
or in all three spatial dimensions as in quantum dots. The confinement modi-
fies the allowed energy states of the crystal electrons and changes the density
of states. In this section, we introduce the basic properties of quantum-well
structures that we use in the next chapters on laser gain. In Chap. 6, we
discuss the finer but still important modifications to the quantum-well band
structure.

We begin our discussion with quantum wells, which are the most devel-
oped of the quantum-confined structures. Quantum-well lasers are commer-
cially available, while quantum-wire and quantum-dot lasers are still in the
research stages. Some references for these systems are listed at the end of this
chapter. An understanding of the basic effects is best obtained by considering
ideal quantum confinement conditions, for which the elementary excitations
are completely confined inside the microstructure and the electronic wave-
functions vanish beyond the surfaces. For this idealized situation, we can
write the confinement potential as

Vcon(z):{O |z| < w/2

oo |zl >w/2
In the zy plane there is no quantum confinement and the carriers can move
freely. The electron eigenfunction (actually the envelope of the eigenfunction
as discussed in Chap. 6) can be separated as

(1.37)
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Yk, (1) = i, (P1)Gn(2) (1.38)

where the z and transverse components r (z,y) obey the Schrédinger equa-
tions

m2 d?
_Rd—zi + ‘/con(z) Cn(z) = EnCn(z) s (1.39)
and
—jz—Vi%JU) =k, Pk, (r1) (1.40)
2mJ_

respectively. For simplicity, we assume that the bulk-material band structure
can be described by parabolic energy bands that are characterized by the
effective masses m, and m . As shown in Chap. 6, m, and m, are equal
for the conduction bands. They differ for the valence bands, which leads to
the interesting property of mass reversal. Equation (1.40) describes a two-
dimensional free particle (i.e., no external potential and not interacting with
other particles) with eigenfunctions

1 o
dhulri) = = etk L (1.41)
and eigenvalue
h%k?
= 1.42
€k o2m, ( )

where A is the area of the quantum-well. Because of the infinite confinement
potential, we have the boundary conditions

w w
—) = ——) = 1.43
o (2) n ( 2) 0 (1.43)
which lead to the even and odd solutions of (1.39)

Cn(z) = \/%cos(knz) , meven , (1.44)
2 .
(n(2) = {/—sin(kn2) , nodd , (1.45)
w
where the wavenumbers k,, are given by
kp = = (1.46)
w

and the bound state energies ¢,, are
_ h2k2 _ m2h2n?

T 2m, 2m w2

En (1.47)

Adding the energies of the motion in the zy plane and in the z-direction,
we find the total energy of the electron subjected to one-dimensional quantum
confinement to be
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. m2h2n? h2k?
T 2muw? | 2my (1.48)
where n = 1,2,3,..., indicating a succession of energy subbands, i.e., energy

parabola A?k3 /2m | separated by 72h%/2m,w?. The different subbands are
labeled by the quantum numbers n. Figure 1.9 depicts the energy eigenstates.

Vcon
A
+oo +oo
E,
E,
E,
— 7
-w/2 0 wl?2

Fig. 1.9. Energy eigenfunctions and eigenvalues of the three energetically lowest
states for an infinite one-dimensional square potential well

Realistically, we can only fabricate finite confinement potentials, so that

[0 [z <w/2
V"°“(z)‘{vc 2] > w/2

The analysis follows closely the treatment of the infinite potential, with the
Schrédinger equation for the z-y motion being unchanged. However, solutions
in the z-direction can no longer be determined analytically. Equation (1.39)
now has to be solved separately in the regions, 1) |z| < w/2, i) z > w/2,
and i) z < —w/2. In region 1), the solutions are given by (1.44, 45), while
in regions #) and ) they are

(1.49)

C(z) = Cp ez C_e k=2 , (1.50)
where
2m,
K2 = T (Ve—e.) . (1.51)
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Since the wavefunction has to be normalizable we have to pick the decaying
solutions in (1.50). Also, we have to match the solutions and their derivatives
at the interfaces +w/2. This yields the even states
Beos(k,z) |z| <w/2
Con(2) = _,E ) (1.52)
Ce K12 2] > w/2
with the condition
Ve tan (V%’,fzw> =Ve—e. , (1.53)

whose solution gives the energy of the even states.
Similarly, the odd-states wavefunctions are given by

_ [ Asin(k.z)  |z] Sw/2
Cn1(2) = ekl [o] > w2

with the condition

@cot(m >: VVe—ts , (1.55)

(1.54)

2h2

whose solution gives the energy of the odd states. Figure 1.10 depicts the
solutions of a finite one-dimensional square well.

—-wl/2 0 wl?2

Fig. 1.10. Energy eigenfunctions and eigenvalues of a finite one-dimensional square
well
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An important difference between bulk and quantum-confined structures
is in the density of states. Following the steps taken for the bulk material
in the previous section, the sum over states in the quantum well may be
approximated by the integral

> = Z( / dk:/ dk, , (1.56)

states

where the factor of 2 comes from the spin summation and the volume of the
material is V' = wA. If the band structure is symmetric in the zy plane, then

oS oo [es)
/ dkz / dky = / dk?L 27Tk'l 5 (157)
—o0 —o0 0

where k3 = k2 + k2, so that

“Z Z/ dky D(k1) - (1.58)

states

Here D(k,) = k/(nw), is the 2-dimensional momentum density of states
giving the number of states between k; and k, + dk, . Using (1.42), we can
convert the integration variable into energy, so that

—Z Z/ de D(e) , (1.59)

states

where the constant

mz
D(e) = mwh?

gives the number of states per unit volume between ¢ and € + de.
The two-dimensional carrier density integral can be evaluated analytically
[Haug and Koch (1994)], yielding the chemical potential

Biia =1n [exp(wn2N2d> - 1] , (1.61)

(1.60)

makBT

where Nag = N/w is the 2-dimensional carrier density. For T — 0, this
reduces to

7l'h2N2d

L= vV 1.62
p — (1.62)

1.8 Slowly-Varying Maxwell Equations

In this section, we consider how a semiconductor gain medium interacts with
a laser field. Most theoretical problems involving lasers may be treated using
the semiclassical approximation, where one describes the laser field classi-
cally and the gain medium quantum mechanically. Figure 1.11 summarizes
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Quantum Statistical Maxwell’s ,
E(rvt) —_—l . P(r7t) ——‘»E (r’t)
mechanics /" summation equations
T Self-consistency

Fig. 1.11. Self-consistent semiclassical theory of a laser field E(r,t) interacting
with a quantum-mechanical medium. The assumed electric field E(r,t) induces
a polarization of the medium that, in turn, drives the field self consistently

the steps involved in the application of semiclassical laser theory. One be-
gins by calculating the microscopic electric-dipole moments induced in the
gain medium by a given laser field, E(r,t). These dipoles are summed to
yield a macroscopic polarization P(r,t). This polarization then drives the
laser field, E’(r,t) according to Maxwell’s equations. Self-consistency is im-
posed by the condition, E(r,t) = E'(r,t). In this section we complete the
Maxwell-equation part of this scheme by finding out how a slowly-varying
electric field amplitude is affected by the polarization of the medium. The
next section outlines the quantum mechanical method for deriving the other
part of the scheme, namely how the field induces the polarization of the
medium according to the quantum mechanics of the semiconductor.
We describe the laser field by Maxwell’s equations (in MKS units)

V-B=0 , (1.63)
V-D=0 , (1.64)
0B
V x E = T (1.65)
oD
= 1.6
VxH 5 (1.66)

In these equations, the magnetic flux, B, and the magnetic field, H are
related by the constitutive relation

where p is the permeability of the host medium. The displacement electric
field, D, is given by

D=¢cE=¢E+P , (1.68)

where €, is the permittivity of the host medium and P is the induced polar-
ization (dipoles per unit volume). For a semiconductor laser, the host medium
is the lattice. The permeability, u =~ po, where g is the permeability of the
vacuum. The semiconductor lattice typically has a background index of re-
fraction, n ~ 3.5, which is included in €, via €, = n2eg, where € is the
permittivity in vaccuum. The polarization, P, gives the gain and carrier-
induced refractive index, and is induced by the laser field interacting with

the electrons in the conduction and valence bands.
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Combining the curl of (1.65) with (1.66), gives
0°D
ot?
Since most light field vectors vary little along the directions in which they
point, V- E ~ 0. For example, a plane-wave field is constant along the di-

rection it points, causing its V - E to vanish identically. Using (1.68) for D,
we get the wave equation

29’E o’pP
V2E4 (MY =2 _ o8

ViE+ (c) oz~ Mo (1.70)
where c is the speed of light in vacuum and poe, = (n/c)?.

For the purposes of calculating the gain and index of the medium, we
consider a laser field of the simple plane-wave form

VxVxE=V(V-E)-V?E =y (1.69)

1. i([Kz—vt—
E(z,t) = §zE(z)e Kzmrt=¢()] 4 cc. | (1.71)

where 4 is the unit vector in the z direction, E(z) and ¢(z) are the real
field amplitude and phase shift that vary little in an optical wavelength,
v is the field frequency in radians/second and exp(iKz) accounts for most
of the spatial variation in the laser field. We choose a monochromatic plane
travelling wave because it allows us to illustrate the necessary physics of the
semiconductor gain medium with the minimum of algebra. We use a plane
wave in calculating the local properties of a gain medium, where the volume
element considered can always be made sufficiently small compared to the
transverse variations in the laser field. The local gain and refractive index
are needed for beam propagation and wave optical studies. A limitation to
using a monochromatic field is that we cannot deal with the coherent response
of a gain medium to multimode fields.
The laser field induces a polarization in the medium,

1. (K 2wt
P(z,t) = EZP(Z)QI[KZ vt=9( . (1.72)

where P(z) is a complex polarization amplitude that varies little in a wave-
length. It is related to the complex susceptibility of the medium by

P(z) = epx(2)E(z) . (1.73)
Substituting (1.71) and (1.72) into the wave equation (1.70), we find
E = po*P .

d’E _d¢\ dE dg\* | %  /nwy?
( )* (K‘a) +tige — (%) )
1.74

_ — 9

dz? ' dz ) dz
This equation can be simplified considerably if one assumes that E and d¢/dz
vary little in a wavelength, so that terms containing d?E/dz2, d2¢/dz2 and
(dE/dz)(d¢/dz) may be neglected. This slowly varying envelope approzima-
tion (SVEA) gives
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2
ik 3E | g2p_oxE9 _ (ﬂ) E = uo?P |
dz dz c
i.e.,
. 2 .
LN L A LNl (1.75)

dz Tdz T 2K 2
where we use K = vn/c. Equating the real and imaginary parts, we find the
self-consistency equations

dE(Z) v _ K y

G = zeme PG} = —5X(2)ERE) (1.76)
de(z) _ v _ K, z

dz _260ncE(z) Re{P(2)} = 2 X'(2) (1.77)

where x = X’ +ix”. Self-consistency refers to the requirement that the field
parameters ultimately appearing in the formulas for P(z) are taken to be the
very same as those computed from (1.76) and (1.77) for a given P(z).

Two useful parameters for characterizing a laser medium are the gain and
the carrier-induced refractive index change. The amplitude gain is defined as

dE
dz
where in general, g is a function of € and equals one half the intensity gain G.

The gain has units of inverse length. Comparing (1.76) to (1.78), we find the
local gain to be

9E (1.78)

K
g=-5x" - (1.79)

To find the carrier-induced refractive index dn, note that the wavenumber
of the laser field given by (1.71) is

- % =(n+n)Kop , (1.80)

where n is the refractive index of the lattice, dn is the index change due to
the carriers, and K is the wavenumber in vacuum. Since K = nK), we have

dz
Combining this with (1.77), we have the relative index change
/
n_ X (1.82)
n 2

1.9 Quantum Mechanics of the Semiconductor Medium

In this section, we introduce the second quantized (or Fock) representation to
treat the semiconductor gain medium. There are two reasons for going beyond
elementary quantum mechanics, which treats the wavefunction as a simple
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complex function. First, we have to account for the fact that electrons are
indistinguishable as depicted by the Feymann diagram for the scattering of
two electrons in Fig. 1.12. Similarly the holes are indistinguishable particles.
The calculation of the scattering cross section of two electrons has to involve
the correct average of the two experimentally indistinguishable events, direct
and exchange scattering. We can do that with the properly antisymmetrized
wavefunctions, but the second quantized representation takes care of the book
keeping more conveniently.

k + k'- k + k'-

a a 1 a Fig. 1.12. Direct and
exchange electron-electron
scattering. The facts that
these two events are experi-
mentally indistinguishable
and that their scattering am-
plitudes have opposite signs
are automatically taken into
account in the second quan-
k k' k k' tized representation

The second reason for going beyond elementary quantum mechanics is
because, for a semiconductor interacting with a light field, the number of
electron-hole pairs is not conserved: we can create or annihilate electron-hole
pairs. This is very inconvenient to describe at the level of elementary quantum
mechanics. On the other hand, it is straightforward with the use of second
quantization.

First, we introduce the electron field operator

P ) =D 3D ks, (ks (T) (1.83)
Ak s:

where ¢xks, () is the single-particle eigenfunction for an electron in the semi-
conductor and axgs, (t) is the annihilation operator for the electron in that
state, which we specify by the band index A = ¢ or v, momentum k, and
z-component of spin s,. Its Hermitean adjoint a;ksz creates an electron in
the same state.

For the sake of clarity, we write the operators with all their indices appear-
ing explicitly. Starting with Chap. 2, we usually incorporate the spin variable
into k for typographical simplicity. In that case, the subscript k represents
the three-dimensional momentum vector k, and two possible spin directions
S, = i%. The summation over k then involves summations over ky, ky, k-,
and s,.

As Fermion operators, the electron creation and annihilation operators
obey anticommutation relations. These relations are a consequence of the
Pauli exclusion principle, which states that at most one Fermion can occupy
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any given state. The anticommutation relations for the electron creation and
annihilation operators are

[a/\kSz’a/\’k’s;]+ = [a:r\ksz7a;’k’s'z]+ =0 (1.84)
[arks. , af\/k/s/zh = OOk k0s.s. » (1.85)

where for two operators, A and B, the anticommutator is defined by
[A,B];+ = AB+ BA .

The combination air\ksza)\ksz is the number operator for an electron in

band A with momentum k and s,. The eigenstates for a;ksz axks. are |Oxgs,)
and |1xgs.), which are the states containing no electron and one electron,
respectively. These eigenstates when operated on by the creation, annihilation
and number operators give

Arks, |Oxks,) = algs |Laks,) =0

ks, [1aks.) = |Oxks.)

a:f\ksJOz\ks,) = |Lxks.)

@}y Dk [ Orks.) = 0,

Lks.) = [1aks.) (1.86)

where the first equation expresses the fact that there is no electron to an-
nihilate in an empty state, and it is impossible to create an electron in an
already filled state.

In the electron-hole representation for a two-band model, we define the
hole creation operator

b p o = Guks. - (1.87)

"
A\ks, WAks

This equation indicates that the annihilation of a valence-band electron with
a given momentum and z-component of spin corresponds to the creation of
a hole with the opposite momentum and z-component of spin. Note that
for clarity in (1.87) we use a comma between the —k and —s, subscripts,
although it is probably clear without the comma since it does not make sense
to subtract a spin quantum number from a wavevector k. Similarly the hole
annihilation operator is given by

o5, =aly, - (1.88)

The hole operators also obey anticommutation relationships, so that the prob-
ability of finding a particular valence-band electron becomes

<alkszavk3z> =1- <bt_k,_szb—k,—s,> ) (1.89)

where the brackets (- - -) are used to indicate an expectation (or quantum me-
chanically averaged) value. As expected, the probability of finding a valence
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electron is one minus the probability of finding a hole. In the electron-hole rep-
resentation, we use the term electrons to refer to conduction-band electrons
and holes to refer to valence-band holes. The electron annihilation operator is

Aks, = Qcks, (190)
and the electron creation operator is
ot
Aps, = Qlgs, - (1.91)

In the second quantized representation, the Hamiltonian for N non-
interacting electrons is

o h2v?2 o
d3r ot —
[ @it (<5 ) it
DN ennaly anks. (1.92)
Ak s
where the index kin indicates that this is the kinetic energy part of the

interacting case, given by (1.9, 10). Evaluating the band summation and re-
stricting ourselves again to the two-band approximation gives

Hkin = Z Z (Eckazkszacksz + E’UkazTJksz avksz) . (193)
k sz

Hkin

In the electron-hole representation, (1.93) becomes
Hyin = Z Z [5cka;£,szaksz +ewk(1— bik,,szb;k,fs,)] . (1.94)
k sz

Since the origin of energy is arbitrary, the constant term, ), €. is usually
left out. Then

Hyin = Z Z(Ego + Eek)ak, aks, + Z Zehkb};szbksz ; (1.95)
k sz k sz

where eer and eny are given by (1.13). In going from (1.93) to (1.95) we set
my = —m,, where m, is the valence electron effective mass and my, is the
hole effective mass. This is only true for noninteracting electrons. When the
Coulomb interactions among electrons are taken into account, the relation-
ship between m, and my, is more complicated (Sect. 3.1). However the kinetic
energy part of the total Hamiltonian can still be put in the form of (1.95).

An example of a physical quantity that is represented by an operator is
the density distribution

n(r) = P¥(r)d(r)

1 H — 7 .
V Z el(k k") ralt;’,szak,sz

k,k’ s

=) ngeltr (1.96)
q
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where

1
ng = 7 Zal_q’szak,sz (1.97)
k,s,

is the Fourier amplitude of the density distribution operator. As discussed in
the following chapters, the determination of the density distribution involves
the solution of the equation of motion for ng.

To compute expectation values for an N-particle system, we need to
choose a basis set. For our problem a convenient basis is the one made up of
the eigenstates of a;’cszaksz and b;’csz bks,. These are the products

|{n2}> = |nek18z1> |nek2sz2> toe |nhk18z1> |nhk23z2> T
= |nek18z1nek28z2 - -+ Mhky s, Mhksszo - - > : (198)

These products give the occupancy of every state in the portion of the
band structure of interest. For example, (1.98) represents the eigenstate with
Tek,s., electrons in conduction band state 1, nek,s,, €lectrons in conduction
band state 2, and so on. Because of the Pauli exclusion principle, the n's are
either 0 or 1.

Any state of the system can then be written as

) = cmyl{nd) (1.99)
{nl}

where the summation is over all permutations of njs and cg,,3 = ({n:}[¥) is
the probability amplitude of finding the semiconductor in the eigenstate. If
we know the state vector for the semiconductor, then the expectation value
of an operator O is

(0) = (¥|Oly) . (1.100)

On the other hand if the system is not in a single state, then the expectation
value is

(0) = ZPJ<¢J'|0|¢J'> ; (1.101)

where P; is the probability that the semiconductor is described by the state
vector |1;). One should not make the mistake of associating P; with the
quantum mechanical uncertainty given by c(,,}. The lack of knowledge that
led to P; is usually classical in origin and in most cases is due to the lack
of information on the initial state vector. Inserting the identity operator,
> (niy {ni}) {({ni}|, between O and [4;), we find

(0) = 3> P @510[{ni}) ({ni}19)

{n,} J
= > " ({nawy) Py (4510[{ni})
{n.} J
= tr(p0O) = tr(Op) , (1.102)
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where p is the statistical operator (often referred to as density operator in
quantum optics)

p=2 Pl - (1.103)

This statistical operator is useful for describing lasers because collisions, re-
combination, and randomness (incoherence) in the excitation processes cre-
ating the inversion prohibit a precise knowledge of the state vector of the
system. The diagonal elements of the statistical operator

({ni}lpl{ni}) = ZPj {({ni}¥5) (¥il{ni})
= ij |¢tn.y

give the probability of finding the system in the eigenstate |{n;}). The off-
diagonal elements of the statistical operator

({ni}lol{ns}) = D P {nalvn) (wil{ns})
l

2 (1.104)

= Zplc;n]}c{m} , (1.105)
l

contain information concerning the relative phases (coherence) between prob-
ability amplitudes.

The statistical average over possible state vectors tends to destroy the
coherence in the system, so that whenever collisions or pump effects dom-
inate, we are likely to have a diagonal statistical operator. In a semicon-
ductor laser, the rapid intraband collisions usually dominate the dynamics
within each band. These collisions tend to drive the carrier distributions into
quasi-equilibrium distributions. As a result, the electron and hole statistical
operators are often to a very good approximation

1
= 1
Pe = Z exp|—f zk: SZ(Eek - ,ue)aksz ak3;| , (1.106)
1
Ph = Z_h exp _ﬁ; ;(Ehk - ﬂh)b;rcsz bksz:| , (1107)

respectively. Here, the partition function for the conduction electrons is

tr {exp[—ﬂ Z Z(Eek - lie)a')t,sz aksz:| }
k Sz
H H [<0eks; | e_ﬂ(se’c_uem’t“ak”
k sz

(L, | I, e

Ze

Oeks; >

1eksz >] )
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which yields

Ze = [[[]{1 + expl-Bleek — ne)l} - (1.108)
Similarly, o
Zy = tr {eXP[—ﬂ DD (ene - uh)blszbks,l }
= 1;[ [T+ e:p[—szmehk — )]} (1.109)

is the partition function for the holes. These statistical operators give the
Fermi-Dirac distributions for the expectation value of the particle number
operator. For example, the probability of finding an electron with momentum
k and s, is

1
tr pe(a]tszaksz) =7 exp[—B(€er — He)]

< [TTT {1 + exp[—B (cer — pe)l}
k' s,

1
= . 1.110
exp[B(eek — pe)] +1 (1.110)
Note, that (1.110) also gives the diagonal element

Z ({rwr s } Thos. [oel {mar o2 } k)

{"k',s’z}

where {ny . } represents all possible permutations of the eigenstates except
the one with momentum k and s,.

The dynamics for the expectation value given by (1.102) may reside in
the operator O or in the statistical operator p. The former corresponds to
the Heisenberg picture of quantum mechanics, and the latter corresponds to
the Schrodinger picture of quantum mechanics. They are equivalent in the
sense that both pictures give the same expectation values. In this book we
choose to work mostly with the Heisenberg picture because it turns out to
be a more convenient approach in the many-body treatment presented in the
later chapters. In the Heisenberg picture, the operator O obeys the equation
of motion

do
ih— = 1.111
i = 0.8 (1111)

where the commutator
[A,B]=[A,B]-=AB—-BA ,

and H is the total Hamiltonian. In the Schrodinger picture, the statistical
operator obeys the equation
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. dp
1ha =[H,p] . (1.112)

A calculation in the framework of semiclassical laser theory then involves
solving the medium equations of motion. These equations are derived using
the Heisenberg equation of motion and they are likely to consist of coupled
differential equations. The derivation and solution of the medium equations
is often complicated. Fortunately, approximations may be made. The next
chapters discuss these approximations, and show that different levels of so-
phistication exist on how we treat the semiconductor gain medium.



2. Free-Carrier Theory

As discussed in the previous chapter, the laser field and the semiconductor
gain medium are coupled by the gain and carrier-induced refractive index,
or equivalently, by the induced complex susceptibility. To determine these
quantities, we need to solve the quantum mechanical gain medium equations
of motion for the polarization. In principle, these dynamic equations should be
derived using the full system Hamiltonian, which contains contributions from
the kinetic energies, the many-body Coulomb interactions, the electric-dipole
interaction between the carriers and the laser field, as well as, the interactions
between the carriers and phonons. The effects of injection current pumping
should also be included. Such a complete theory will be very complicated.
Therefore, one often makes approximations that allow one to begin with
a tractable treatment that is reasonably accurate and hopefully contains the
most important effects. By gradually eliminating the approximations, one
works toward increasingly rigorous treatments. In this book, we take such an
approach.

As a starting point, we assume that the charged particle interactions are
sufficiently fast compared to the field transients. We then treat them as reser-
voir interactions that establish intraband thermodynamic quasi-equilibrium
Fermi-Dirac carrier distributions. Furthermore, in this chapter we neglect
many-body effects due to Coulomb interactions between the carriers that
renormalize the bandgap energy and the electric-dipole interaction energy. As
such, we treat the carriers as ideal Fermi gases, which labels our present theory
as a “free-carrier” theory. Many-body and band-structure effects are added in
the following chapters. On the crudest level, it is the strong reservoir inter-
actions (carrier-carrier scattering) that gives what appears to be a markedly
inhomogeneously broadened transition its homogeneously-broadened satura-
tion behavior. On the other hand, the wide tuning characteristics reveal as-
pects of the underlying inhomogeneously broadened transition.

In this chapter, we derive the equation for the polarization of a semi-
conductor medium that can explain this dual homogeneously and inhomo-
geneously broadened nature and at the same time track the medium’s re-
sponse to temperature and carrier density variations. The free-carrier model
is a reasonable approximation for describing the bandfilling aspects of the
semiconductor laser under most normal operating conditions. We also use
the two-band approximation. For the bulk GaAs semiconductor, the contri-
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butions of the heavy-hole band dominates that of the light-hole band since
it has a much larger density of states. This situation changes in strained
quantum-well systems for which the light-hole band can be lifted above the
heavy-hole band.

Section 2.1 describes the free-carrier Hamiltonian and derives the free-
carrier equations of motion in the Heisenberg picture. Section 2.2 introduces
the quasi-equilibrium approximation, which enables us to solve for the gain
and carrier-induced refractive index in terms of Fermi-Dirac carrier distribu-
tions. In this approximation the k-dependent carrier populations and polar-
ization amplitudes are assumed to adiabatically follow temporal variations
of the total carrier density and the electric field envelope. Section 2.3 uses
the free-carrier gain equation to predict gain spectra in bulk semiconductors
and in quantum wells. The width of the gain spectrum is shown to depend
strongly on the total chemical potential. Section 2.4 gives predictions and ex-
planations of the dependence of the gain on temperature. The dependence on
the applied light intensity (saturation) is analyzed in Sect. 2.5. The chapter
closes with Sects. 2.6, 7 on free-carrier predictions of the carrier-induced re-
fractive index and linewidth enhancement or antiguiding factor, respectively.
This subject is treated only briefly because an accurate description requires
the more complete analysis of the carrier-carrier Coulomb interactions.

2.1 Free-Carrier Equations of Motion

The free-carrier theory assumes that the primary effect of the Coulomb in-
teraction among carriers is to relax the carrier distributions within the con-
duction and the valence bands to quasi-equilibrium distributions. We can
phenomenologically account for this effect by treating the Coulomb interac-
tion as a reservoir interaction instead of a dynamical interaction. This leaves
us with the free-carrier Hamiltonian

H = Hkin+Hc—f

_ E 1 T
= (5ckackack + 5vkavkavk)
k

_ Z (pkalkavk + u,’;aikack)E(z, t) , (2.1)
k

where py is the dipole matrix element between the valence and conduction
band. We have assumed a dipole interaction between the laser field and the
carriers

Hy=-VP-E , (2.2)

where V is the volume of the active region, and the active medium polariza-
tion is given by the operator

1 it
P= v zk: (pkalkavk + ukavkack) . (2.3)
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In (2.1-3), we used the two-band approximation, and absorbed the spin index
into k, so that }_, is actually stz, and a.x and aLk are actually aqks, and

Aok, » Tespectively. In the electron-hole representation,
P= %Z ukakb_k + ppb— kak) , (2.4)
k
and
H = ; Kggo + k2> alay + ’;::: b bk
- Z (peafb! , + pib_rar) E(z,t) (2.5)
k

where we used (1.87, 88, 90, 91). Also, we denote the unrenormalized bandgap
energy €g0; and reserve €, for the renormalized value obtained from many-
body theory.

The link between the classical laser field and the quantum mechanical
semiconductor gain medium is obtained via the polarization

P(z,t) = (P) = tr{Pp} . (2.6)

Using (1.72), (2.4), the polarization amplitude appearing in the slowly varying
amplitude and phase equations (1.76, 77) is

: 1
_ —i[Kz—vt—¢(z)] *
P(z) = 2¢ W (27

Pk = (b_kak) - (2.8)

The gain medium variables are py together with the electron and hole
occupation numbers

nek = (atax) , (2.9)
(bT gb_k) (2.10)

In the Heisenberg picture, the derivation of the equations of motion for the
bilinear operators in (2.8-10) involves the evaluation of the commutators
appearing in the Heisenberg equation of motion (1.111). Doing the explicit
calculations we first note that any bilinear product of Fermion operators for
k commutes with any bilinear product of Fermion operators for k', where
k # k'. This follows immediately because four anticommuting exchanges are
involved and (—1)* = 1. Second, we note that the free-carrier Hamiltonian
may be written in the from

H = ZH’“ , (2.11)
k

Nhk

where the individual k-dependent parts are given by
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h2k2
A
2my —kUk

2K
Hk = <5g0 -+ 2_7'ne> a,tak +
—(urald' ), + ppb_rar) E(z,t) . (2.12)

Hence, the Heisenberg equation of motion for O equal to any of the bilinear
operators appearing in (2.8-10) simplifies to

dOy i i
— =—-|H = —[H, . 2.13
dt h[ aOk] h[ kaOk] ( )

This simplification is no longer possible when the Coulomb interactions are
included in the Hamiltonian.

As can be seen from (2.13) the derivation of the equation of motion for
b_ray, involves evaluating the commutator (b kak,akb ) Noting that

akbikb,ka;c = akakb_kb_k (2.14)
b_kaka};b“_k = b,klf‘_kaka;‘c
= (1-b",b-k)(1 —afar) , (2.15)
we have
[b_rak,afb’ ] = (1—b'  b_x) (1 — alar) — afaxd’ b 4
=1-b by —alar . (2.16)

The other commutators may be evaluated similarly to give the Heisenberg
equations of motion

d
&b kar = —lwpb_par — ﬁUkE (2, t) (a;'cak + bT_kb_k — 1) (2.17)
i .
dta,tak = f_i(l‘l‘kal];bt—k — ,ukb_kak)E(z,t) (2.18)
d
= —bl, by . 2.19
g7 0Kk (2.19)

Here, the transition energy is

hwr = €g0 + €ek + Enk

h2k?  R2k?
i 2me 2my,
h2k?
= —_— 2.2
Eg() + 2mr ) ( 0)

and m, is the reduced mass given by (1.16). Note that the adjoint has to
appear in (2.18, 19) since the number operator is Hermitian but the dipole
operator a;rch_ & is not. Furthermore, we expect the electron and hole number
operators to be affected by radiative transitions identically, since these tran-
sitions either create both an electron and a hole, or they annihilate one of
each. Taking the expectation values given in (2.8-10), we have
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d . i
APk = —iwgpk — lp,kE‘(Z, t) (nek + Nhk — 1) 3 (2.21)
dt h
dnek dnhk i
= = - t — L . 2.22

If we want to use these equations of motion in a laser model, we must supply
the missing terms describing pumping and relaxation processes. While the
effects of current injection may be readily incorporated at a phenomenologi-
cal level, we have to think harder about collisions. The important collisions
involve carrier-carrier, carrier-phonon, and carrier-impurity (lattice imperfec-
tion) scattering, which are not explicitly present in the free-carrier Hamilto-
nian (2.5). Carrier recombination via spontaneous emission is also not taken
into account since we did not quantize the radiation field. For now, we include
all these effects phenomenologically so that (2.21, 22) become

dpx . i Opk
Lk _ _ _1 . —1) 4 P 2.23
i iwkpk thE(zat) (Mek +mnk — 1) + ot |, (2.23)
d i * *
—% = ;LE(Z,t) (uDy — rPk) + Aok — BrNekNnk
ona
—YnrNak + 8tk (2.24)

col

Here o = e for electrons, @ = h for holes, Ay, is the pump rate due to
an injection current, 7y, is the nonradiative decay constant due to capture
by defects in the semiconductor, By, is the radiative recombination (sponta-
neous emission) rate constant, and 9pk/0t|co1 and Onak/0t|col are the collision
contributions. These contributions include carrier-carrier and carrier phonon
scattering, which drive the distribution nax toward the Fermi-Dirac distri-
bution of (1.19). In the simplest approximation the collision contribution
Opr./Ot|co1 in the polarization equation describes polarization decay (dephas-
ing) according to

Opk
ot

While rapidly suppressing deviations from the Fermi-Dirac distribution, the
scattering does not change the total carrier density N of (1.20). Hence, we
can write (1.20) more generally as

N = %%nek: Tl/‘;nhk

= fl; > fer = %;thk ; (2.26)
[ k

where we should remember that the spin summation is included in the
k-summation. Accordingly summing (2.24), we find the equation of motion

~ —ypg . (2.25)

col
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dN 1
Frile A—=yeN — v Xk: Byneknnk
i * *
—WE(ZJ)Z (kDR — HkPE) - (2.27)
k
Here, the injection current pump A is given by
nd
A=— | 2.28
" (2.28)

7 is the total quantum efficiency that the injected carriers contribute to the

inversion, J is the current density, e is the charge of an electron, and d is the

thickness of the active region. For many practical situations, one can assume

that by the time the injected carriers reach the active region, they collide

often enough to be in equilibrium with one another. Therefore, we have
NerJ

Aok = mfako (1-nax) , (2.29)

where 7, is the “transport” part of the quantum efficiency, giving the effi-
ciency that the injected carriers reach the active region. Furthermore, Ny and
fako are the values of N and f,k, respectively, in the absence of an electro-
magnetic field [E(z,t) = 0]. The term in the bracket in (2.29) accounts for the
fact that the presence of carriers inside the active region, with the distribu-
tion ng, reduces the efficiency of the pumping since each quantum state can
be occupied only by one carrier. An example of this pump blocking is shown
in Fig. 2.1. We see that in the presence of carriers only the high energy part
of the additional carriers generated by the pump source can actually enter
the active region.

The pump blocking effects can be included in a definition of the total
quantum efficiency,

n= 7V_t:; ;fako (1—-nak) - (2.30)

For fixed pump rate, i.e., fixed fuaro, the quantum efficiency decreases with
increasing carrier density in the active region, as shown in Fig. 2.2.

Chapter 4 will show a more accurate account of intraband scattering that
results in Boltzmann equations for the carrier populations, where scattering
terms couple the different k states. One then has an infinite set of coupled
nonlinear differential equations for the gain medium. The solution of these
equations is nontrivial. Fortunately, the problem may sometimes be simplified
by noting that in terms of the carrier populations, the net effect of intraband
scattering is to return the electron and hole distributions to equilibrium.
Then, one way to approximate the intraband scattering terms is

Onak
ot

= ~Ya (nak - fak:) ) (231)

col
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Fig. 2.1. Example of pump blocking. The pump generated distribution fio is shown
as solid line, the actual carrier distribution n inside the active region is shown as
dashed line, and the effective pump rate fro(1 — ng) is plotted as a dot-dashed line.
The z-axis is given in units of the energy e = h2k? /2m;
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Fig. 2.2. Effective quantum efficiency n (in units of 7. /No) for fixed pump rate
and increasing carrier density N inside the active region
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where fur is the Fermi-Dirac distribution satisfying (2.26) for a saturated
total carrier density, i.e., the carrier density in the presence of the laser field.
The rates v, with which a perturbed carrier distribution returns to equilib-
rium are sometimes referred to as the carrier-relaxation rates.

In semiconductor gain media, the carrier-carrier scattering rates are typ-
ically of the order of 10'3 s~!. Except for the dynamics on short time scales
or for very strong laser fields that induce stationary nonequilibrium distribu-
tions, these rates are sufficiently large to dominate any other mechanism that
tries to cause the carrier distributions to deviate from quasi-equilibrium. The
quasi-equilibrium approximation takes the limit of v, — 00, so that

Nek = fer and  npp =~ fure - (2.32)

Furthermore, the polarization dynamics is usually eliminated adiabatically, as
will be discussed in Sect. 2.2. Of course, both the ~, and free-carrier models
are approximations.

The total radiative recombination rate is

1
Iy = v ;kaekfhk . (2.33)

For small N, the Fermi-Dirac distributions have negative chemical potentials
and can be approximated by Maxwell-Boltzmann distributions. Using (1.32),
it is easy to show that these distributions are proportional to N, so that
(2.33) yields I, = BN2. In fact, using the same approach as in (1.33), we
set ¢ = Bh?/2m, for typographical simplicity and find

B
37 fef
V; kJhk

= %eﬁue efrn / kR e
T 0

_ BNcNw 8 /°° -

2 9q Jo

BN.Ny 7 0 1
w2 2 0q./q
BN.Ny,

4(mPBh2 /2m,)3/2

2 3
_ BN? (m) , (2.34)
2memy,

Frr

12

where we define
3
B=B (M) .
2memy

which decreases as T—3/2.
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Fig. 2.3. Radiative-recombination coefficient I:r (solid curve) versus total carrier
density. The dashed curve shows a relatively good fit at low density with I; = BN?
and B = 2.4 x 107*® cm®s™!. The dotted curve shows the fit at high density with
I =I'N%? and I' = 3.0 x 104 cm®/257!

This is illustrated in Fig. 2.3, where we see that for N < 1018 cm™3, I, is
proportional to N2. However, for larger N, the rate of increase is less than N2,
due to the fact that the Fermi-Dirac limit fex, fux < 1 comes into play.

At present, most semiconductor lasers operate with either undoped or
lightly doped gain regions. The results so far are for an undoped gain region.
To generalize to the lightly doped case, we need to take into account the
difference between the total electron density N, and the total hole density NVy,.
In a p-doped gain medium,

Ny = Ng + Np (2.35)
where N, is the acceptor density, and in an n-doped gain medium,
Ne =N, + Np (2.36)

where Np, is the donor density. Also, in the absence of an injection current,
there is a residual carrier density due to the dopants. For example, the spon-
taneous emission term is

1
Iy = v Z By (nek — fok) nnk (2.37)
k
for an n-doped gain medium,

1
Iy = v Z Bynek (nuk — fak) (2.38)
%

2.2 Quasi-Equilibrium Approximation 45

for a p-doped gain medium, where fpx and fax are the Fermi-Dirac distribu-
tions for the carriers due to the donor and acceptor populations. For a heavily
doped gain region, the band structure is modified by the doping, and laser
transitions are possible between free-carrier and k-independent bound impu-
rity states. Since heavily doped gain regions are encountered only rarely in
modern lasers, we do not discuss this situation further.

2.2 Quasi-Equilibrium Approximation

Our goal is to solve the active medium equations of motion for the gain and

carrier-induced refractive index in the limit that the electric field envelope

and the total carrier density vary little in the dipole lifetime 75 = 1/v. To

do that, we multiply (2.23) by the integrating factor exp[(iwx + 7)t] to find
d

T (pr lr 7)) = _%NkE(z7t)(nek + npge — 1) el (2.39)

which can be formally integrated to give

. t
pk(t):—l%’c At E(z, t") el =0 [ () 4 (') — 1] . (2.40)

For a simple steady-state or nearly steady-state theory, we assume that the
k-dependent carrier densities nqok(t'), and the field envelope vary little in the
time Th = % Then these quantities are replaced by their values at the time ¢
and removed from the integral. This approximation is called the rate equation
approzimation, because as we see shortly it leads to a rate equation for the
total carrier density. For our present purposes, we consider the constant field
envelope described by the plane wave field

1 .
E(z,t) = §E(z)e‘[Kz_”t_¢(Z)] +cc. . (2.41)

As we show in Chap. 4, fluctuations due to the carrier-carrier scattering term
Onak/0t|col have a time scale on the order of T5. However, since we consider
a field envelope that varies little in the time T% (in fact here one that is
constant), the nak(t) are driven by the scattering into a quasi-equilibrium
distribution in which they can adiabatically track the slow time variations of
the total carrier density NV via the density-dependent quasi-chemical poten-
tial pu(N(t)) determined by (2.26). N varies significantly only on relatively
long times like those associated with interband processes. With this approx-
imation, the integral in (2.40) can be readily performed, giving

i
pr(t) = =7 ueB(2) [nek(t) + nu(t) — 1]
(ei[Kzuth(z)] e—i[Kzfutfcﬁ(z)]
: + -
i(wg—v)+y 1(wk+u)+7)

(2.42)
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We can neglect the second term in the {- - -} of (2.42), because its denominator
is very large compared to that of the first term at optical frequencies. This
is called the rotating-wave approrimation (RWA) since in the time domain
the second term rotates very rapidly in comparison to the first one, and thus
more or less averages to zero. Using the RWA reduces (2.42) to

i .
pk(t) = —2—hukE(z) el[Kz_Vt_¢(Z)]
1
X t) + t)— 1| ——m——— 2.43
[Mek(t) + nnk(t) ]l(wk_y)Jrv (2.43)
By substituting (2.43) into (2.7), we find the complex polarization
P(z) = - ShAV ; |ik]” ek (t) + nnw(t) — 1]
x <1 - iw’“; ") L(wk—v) , (2.44)
where we again used the rotating-wave approximation. The factor
2
Lwg—v)=—"—— (2.45)

72 + (W = v)?

is the Lorentzian lineshape function. Substituting (2.43) into (2.27), we obtain
the equation of motion for the total carrier density

dN 1
prle A — N — v ZBkneknhk
k
E(2)?
e S il [res(®) + ) UL —v) - (240
k

To evaluate the spontaneous emission term in (2.46), we use the Fermi-Dirac
quasi-equilibrium distributions nqex = fax, @ = e,h, for the electrons and
holes. Note, that in addition to the rate-equation requirement that the field
envelope vary little in the time 75, the field intensity should not be so strong
that it can burn holes in the Fermi-Dirac distributions.

To get a feeling of what might happen for such intense fields, let us sup-
pose that the carrier-carrier scattering can be modeled according to (2.31).
Substituting (2.31, 43) into (2.24), and solving in steady state gives

_ |mPE(2)?
2h?y7a

where we note that the pump and interband decay rates are small in com-
parison to the carrrier-carrier scattering rate. The above equation yields

fek + foe — 1
1+1—‘S’:L(wk—u)

Nak =~ fak (Nek + Nk — 1) L (w — V)

Nek + Nhke — 1 =~ (2.47)

where
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1
I= ieocn|E(z)|2 , (2.48)

and

2
eonch®y (2.49)

Iy = ——r— .
(L 2) el
In (2.47), the depletion of the inversion and hence the saturation of gain are
described by the denominator 1+ L (wg — v) I /I and by the saturated carrier
distributions fex and fix. The former is due to spectral hole burning, which
is the frequency-dependent saturation of the inversion by stimulated emission
or absorption. The latter describes the decrease in the overall inversion due to
the filling of the spectral holes by intraband collisions. Spectral hole burning
along with other nonlinear effects of the gain medium play an important role
in both multimode operation and high-speed modulation of semiconductor
lasers. On the other hand, using |uk| >~ ex 3 A for the dipole matrix element,
we find I, ~ 60 MW cm™2. Therefore, I /Isc < 1 for most semiconductor
laser problems, and the quasi-equilibrium condition should be reasonable.
Using the quasi-equilibrium approximation in the complex polarization
(2.44), we obtain the free-carrier complex susceptibility

XO(z) = -

i

hyerV zk: || [fer (8) + fur(8) — 1]

x L (wr — v) (14“”‘{”) . (2.50)

Similarly, the equation of motion (2.46) for the total carrier density becomes

dN

1
= A= fN__E B
dt Tn % k & fek fuk

_E(2)?
2h2yV

> 1kl [fer(t) + fur(t) = 1) L (@i —v) (2.51)
k
where (2.26) relates the Fermi-Dirac distributions to the total carrier den-

sity N. Substituting x(?)(z) into (1.76, 77), and using (1.78, 81), we find the
amplitude gain, ¢ = G/2, and carrier-induced refractive index

9= m zk: |\uke|? [fer(t) + frr(t) — 1) L (wx —v) (2.52)

W —V

n= Q"e(mlTw > il [fer(t) + fur(t) — 1] L (wi — v) (2.53)
k

The equation of motion (2.51) for N can be simplified by substituting the
gain g of (2.52),

dN 291

1
A N-=Y"B -2 .
3 = A mN - Xk: kfokfok — 5 (2.54)
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As we see in Chap. 4, this formula is also valid for the quasi-equilibrium
many-body case, provided g is the many-body gain. Equation (2.54) is some-
times further simplified by replacing the spontaneous emission term simply
by —BN? as in (2.34). This is a reasonable thing to do when using the
linear-density gain model of (1.3), since then we do not have to calculate
Fermi-Dirac distributions. However, if we use a scheme where we deal with
these distributions, the more accurate spontaneous emission value in (2.54)
does not increase the calculation time significantly and allows for the fact that
in gain media the rate is somewhere in between an N2 and an N dependence
as illustrated in Fig. 2.3.

Hence, given that the carrier density is related to the carrier distributions
by the Fermi-Dirac distributions, the simultaneous solution of (2.52, 54) gives
us the saturated gain as a function of laser intensity and injection current.
The quasi-chemical potential obtained in the process can then be used in
(2.53) to calculate the carrier-induced refractive index.

We can simplify the summations over k by assuming a symmetric band
structure with an essentially continuous distribution of states. Then similar
to the density of states discussion of Sect. 1.6, we find for a bulk gain medium

_1_ B L [e’s) ) 2m T )
V;f(k) = (%)3/0 dkk/o dqs/o dfsiné f(k,0,¢)

2 [ )
> G /0 dk ank? f(k) | (2.55)

where the factor of 2 comes from the spin summation and the second line
can be used if the function f(k) is spherically symmetric in k, such as the
quasi-equilibrium Fermi-Dirac distributions.
It is often more convenient to integrate over the reduced-mass energy
h%k?
£= 2m,

, (2.56)

which enters into the transition energy (2.20). Similar to the derivation for
the carrier density of states, we find a joint density of states, D(e), defined
by the equations (for spherically symmetric functions)

1 oo
V%:-»/O de D(e) (2.57)

where the reduced or joint density of states

D(e) = —= <2;;>% Nz (2.58)

272

Under these conditions, the total carrier density of (2.26) is given by

_ 1 (2m)F VE
N_ﬁ(;;) /0 deexp[ﬁ(%eg—ua)]+l . (259)
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In terms of €, we have the energy detuning

h(wk —v) = (lwg — €g0) — (v —eg0) =€ — RJ (2.60)
where the field detuning relative to the bandgap is given by
h,(s = hl/ — EgO . (261)

To carry out integrations over carrier energy, we express all frequencies in
meV. To convert v to meV, we take advantage of the fact that v is usually
given in terms of its inverse, the dephasing time T5. For example, a dephasing
time of T, = 10713 s gives hy = 6.58 meV. Similarly we evaluate the frequency
difference 7 in meV. For room temperature, 1/8 ~ 25 meV. The optical gain
coefficient of (2.52) becomes

v <2mr)%/0wd8\/g|uk|2w , (2.62)

9= 5 3
Am2eqnchy \ k2 —ns\?
1+ (522
where the energy-dependent Fermi-Dirac distribution is given by

. 1
fa(€) - exp[ﬂ (5:3—; _ ;I,O,)] 1

In an ideal 2D quantum-well laser, the electrons are free to move only in
the plane of the active layer, so that the summation over k is restricted to
two dimensions according to

1 2 o

where A is the area of the quantum well, and we assumed that the function
summed over is cylindrically symmetric. When written in the form given by
(2.57), we have a two-dimensional joint density of states

(2.63)

My

which unlike the three dimensional value (2.58) does not depend on the
reduced-mass energy .

2.3 Semiconductor Gain

Armed with the free-carrier gain equation (2.62), we can investigate at this
level of approximation the dependence of semiconductor gain on the total
carrier density and temperature. We begin by plotting a gain spectrum for
several values of the homogeneous linewidth factor «. Figure 2.4 shows the
free-carrier gain spectrum of a bulk GaAs gain medium. The different curves
are for different values of y. The solid curve, which is for v — 0, gives the
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Fig. 2.4. Intensity gain G = 2g versus detuning hv — €5 as predicted by the
free-carrier model (2.62). The curves are for carrier density N = 3 x 10" cm™3,
temperature T = 300K, and vy = 0 (solid line), 10'*s™" (long-dashed), 5 x 10'*s™*
(short-dashed), 10" s (dotted) and 2x 10" s~ (dot-dashed). The material param-

eters are me = 0.067mo, mn = 0.52mo, n = 3.6 and po = e X 473 A

inhomogeneously broadened limit, where the gain spectrum is the product of
the density of states and the inversion, i.e.,

9= gove[fe(e) + fule) = 1] , (2.66)
where the reduced mass energy € = id = hv — g44 and (2.62) gives
3
v 2 2mr 2
_ _ 2.67
90 = freon |u(e)| ( 2 ) (2.67)

Note that Ay = 1012571 is very close to the inhomogeneously broadened limit
given by v = 0. The more typical value v =~ 103s7! yields a significantly
different curve from that at the inhomogeneously broadened limit. In general,
the peak gain decreases with increasing ~.

The use of a Lorentzian lineshape function overestimates the effects of ho-
mogeneous broadening because of its slowly decaying tails. This leads to some
absorption at photon frequencies below the bandgap. The correct lineshape
function follows from the microscopic treatment of the collision contributions
in (2.23). This is discussed in Chap. 4. To have a simple empirical expression
which removes some of the artifacts of the Lorzentian lineshape one may use
a sech lineshape

2 —
—r 5 sech(“" ”) . (2.68)
2
72+ (wk — V) ¥
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Note that the area under both of these functions is 7. Figure 2.5 illustrates
that the sech function decays faster (exponentially) than the Lorentzian.
A comparison of the gain spectra computed with the different lineshapes is
shown in Fig. 2.6. We can see that the use of the sech lineshape function
removes the problem of absorption below the bandgap energy. Furthermore,
it predicts that transparency occurs at lower carrier densities than for the
Lorentzian lineshape approximation. This is quite apparent in the plots of
peak gain versus carrier density in Fig. 2.7. The different curves correspond to
different dephasing rates. One would not expect to use the same linewidth for
the different lineshape functions, and Fig. 2.7 shows that in order to obtain
similar predictions, vysech needs to be slightly larger than ~pq;.

1
05
Fig. 2.5. The solid curve is
0 k= a plot of sech(z), while the
-8 0 3 dashed curve is a plot of 1/(1 +

z?). The areas under both curves
X equal 7y

For the sech-lineshape approximation, (2.53) no longer yields the correct
result for the carrier-induced refractive index. To obtain the carrier-induced
refractive index, we therefore use the Kramers-Kronig transformation,

e [Z., AgW)
A(dn) =—P d ——= 2.69
om = 2P [~ 2L (269)
where A(dn) and Ag are the differences in refractive index and gain at two
different carrier densities, and P denotes the principal-value integral.

In order to have a rough approximation for the spectral width of the gain

region we use the bracketed part of the d-function lineshape formula (2.66)
written in terms of the valence-band electron distribution as

fe(e) + fule) =1 = fe(e) — [1 = fu(e)]
= fe(e) = fu(e) . (2.70)



52 2. Free-Carrier Theory

10

Bulk GaAs

5
G
10*cm™)
0
C
-5
1.36 1.42 1.48 1.54

av (eV)

Fig. 2.6. The solid curves are the gain spectra calculated with a sech lineshape func-
tion, while the dashed curves are those calculated with a Lorentzian lineshape func-
tion. The carrier densities are (a) 1x, (b) 2x and (¢) 3x10'® cm ™3 and y = 10**s™!
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Fig. 2.7. Peak value of intensity gain versus carrier density for sech (solid
curves) and Lorentzian (dashed curves) lineshape functions. The different curves
corresponds to different dephasing rates v = (a) 10"3s™*, (b) 2 x 10*¥s™! and
(¢) 3x 103571

2.3 Semiconductor Gain 53

Here the valence-band electron distribution is given by

1
fole) = 1- exp[,@(sr’n"l‘] —,uh)] +1
1
N 1+exp[—ﬂ(€$}: — pn)]
1

(2.71)

~ ep[B(ems +m)] +1

The probability difference (2.70) is positive if fo(¢) > fy(¢), i.e., if the conduc-
tion-band probability at energy ¢ is greater than the valence-band probability.
The transparency point (crossover from gain to absorption) is given by the
equal probability condition fe(¢) = fy(¢), which occurs when the arguments
of the two Fermi-Dirac exponential equal one another,

me—,ue: &54—%:0 ,

me Mmh
that is,

€= fte + tn - (2.72)
The total chemical potential

1= He + in (2.73)

is an important parameter in semiconductor laser theory since it defines the
upper limit of the gain region with respect to the bandgap energy €4, i.e.,
gain occurs in the spectral region

Ego < hv <ego+p . (2.74)
For the many-body case, this inequality has to be replaced by
€g0 —> €g = €g0 + 05,

where Jeg is the electronic bandgap renormalization discussed in Chap. 3.
The dominant effect of this bandgap renormalization is a net frequency shift
of the gain spectrum with carrier density.

Although the free-carrier model does not predict a bandgap shift, it is use-
ful in helping us to understand the bandfilling effects of the semiconductor
gain medium. For example, for bulk materials it gives a reasonably accurate
description of the change in peak gain with carrier density, as long as we do
not care about the absolute peak gain value and the energy at which that
peak gain occurs. Figure 2.8 plots the peak gain as a function of carrier den-
sity for bulk and quantum-well GaAs gain media and various temperatures.
These curves show an essentially linear dependence of the bulk peak gain on
carrier density, which agrees reasonably well with the phenomenological gain
expression, (1.3),

G = Ag(N - N) . (2.75)
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Fig. 2.8. (top) Peak value of intensity gain (in 10° cm™") versus carrier density
for a bulk GaAs gain medium. The different curves are for ' = 200 K, 300 K, and
400 K. (bottom) Peak gain versus carrier density for an idealized two-dimensional
quantum-well gain medium at T' = 300K (solid line). The dashed curve is for the
bulk gain medium. For the quantum well we assume the same effective masses as
the bulk and choose a well width of 4 nm

Equation (2.75) is often used together with a similar expression for the carrier-

induced refractive index change
n

2K,

where R is an antiguiding factor. These two formulas for G and dn form

the phenomenological gain model. We must be careful when using (2.75, 76),
because of their limitations. One of them is that Az, Nz and R, which are

én = —RAN (2.76)
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adjustable parameters, have different values for different temperatures and
effective masses. The free-carrier model may be used to calculate the peak
gain versus carrier density curves as functions of temperature and effective
masses. For example, in Fig. 2.8 we use the free-carrier model to show that the
gain degrades with increasing temperature. However, we should be aware that
the free-carrier model neglects some important physics, namely the Coulomb
effects. Therefore, its predictions can be inaccurate under some experimental
conditions.

Another important limitation of the phenomenological gain expression
(2.75) is that it applies only to a bulk gain medium. It is fortuitous that
the product of the (/e factor in the bulk density of states (2.58) with the
probability inversion (2.70) has a nearly linear total-carrier-density depen-
dence. Obviously, the constant 2D joint density of states (2.65) cannot give
the same result. In fact, the peak gain versus carrier-density curve shown in
the lower part of Fig. 2.8 is calculated using (2.65) in the free-carrier gain
formula. Notice the rollover in gain at high carrier density.

The difference in behavior between the free-carrier bulk gain and the ide-
alized two-dimensional quantum-well gain is due to the different density of
states and may be understood qualitatively by examining the Fermi distri-
butions. In Fig. 2.9 (top), we plot the electron and hole contributions to the
integrand in the gain (2.62) versus the reduced-mass energy for three differ-
ent carrier densities. We see that because of the relatively large hole mass my,
and consequently the large density of hole states (1.29), the hole states are
only partially filled; in fact they never reach the inversion value of one half.
The addition of carriers then leads to a fairly uniform increase in fy(g) versus
€. On the other hand, because of the relatively small m, and small density of
electron states, the lower energy electron states are almost completely filled,
i.e., fe(e ~ 0) ~ 1. Consequently for £ ~ 0, there is no more “room at the
top” so that the addition of carriers cannot significantly increase the maxi-
mum value of fe(e ~ 0). Instead, the exclusion principle causes the additional
electrons to preferentially occupy the vacant higher energy states.

In the middle part of Fig. 2.9 we plot the corresponding curves with the
bulk density of states factor D (¢) oc 1/e. Two factors contribute to the in-
crease in the product D(e)f.(¢) and D(e)fn(e) with carrier density. One is
the increase in f and f, and the other is the increase in the relative density of
states as the higher energy states become occupied. Both are responsible for
the increase in D(¢) fi, with carrier density, whereas because of the exclusion
principle only the latter plays a role in the case of D(g) fe.

The changes in the carrier energy distributions lead to changes in the
inversion energy distribution as shown in the bottom part of Fig. 2.9. Notice
that the peak value varies essentially linearly with carrier density. Therefore,
we expect the peak gain also to increase linearly with carrier density. The
gain peaks for v = 10'3s7! are indicated by the dots.

Figure 2.10 shows plots for a 2D quantum-well medium. Since the 2D den-
sity of states is independent of the reduced-mass energy ¢, the corresponding
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Fig. 2.9. (top) fe(¢) (solid lines), fu(e) (dashed lines), (middle) D(e)fe(e) (solid
lines), D(¢) fu(€) (dashed lines), and (bottom) D(e)[fe(e)+ fh(eg — 1] versus € =
hw — eg0, for bulk total carrier densities N = 3x, 4x, and 5 x 10" cm~3. The dots
indicate the gain peaks for v = 10*3s™!

0.3

gain contributions are proportional to the inversion. Hence, the peak gain
occurs for € =~ 0 and the occupation of higher energy states populated by
increasing N does not increase the peak values for the carrier energy dis-
tributions. As a result, saturation effects are evident in Fig. 2.10; the peak
values for fe(¢) + fu(¢) — 1 do not increase linearly with carrier density,
which causes the peak gain in Fig. 2.8 to roll over. For a nonzero linewidth,
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Fig. 2.10. (top) D(e)fe(¢) (solid lines), D(e) fu(€) (dashed lines), and (bottom)
D(e)[fe(€) + fu(e) — 1] versus € = hw — g0 for a quantum well. The two-dimensional
total carrier density Nog = 2 x 102 cm™2 (lowest curves), 3 x 10’2 cm™2 (mid-
dle cques)ﬁ and 4 x 10'? cm ™2 (top curves). The dots indicate the gain peaks for
vy=10"s"

the peak gain occurs somewhat above the bandgap as indicated by the dots
for v = 1013571,

It is interesting to investigate the individual gain and emission contribu-
tions to the gain factor

fe(e) + fule) =1 = fe(e)fule) — [1 = fe(e)] [1 = fule)]
= (1= fo(e) fule) - (2.77)
Comparison of (2.33, 52) shows that the second line in (2.77) relates the

spontaneous emission and gain expression. In Fig. 2.11 we compare the gain
(Fig. 2.11a) and the spontaneous emission spectra (Fig. 2.11b) for bulk GaAs
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Fig. 2.11a, b. (a) Intensity gain and (b) spontaneous emission spectra for bulk
medium and carrier densities N = 2x10'® cm ™ (solid lines), 3x10'® cm ™ (dashed),
4 x 10" cm™2 (dotted). We used a sech lineshape function with v =2 x 10"®s™" in
the gain calculation

at different carrier densities. The spontaneous emission spectra are consider-
ably broader than the gain region since they are determined by the product
of electron and hole population function, which has no upper bound given by
the chemical potential as in the case of the gain region.

2.4 Temperature Dependence of Gain

We have seen in Fig. 2.8, that the semiconductor gain decreases with in-
creasing temperature. To understand this, we use a set of figures that are
very similar to those in the previous section. Figure 2.12 plots the occupa-
tional probabilities of electron and hole states multiplied by the bulk relative
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Fig. 2.12. (top) D(e)fe(¢) and D(e)fue(c) versus e = hw — 40 for tempera-
tures T = 200 (solid curve), 300 (dashed curve) and 400K (dotted curve). The
carrier density is N = 4 x 10" cm™3. (bottom) The corresponding curves for
D(e) [fe(g) + fu(e) — 1]. The dots mark the peak gain energies

density of states factor. Notice that the peaks of the distributions decrease
with increasing temperature, which leads to a decrease in the gain. Note also
that some of the hole distributions have negative chemical potentials and
look very much like the decaying tails of Maxwell-Boltzmann distributions.
We see that both the electron and hole distributions are particularly sensi-
tive to temperature changes in the region of € ~ /2, which is where the gain
tends to peak due to the /¢ factor. The peak gain positions are marked by
the black dots in Fig. 2.12. Bulk semiconductor materials therefore exhibit
a substantial temperature dependence of the gain, as contrasted with the
idealized 2D quantum-well case discussed next.

Figure 2.13 shows similar plots for the two-dimensional idealized quantum-
well medium. Since at the gain peak (¢ ~ 0), only the hole distributions are
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Fig. 2.13. (top) D(a)fe(e) (middle) D(g)fne(e) and (bottom) D(e)[fe(e)+
fu(e)—1] versus ¢ = hw — ego for quantum well and temperatures T = 20

(solzd curve), 300 (dashed curve) and 400K (dotted curve) The carrier denSIty
is Naq = 3 x 10'2cm™2. The dots mark the gain peak energies

changed significantly, the inversion is less affected by temperature than in
the bulk case. As a result, the degradation of the idealized two-dimensional
quantum-well gain with increasing temperature is less than that of the bulk.
This is shown by the two sets of curves in Fig. 2.14. These curves are calcu-
lated using (2.52, 65).

The lower group of quantum-well curves in Fig. 2.14 suggest that a small
density of states is advantageous for temperature insensitivity. A more Fermi-
Dirac (or less Boltzmann) like energy distribution, with filled low energy
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Fig. 2.14. Peak values of intensity gain versus carrier density for the idealized
quantum-well system for the temperatures T = 200 (solid curve), 300 (dashed
curve) and 400 K (dotted curve). The hole masses are my, = 5.67m. (used in previous
examples) and me = my

states reduces the temperature dependence. Therefore, if we can alter the
valence band curvature so that the hole effective mass, and consequently, the
hole density of states is as small as that of the electrons, then gain degrada-
tion due the temperature increase should be reduced. To see if this is indeed
the case, we compute the gain for an artificial quantum-well medium with
equal hole and electron effective masses. The result is shown in the upper
group of curves in Fig. 2.14. In practice, a reduction in the hole effective
mass may be achieved with some strained-layer quantum wells. Of course,
the actual results are neither as good nor as straightforward as shown in
Fig. 2.14, because the strain generally deforms the band curvature nonuni-
formly (nonparabolic bands) and alters the transition matrix elements. In
fact, as we see in Chaps. 6 and 7, the strained-layer quantum-well structures
involve more than just a change in the effective masses, since the various
valence bands are mixed together. Notice that a consequence of a small hole
effective mass is an increase in gain rollover. This too can be understood in
terms of the exclusion principle embodied in the Fermi-Dirac distributions,
since for high N both the electron and the hole distributions fail to have room
at the top for more carriers.
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2.5 Gain Saturation

In any oscillator saturation effects play an important role since otherwise
the oscillation amplitude would keep building up indefinitely. A simple de-
scription of saturation in a semiconductor gain medium starts with the rate
equation for the total carrier density, (2.54), which we rewrite as

% = g — Yeg N — g S (278)
where we have simplified the description of both radiative and nonradiation
carrier recombination by using an effective carrier decay rate veg. Substitut-
ing (2.75) for the gain and solving the resulting equation for the steady-state
value of IV gives

_Jn_ _ &
N-—N, = —?1— , (2.79)
Lsat

where the saturation intensity Isa; = Avynr/Ag. Substituting (2.79) back into
(2.75) gives the saturated gain,

G
G= "+, (2.80)
I+
where the small signal gain
Jn
= — — N,) . 2.81
Go = 4 ( ed et g) ( )

The saturation behavior described by (2.80) is illustrated in Fig. 2.15 for
both absorbing (no injection current) and gain cases. We see the S-shaped
saturation curves familiar in the saturation of homogeneously broadened two-
level media.

To get a better understanding of the nature of gain saturation, we consider
the é-function linewidth gain formula (2.66) for fixed detunings id = hv —eg0
above the bandgap for both gain and absorption media (with and without
injected currents, respectively). Equation (2.66) is similar to (1.3) in that
both consist of the difference between a term that increases as N increases
and a transparency value. However, (2.66) has the advantages that it depends
explicitly on the temperature, the carrier effective masses, the electric-dipole
matrix element, and the field detuning hd, and it takes the Fermi-Dirac char-
acter of the gain into account. On the other hand, we should not forget that
it still neglects many-body effects and spectral hole burning.

Figure 2.16 illustrates the dependence of g on I for a number of detun-
ings 4. The curves are generated by solving (2.54) for I in steady state
(N =0) as

= (A N) : (2.82)

7R
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Fig. 2.15. Linear-density gain given by (2.80) versus applied light intensity I for
gain (solid line) and absorbing (dashed line) media. The parameters are chosen such
that the saturation intensity hv/AgTh =1, Ag(JT1/ed — Ng) = 1 for the gain case,
and —AgNg; = —1 and J = 0 for the absorbing case

and plotting g versus I as N is varied from 107 cm ™2 to 10*® cm™3 (2 x 10"
cm™? to 2 x 10" ¢cm™? for the 2-dimensional case). For g < 0 (below trans-
parency, in the absorption region), AT} is set equal to 10'8 cm—3, while for
g>0, ATy = 10" cm™3,

For I = 0, the gain is that for N = AT}, which is chosen to be quite
large so that f. and f, have the maximum value of unity. As I increases,
N decreases according to (2.82), but initially with little effect on g since
the Fermi-Dirac distributions remain at their maximum value of 1. Since
the holes are heavier, fy starts to fall off first, later followed by f., thereby
decreasing g. The Fermi-Dirac unity limit plays a relatively smaller role in
the absorption case (g < 0), since f}, is substantially less than one half over
the entire intensity range, and fe is less than a half for all but very large I.

We see from the curves in Fig. 2.16 and from (2.82) that generally, increas-
ing I indefinitly cannot make a transition between absorption and gain at the
photon energy hv. Instead, increasing I increases N for the absorption case
and decreases N for the gain case, in either case driving f.(hé) + fn(hd) — 1
to zero, i.e., pulling the total chemical potential yu = pe + py, to hé = hv — €g0
and creating transparency at Av. Since gain occurs for energies in the range
0 < € < p, this shows that in the absence of an injection current, a sufficiently
strong pump wave of frequency v can create a gain region below v. This is
due to the fact that carrier-carrier scattering redistributes the electron-hole
pairs created by optical pumping above the carrier chemical potentials into
the appropriate quasi-equilibrium Fermi-Dirac distributions.
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Fig. 2.16. Intensity gain G = 2g versus intensity I for the detuning hv — €g0 =
10 meV (solid lines), 30 meV (dashed lines), and 60 meV (dot-dashed lines). Positive

G values are drawn for AT, = 10" cm ™2 and the negative G values are shown for
AT, = 10'® cm ™3, respectively

We can gain some further insight by expanding the susceptibility x (V)
in a first-order Taylor series about the zero-field value Ny. This Ny can be
generated by an injection current, optical pumping above the interaction
region, or a combination of both. The first nonlinear term is called x®), which,
as we see shortly, is a strong function of Ny, field frequency, and temperature.
Our derivation is valid also for the quasi-equilibrium many-body theory and
for all carrier densities and temperatures as long as the quasi-equilibrium
approximations are justified, i.e., as long as Fermi-Dirac distributions of the
carriers exist in the laser. The main approximation is that the field intensity
must be small enough to be treated by a third-order theory.

We write N as

N = Np + AN (2.83)
and expand the susceptibility x(N) in the first-order Taylor series
Ox(N
X(N) =~ x(No) + E(N ) an . (2.84)
No

To find the AN resulting from weak field saturation, we expand the total
carrier-density equation of motion to first order in AN oc |E|?and take steady
state (N = 0). We write the equation of motion (2.54) for N as

dN

D _ 6_b " 2
- = A=T(N)+ 22X (N|EP (2.85)
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where A represents the optical pumping or carrier injection, I'(NV) is a decay
function including both radiative and nonradiative decay, €}, is the host sus-
ceptibility, and F is the complex electric-field envelope. To lowest order and
in steady state, we have

A=T(N) . (2.86)
To first order in AN and |E|?, we have
0=A-I(No)—ANT, + ;—‘;_LX"(NO)|E|2
— _ANT + ;—;’ix”(No)|E|2 ,

where the decay-rate coefficient

dI'(N)
I, = (2.87)
dN  |n—n,
This gives the weak-field intensity-induced carrier-density change
€
AN = 2 \"(No)|E* . (2.88)

2nIY

Substituting this change into (2.84), we have the approximate nonlinear sus-
ceptibility

evX” (No) dx(INV)

N) ~ yv(N,
X(N) ~ x(No) + oAl dN

E|® . (2.89)

‘N:NO

This gives the first two terms in the intensity expansion of the susceptibility
as

XP(No) = x(No) (2.90)
X (o) = LX) ) L (291)

2.6 Carrier Induced Refractive Index

For the free-carrier theory, the background host variation represented by the
—11in (2.53) can be included in the host index n, that is, the carrier-induced
refractive index reduces to
1 2
" eonhV Xk: kkl® [fer(t) + fre(t)] L (wi — v)

W —V

(2.92)

This approach avoids the problem that the ), as given by (2.57) does not
converge due to the long unphysical tails of the L(wx — v)(wk — v)/7v factor.
Otherwise, convergence has to be achieved e.g. with the k-dependence of the
dipole matrix element. To see this we investigate the matrix element of the
space operator between two bands A and N\
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T = (Oaw | T [Dak) (2.93)
where |dxk) and |png/) are eigenstates of the semiconductor, i.e.,
H, |¢Ak> = Exk |/\k> , (2.94)

and Hj is the system Hamiltonian. To evaluate (2.93) we consider only in-
terband transitions, A # \’. Furthermore, we notice, using (2.94), that

(ke | 7 |Dar) (Exk — Exnr) = (Dawr| [, Hol [ak) (2.95)
Equation (2.95) and the fact that
ih
[’I’,H()] =—DP , (296)
mo

where p is the momentum operator, give

ih
e PS—— (Oxw|Ploak) (2.97)

The momentum operator is diagonal in the coordinate representation

Tx' ) (kl, k) =

h
('|plry=68(r—1') TV , (2.98)
so that
(x| Plbre) = /V Prdip (1) p b (r) (2.99)
To the lowest order, we can approximate
eik-r
r ~ r|A) 2.100
(r|dak) 7 (r|A) (2.100)
leading to
1 —i(k' —k)-
Ovelplo) = 3 [ dre E TN () (1) (2101
1%

To continue with our evaluation, we split the integral over the crystal volume
into the sum over the unit cells and the integral within a unit cell

1 1 1

= &Br-=» -/ 2.102

7 [ ar g IR [0, (2.102)
where V = Nwv and the space vector is written as

r=R,+p

so that p varies within one unit cell and R, is the position vector of unit
cell v. Inserting these expressions into (2.101), we get

—i(k'—k)-R,,

(v Plore) = Ze N

v

—i(k'—k)-p
x / ap " Nip) (Bk+ ) o1 . (2109
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Fig. 2.17. Intensity gain and carrier-induced phase shift versus detuning hv—ego for
bulk medium. N = 3x10'® cm™ (solid lines), 4x 10'® cm 2 (dashed), 5x 10'® cm 2
(dotted). The values for the carrier-induced refractive index are also shown (right
scale in bottom part of figure)

The unit-cell integral yields the same result for all unit cells and can be moved
out of the summation over the unit cells, which then yields & ' and

(k[P dak) = Sy (N[PIN) = Sk Py 1 (0) (2.104)

Here, we denote
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Fig. 2.18. Intensity gain and carrier-induced phase shift versus detuning v —ego for
quantum-well medium. Naq = 1.5 x 10'2 cm ™2 (solid lines), 2 x 10'? cm™? (dashed),
and 2.5 x 10" cm™2 (dash-dotted). The values for the carrier-induced refractive
index are also shown

Nlp[N) = %/dap (X|p) (hk + ) (p|A) . (2.105)

The term oc hk disappears in going from (2.103) to (2.104) because of the
orthogonality of the lattice periodic functions and the A # X’ requirement.
Collecting all contributions to the dipole matrix element, we get

iehpy (0)

(K k) = pyy (K k) = ——22"
er,\,\( ) ) ll,\,\( ) ) M0 (Exk — Exk)

Sk - (2.106)

or
Ext — €
M TP = e (k) (2.107)

s (K k) = St (0) 22
pax (K k) = O paana ( )E/\,k_EMc
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For the case of two parabolic bands with effective masses m, and m,., and
dispersions

h2k? h%k?
e = d exe=-— 2.108
Exk =€+ o~ and ey =—oon (2.108)
we recover the Kane matrix element gy
Ho Ho
I-l'k = k2 = 5 (2.109)
1+ ok 1te/eg

where gy is the matrix element at k¥ = 0. Even though the above energy
dependent denominator leads to convergence in (2.92), there still remains an
overestimation of the contributions from the high energy states. The problem
stems both from the simple complex-Lorentzian lineshape factor and from the
limitations of the effective-mass approximation. In real semiconductors the
bands do not remain parabolic for higher k-values; they usually flatten out,
leading to a finite bandwidth limiting the spectral range of optical transitions.
As an illustration we show in Figs. 2.17, 18 the carrier-induced refractive
index dn and the intensity gain G = 2g for a bulk and a quantum-well
medium.

2.7 Linewidth Enhancement or Antiguiding Factor

We often do not need to compute the absolute phase shift since only the phase
shift changes enter our expressions. For example, the linewidth enhancement
factor (or antiguiding parameter)
ox'/ON
K 9(dn) /ON
~ m 0g/ON

is the change in the phase shift with respect to carrier density divided by the
corresponding change in the gain. Discussions of the carrier-induced refractive
index often involve the «a factor since it provides a simple way to model such
index contributions. This factor can be written in terms of x(®) of (2.91) as

o = Relx®}
C Im{x®)}
For a linear-density gain value G = 2g = A, (N — N) of (2.75), we have using
(1.79) that

ox" A
Similarly, combining the index change dn = —RA;N of (2.76) with (1.82),
we have

(2.111)
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0x'  RA,

AN~ K
Dividing this by (2.112), we find that the antiguiding factor R is just the
linewidth enhancement factor

a=R . (2.114)

(2.113)

If we lump the host index n into the N, term, we can write the susceptibility
as

x=~(i+a)x” . (2.115)

Note that (2.112-115) are only valid as long as the susceptibility is a linear
function of the total carrier density, which is typically only true for the gain
peak of a bulk-gain medium. Nevertheless, the linewidth enhancement factor
is an interesting quantity to study, since many problems, such as the laser
linewidth itself, involve small changes in the susceptibility, for which a as
a function of N, T, and tuning is a relevant measure.

Figure 2.19 shows « spectra computed using (2.110). The value of « at the
peak gain is a good parameter for comparing the importance of the carrier-
induced phase shift in determining the laser performance under different ex-
perimental conditions. The larger the value of «, the greater is the effect of
the carrier-induced phase shift on the linewidth or the filamentation of a laser.
Figure 2.20 depicts the dependence of a(vpx) on carrier density. Note, that

Quantum well

80
Av —¢ g0 (meV)

Fig. 2.19. Linewidth enhancement or antiguiding parameter versus detuning hv —
€go for quantum-well medium. Nog = 1.5 x 10*2 cm™2 (solid lines), 2 x 10 cm ™2
(dashed), and 2.5 x 10'2cm™2 (dash-dotted). The points show the location of the
gain peak
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Fig. 2.20. o at the peak gain frequency versus carrier density for bulk and an
idealized quantum-well system

a changes considerably as a function of carrier density, which contradicts
a major assumption of the phenomenological model.

It is tempting to use Fig. 2.20 to come to the conclusion that the quantum-
well laser has a smaller @. While this statement is often true, the free-carrier
results used in arriving at this conclusion do not describe the entire picture.
Most importantly, they neglect many-body and band-structure effects, which
significantly affect the behavior of the gain medium. We elaborate on these
features in the next chapters.
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In Chap. 2, we describe a simple model for semiconductor gain from a free
(i-e., noninteracting) electron-hole plasma. While this model provides some
useful insight to the elementary physics of a semiconductor gain medium,
its inadequacies show up in analyses of high-quality samples and advanced
laser structures, where one clearly sees signatures of the more subtle Coulomb
interaction effects among carriers. This chapter, as well as the next one, dis-
cusses approaches towards a more realistic description of the gain medium,
where one includes the Coulomb interaction between charge carriers. The
Coulomb potential is attractive between electron and holes (interband at-
traction) and repulsive for carriers in the same band (intraband repulsion).
Since Coulomb interaction processes always involve more than one carrier, the
resulting effects are often called many-body effects, and quantum mechanical
many-body techniques have to be used to analyze these phenomena.

As mentioned in Chap. 2, one of the most important consequences of
the Coulomb interaction is the rapid equilibration of the electrons and holes
into quasi-equilibrium Fermi-Dirac distributions. Under typical laser condi-
tions the carrier-carrier scattering is also the dominant contributer to optical
dephasing, which is the decay of the polarization of the medium. Another
important many-body effect is plasma screening, which is the carrier density
dependent weakening of the Coulomb interaction potential due to the pres-
ence of background charge carriers. These many-body Coulomb interactions
significantly modify the gain and refractive index spectra. The spectral po-
sitions of the gain and index spectra are shifted through bandgap renormal-
ization, and the shapes of the gain and index spectra are modified through
Coulomb correlation effects.

A schematic outline of a many-body theory is given in Fig. 3.1. Begin-
ning with the many-body Hamiltonian for the interacting carriers, we derive
equations of motion for the electron probability neg, the hole probability nhg,
and the interband polarization pg. The equations of motion couple these ex-
pectation values of products of two particle operators to those of products of
four particle operators, which, in turn, are coupled to six operator expecta-
tion values, and so on. This process produces an infinite hierarchy of coupled
differential equations involving expectation values of products of ever higher
numbers of field operators. In order to approximately deal with this many-
body hierarchy, we have to use suitable truncation procedures. For example,
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° and carrier collisions

we can truncate the hierarchy by factorizing higher-order expectation values
into products of the second-order averages, nek, nnr and pg. Factorizing the
equations of motion for mek, nhk and pg in this way, we obtain the Hartree-
Fock equations, so named because Hartree and Fock made a similar kind of
approximation in studying the many-electron atom. Important many-body
Coulomb effects appear in these Hartree-Fock equations, such as bandgap
renormalization and interband Coulomb enhancement. Improvements of the
Hartree-Fock equations are obtained by delaying the factorization procedure
to the next level of the hierarchy. This yields the collision terms.

The equations for nek, nhx and px, combined with some form of the colli-
sion and screening contributions form a set of equations that play the same
role as the optical Bloch equations in two-level systems. Therefore, it has
become customary to refer to them as the semiconductor Bloch equations.
These equations reduce to atomic Bloch equations without decay when we
drop the Coulomb interaction potential altogether, that is, in the limit of no
carrier-carrier scattering, no plasma screening, no bandgap renormalization,
and no Coulomb enhancement.

We derive the semiconductor Bloch equations in Sect. 3.1. Section 3.2 dis-
cusses the physical origin of the Coulomb enhancement phenomenon by treat-
ing the low carrier-density limit of the semiconductor Bloch equations. For
this limiting case, the semiconductor Bloch equations contain the “hydrogen-
like” Wannier equation, which describes the fundamental electron-hole pair
or excitonic properties of a dielectric medium. At higher densities, the con-
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tributions from carrier collisions, which lead to population and polarization
relaxation as well as screening, become important. Because the results of
a systematic analysis of these contributions are quite complicated, we de-
lay its discussion until Chap. 4, and use the remainder of this chapter to
describe a phenomenological alternative. Figure 3.2 depicts this approach,
which leads to a more easily usable laser model. Part of the simplifications
come from the screened Hartree-Fock approrimation discussed in Sect. 3.3.
This approximation involves replacing the bare Coulomb potential in the
system Hamiltonian with a screened Coulomb potential. We note that even
though this approach is justified at the dynamical Hartree-Fock level, one
should not use such an effective Hamiltonian to derive correlations of higher
order, since this would amount to double counting of some many-body effects.
Section 3.3 also describes the standard approach to obtaining the screened
Coulomb potential. Using the results of Sect. 3.3, Sect. 3.4 discusses bandgap
renormalization, and shows that in the screened Hartree-Fock approximation
the contributions to the renormalization of the bandgap energy comes from
a Coulomb-hole self energy and a screened-exchange shift. In Sect. 3.5, we
derive a high-density approximation, the so-called Padé approximation, of
the screened Hartree-Fock semiconductor Bloch equations. The remaining
sections use the resulting gain and phase shift formulas and assume a sim-
ple two-band semiconductor to illustrate the many-body effects. Section 3.6
shows the influence of Coulomb effects on gain-medium properties involving
carrier-density-dependent changes in gain or index in a bulk semiconductor.

3.1 Semiconductor Bloch Equations 75

As an important nonlinear quantity, results for the linewidth enhancement
factor are discussed. The quantum-well active region is treated in Sect. 3.7,
where we demonstrate that the many-body effects are enhanced in two dimen-
sions as a consequence of the generally increasing importance of interaction
and correlation effects in systems of reduced dimensionality.

3.1 Semiconductor Bloch Equations

For an interacting electron system in a dielectric medium, the system Hamil-
tonian is

H = Hyn + Het + He (3.1)
where the kinetic energy Hyi, and the carrier-laser-field interaction energy
H_¢ are those of (2.1). The Coulomb interaction energy among electrons in
the various bands is, in cgs units,

HC :/ds’l"l/ds’rg 1/A)T(7‘2)1@T(7’1) 1[)(7'1)1[}(7'2) ) (32)

2
€b|T1 — T2
where ¢y, is the background dielectric constant in thfe medium. Using in (3.2)
the expansion (1.83) for the electron field operator ¥(r},), and reordering the
terms, one obtains in the two-band approximation

_1 t gt gt
He =3 Zk,k’ Zq;&o Vq(ac,k+qac,k/,qack'ack t @y ki gy k7 — g Qvk’ Quk
1 1l
+ 2ac,k+qa’uik’_qa"vk'ack) . (33)

Here, the first two terms describe the intraband carrier interaction, and the
last term describes the interband interaction between the electrons in the
valence and the conduction bands. As long as we are not in the electron-hole
representation, we only deal with electrons in different bands and all Coulomb
terms, i.e. intra- and interband interaction are repulsive.

As in the previous chapter, the momentum index k includes the spin
index so that summation over k implies also summing over the two possi-
ble spin orientations. The subscript includes a comma only when ambiguity
might otherwise arise. The Coulomb interaction Hamiltonian (3.3) contains
the Fourier transform of the Coulomb potential energy V;, which we obtain
for a bulk-material as

1 .
Vg = V/d3re_""rV(r)
2

1 .
= V/dgre_"’"e—r
€b
4me?
= ave 34
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and for an idealized 2D quantum-well system as

2
d2re—iam £
EpT

2me?
= . 35
-y (3.5)

Ve

In (3.5), A is the quantum-well area. In the derivation of (3.3), we used the
fact that the Coulomb scattering does not alter the spin orientation of an
electron and that the ¢ = 0 contribution is cancelled by the corresponding
terms of the electron-ion and ion-ion Coulomb interaction. Furthermore, we
omit Coulomb terms that fail to conserve the number of electrons in each
band, since such terms involve Coulomb induced interband transitions, which
are very unfavorable energetically.

As discussed in Sect. 1.9, we now transform to the electron-hole rep-
resentation. For this purpose we use the electron and hole operators of
(1.90, 91, 87, 88) in all the terms of (3.1) and restore normal ordering of
all creation and annihilation operators. This gives the two-band Hamiltonian
for interacting electrons and holes

H = Z [(Eek + Eg()) a,tak + Ehkbtkb—k]

k
1
5 2D Val(aky gk _gowak + bl bl gbibr — 20k, bl brrax)
k,k' g#0
— " (mwafbl + ppb_rar) E(z,t) (3.6)
k

where constant terms have been dropped because they only lead to an irrel-
evant shift of the reference energy. The kinetic energies in (3.6) are
h2k?

ek — ; 3.7
Eek 2me (3.7)

€hk = —Evk T Z Va
q#0
h2k2?

= 3.
S (33)

where the term containing V, in enk originates from the replacement of
valence-band electron operators by hole operators in the interaction term

L ;
322 Va kg0l o gOuk ok
k&' g£0

of (3.3). Equation (3.8) differs from the free-carrier result [see (1.10, 13)] in
that the kinetic energy and therefore the hole effective mass includes the
Coulomb energy of the full valence band.
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Proceeding as in Sect. 2.1, we derive coupled equations of motion for the
electron and hole populations nex and npg, (2.9, 10), respectively, as well as
for the interband polarization pg, (2.8). The derivation requires simple but
lengthy operator rearrangements to reduce the commutators in the Heisen-
berg equations to

ddltk = —iwgpk — 1h R E(2,t) (nek + ik — 1) + % Y,
K',q#0
X ((alt:’+qb7kak’ Tk+q) + <b};,7qbkrakb_k_q> - <al’+qb—k+qak’ak>
~ (Ol _ bk okg) + (b-rrqth—g)Our) (39
dnek

i * *
i EE(z,t) (MkPk — kD)

i
* ﬁ Z %((a]ta,tr_qaquak» — <U,L+qalliqakak’>

K ,g#0
+ (afar—qbls_ bi) = (af,, qarbr —gb')) (3.10)
and
dnhk i % *
= 7P (mepk — pipr)
i
+3 > Va((bh kbl gbr—abi) — (b iy gbLi_ b kbrr)
k’,q#0
L awbl b —(al,, awb 4 b 3.11
+ (0 g0k bl kb ki) — (g qandly k) - (3.11)
Here we denoted the transition energy fwy of (2.20) by
ﬁw;c = Eek +Enk +Eg0 (3.12)

where the prime has been introduced in order to distinguish the unrenor-
malizated energy fwj from the renormalized one Fuwy, which appears later
in (3.20). Equations (3.9-11) show that the Coulomb interaction couples the
two-operator dynamics to four-operator terms. One way to proceed is to fac-
torize these terms into products of two-operator terms, yielding the Hartree-
Fock limit of the equations. To obtain a systematic hierarchy of equations,
we separate out the Hartree-Fock contributions. For example, we write for
a two-operator combination AB,

FUB) = B + (4B - %<AB>HF>
d
= -CE<AB>HF + %(AB>COI . (313)

Here, HF indicates the Hartree-Fock contribution. The quantity inside the
square bracket then contains both two and four-operator products, which we
represent in general by (ABCD). These contributions beyond the Hartree-
Fock approximation are often called collision (subscript col) or correlation
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contributions. They will be discussed in detail in the following Chap. 4. Here,
we only mention that with the full many-body Hamiltonian (3.1), the Heisen-
berg equation of motion gives the equation of motion for (ABCD) as

d (ABCD) = d (ABCD)F + d (ABCD) d (ABCD) (3.14)

dt T P \a dt )
where d(ABCD)/dt contains expectation values of products of up to six
operators. The label F is used to indicate the result from a Hartree-Fock
factorization of the four and six operator expectation values. We can continue
by deriving the equation of motion for

(ABCDEF) = <£(ABCD) - £1—<ABC'D)F>
dt dt
and so on. The result is a hierarchy of equations, where each succeeding
equation describes a correlation contribution that is of higher order than the
one before. In practice, we truncate the hierarchy at some point.

Returning to (3.9-11), we first evaluate the Hartree-Fock contributions.
To do so, we factorize all the expectation values of four-operator products into
all possible operator combinations leading to products of densities and /or po-
larizations. For example, for <a,ta;rc,al ay), we can have the two-operator com-
binations (a,ta};,)(al ap), (a,tm)(a};,ay), and (alap)(a;'c,al). Taking the anti-
commutation relations into account to get the proper signs between these
combinations we find

(a,ta};,al ay)rp = (aLaL)(al ay) — (a,tal)(a};,al/) + (a;rcay)(a;;,al)
= O + (—6k716k1y,/ + 5k’y<5kr’l)neknekr . (315)
Another example is
(a,t,+qbq_kak1ak)p = O’ k—qMekPk' - (3.16)

Factorizing all the other four-operator products in this way and formally
adding the contributions beyond Hartree-Fock, we find the semiconductor
Bloch equations

dpx . . Opk

FTa e 2%(2,t) (Nek + Nk — 1) + v y (3.17)
dneg . « . ONek

dt =1 [Qk(z7 t)pk - Qk (Za t)pk] + Bt ol (318)
d . . . o

TR [z, )f — (2 i) + ek (3.19)

dt at col

We have written the terms containing the Hartree-Fock contributions ex-
plicitly, while those due to higher order correlations (collisions) are denoted
formally by the partial derivatives §/0t|co1. The Hartree-Fock contributions
in (3.17-19) contain two important many-body effects, namely a density de-
pendent contribution to the transition energy, and a renormalization of the
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electric-dipole interaction energy. Specifically, fiwy, of (3.12) is replaced by the
renormalized transition energy

hwg = hwy, — Y Vie_r| (Rekr + k) (3.20)
K'#k
and the Rabi frequency py E(z,t)/h is renormalized as
k(2,1) = %(z’t) + % Z Vik—w1Pr (3.21)
K £k
where the Coulomb terms (o< Vig_g|) in (3.20, 21) are called the exchange
shift and the Coulomb field renormalization, respectively.

The semiconductor Bloch equations look like the two-level Bloch equa-
tions, with the exceptions that the transition energy and the electric-dipole
interaction are renormalized, and the carrier probabilities n,x enter instead
of the probability difference between upper and lower levels. The renormal-
izations are due to the many-body Coulomb interactions, and they couple
equations for different k states. This coupling leads to significant compli-
cations in the evaluation of (3.17-19) in comparison to the corresponding
free-carrier equations, (2.23, 24). As discussed in the introduction to this
chapter, if all Coulomb-potential contributions are dropped, i.e, V; is set to
zero, the semiconductor Bloch equations reduce to the undamped inhomoge-
neously broadened two-level Bloch equations. Of course, the limit V; = 0 is
unacceptable for semiconductors.

The Coulomb terms in (3.17) show a large degree of symmetry. To see this
more clearly, we write the Hartree-Fock part of (3.17), i.e., without dpg/0t|co1
as

dpk
dt

i
= Z OkkDrr — EﬂkE(nek +nne — 1) (3.22)
HF g

where for k = k'’

Ok = — iwy, + % Z Vik—r"| (Rek” + 1) (3.23)
K #£k

and for k # k'
i

h
We see that the Coulomb terms appear with opposite signs in the diagonal
and nondiagonal elements of the matrix @. This leads to compensation effects
in the influence of these many-body terms, e.g., on aspects of the optical spec-
tra. For example, the high degree of excitation independence of the excitonic
resonance frequency, see, e.g., Fig. 4.13, results from the cancellation of the
density dependent bandgap renormalization (diagonal part) and the weaken-

ing of the exciton binding energy (nondiagonal part). We will illustrate these
effects in more detail in the following chapters of this book.

O = V|k—k'| (nek +nne—1) . (3.24)
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3.2 Interband Coulomb Effects

In this section, we examine the low density limit of the semiconductor Bloch
equations. In this limit, nex = npr ~ 0, and the collision terms vanish because
no scattering partners are available. Equation (3.17) reduces to

dpk

O —iwgpk +162% (3.25)

which effectively isolates the influence of the renormalized electric-dipole in-
teraction frequency (2 (Rabi frequency). Choosing the plane-wave optical
field

E(R,t) = 1E, eBEB=vt) Lo (3.26)

where R is a center of mass coordinate, and making the rotating-wave ap-
proximation [see Sect. 2.2], we obtain the Fourier-transformed (3.25) as

(e —v+iv)pe =% (3.27)

where « is a small phenomenological damping coefficient. Fourier transform-
ing (3.27) to coordinate space, we find
R2VZ 2

— — 4 eg— h(v—iy)| p(r) = pEee! B3 (r)V | (3.28)
2m, €pT

where we ignore the k-dependence of the interband dipole matrix element,
which is often a reasonable approximation as long as we are only interested
in small k-values and frequencies close to the fundamental absorption edge.

Equation (3.28) is an inhomogeneous differential equation, which may be
solved by expanding p(r) as a linear superposition of the solutions of the
homogeneous equation

( h2v2 62

2m, €pT

>¢n(1") — entn(r) | (3.29)

which is the Schrédinger equation for the relative motion of an electron and
a hole interacting with the attractive Coulomb potential. In semiconductor
physics this equation is known as the Wannier equation. As already men-
tioned in Chap. 1, there is a one-to-one correspondence between the electron-
hole problem and the hydrogen atom if one replaces the proton by the valence-
band hole. The solutions of the Wannier equation are therefore completely
analogous to those of the hydrogen problem, which are discussed in most
quantum mechanics textbooks. The bound states in the Wannier equation
are called excitons, or more specifically Wannier ezcitons, and there are con-
tinuum states.

The bound and continuum eigenfunctions of the Wannier equation form
a complete orthonormal basis set, so that we can write

p(r) = patn(r) . (3.30)

n
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Substituting (3.30) into (3.28), multiplying by ¢}, (r) and integrating over r
yields

_ wVir,(r =0) Eyei(K-R=vt)

- _ 3.31

pm h(l/_i’}’)_sg_em ) ( )
where we used the orthonormality condition

[ 005,000 = b (3:32)
Inserting (3.31) into (3.30) gives

i(K-R— Vipr(r=0)
_ _ E, i(K-R—vt) K n n )
p(r) ; 0€ R —i7) e Enw (r) (3.33)

which has the Fourier transform

_ i(K-R-vt)___Mr(r =0) / 3 kv
Pk ;Eoe o i) e o, ) STt . (330

Using an equation of the form of (2.7) for the polarization amplitude, we
obtain

P(R)=—2u*Eo Y h(yw’"(r =9

—iy) —eg —€n

: (3.35)

where |1, (r = 0)|? is the probability of finding the electron and hole within
the same atomic unit cell (zero spatial separation on our coarse grained length
scale). The optical susceptibility x(v) of (1.73) is then given by

2 _ 2
X(V) _ _2 Ip’l Z h( W)n(r _ 0)' ) (336)

Ve v—1iy)— €z —€q

In cgs units, the corresponding absorption coefficient a(v) is

4ny
a(v) = n—bclm x(¥)]
> 4r 1 em/VA
=« —i | A+ |+ Q) T——nr—r | , 3.37
0 Lz_:l n3 ( n2) ( )ﬂSinh(Tr/\/Z) (3:37)
where
A w—ee ,
ER
_ 2
@0 = hnpead

and we have used the explicit form of the electron-hole pair eigenfunctions
[Haug and Koch (1994)]. Equation (3.37) is known as the Elliot formula and
describes the bandgap absorption spectrum in an unexcited bulk semicon-
ductor.
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Equation (3.37) predicts that the absorption spectrum consists of a series
of d-functions at discrete energies. These resonances are the exciton peaks.
The prefactor in front of the -functions in (3.37) shows that the exciton res-
onances have a rapidly decreasing oscillator strength o< n~3. The appearance
of the exciton resonances in the absorption spectrum is a unique consequence
of the electron-hole Coulomb attraction.

The second term in (3.37), @cont, describes the continuum absorption due
to the ionized states. It can be written in terms of the free-carrier absorption,

Ofrec(w) = gV AO(A) (3.38)

as
n VA 3.39

Qcont (UJ) afree(w) \/Z sinh (W/\/Z) 3 ( )
where the factor multiplying asree is called the Sommerfeld or Coulomb en-
hancement factor. It is a simple exercise to verify that this factor approaches
the value 27/ VA for A — 0, which cancels the VA factor in the free-carrier
absorption of (3.38) and yields a constant value at the bandgap. This is strik-
ingly different from the square-root law of the free-carrier absorption.

If one takes into account the broadening of the exciton resonances caused
by, for example, the scattering of electron-hole pairs with phonons, then only
a few bound states can be spectrally resolved. An example of an absorption
spectrum predicted by the Elliot formula is depicted in Fig. 3.3. In order to
plot the spectrum in Fig. 3.3 we introduced a small amount of broadening
in (3.37). As a consequence of the prefactor |1,(r = 0)|? in (3.36) only
the s-like states contribute to the optical response in semiconductors with

300

Fig. 3.3. Optical spec-
trum at the absorp-
tion edge predicted by
200 | the Elliot formula. The
absorption coefficient
a(m) a(A) (in units of ao)
is plotted versus A =
o (v — €g)/er. In or-

100 k der to show the absorp-
tion spectrum a small
broadening of the ex-
‘J citon resonances has

been introduced. An
J\, absorption spectrum of
L * = this kind can be ob-
-5 -1 -05 0 05 1 15 servedeg. inhighqual-
ity GaAs at low tem-
peratures
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dipole allowed transitions. Figure 3.3 shows that the dominant feature is
the 1s-exciton absorption peak. The 2s-exciton can also be resolved, but its
height is only 1/8-th of that of the 1s-resonance. The other exciton states in
GaAs materials usually appear only as a collection of unresolvable peaks just
below the bandgap. Note that the continuum absorption is almost constant
in the spectral region shown. These features have all been observed in spectra
measured at low temperatures using sufficiently high-quality semiconductors.

Generally, the existence of resonances and the enhancement of the con-
tinuum optical spectrum can be traced back to the renormalization of the
electric-dipole interaction energy (3.21). This renormalization is caused by
the attractive Coulomb interaction between electrons and holes and is re-
sponsible for the pronounced increase in the optical absorption around the
absorption edge when compared to the free-carrier predictions. The increased
absorption, which is an example of the more general phenomenon of inter-
band Coulomb enhancement, may be explained as follows: Due to Coulomb
attraction, an electron and a hole have a greater tendency to be in the vicin-
ity of each other for a longer duration than would be the case if they were
noninteracting particles. This increases the interaction time, which in turn
leads to a higher probability of an optical transition.

3.3 Screened Hartree-Fock Approximation

As soon as we consider semiconductors with elevated carrier densities we need
to include the effects of the collision contributions, 8/0¢|c,1. The equations,
as written in (3.17-19), are formally exact as long as we do not specify the
collision contributions, 8/0t|c,1. However, approximations are unavoidable in
the derivation of explicit expressions for these terms, which give rise to carrier
and polarization relaxation, as well as plasma screening. Different approaches
will be discussed in this, and in the following chapter.

An approach, whose advantage is that it is rather simple to implement,
involves using the phenomenological relaxation time approximation given
(2.25, 31) to describe the polarization and carrier relaxation. Furthermore,
the effects of plasma screening are included phenomenologically by replac-
ing the bare Coulomb potential V; in (3.3) by the screened Coulomb po-
tential V4. This treatment of screening effects leads to the semiconductor
Bloch equations in the screened Hartree-Fock approxzimation, which can be
systemically derived using many-body Green’s function techniques [Binder
and Koch (1995)]. Note that the Coulomb interaction Hamiltonian with the
bare Coulomb potential, i.e., V, already contains the mechanism for plasma
screening. Therefore, one should be concerned that an ad hoc replacement of
Vg with Vg, in (3.3) might count some screening effects twice. Such problems
can only be avoided within a systematic many-body approach. An example
of that is discussed in the following Chap. 4. For more details, we refer the
interested reader to the original literature listed at the end of this chapter.
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To implement the screened Hartree-Fock approximation, we need a screen-
ing model. One approach is to use a self-consistent quantum theory of plasma
screening involving arguments from classical electrodynamics and quantum
mechanics. Given an electron at the origin of our coordinate system, we wish
to know what effect this electron has on its surroundings. To find out, we
introduce a test charge, i.e., a charge sufficiently small as to cause negligi-
ble perturbation. In vacuum, the electrostatic potential due to the electron
is ¢(r) = e/r. However, in a semiconductor there is a background dielectric
constant e, which is due to everything in the semiconductor in the absence of
the carriers themselves. Furthermore, there is the carrier distribution that is
changed by the presence of the test electron at the origin (see Fig. 3.4). The
new carrier distribution, (ns(r)), in turn changes the electrostatic potential.

Test charge

/ Induced charge

distribution

Fig. 3.4. An electron at the
origin induces a change in
the carrier distribution. The
electron density is ne(r) =
83(r) and the new car-
rier distribution is (ns(r)),
where the subscript s stands
for screening, which is the
net effect of the induced car-
r rier distribution change

Charge density

We denote the carrier density distribution as an expectation value since
we plan to calculate it quantum mechanically. To derive the induced carrier
distribution, we first simplify the problem by assuming that the screening ef-
fects of an electron-hole plasma equal the sum of the effects resulting from the
separate electron and hole plasmas. As such we neglect excitonic screening,
which is not a bad approximation for the elevated carrier densities present
in conventional semiconductor lasers. Starting with the electron plasma, we
note from (1.96, 97) that the corresponding quantum-mechanical operator
for the screened electron charge distribution is ens(r) with

1 . ’
n(r) = 3 ¢t T dan

kK’

= Znsq eiq'r . (340)
q

Here, the Fourier transform of the density operator is given by
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1
nsq = 17 > al_ gk, (3.41)
k

and V' (with no argument or subscript) is the volume of the semiconductor
medium. In a rigorous treatment we would use the electronic part of the
many-body Hamiltonian to obtain an equation of motion for ngg. At the level
of a self-consistent Hartree-Fock approach, we can treat screening effects on
the basis of an effective single-particle Hamiltonian

Her =) corafar+ V'Y Vigne g (3.42)
k q
where
1 3 —ig -
Veg = V/d rVs(r)e " (3.43)
with
Vi(r) = eds(r) (3.44)

and ¢s(r) is the screened electrostatic potential.
With the effective Hamiltonian (3.42), we get the equation of motion

. d
1haanak = [a};_qak,Hefr]

(ek — ex—q) af_ 0k
+ Z Vsp (a,t_qakﬂ, - a,tiq_pak) . (3.45)
p

Taking the expectation value and keeping only slowly varying terms, namely
those with p = —q, we get

., d
1hE(a,ank) = (ek — €k—q) <a;r€_qak) + Vg (M—q — nk) - (3.46)

We suppose that (a};_ 4) has a solution of the form e(®=1)t where the
infinitesimal d indicates that the perturbation has been switched on adiabat-
ically, i.e., that we had a homogeneous plasma at t = —oo. We further suppose

that the induced charge distribution follows this response. This transforms
(3.46) to

t Nk—q — Nk
a;._ ag) = Vg - .
(ag_qak) = Vsq ST e —— (3.47)
so that
(ag) = 22§ Tka Tk 3.48)
> V £ h(w+10) +ex—q—ek (3.
The induced charge distribution is a source in Poisson’s equation
4re
V2¢s(r) = . [ne(r) + (ns(r))] - (3.49)



86 3. Coulomb Effects

The Fourier transform of this equation is

4me (1
$sq = €bq? <V + <nSQ>) ) (3'50)
where for a point charge at the origin
1 e 1
Neq = V/dBT(SB(r)e =g (3.51)
Using Viq = egsq, we substitute (3.48) into (3.50) and solve for V5, to find
-1
= - Mk—q — Tk 3.52
Vsq—Vq(l quk:h(w-kié)%—ek_q—sk) ’ (3:52)

where V, is the unscreened Coulomb potential, (3.4). Repeating the derivation
for the hole plasma, and adding the electron and hole contributions, we find
the screened Coulomb potential energy between carriers

Yy

Vig = , (3.53)
T ()
where the longitudinal dielectric function e4(w) is given by
—1- Pok—g — ok . 3.54)
(W) =1-Vq Z Z h(w +16) + €ak—q — Ea,k (

k a=eh
This equation is the Lindhard formula. It describes a complex retarded di-
electric function, i.e., the poles are in the lower complex frequency plane,
and it includes spatial dispersion (¢ dependence) and spectral dispersion
(w dependence).

In many practical situations, the Lindhard formula (3.54) is numerically
too complicated to use because of its continuum of poles. Then one has to
make additional approximations leading to a simplified, but also less general
version. In general it is dangerous to make uncontrolled approximations to
the Lindhard formula because there are important sum rules, which are valid
for the Lindhard formula and which a simplified dielectric function also has
to obey [Mahan (1981)]. To see how to obtain a proper simplification, we look
at the long wavelength (¢ — 0) limit of the Lindhard formula. We assume
a quasi-equilibrium system, where nox = fok is the Fermi-Dirac distribution
function. We expand €4 k—q and fq k—q around ¢ = 0 to find

ﬁ2 2 5 h2k2
Eak—q — Eak = 2ma (k‘ — 2k ‘q+q ) 2ma
2. .
= _Z—*h il , (3.55)
7 Mo
afozk
fa,k—q_.fozk = fak_ i Qia—ki—}-...—fak

afak
~ _ E L 3.56
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Inserting these expansions into (3.54), expanding the resulting denominator,
noticing that 37, 0fax/0k = 0, and integrating the remaining term by parts,
we get the classical (or Drude) dielectric function

2

Wi
€=o(w) =1-—3 . (3.57)
Here the square of the electron-hole plasma frequency is given by
4w Ne? ER\ 2
2 3 (ER
= = 167N (—) .
wp ey mNag ( , (3.58)

N=Vv1y & Jx is the electron or hole density, and m; is the reduced electron-
hole mass.

The classical result (3.57) is in many aspects too simplistic for a real-
istic description of many-body plasma screening effects in both active and
passive semiconductors. Instead, in the so-called plasmon-pole approzimation
one replaces the continuum of electron-pair excitations, represented by the
continuum of poles in the Lindhard formula, by a single effective plasmon
pole. In this approximation, the inverse Lindhard dielectric function is re-
placed by

2
1 . wpl

eq(w) b (w+id)2 —w? (3.59)

which has the same structure as the long-wavelength plasma result (3.57),

but instead of wy) in the denominator, it has the effective plasmon frequency
wq defined by

2 2\ 2
2 _ 2 q hq
wq = wpl (1 + E) + C (4mr> . (360)

Here, C is a numerical constant usually taken between 1 and 4, and & is the
inverse static screening length
1/2
4me? ON
K= - . 3.61
o 2 o (3.61)

a=e,h

Without discussing details of the derivation of (3.60), we just mention here
that w, has been determined such that the dielectric function (3.54) fulfills
certain sum rules [Mahan (1981), Lundquist (1967), Haug and Koch (1994)].

For many practical applications, one ignores the damped response of the
screening represented by w+id in the dielectric function (3.59). In this “static”

plasmon-pole approximation, the screened Coulomb potential (3.53) is simply
given by

V=V, 122
s = Ve | 1T 5] (3.62)
q
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where w? is defined in (3.60). The approximation (3.62) often allows analytic
results, or at least much simpler numerical results for the effects of plasma

screening.

3.4 Bandgap Renormalization
in the Screened Hartree-Fock Approximation

In this section, we apply the results of the previous section to study the
bandgap renormalization effect. First we note that by replacing Vg by Vs in
(3.3), (3.8) becomes

e =—evk+ ) Vag (3.63)
q#0
i.e., the hole energy in the presence of the screened Coulomb potential. How-
ever, to express the hole-energy in terms of an effective mass, we have to
remember that the hole effective mass is taken from low-excitation experi-
ments, that is, for an unscreened Coulomb potential. Hence we rewrite (3.63)
as

Ehk = —Evk t ZVQ + Z(Vsq - Vo)

q#0 q#0
= enk+ Y (Vag = Vo)
g#0
= enk + AecH (3.64)
where we define the Debye shift, or Coulomb-hole (CH) self energy
Aecn =) [Vag—Vi] - (3.65)

q#0

This term is independent of wave vector and is usually considered as an addi-
tional contribution to the bandgap shift. It is due to the increasingly effective
plasma screening that occurs with increasing carrier density. To see this, we
note that at very low carrier densities, the lack of vacant valence band states
together with the exclusion principle limit the ability of the valence electron
distribution to effectively screen the Coulomb repulsion between a conduction
electron and any one of the valence electrons. The corresponding abundance
of vacant conduction band states are energetically inaccessible to a valence
electron via the Coulomb interaction. At higher carrier densities, more va-
cant valence band states are available to allow the redistribution of charges
for more effective screening. Since the screening of a repulsive interaction
leads to a lowering of the conduction electron energy, the transition energy
decreases with increasing density.

Recalling the static plasmon-pole approximation used in simplifying the
Lindhard formula, we rewrite the Coulomb-hole self energy as
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Aecn = Z (Vsg — Vo)

970
1
“pn()
q#0 ‘e
2 2 2] 7!
_ 2 | 2 q C ( hq
= ‘;qupl wi) (1 + E) + (er> ] . (3.66)

Converting the sum to an integral, using formula (2.161) from Gradshteyn
and Rhyzhik (1980), and expressing all parameters in terms of ay and eg
[(1.14, 15)], we write Aecy as

_1
AV Ca3n2€R> :

R (3.67)

Aecy = —2¢ragk <1 +
In addition to the Coulomb-hole self energy, there is a second contribution
to the carrier-density dependence of wy, that comes from the Hartree-Fock en-
ergy correction as described by (3.20). In the screened Hartree-Fock approx-

imation, this contribution, which we now refer to as the screened-exchange
(SX) shift, is

Aesx k= — Z Ve lk—k| (e + i) (3.68)
K #k
which is similar to (3.20) except that the bare Coulomb potential is replaced
by the screened Coulomb potential. It is often a reasonable approximation to
neglect the weak k-dependence in Aegx x and just use a k-independent Aegy.
In this case, both contributions to the wj renormalization are independent of
k and the renormalized bandgap is given simply by

€g = €g0 + Aesx + Aecu - (3.69)

In Fig. 3.5 we plot the different screened Hartree-Fock contributions to the
renormalized bandgap as function of scaled interparticle distance rs defined
by

4 5 1

57’[‘7"s = N—a,g . (370)

The screened Hartree-Fock approximation often overestimates the bandgap

reduction. Improvements to this problem as well as other many-body effects
will be discussed in Chap. 4.
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Fig. 3.5. Bandgap reduction
as function of normalized in-
terparticle distance rs, (3.70),
for the bulk-material param-
eters of Chap. 2. The reduced
gap is plotted as solid curve,
the screened exchange contribu-
0 1 2 tion as dashed curve and the

Coulomb-hole contribution as

r dash-dotted curve

3.5 Padé Approximation

Using the relaxation rate approximation and the screened Hartree-Fock ap-
proximation, we write for the induced dipole py,
dpk
dt

Formally integrating from —oo to ¢, gives

= — (iwk +7) pr — 2k(2, 1) (Rek + Mok — 1) (3.71)

t
p(t) = —i / dt’ @t =) 0 (2 ) [ner (') + nni(t) — 1] . (3.72)

As in Sect. 2.2 for the free-carrier theory, we make the rate equation approx-
imation which assumes that the carrier probabilities and the electric field
envelope vary little in the time 75 = 1/v. Using the field (2.41), we have

i 1 ei[Kz—l/t—¢o(z)]
pe(t) = —¢ ek (t) + nnw(t) — 1] [EﬂkE(Z)m
t
+ > Ve jk—w] / dt’ e<iwk+v><t’*t>pk(t/)] . (3.73)
k' 7k

We solve (3.73) by iteration in powers of the screened Coulomb interaction
energy V; k—k|- To lowest order, i.e., setting Vs jx—x/| = 0 in (3.73), we find
the free-carrier result (2.43)

-1
©0) 1) = E(z) eilKz—vt- ¢<z>]w_
— %E(z)ei["z—"f—‘f’(@]x}f) , (3.74)
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where for later convenience we introduce the k-dependent susceptibility func-
tion
(0) _ _ Ik Tek + Nk — 1

Xk R oi(ws—v) v (3.75)

Substituting the lowest-order result into (3.73) and noting that x; )(t) varies
little in the time T3, we find the first-order contribution

(1) _ i i[Kz—vt—¢(2) ]nek + npe — 1 (0)
t) = — Dk T T oy 0
P (8) o E(2)e Hwr =) 17 ZVs,uc k| X
Kk
1 i[Kz—vt—¢(z
= B(z) O Og(k) (3.76)
where the complex dimensionless factor
q(k) = Z Ve ki Xy - (3.77)
k

In principle, we could continue to iterate (3.73) in this way until reach-
ing any desired accuracy. However, this process does not converge rapidly
and offers no substantial CPU-time improvement over the direct numerical
solution of (3.73) obtained by discretizing the integral and using a matrix in-
version [Haug and Koch (1994)]. On the other hand, we obtain a remarkably
accurate result for gain media by treating p ) and p ) as the first two terms
of a geometrical series, which we then “resum” [Haug and Koch (1989)]. This
approximation is the simplest kind of Padé approximation [Gaves-Morris
(1973)]. Accordingly, adding (3.74, 76) and resumming, we find

pr(t) = () + " (2)
= -E(Z) e‘[KZ—Vt—¢(Z)]X£:O) (1 + q(k))

| 2

12

—E(z)e i[Kz—vt=g(2)] (3.78)

1- q(k)

Substituting this equation into (2.7), and using the result in the self-
consistency equations (1.76, 77), we find the gain and carrier-induced phase
shift

.d¢  iK

U 15 = 7)(

v 2 Nek + Nhg — 1 1
Banet? 21 0T T

(3.79)

The carrier-induced phase shift is related to the carrier-induced refractive
index by (1.81). Under quasi-equilibrium conditions nax = fak, where the
Fermi-Dirac distributions fox are given by (1.19). Equation (3.79) is quite
convenient for numerical evaluation since it expresses the many-body sus-
ceptibility in a form that is very similar to the free-carrier result (2.52, 53).



92 3. Coulomb Effects

The many-body effects can be identified explicitly as i) a carrier density de-
.o -1

pendence of the transition energy, wi(N), and ii) the factor [1 — g(k, N)] ",

which represents the Coulomb enhancement in our Padé approximation.

3.6 Bulk Semiconductors

Using (3.62) for Vi, with w? given by (3.60), we can write the screened
Coulomb potential for a bulk semiconductor medium as

2\ —1
8merag (e,  C €2 eq  Cegg
=—— | =+ - 1+ —=4+—-—— , 3.80
Vsq Vg2 <€,€ + 4 sgl €. 4 5%1 (3.80)
where ag and egr are the exciton Bohr radius and the Rydberg energy. We
define

h2 2
Eq = q 5
2m;
h2k?2
Er = 2m,
Epl = hwpl , (381)

where &, (3.61), is the inverse screening length and wpy, (3.58), is the electron-
hole plasma frequency. The vector

g=k-Fk
so that
q® = k*> + k'* — 2kk’ cosf , (3.82)

where 6 is the angle between k and k’. Substituting (3.80) into (3.77) and
evaluating the summation as an integral, we get under quasi-equilibrium con-
ditions,

. £k
15%(1% * ! kl2 1+ Eg fek’ + fhlc’ -1

q(k)=——— [ dk e Ok, k') . (3.83)
mh Jo Veker 1+ - i(wp —v)+7
The angular integration function
x 14§50
O(k,k") = / df sin ———=—-
’ A

= 6, (k, k’) + 6, (k, k/) (384)

can be evaluated analytically. For the first term, we obtain

€k Cfi
o1 [t tEa

1+ —+ 3=
x 2

£
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where ki = |k + k'|. The second term is given by
1 1 [ Cex, ek
Oy(k, k') = —={ arctan | — r 41
A Vﬁ{ l¢5<2% )]

1 Cer €,
—arctan | —= | —=" 41 ,
arctan l\/ﬁ ( 26; + )] } ; (3.86)

for D = Ce}/e2 — 1> 0 and

2
2sp1

Cer, &x
Oa(k, k') = 5 . [1n< s +1+\/5>

{:‘pl
Cer, ex
—In +1-+/-D , (3.87)

for D < 0. The k’-integration in (3.83) has to be performed numerically.

The Coulomb-hole self energy contribution to the bandgap renormaliza-
tion is given by (3.66) or (3.67) and the screened-exchange contribution (3.68)
may be approximated by the integral

Cer_ex i
—ln< tht +1+\/—D)+ln<c—;]c§—6+l—\/—D>

2
Ext CE!I
a1 -2

4derag [ n e
Aesx = — RO/ Ak —"——"P (fus + fri) - (3.88)
™ Jo 1+ + Sy
Ex Epl

Using (3.85-87) and (3.68) in (3.83), and the result in (3.79), we calculate
the gain and carrier-induced phase shift. For bulk semiconductors, we convert
the summation over states in (3.79) to a three dimensional integral and find

o _ v|pl? /°° dkk*  for+ fox — 1 1
dz =~ 2egnchm? 0 (1 n &)2 i(wp—v)+y 1—gq(k) ’
€g

9- (3.89)

where we again used the quasi-equilibrium approximation.

Figure 3.6 plots gain and carrier-induced phase shift spectra calculated
using (3.89) for an undoped bulk GaAs medium and different carrier densi-
ties. To make a better connection to the experiment we plotted the intensity
gain, G = 2g. In the free-carrier results (dashed curves), band filling is the
only cause for the density dependence of gain and phase shift, while in the
many-body results bandgap renormalization and Coulomb enhancement also
contribute. An obvious difference between the two theories is the overall fre-
quency shift due to the bandgap renormalization. The many-body spectra
for the different carrier densities are also frequency shifted relative to one
another since the bandgap renormalization is a carrier density dependent
function. Note that Fig. 3.6 (top) shows the existence of gain at frequencies
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Fig. 3.6. Intensity gain G (top) and carrier-induced phase shift (bottom) ver-

sus detuning Av — €40 according to the Padé approximation (solid lines) alrgd freg—
carrier theory (dashed lines). The carrier densities are N = (a) 3 x 10°°cm™",

(b) 4 x 10 cm™3, and (c¢) 5 x 10'® cm™3. We use the bulk medium parameters
of Chap. 2, and v = 10"3s7!

below the unexcited semiconductor bandgap, which for GaAs is 1.42eV at
room temperature. This feature is a consequence of the bandgap renormal-
ization, which decreases the bandgap when the carrier density is increased in
GaAs-type materials. The spectral region of optical gain is basically bounded
by the renormalized bandgap from below and by the total chemical potential
from above

g Shy <eg+ e+ pn (3.90)
which replaces eg49 in (2.74) by €g.

3.6 Bulk Semiconductors 95

10
20 [
n do
. 6 dz
G 10°em™)
(10%cm™) i
4 2
-4
0.2 0.1 0 0.1 0.2

av —€, (eV)

Fig. 3.7. Intensity gain G and carrier-induced phase shift (top curves) versus de-
tuning hv — €40 for bulk-material as predicted by the Padé approximation (solid
curve) and by the free-carrier theory with ad hoc bandgap renormalization (dashed
line). The carrier density is N = 4 x 10'® cm™3

Coulomb enhancement has the effect of reshaping and increasing the mag-
nitude of the gain and absorption spectra. It is most noticeable at low car-
rier densities, especially when it is possible to resolve the exciton absorption
peaks. At the elevated densities needed for gain, Coulomb enhancement ef-
fects are not as drastic because plasma screening mitigates the electron-hole
Coulomb attraction. Figure 3.7 shows the effects of Coulomb enhancement
at a carrier density of N = 4 x 10'® cm™3. The dashed curves are obtained
using the renormalized bandgap in the free carrier gain formula. Even though
this ad hoc inclusion of bandgap renormalization into the free-carrier theory
is sometimes used in the literature, it is actually inconsistent because it neg-
lects the Coulomb attraction between an electron and a hole, while it takes
into account the exchange interaction and Coulomb repulsion between two
electrons or two holes. To be consistent, Coulomb attraction and repulsion
have to be treated at the same level of approximation. When using (3.79),
we need to keep in mind that the factor 1/[1 — (k)] is only valid at high
carrier densities. It ignores the existence of the bound electron-hole states
(excitons), and is therefore not correct for densities below the Mott density.

Figure 3.8 (top) shows the peak gains (Gpx) as predicted by the Padé
approximation to the many-body theory and the free-carrier theory for bulk
GaAs. The difference between the two curves is due to Coulomb enhance-
ment, which causes an approximately 20 % increase in the peak gain. This
difference can increase to a factor of 2 in the wide-bandgap laser compounds,
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Fig. 3.8. (top) Bulk-material peak gain Gpx and (bottom) peak-gain energy
hvpx — €40 versus carrier density N according to the Padé approximation (so]id
curves), free-carrier theory FCT (dashed curves), and free-carrier theory with
a renormalized bandgap (dot-dashed lines). For the peak gain, the two free-carrier
models coincide. The renormalized bandgap is indicated by the dotted curve

where Coulomb interactions are known to be significantly stronger. Figure 3.8
(bottom) shows the dependence of the peak gain energy hAvpy on carrier den-
sity. We reference the gain peak to the unexcited bandgap energy, €g4. Both
band filling and Coulomb enhancement lead to a blue shift of the peak-gain
frequency, whereas bandgap renormalization leads to a red shift. In a bulk
semiconductor with GaAs-type effective masses, band-filling effects dominate
the density-dependent peak-gain shift. The difference between the solid and
dot-dashed hvpk curves in Fig. 3.8 is due to the reshaping of the gain spectra
by Coulomb enhancement. Note that according to the many-body theory,
the peak gain for a carrier density between 2 x 10'® cm™3 and slightly above
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3 x 10 cm™3 occurs below the unrenormalized bandgap, around the fre-
quency of the exciton resonance of the unexcited material.

As discussed in Sect. 2.7, the linewidth enhancement or antiguiding factor
o is a useful quantity in semiconductor laser theory. Here we present some
numerical results for the o factor, mainly to emphasize the importance of
the carrier-induced refractive-index (phase shift) changes. Examples of the
computed a spectra for bulk GaAs are shown in Fig. 3.9. Note the appearance
of a saddle in the many-body results at high carrier densities. This saddle is
observed in experiments in bulk and quantum-well gain media. Our theory
associates the existence of this saddle with the many-body interactions.

Figure 3.9 (bottom) shows the different many-body contributions to the
a spectra. Both bandgap renormalization and Coulomb enhancement have
noticeable effects. A quantitative comparison between the experimental and
theoretical spectra requires a more accurate description of the bandstructure
than the two band model. Therefore, we postpone all experiment/theory
comparisons to Chap. 7, where we include realistic band structures.

Fig. 3.9. The top fig-
ure shows the linewidth
enhancement factor ver-
sus detuning hv — g0 ac-
cording to the Padé ap-
proximation and the free-
carrier theory. The car-
rier densities are N = 3x
(solid curves), 4x (dashed
curves), and 5x 10 cm =3
(dot-dashed curves). The
bottom figure shows the
spectrum of the linewidth
enhancement factor ac-
cording to the Padé ap-
proximation (solid line),
free-carrier theory (dashed
line), and free-carrier the-
ory with ad hoc bandgap
renormalization (no Cou-
-0.1 0 0.1 0.2 lomb enhancement — dash-

dotted line) at a carrier

hv —€40 (eV) density 4 ><)1018 cm™3
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Fig. 3.10. Bulk-material linewidth enhancement factor a at the gain peak versus
carrier density. The solid curve is the Padé approximation result, the dash curve is
the free-carrier result, and the dot-dashed curve is obtained using the renormalized
bandgap in the free-carrier theory

In Fig. 3.10, we show the value of « at the peak gain frequency as a func-
tion of carrier density. We see that the inclusion of the bandgap renormal-
ization in the free-carrier theory actually yields worse agreement with the
many-body results than the unmodified free-carrier theory. By ignoring the
Coulomb enhancement, we significantly underestimate the values of o at the
peak gain.

3.7 Quantum-Wells

To treat the many-body Coulomb interactions in a quantum well, we follow
a procedure that is similar to our analysis of the bulk medium. Typically
quantum-well widths for lasers are less than 15 nm, which is sufficiently nar-
row to approximate the carriers as a two-dimensional plasma. A derivation
similar to Sect. 3.3 gives the screened Coulomb potential (3.62) with the two
dimensional plasma frequency wpi,

2 2me’Noqwq  8mNaqwadeqq

= = 091
wpl - K2 ) (3 )

the effective plasmon frequency wy,

q\ , C ([ h?
U.)g = wgl (1 + E) + 1 (2m , (3.92)
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and the inverse screening length,

271'62 (E)de,e n 8N2d,h)

R =
€b Olte Opn

(3.93)

Here N3q is the two-dimensional carrier density introduced in (1.61). In the
two-band and quasi-equilibrium approximations near the band edge, (3.93)
yields

oo 2 <%feo 4+ fho) , (3.94)

ap my mye

where foo denotes the Fermi-Dirac distribution at k& = 0. This analytic re-
sult can be verified easily by using the explicit 2D expression (1.36) for the
chemical potential and the Fermi-Dirac distribution for k£ = 0.

From (3.91-94) and (3.62), we find the screened Coulomb potential

dmerao (¢ = Caog® g Capg® \ '
Vsqg = —t oo ) ([ 1+ =
e Agq <n 327 Nag Tt 327TN2d> ’ (3.95)

where ¢ = |k — k". Substituting (3.95) into (3.77) and evaluating the sum-
mation as a two-dimensional integral, we obtain

ierag [ fer + fur — 1
k) = — Ak k! gy JSK T Thk = 2 '
q(k) " /0 T p— +7@(k,k) , (3.96)
where, unlike the bulk case (3.84), the angular integration function
2T 2 -1
Ckagq g Cayg®
8k,k’:/d01 0 1424 2007
k)= | ( METTI A A GRS v (3:97)

cannot be evaluated analytically.
Equations (3.66) and (3.68) for the quantum well give

Aecy = —2erag —_—
o 1+ 94 Laog®
K

327w Nag
327I'N2d
~ —2¢ In{1
Raok In ( +4/ Crag ) (3.98)

2erag [~ 1 3?2'“11%]62
SX . /0 k:kl TE 362,(1(])\,;3 (fek + fok) (3.99)
K TIN2d
respectively. Equations (3.96), (3.98) and (3.99) are then used in (3.79) to
calculate the gain and carrier-induced phase shift. Converting the summation
over states in (3.79) to a two-dimensional integral, we find

d¢ v o0 2 fek + fok —1 1
- = — "k
g ldz 2megnchw /0 S i(wek—v)+v 1—q(k) °

and

(3.100)
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Here, we used the quasi-equilibrium approximation, so that fer and fyx are
Fermi-Dirac distributions.

To study the many-body effects in a quantum-well gain medium, we first
look at the simple two-band case. To isolate the quantum confinement effects,
we choose the electron and hole effective masses to be the same as those
used in the bulk case. Figure 3.11 is a plot of the gain and carrier-induced
phase shift spectra for different carrier densities. The solid (dashed) curves
are from the many-body (free-carrier) theory. As discussed in Chap. 2, band-
edge effects are more pronounced in the quantum-well medium because of
the step function instead of square root energy dependence of the density of
states. Figure 3.11 (top) shows that the sharpness in the leading edge of the

6
Quantum
well
3
G
(10°cm™
3
10
8
U
dz
(1 0’cm™ ) 4
2
0 1 ] ]

-120 -60 0 60 120
hv —¢€ 4 (meV)

Fig. 3.11. Quantum-well gain (top) and carrier-induced phase shift (bottom)
spectra for carrier densities Nog = (a) 1.5 x 102 cm™2, (b) 2 x 102 cm™2, and
(¢) 2.5 x 10'? cm ™2 the Padé approximation (solid curves), and free-carrier theory
(dashed curves). We use the parameters for the quantum-well structure of Chap. 2
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gain spectrum is smoothed out by the dephasing and Coulomb enhancement
effects.

The effect of Coulomb enhancement is responsible for the differences be-
tween the solid (many-body) and dashed (free-carrier with bandgap renor-
malization) curves in Fig. 3.12. As expected, the many-body results (solid
curve) yield a higher peak gain than the free carrier results (dashed curve).
Both theories show gain rollover, which is not surprising since this rollover
effect is caused by band filling with a two-dimensional density of states. Sim-
ilar to the bulk situation, using the renormalized bandgap in the free-carrier
theory only leads to a frequency shift in the free-carrier spectrum. In general,
the presence of other subbands, which have different renormalized bandgaps,
can lead to further reshaping of the spectrum and consequently to a different
peak gain, (Chap. 7).

Figure 3.13 (top) plots the peak gain as a function of carrier density.
Coulomb enhancement is responsible for the difference between the solid and
dashed curves. Figure 3.13 (bottom) shows the dependence of the peak gain
energy on carrier density. The results differ somewhat from those for the
bulk medium (Fig. 3.8) because the step function energy density of states in
the quantum-well medium reduces the band-filling contribution to the peak-
gain frequency shift, so that the many-body interactions play a greater role.
Consequently, the many-body (solid curve) and free-carrier (dashed curve)

10 10
Quantum

well

do

S [ 7S dz
3G . (1()3cm“1
(10°cem™)
0 0
\
\
\
\
\
-5 1 ]
-100 -50 0 50
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Fig. 3.12. Coulomb enhancement effects on gain (lower curves) and carrier-induced
phase shift (top curves) spectra in a quantum-well medium according to the Padé
approximation (solid lines) and the free-carrier theory with an ad hoc inclusion
of bandgap renormalization (dashed lines). The curves are for a carrier density of
Nag =2 x 10 cm™2
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Fig. 3.13. The top figure shows the Padé approximation (solid curve) and free-
carrier (dashed curve) predictions of quantum-well peak gain versus carrier density.
The bottom figure shows the gain peak energy versus carrier density for the Padé
approximation (solid curve), the free-carrier theory (dashed curve), and the free-
carrier theory with renormalized bandgap (dot-dashed curve). The dotted curve is
the renormalized bandgap

predictions of divpk/dN differ more than in the bulk case. Comparison of
the solid and dot-dashed curves illustrates the opposing effects of Coulomb
enhancement and bandgap renormalization. Without Coulomb enhancement
the peak-gain frequency shifts red with increasing carrier density.

As alluded to earlier, the more pronounced features in the quantum-well
gain and phase-shift spectra lead to noticeable differences in the « spectra,
(2.110), for bulk and quantum-well materials. The Padé curves in Fig. 3.14
(top) show substantial structure in the quantum-well « spectra, especially
at high carrier densities. Comparison with the free-carrier spectra (FCT)
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Fig. 3.14. The top figure shows the quantum-well linewidth-enhancement factor
versus detuning, hv—ego for carrier densities Nog = 1.5x (solid curve), 2.0x (dashed
curve), and 2.5 x 10'? cm™? (dot-dashed curve). The bottom figure shows the dif-
ferent screened Hartree-Fock contributions for a carrier density of 2.0 x 10*2 cm™2.
The solid curve is the Padé approximation result, the dashed curve is the free car-
rier result, and the dot-dashed curve is obtained using the renormalized bandgap
in the free-carrier theory

reveals that the structures are completely due to the many-body interactions.
Figure 3.14 (bottom) shows that both bandgap renormalization and Coulomb
enhancement contribute to the a structure.
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Fig. 3.15. Phase shift spectra for the carrier densities Nog = 3 x 10'? cm ™2 (dashed
curve) and 3.5 x 102 cm™? (dot-dashed curve), and the corresponding linewidth
enhancement « factor spectrum (solid curve) for the free-carrier theory

The physical mechanisms responsible for the strong frequency dependence
of o is analyzed in Fig. 3.15. Figure 3.15 shows the phase change d¢/dz for
two carrier densities as predicted by the free-carrier theory. The dot-dashed
curve is for a higher density than the dashed curve. The difference between the
two curves gives the numerator of a. The a spectrum is shown as the solid line.
Bandgap renormalization shifts the two d¢/dz curves by different amounts.
The higher density curve is shifted more and Fig. 3.16 (top) shows that this
leads to variations in the separation between the two curves. Combined with
the sharpness of features in d¢/dz, we get the pronounced structure in the
o spectrum. Figure 3.16 (bottom) shows that Coulomb enhancement tends
to separate the curves, giving higher values for « than in Fig. 3.16 (top), but
the structure in the spectrum remains [Fig. 3.16 (bottom)].
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Fig. 3.16. Phase shift spectra for the carrier densities Nog = 3 x 10*2 cm ™2 (dashed
curve) and 3.5 x 102 cm™2 (dot-dashed curve), and the corresponding linewidth
enhancement factor spectrum (solid curve). In the top figure we use the free-
carrier theory with ad hoc inclusion of bandgap renormalization, and in the bottom
figure we use the Padé approximation

Finally, Fig. 3.17 depicts the dependence of « at the peak gain frequency
on carrier density. As in the bulk case, the ad hoc inclusion of bandgap
renormalization to the free-carrier theory results in worse agreement with
the many-body results.
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Fig. 3.17. Linewidth enhancement factor a at the peak gain frequency versus
carrier density. The solid curve is the Padé approximation result, the dashed curve
is the free-carrier result, and the dot-dashed curve is obtained using the renormalized
bandgap in the free-carrier theory

4. Correlation Effects

The previous chapter introduced a systematic procedure to obtain the semi-
conductor Bloch equations, (3.17-19), with an unscreened Coulomb inter-
action and without explicit expressions for the collision terms. Systematic
approximations to collision contributions, which lead to carrier and polariza-
tion relaxation, as well as plasma screening, can be computed at the next
higher level of approximation. In this chapter, we outline an analysis of these
contributions which, in the context of many-body theory, are customarily
referred to as Coulomb correlations.

The detailed derivation of the correlation contributions requires aspects of
many-body theory that are beyond the scope of this book [Binder and Koch
(1995), and Jahnke et al. (1997)]. What we will present instead in Sect. 4.1
is a schematic outline. The intent is to give the reader a feeling for the origin
of the different terms. Section 4.2 examines the results for the carrier density
equations, which give the simplest version of the famous quantum Boltzmann
equation for carrier-carrier scattering. Section 4.3 describes the corresponding
result for the polarization equation.

Section 4.4 shows how the correlation contributions may be incorporated
into the gain and refractive index calculations. We describe in some detail
the conversion of the general polarization and associated equations to the
ones describing specifically quantum-well or bulk structures. The subtleties
involving the evaluation of some of the Coulomb contributions, and ways
to reduce computation time are discussed. Also in this section, we use the
two-band approximation to illustrate the contributions from the Coulomb
correlations. We demonstrate the interplay between diagonal and nondiag-
onal contributions, and document the origin of the problems resulting from
using an effective decay rate approximation. Computations of gain and re-
fractive index spectra for actual experimental structures will be presented in
Chap. 7, after we discuss the calculation of more realistic band structures in
Chaps. 5, 6.

Section 4.5 extends the discussion on collisions to carrier-phonon scatter-
ing. The chapter ends with a simplified general discussion of characteristic
relaxation times in Sect. 4.6.
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4.1 Coulomb Correlation Effects

To study the correlation contributions in the semiconductor Bloch equations
(3.17-19), we start by deriving equations of motion for quantities describing
the deviations of the full correlation terms from their corresponding Hartree-
Fock factorized parts. For example,

5<a,ta;rc,_qak_qak/> = <a,ta};,_qak_qak/> - < ,tak><anak_q>5k,k: , (4.1)
whose time derivative is

d d
ittebalgmgm) = (G lolal_youqar))

d d
- [<a—t(azak)> <a;rc_qak_q> + <a,tak> <E(al_qakq)>:| 5k,k’ - (42)
From the Heisenberg equation of motion, we find
d
a&(alalbqak_q ak/>

i d
= £6<aLaL,fqak_q Ak YA€ eprrq + -—5<a};a};,_qak_qak1>

= . (43)

Coul

where we used the full electron-hole Hamiltonian (3.6) except for the inter-
action term for the carriers with the laser field, since it does not play a role
in the collisions. Furthermore, we introduced the abbreviations

Aeekk’q = Eck T Ee k' —q — Ee,k—q — Eek’ (44)

and

d
ihd_t‘s@lialuqaquak') = ([He, aaj, _jax—qar]) - (45)

Coul

Evaluation of the commutator in (4.5) leads to expressions containing prod-
ucts of up to six operators that are too lengthy to show here.
Formally integrating (4.3), we get

5<alt:al]::’ —qOk—qak’ > (t)

t .
= / dt’ exp [(%Aeekk/q — ’y) (t— t’)] %5<alal,fqak_qak/> , (4.6)
—oo Coul
where v is a phenomenological decay constant that has been added so that the
integral vanishes at the lower boundary. In general, the correlation at time ¢
depends on the evolution of the system from —oo to ¢. This is the Coulombic
memory effect. At the high carrier densities needed to obtain plasma gain, it
is reasonable to assume that the memory time is not very long. Therefore, as
the simplest approximation, we neglect memory effects altogether and make
the Markov approzimation. Technically, this amounts to assuming that the
Coulomb contribution is slowly varying compared to the exponential, so that
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we can move it outside the integral in (4.6). The resulting integral can be
readily evaluated to give

£t LY 1
5<akak,7qak_q ak1> ~ dt6<akak,_qak,qak1> o Beommal =
A similar result is obtained for the other four-operator terms which appear
in the equations of motion (3.9-11).

At this stage we still do not have a closed set of equations because of the
six-operator expectation values occuring in d<a};a;rc,7qak_qak/> /dt|q, ;- The
equation of motion for these six-operator terms introduces eight-operator
terms, i.e., the many-body hierarchy problem mentioned earlier. In order to
close the equations we now make again a factorization approximation. We
factorize all the six- and four-operator terms which occur in the Coulomb
parts to obtain the simplest possible expression for the scattering terms. The
detailed calculation yields the following results for the electron population
equation:

(4.7)

anek

S| = —na DG n} + (1 na) Z{n} (48)

col

where we ignored terms containing scattering contributions involving inter-
band polarizations since in this book we mainly deal with situations where
higher order coherent polarization contributions are of minor importance.
The rates Zo2*{n} and X% {n}, describing the effective scattering out of and
into the state k, are given by

TEny = 2 D0 3N 2V — benVaVik-wrsa)

b=e,h qg#0 k'
X 0(€e,k + Eb k' — Eekt+q — Ebk'—q)
X (1 = nektq) Nk (1 — bk —g) (4.9)

and
Yeel{n} = n Z ZZ (2Vq _5e,bVqV\kfk’+q\)
b=e,h g#0 Kk’

X 0(Ee,k + Eb k' — Ee,kt-q — Ebk/—q)

X Nektq(l = Mo k') bk —q - (4.10)
The notation X'{n} symbolizes the functional dependence of these rates on
the electron and hole distribution functions. The corresponding equations for
the hole population npy is obtained by the interchange e = h in (4.8-10).

It is sometimes convenient to write the total relaxation rate of n,x as
a single decay rate

Yak{n} = ZH{n}t + Zgi{n} (4.11)

in terms of which the scattering integral can be written as
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on k :
T:— = —Yak{n}nar + T {n} . (4.12)
col

Here we see explicitly that scattering both into and out of the state k are
relaxation processes, although one increases the probability nqx, while the
other one decreases it.

For the collision terms in the equation for the interband polarization, we
obtain

O
ot

=— ZAkk,pk, , (4.13)
kl

col

where we again kept only the terms that are linear in the polarization. For

k=FK,

1
A= 7 3 DD (V7 = bapVoVi-rrsql) 9(52)
a,b=e,h k' q7#0

X [ne,k+q (1 = nprr ) np g —q + (1 — N ktq) Mg (1 — nb,k"—q)]

(4.14)

Here, we used the abbreviation
0¢ = €ak + Ebk” — Eak+q — Ebk'—q > (4.15)

and the generalized §-function (Heitler Zeta function) is

o(w) =l - ; = = b (@) +iP (é) . (4.16)

The expression P (1/z) stands for the principal value (PV) integral and we
ignore a pure exchange term in A which gives only minor corrections under
laser conditions. The full scattering terms, including also the higher order
polarization contributions, can be found in Jahnke et al. (1997). For k # k',

1
M = 5 Y D (V] = GanVaVikorria)9(~0)
a,b=e,h k"

%[ (1 = nak) (1 = mer) e g + nakniowr (1= moperq)]
(4.17)

where ¢ = k' — k.

Equation (4.13) has been written already in a form showing that the
scattering matrix A adds to the Hartree-Fock matrix © of (3.22). In fact, the
diagonal and nondiagonal terms in A are the second order (in the Coulomb
potential) contributions to the energy and field renormalization, respectively.
As mentioned before, the general matrix A contains also terms where one
or more of the population factors are replaced by polarizations [Jahnke et
al. (1997)]. Those terms are important under coherent nonlinear excitation
conditions, where a large induced interband polarization is present. However,
for most semiconductor laser applications where an incoherent electron-hole
plasma exists, these contributions can be ignored.
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4.2 Carrier Quantum Boltzmann Equation

The collision contributions in the carrier equation (4.8) are actually the sim-
plest version of the famous quantum Boltzmann scattering integral for carrier-
carrier collisions. The different terms are illustrated schematically in Fig. 4.1.
One remarkable feature of (4.8) is that for nox = fak, i.e., if the carriers are
in Fermi-Dirac distributions, the Boltzmann scattering integral is identically
zero. This implies that

far S S} = (1= far) Zorlf} (4.18)

for nonvanishing in- and out-scattering rates. Equation (4.18) describes a con-
dition called detailed balance, for which the scattering into each state is
exactly balanced by the scattering out of that state. This is the quasi-
equilibrium situation mentioned in the earlier chapters. It is important to
realize that even though the distribution functions are time independent,
i.e., Fermi-Dirac, this does not imply the absence of scattering events. The
individual terms in (4.18) are nonzero and rather large. However, they exactly
balance each other.

n, 1- N, k—q N, k—q l-n,,

V V

q q

Fig. 4.1. Scattering into
(right diagram) and
out of (left diagram)

the k*" electronic state.

A scattering partner is

needed and the final
Ny i I-n

states have to be avail-

- (X,k'+q nﬂ,k""q 1 - ’,l(l,kI able

Generally, there are a number of physical quantities that are conserved
in the carrier-carrier scattering processes. These conservation rules can be
written as

%COI zk:Fi(k)nak} =0, i=1,2...5; a=eh (4.19)
with

Fr=1 (4.20)

Fo =k, , F=k, , Fi=k, (4.21)

Fs = k* . (4.22)
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Equations (4.19, 20) correspond to total particle number conservation,
(4.19, 21) to total momentum conservation, and (4.19, 22) to total kinetic
energy conservation.

Since one typically does not encounter a drifting plasma in a semicon-
ductor gain medium, the total momentum is originally zero, and because
of (4.19, 21) it will remain zero. To see the implications of the other con-
servation rules, let us consider the example of nonequilibrium carrier relax-
ation experiments performed using femtosecond (107!°s) pulse excitation
of semiconductor interband transitions. In these investigations, the initially
prepared nonequilibrium carrier distribution is rapidly modified by carrier-
carrier collisions so that it approaches the Fermi-Dirac distribution. Under
most conditions, the carrier-carrier equilibration processes occur very rapidly,
at a sub-picosecond timescale. This situation is depicted in Fig. 4.2, where
the electron distributions are plotted at different times after the excitation.
The curves are numerical solutions of the full carrier-carrier Boltzmann equa-
tion (4.8), including electron-electron, electron-hole, and hole-hole scattering.
The carrier distributions immediately after the excitation pulse is shown by
the solid curve in Fig. 4.2. The other curves are snapshots during the evolu-
tion of the carrier populations towards a Fermi-Dirac distribution. Because
of kinetic energy conservation, the plasma temperatures of the relaxed dis-
tribution is determined by the kinetic energy of the earlier nonequilibrium
distribution. As a result, depending on the excess energy of the excitiation
pulse (i.e., how high above the band minimum the carriers are generated),
the effective plasma temperature is well above the lattice temperature.

0.6 — Ops |
BRht LYY === 0.1ps
~~~ ...... 02 ps
. == 0.5ps
N seee 1ps

...... .
‘e, .,
0.4 .... So === 5 ps

Electron distribution

Carrier momentum k xa,

Fig. 4.2. Relaxation of femtosecond pulse excited electron distribution. The times
measured relative to the center of the excitation pulse are shown in the inset. Only
carrier-carrier scattering is included in the calculations. From [Jahnke and Koch
(1995)]
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Relaxation of the electron and hole kinetic energies (plasma cooling)
happens only by collisons with other quasi-particles, most importantly with
phonons. The corresponding carrier-phonon Boltzmann equation will be dis-
cussed in Sect. 5 of this chapter. However, to illustrate the effect we plot
already here the results obtained by solving the carrier-phonon Boltzmann
equation (4.93) alone (Fig. 4.3) and together with the carrier-carrier Boltz-
mann equation (4.8) (Fig. 4.4). We include only scattering of carriers with
longitudinal optical (LO) phonons since this is the most efficient energy re-
laxation mechanism for carrier distributions with large excess energy. Since
the LO phonon energy hwyo has a discrete value, the carrier relaxation of
an initial nonequilibrium distribution (solid line in Fig. 4.3), which occurs
via successive emission of LO phonons, leads to the occurence of sidebands
in the carrier distribution at the energies € — nhiwro, n = 1,2,.... If one
simultaneously includes carrier-carrier scattering, as it occurs under realistic
conditions, the discrete phonon sidebands disappear, see Fig. 4.4. However,
now the carrier distributions relax to a Fermi-Dirac distribution at the lattice
(LO-phonon) temperature.

Electron distribution

Carrier momentum k xa,

Fig. 4.3. Same as Fig. 4.2 but with only carrier-LO-phonon scattering included.
From [Jahnke and Koch (1995)]

In Fig. 4.5 we study a situation where the initial carrier distribution is
basically a Fermi-Dirac distribution which however, is locally disturbed in
k-space. Such a situation is relevant for lasers if we consider, e.g., the situ-
ation of a single mode burning a kinetic hole into the distribution function.
Figure 4.5a shows the rapid relaxation of the disturbed distribution function
back to quasi-equilibrium once the perturbation is switched off. Figure 4.5b
shows the corresponding carrier-carrier scattering rates v defined in (4.11).
We see that typical scattering times are of the order of 50-100 fs.
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Fig. 4.4. Same as Fig. 4.2 but with carrier-carrier and carrier-LO-phonon scatter-
ing included. From [Jahnke and Koch (1995)]

To get an approximate expression for the intraband relaxation rate of
(2.31), we take a closer look at a general situation where, as in Fig. 4.5, we
have a nonequilibrium carrier distribution that is sufficiently close to the
quasi-equilibrium Fermi-Dirac distributions. Under this condition we can set

E;nk{“} = Zixnk{f} )

Zodn} ~ T f} (4.23)
in (4.8). Furthermore, substituting
E5ArY = var{fH ar (4.24)

which is a simple rearrangement of (4.12) under detailed balance conditions,
we find
Bnak
ot

This approximation fails (barely) to preserve the total carrier density V. To
remedy this defect, we study interactions in the neighborhood of k¢, and
choose Yk, {f} instead of var{f}, that is

= _’Yak{f} (nak — far) - (4'25)

col

Onar
ot

which is basically the result given in (2.31). This expression conserves the
total carrier density since ), ok = D p far = VN, and is often used to
approximate collision terms in the carrier distribution equations of motion.

~ —Yako{f} (Nak — fak) - (4.26)

col
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Fig. 4.5a. Relaxation of disturbed Fermi distribution functions for electrons (top)
and holes (bottom) at a density N =3 x 10'® cm ™2 and temperature 7' ~ 300 K
obtained by numerically solving the Boltzmann equation using the dynamically
screened Coulomb potential in RPA approximation. The times are: t = 0 (long
dashed), 21fs (dotted), 75fs (dash-dotted), 147fs (dotted), 796fs (solid). From
[Binder et al. (1992)]
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Fig. 4.5b. Carrier-carrier scattering rates extracted from Fig. 4.5a. (top) electrons,
(bottom) holes. From [Binder et al. (1992)]

4.3 Dephasing and Screening

The collision terms in the dynamic equation for the interband polarization
include such effects as screening of the Hartree-Fock terms and decay of the
total polarization, i.e., optical dephasing. Using (4.16) in (4.14), we can write
the diagonal part of A as

Ag = —iAx + Ik (4.27)
and the nondiagonal part becomes

Akk/ = iAkk' —+ Fkkl . (428)
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Since Agx has to be added to Og, (3.23), in the full dynamic (3.17) for the
interband polarization, we see that formally, I describes a momentum de-
pendent diagonal dephasing rate and Ay yields the corresponding corrections
(ox Vq2) to the Hartree-Fock renormalizations of the free-particle energies.
In the same way, A and Ik yield momentum dependent nondiagonal
damping and shift contributions. It is interesting to note that
Z Opk
ot

k

=- ZAkk’pk’ =0, (4.29)

col kk'

which demonstrates that Coulomb dephasing of the interband polarization is
a pure interference phenomenon.

The detailed analysis shows, see e.g. Jahnke et al. (1997), that the nondi-
agonal dephasing contributions have the effect of partially compensating the
influence of the diagonal part. Because this compensation is significant, it
is crucial to treat both diagonal and nondiagonal terms symmetrically. The
relaxation rate approximation used in Chaps. 2, 3 cannot be justified at the
microscopic level, so that a gain expression based on a purely diagonal de-
scription of dephasing can only be regarded as a fit of the microscopic results,
with the dephasing rate treated as a phenomenological input parameter. As
such, it is important that one should not use (4.27) to compute a dephasing
rate. Rather, the dephasing rate should be chosen to account for the effects
of both the I'x and the Iy contributions.

4.4 Formulation of Numerical Problem

Under small signal gain conditions,
dner  dnng

dt  dt
These conditions simplify the calculations considerably, since we only have to

deal with the polarization equation of motion. Combining (3.22) and (4.13)
gives

-0 . (4.30)

d . i . .
'(f—tk = —iwpp — ZkE(R, 1) (for + far — 1) = i (Orw — idw) prr

K (4.31)

where wj, is the unrenormalized transition energy of (3.12), and we have
assumed quasi-equilibrium conditions. The Fermi-Dirac distributions f., and
fur are given by (1.19), using (1.20) for a fixed value of the total carrier
density NN, which is an input parameter. For the numerical analysis it is
convenient to remove the rapidly varying phase factor from p; and to work
with a slowly varying polarization amplitude

sk = pre’t . (4.32)
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Substituting (4.32, 3.26) with R = 0 for E(R,t), into (4.31) gives
dd's—: =i(v —wp) sk — ,%MkEo (fok + for = 1) =1 ) (Oprr — i) sk
K (4.33)

where the laser field amplitude Ej is an input to the computations.

Figure 4.6 shows a flow diagram for computing the gain and refractive
index at some given carrier density and laser frequency. The approach is based
on the numerical solution of (4.33). First, we read the input parameters, from
which the first two terms on the right-hand side of (4.33) are computed. In
the next steps, we evaluate Oy and Agp . In the numerical analysis, the
functions fer, fur and sk are stored for a finite number of discrete k points.
To discretize these functions, one needs to choose the appropriate step sizes
and cut-offs. After doing so, Orir and Ay are evaluated, which yields the last

Input
parameters

Discretize functions

(choose step sizes and cutoffs)

Y

Compute Hartree-
Fock contributions

Y

Compute correlation
contributions

Y

Perform time integration
of polarization equation

Y

Perform k-sum to get

gain and refractive index Fig. 4.6. Flow diagram for the numerical cal-
culation of gain and refractive index
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two terms in (4.33). Equation (4.33) is solved for the steady steady solution
which is then used in (2.7, 1.76, 79) to determine the gain and refractive index
change.

To begin the numerical analysis, we first convert the carrier momentum
summations contained in the various terms in (4.33) into integrals. As in
the previous chapters, this conversion separates the bulk and quantum-well
analysis. We first consider the quantum-well case.

4.4.1 Quantum-Wells

In a quantum-well structure, the assumption of a continuous carrier momen-
tum distribution leads to the replacement

2 oo 27
> .- 4% dk’ k' / d¢’ (4.34)
k' 0 0

which is a generalization of (1.59), to allow for angular dependences in the
integrand. To evaluate the integrals one can use, for example, the trapezoidal
rule. This simple method involves discretizing the integration variable and
then approximating the integral as a sum of trapezoidal areas. An integral S
of the function y (z) then becomes

S :/maxdmy(m)

Zmin

1
~ Y 5 W+ Y1) (ke — k1) (4.35)
k=2

where Ty = Tpax and 21 = Tpmin. We can streamline the computations by
rewriting (4.35) as

N Py
§ =) yk(@r —zr-1) + > SUk(Tr+1 = 2k)
=2 k=1
=g x x x To— T
k1 — Th— N—TN— -
_ Yk +1 2 1 + YN 5 1 + n 2 5 1 , (436)
=2

which is computationally faster because each summation step requires only
Yk instead of yx and yi_;. For equal step sizes, i.e.,

_ Tk — Tg-1

Az 5 for2<k<N | (4.37)
(4.36) becomes
N-1 "
S=Az (Z yk+%) . (4.38)
k=2
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Step Sizes. To apply the trapezoidal rule, one begins by choosing an ap-
propriate step size Az, and in the case of an indefinite integral, the cut-offs
z; and zy as well. The ¢’ integration in (4.34) is often straightforward, since
it involves a definite integral, where the integrand usually does not have
a strong angular dependence. On the other hand, the &’ integration requires
some care. Here, the desire to minimize computation time by maximizing the
step size dk and minimizing the cut-off kmax, should be balanced by having
a sufficiently small dk and a sufficiently large kmax in order to accurately
describe for, fur and si.

Since s is not known at the start of a calculation, one has to base the
initial guesses for dk and kmax on fer or fux. For each distribution fux, we
calculate a momentum

V2m

ha“a , (4.39)
where m,, and p, are the effective mass and chemical potential, respectively.
Since kes and kyy are usually different, we define a representative k¢, which
may, for example, be the larger one of k.y and kys. The step size dk is then
determined by specifying the number of intervals ny within ky, i.e.,

kot =

dk = L7 . (4.40)
ng

Obviously, the above procedure does not work well for small carrier densities
when both chemical potentials are negative. In these situations, we further
specify a minimum limit for ks based on experience from calculations at
higher densities. In calculating the spectra shown in this book, we impose
the condition kfw/m > 0.2, where w is the quantum-well width.

To determine the cut-off kmax, We specify nmax, the total number of k-
points used in the numerical analysis. The requirement on nmax is that the
range 0 < k < kpax, where

kmax = Nmax dk (4.41)

is sufficiently large so that fer, fur and s vanish as one approaches the upper
limit.

Figure 4.7 shows an example of the relationships between kef, kng, dk
and kmax. The z-axis is the normalized carrier momentum kw/m, where
the quantum-well width is w = 4nm. We plotted the carrier distributions
fe (solid curve) and fyi (dashed curve) for a carrier density Naq = 1.6 X
102 ¢cm—2, and a two-band system with effective masses, me = 0.071my and
my, = 0.167mg. The chemical potentials are o = 0.110eV and p, = 0.027€V,
which according to (4.39) gives kesw/m = 0.394 and ky jw/m = 0.260. Choos-
ing ks = ke together with ny = 32 and nmax = 81, gives dk = 0.0127/w and
max = 0.9987 /w, respectively. Other band-stucture properties are: unexcited
bandgap energy €40 = 1.376 eV, dipole moment p = e x 3.41 A and, with the
exception of Fig. 4.17, we use a 3-d exciton binding energy €34 = 3.287meV.
The same band structure is used in subsequent calculations in this chapter.
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fek’fhk
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0 0.4 0.8 1.2
kw/n

Fig. 4.7. Example of kef, kns, dk and kmax for a gain calculation involving a two-
band system with effective masses, me = 0.071mo and my = 0.167mg. The solid
and dashed curves show the quasi-equilibrium carrier distributions fer and fux,
respectively, for the carrier density Nog = 1.6 x 102 cm ™2

When choosing the parameters n ¢ and Npmax, one should be aware that
the polarization amplitude often has more structure and vanishes at higher
k than the carrier distributions fer and fuk. This is clearly seen in Fig. 4.8,
where we plotted the real and imaginary parts of the polarization amplitude
from a typical gain calculation. When performing the calculations, we as-
sumed that there is no angular dependence in the polarization amplitude,
i.e., sg = s. With this assumption, the memory requirement is significantly

12

-12 1 1 1 1 1
0 0.4 0.8 1.2

kw/m
Fig. '4.8. Real (solid. curve) and imaginary (dashed curve) parts of the polarization
amplitude from a gain calculation. The parameters are the same as in Fig. 4.7
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reduced, and the evaluation of the summations in the last term of (4.33) is
computationally less demanding.

A lower resolution or a smaller cut-off can result in the incorrect pre-
diction of structure in the gain spectrum. Figure 4.9 shows examples of the
error incurred in the spectrum for the carrier density Nog = 1.2 x 1012cm 2.
Comparison of the solid and dotted curves show that the choice of a too
large dk gives rise to the erroneous prediction of oscillations in the spectrum,
especially at high photon energies. The error caused by a too small cut-off
is illustrated by the dashed curve. Here, the reduction of kmax by a factor

(10°cm™)

103em™)

(hv—g,)/e

Fig. 4.9a, b. (a) Spectra computed for the carrier density N2q = 1.2 X 102 ecm™2.
The curves are calculated using dk = 0.0167/w and kmax = 1.004m/w (solid curve),
dk = 0.0337/w and kmax = 1.0047/w (dotted curve), and dk = 0.016m/w and
kmax = 0.5757/w (dashed curve). (b) Magnified view of the gain portion of the
spectra

2

4.4 Formulation of Numerical Problem 123

of two causes inaccuracies in the calculation of the correlation contributions,
leading to an underestimation of the gain (Fig. 4.9b).

Hartree-Fock Contributions. Once the step sizes and integration limits
are determined, we can proceed with the computation of the Hartree-Fock
terms. Using (4.34, 3.24) for the nondiagonal Hartree-Fock contribution in
(4.33) becomes

wy A /oo 1 /21r ’ e’
OppsSpy = —— dk' k d¢) ————— s . (4.42
zk,: KkSk h (27T)2 0 0 ¢ 26bAq (ka kla ¢/) * ( )
Here, we use MKS units and define
Wk = fek + fur — 1 . (4.43)

Furthermore, we assume ideal two-dimensional confinement, so that the
Fourier transform of the Coulomb potential is given by (3.5). In (4.42),

g=kK -k , (4.44)
which gives
q(k, k', ¢') = /K2 + k'2 — 2kk' cos ¢/ . (4.45)

Again, assuming that there is no angular ¢’ dependence in the polarization,
(4.42) becomes,

E Ok i Sk
kl

o0 27 2
A’k [ d ——— 5
“”“/o /0 ? Srtehg(k b, )

= wk/ dk:/ﬁ(k:',k)sk/ y (4.46)
0
where we define the function
’ e ’ o ’ 1
9(k' k)= ———k d¢ —— . .
N A s (447

In (4.46, 47) k' # k since we are dealing with the nondiagonal contributions.
Moving to the diagonal Hartree-Fock contribution, we write (3.23) in
terms of a continuous momentum distribution as

I —li/mdk"k”/%dﬂ’—i—(w v +1)
R (2m)2 J 0 2ep Ag(k, K", @)

(e} 2T 2
_ d&" k" deé” € »
/0 /0 e AC)

oo
- / Ak I k) (wgr +1) (4.48)
0
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where we recall that implicit in the integration is the condition k" # k.
Nevertheless, considerable care must be taken when integrating around the
singularity at k" = k. We can do so without decreasing the grid size dk,
and hence increasing the dimensions of wy and si, by realizing that the
variations in these quantities are sufficiently smooth. Therefore, (4.48) may
be approximated by

k—4& 00
Qkk ~ —/ dk// ’19(]{7”, k)(wk” —+ 1) — / dk}’/ 19(]{7”, k)(wk” + 1)
—00 k+6

k+4
—(wy +1) / 6 dK" 9(k" k) . (4.49)
k—

Here, we choose § to be sufficiently small so that wy» ~ wy for k—§ < k" <
k+4. In our actual calculations we choose 6 = A, where A corresponds to the
step size used in the k' integration in (4.46). Defining the diagonal element

O(k, k) = e 1M g / o dg’ — (4.50)
’ N 87T26bh2A k—A >0 q(kak//)¢,/) ’ .
(4.49) becomes
k—A 00
Ok = — / dk" 9(k" k) (wir + 1) — / d&” (K", k) (wir + 1)
—00 k+A
—(wg, + 1)9(k, k) (4.51)

where the nondiagonal elements ¥(k”, k) in the first two terms remain as
defined by (4.47).

Figure 4.10 illustrates why (4.49) is a good approximation. Plotted in the
figure is ¥(k’, k) as a function of k'w /7 at various k. Also shown are the carrier
distributions fer and fux (long- and short-dashed curves, respectively) from
Fig. 4.7. The sharply peaked behavior of 9(k’, k) around k' ~ k compared to
the smoothly varying fer and fux supports the approximation used to obtain
(4.49). Furthermore, the figure shows why significantly smaller step sizes dk”
and d¢" are necessary when computing 9(k’, k) in the neighborhood of the
singularity.

We plot in Fig. 4.11 the diagonal element ¥(k, k) given by (4.50) as a func-
tion of k. The figure shows that the step size for the k” integration should
be twenty to hundred times smaller than the step size of A of the k' in-
tegration. Furthermore, the step size for the ¢ integration in the diagonal
elements of © should be at least two orders of magnitude smaller than that
for the nondiagonal elements. While the evaluation of ¥(k’, k) may be time
consuming because of these small step sizes, they need to be performed only
rarely because, except for the background dielectric constant e, 9(k’, k) is
independent of most of the other parameter values. One instance when we
need to recompute 9(k’, k) is when we change the discretization of fer, fux
and sg.
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1.0

O(k',k) 0S5 Fig. 4.10. Nondiagonal ele-

ment of 9(k', k) (solid curves)
versus k'w/m for kw/m = 0.2,
0.4 and 0.6, from left to right.
The parameters are the same
as in Fig. 4.7. Also shown
are the carrier distributions
fer and fuk (long- and short-
dashed curves, respectively)

(51,51)
B (101,101) \

(ki) 1

Fig. 4.11. 9(k,k) versus
(51.101) kw/m for different dk” and
— ’ d¢”. The other parameters
are the same as those in

(25,101) Fig. 4.7. The curves are la-
0 1 ] beled by (ny, ngy ) where the
0 0.4 0.8 1.2 step sizes, dk” = 24/(ngn —

kW/TI: 1) and dqﬁ” = 7!'/(77,45// - 1)

With the knowledge of ¥(k’, k), we can evaluate the Hartree-Fock contri-
butions in (4.33). The exchange shift in (3.20) is

oo 27
AEX,k = _/0 dk/kl/ d¢l‘/|k—k/|(wkl +1>
0

—/Ooodklﬁ(k/,k)(Wk'+1) . (4.52)

Figure 4.12 shows the exchange shift calculated for a range of carrier densities
using the same parameters as in Fig. 4.7. We note a k dependence in the
exchange shift, which may be thought of as a density dependent modification
of the effective mass. For numerical simplicity, one sometimes ignores the
k-dependence of A, as in Sect. 3.4. As discussed in Sect. 3.4, the exchange
shift is only one component of the bandgap renormalization. To estimate the
total effects of bandgap renormalization, one also has to evaluate the diagonal
and nondiagonal correlation contributions, as will be discussed below.
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20%102em™ Fig. 4.12. Exchange shift ver-

-60 1 1 sus k for different carrier den-

0 0.4 0.8 12 sities. The other parameters are
fw/n the same as in Fig. 4.7

The other Hartree-Fock contribution besides the exchange shift is the ex-
citonic or Coulomb enhancement, see (3.21). As discussed in Sect. 3.2 this
contribution has a dominating influence on the absorption spectra, particu-
larly at low carrier densities. In the present formulation, (3.17) becomes

. (o)
El(';—tk =i(v—w+Aex k+1v)sk+ %,u,kEo —iwg / dk’ 9(k',k)sk ,(4.53)
0
where we use (4.33) without the correlation contributions and introduce
a small phenomenological damping coefficient v = 107135 to facilitate the
numerical solution. The steady state solutions of (4.53) for a range of laser
frequencies v and carrier densities N give the absorption spectra shown in
Fig. 4.13. On the z-axis, we referenced the photon energy to the unexcited
quantum-well bandgap energy 4. The quantum-well exciton binding energy
is the energy difference between €4 and the exciton absorption resonance.
The spectra show a well-known consequence of two-dimensional quantum
confinement, which is the factor of four higher exciton binding energy than
the bulk case, i.e., €2} = 4 x e&!. Furthermore, they show that the spectral
position of the excitonic absorption resonance is pretty much independent of
carrier density. At the present level of approximation (i.e., neglecting corre-
lation effects), this result is a consequence of the cancellation of two effects:
phase-space filling and bandgap renormalization. The phase-space filling con-
tribution to the weakening of the exciton resonance is included through the
factor wy in the last term in (4.53) which describes the effects of the at-
tractive interband Coulomb interaction. Coulomb attraction is strongest in
the absence of carriers when w, = —1, and weakens with increasing carrier
density, when wy > —1. To illustrate the phase-space filling contribution,
we solve (4.53) with Aex = 0. The result is shown in Fig. 4.14a, which
shows a reduction of the exciton binding energy and absorption amplitude
with increasing carrier density. In the full equation, this reduction in exciton
binding energy is balanced by bandgap renormalization. Figure 4.14b shows
the exchange energy shift at zone center Aex o as a function of carrier den-
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Fig. 4.13. Absorgtion spectra for the carrier densities Nog = 0 (solid curve), 10'°
(dotted curve), 10*! (dashed curve) and 2 x 10** cm™? (dot-dashed curve)

sity. The partial cancellation between the two effects, i.e., the reduction of
the bandgap and of the exciton binding energy, leads to the feature that the
exciton absorption resonance decreases in amplitude but remains constant in
energy with increasing carrier density, as seen in Fig. 4.13.

Correlation Contributions. The correlation contributions to the polariza-
tion equation are discussed in Sect. 4.3. Rather than using exactly (4.14, 17)
in the numerical analysis we account for the screening effects from the cor-
relations of still higher order, that are left out in the derivations of Sect. 4.1,
by replacing the unscreened Coulomb potential in A by the screened one, i.e.,
Vq

Voo Vag =t (4.54)
where ¢, is the static Lindhard dielectric function discussed in Sect. 3.3.

First, we consider the diagonal collision terms, (4.14), in the interband

polarization dynamics. Again assuming a continuous momentum distribution
and using MKS units, (4.14) becomes

Apry = Iy — 14

) [T DX [ [T [T

a=e,hb=e,h
( 1 _ M 1 1 A +ide
q%€e2 (q) 2 ge(q) e (q’)) A2 + §e2
X [(1 = faky) forr (1 — fort,) + far, (1 — fbk:')fbk'f] , (4.55)




128 4. Correlation Effects

a’abs
(10*em™)
8
0
i (b)
Ae
2L a6t
ER
-3.2 1 1 1 1
0 0.4 0.8 1.2 1.6 2

N (10" em™)

Fig. 4.14a, b. (a) Field renormalization contribution to the absorpgion spectrum of
Fig. 4.13. The carrier densities are Nog = 0 (solid curve), 10'° cm™? (dotted curv?),
10 cm™2 (dashed curve) and 2 x 10'* cm™? (dot-dashed curve). (b) Exchange shift
at k = 0 versus carrier density. The combined effects of field renormalization and
exchange shift give the spectra in Fig. 4.13

where
kf =k+q , (4.56)
K =k —-q, (4.57)
qd =k-k +q . (4.58)

With the help of the sketch in Fig. 4.15 we can convince ourselves that the
following relations hold:

kfc = k% + ¢*> + 2kqcos ¢ (4.59)
K? = k”+q¢* —2kK'qcos(¢' — ¢) , (4.60)
q% = k} + k™ — 2kK' cos ¢’ — 2qk’ cos(¢' — ¢) . (4.61)

For parabolic bands, the energy difference in (4.15) can be written as
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K'=(k'cos¢',K'sing")

q=(gcosd,gsin)

. Fig. 4.15. Momenta involved in
> X calculation of carrier-carrier col-

k= (k,O) lisions

AP R 2
be=—(k*—k k? —K?) . 4.62
¢ 2ma( f)+2mb( f) ( )
To compute the dielectric function, we convert the summations in the static

(w = 0) version of the Lindhard expression (3.54) to integrals. This gives
2

=1+ g X [T [Tag Bty gy
87m2enq o A , )

Ea,|k”+q| — Eak”

where the factor of 2 comes from the spin summation, and
k' +q)* =k + ¢* + 2kqcos ¢ . (4.64)

One may also use the numerically less demanding single plasmon pole result,
(3.59), instead of the full Lindhard expression. The disadvantage is that it
contains phenomenological parameters, such as C.

In (4.55), the diagonal contributions are defined for the limit A — 0. Fig-
ure 4.16 shows the sensitivity of I, and Ay to A. Formally, the dq integration
in (4.55) could just as well be replaced with a dky integration. However, the
actual numerical integrations can be very different. This is due to the fact
that the Coulomb potential is o« g~!. Therefore the upper limit of ¢ needed to
reach a desired accuracy is more straightforward to estimate than the upper
limit in k7 which depends on k.

Figure 4.17 illustrates the dependences of the diagonal dephasing contri-
bution Iy and energy shift Aj on experimental conditions. Shown are two
sets of curves that are separated because of the difference in the respective
exciton binding energy used. Within each set, the different curves correspond
to different carrier densities. For one set of curves, we use an exciton binding
energy that is representative of conventional III-V laser compounds. For the
second set of curves, describing a more rapid polarization dephasing, we use
an exciton binding energy that is more typical for the wide bandgap, II-VI
and group-III nitride compounds. Fig. 4.17 also illustrates the dependences
of I, and Ay on carrier density and momentum.
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Fig. 4.16a, b. (a) I and (b) Ay versus kw/7 for N = 1.2 x 10'* cm™?. The dif-
ferent curves are for A = 0.1 (solid curve), 1 (dashed curve), 10 (dotted curve), and
50 meV (dot-dashed curve)

For the nondiagonal correlation contributions we introduce

ek = L () /%d /QFd//oodk’k’
N(g, k) = 2K (27r) qaghb;e,h 0 ’ 0 ’ ’
1 dap 1 1 ) A ioe

e (q) 2 qe(q) g'e(g)) A%+ be?

X [ fakfor (1 — .fblc’j.) + (1= far)(1— fbk’)fbk’f] . (4.65)

Since in our numerical evaluations we discretize the k continuum, s and wg
are stored only for a discrete set of k values. In order to evaluate the subse-
quent integrations [see ahead to (4.74, 75)], we have to interpolate between
the stored values. In practice, we convert from X (g, k) to A(ky, k), with an
algorithm that allocates X (g, k) to the appropriate A(ky, k)'s. One such al-
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Fig. 4.17a, b. (a) I'x and (b) Ay versus kw/7 for carrier densities N = 8 x 10**
(solid curve), 1.2 x 10'? (dashed curve), and 1.6 x 10*? cm™2 (dot-dashed curve).
The two sets of curves correspond to exciton binding energies, e3¢ = 3.3 and 9.9 meV

gorithm involves first using (4.65) to calculate \'(q, k). For a given value of
q, we get a value for kf = |k + g|. Suppose ky falls between two momenta
where we have stored s; and wy, ie., kn—1 < kf < kp, then we make the
allocation to A(kn—1,km) and A(k,, k) according to

ki — ky|
N (q, kn_1, km =|f_",\
ke —kn_
Al'(q, kny km) = |f—nl_|/\(q, k) . (466)
kn - k’n—l

The steps are repeated for a range of 0 < ¢ < ¢max, Where guax is sufficiently
large so that A’(gmax, k) — 0. Then, we sum over all the contributions to get

Ay km) = > X'(q,kn km) - (4.67)

Figure 4.18 shows examples of A(ky, k).
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Fig. 4.18a, b. (a) Re{A(kn,km)} and (b) Im{A(kn,km)} versus knw/m for
N =12x102?cm™?, and knw/m = 0.2 (solid line), 0.4 (long dashed line), and
0.6 (dotted line)

Polarization Equations We are now in the position to solve (4.33). To put
this equation into a form that is suited for numerical evaluation, we write
explicitly the real and imaginary parts introducing the following quantities:

Sk = ug +ivg (4.68)
Ey = Ej +iE} (4.69)
Wk = fek+ fak—1 . (4.70)
With these definitions we convert (4.33) to

d .
S = —Owvk + e Bgwk — Diue + Qi (4.71)
duk -

= Spur — ukEOwk — Iur + R . (4.72)

dt
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Here, the detuning d; is given by

héx = h(v — wl,c) — A&z — A (4.73)
and
o0
Qr = / dk’ ['Ukl (ﬁk/kwk — Ak’k) + uk:Fkrk] s (4.74)
0
Ry = / dk’ [ukf(—ﬁk/kwk + Aprk) + o Tek] - (4.75)
0

The fourth-order Runge-Kutta method provides a stable finite difference
method for solving differential equations such as (4.71, 72). To illustrate this
method, we look at the generic equation

dy

T =Fw . (4.76)

Let us step from time ¢; to ty = t1 + dt, starting at t = ¢t; with y = yo. The
first step involves moving to the mid-point ¢ = ¢; +dt/2 by using a derivative
that is evaluated with y = yo. This gives the mid-point value

y(t') =y1=yo + F(yo)% : (4.77)

We can also estimate a value for y(t') using the derivative evaluated with
Yy=1u,

y(t') =y2 =yo + F(yl)% . (4.78)

This yields another value F'(y2) for the derivative, which we use to propagate
from tl to t2

y(ta2) = y3 =yo + F(yz2)dt . (4.79)

This last propagation gives us yet another value F(y3) for the derivative.
Now we perform the step from ¢; to to using a statistical average of all the
derivatives obtained [Press et al. (1988)]:

u(t2) = v+ 5 {F o) +2[Fan) + Flw)] + Flus)} (1480)

The adaptation of (4.80) to coupled differential equations, such as (4.71, 72),
is relatively straightforward. Figure 4.19 shows an example of the evolution
of uy and vy.

Several opportunities exist for reducing the complexity and time needed
for the numerical computations. The most important simplification comes
from the small signal condition, (4.30), which allows us to neglect changes in
the carrier distributions. As a result, the calculations of 9(k’, k) and A(K', k),
which are computationally intensive, need to be performed only once in the
evaluation of an entire spectrum (of fixed carrier density).

Other possibilities for speeding up the calculations come from approxi-
mating certain contributions with equivalent functions. For example, from
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Fig. 4.19a, b. Polariza-
tion contributions ux (a)
and vr (b) at times
t = 8 (solid curve),
16 (dashed curve), and
24 ps (dot-dashed curve).

-6 1 1 1 1 The carrier density is

N = 12 x 10" cm™?

0 0.2 0.4 0.6 0.8 1 and the detuning is (hv—
kw/m eg0)/ex! = —2.0

evaluating (4.63) for a range of ¢, we found that the product ge, is reason-
ably well behaved for a wide range of carrier densities. This allows us to
circumvent using (4.63) whenever ¢(q) is needed, by fitting ge(q), calculated
for a representative set of ¢ values, to a polynomial,

N
qge(q) = Y _anq™ (4.81)
n=0

where the coefficients a,, are obtained from a least-squares fit. Similarly, the
diagonal correlation contributions I'y, and Ay are sufficiently smooth func-
tions of k that they may also be fitted with polynomials.

The calculation of @ and Ry consumes a substantial amount of computer
time because it has to be performed for each time step. In many of our
numerical runs, we obtained noticeable time savings by computing @ and
Ry, for a sampling of k, and interpolate the intermediate values.
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Fig. 4.20. Gain/absorption spectra with (solid curves) and without (dashed curves)
exchange contributions. The densities are Nog = 4 x 10! (lowest curves), 8 x 10
1.2 x 10'? and 1.6 x 10" cm™2 (top curves)
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Finally, Fig. 4.20 illustrates the influence of the exchange contributions
in A to the gain spectrum. For situations where the differences shown in
the figure can be considered as unimportant, one can save computing time
by dropping the exchange terms in A. To see the reduction in computation
time, we refer to (4.59-61). With the exchange contribution, the arguments
in the cosines are ¢, ¢ and ¢’ — ¢. The angular integrations should then
be performed from 0 < ¢ < 27 and 0 < ¢/ < 27. On the other hand,
if the exchange contribution is neglected, the angular arguments are ¢ and
¢' — ¢, and considerable time saving is possible by performing the angular
integrations from 0 < ¢ < 7 and 0 < ¢/ — ¢ < 7. Some time saving also
results from the Coulomb potential entering later in the nested integrations,
as can be seen in the equations below:

Apgp = Ty — i,
1 seN\4 [ 1
ﬁ(%) /0 dqqqzez(q)
2 2m [ee} :
A +1ide
d d / ! 1./

a=e,h b=e,h

X [(1 = fak,) forr (1 — o)) + far; (1= forr) fors, | (4.82)

and
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ok = 55 () o

2h\2m/) ge(q)

27r o / > /BN A — 1(55
Xage:hb:zc;h/o d¢/0 d¢ /0 ik A2 1 §e2
X [ fak forr (1 — forr) + (1= far)(1 = fbk')fbk/f] . (4.83)

Of course, whether we can ignore the exchange contributions has to be de-
termined on a case by case basis.

Figure 4.21 shows gain/absorption spectra obtained using the procedure
outlined in this section. The material parameters as well as step sizes and
cut-offs are the same as those in Fig. 4.7. The unexcited bandgap energy is de-
noted as e40 and €2 = 4 x £3d is the two-dimensional exciton binding energy.
The low density spectra show the exciton absorption resonance, whose loca-
tion remains constant with changing carrier density because of the balancing
of the diagonal and off diagonal many-body contributions. The influence of
the correlation effects is demonstrated in Fig. 4.22. The solid curve shows the
absorption spectrum at Nog = 2 X 10! cm~2. The dashed curve is computed
by neglecting the nondiagonal correlation contribution. Comparison of this
and the solid curve shows the importance of the nondiagonal contribution
in the presence of the exciton resonance at this density. The dotted curve
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Fig. 4.21. Gain/absorption spectra for a range of carrier densities Nog = 2 x 10!
(bottom curve) — 1.6 x 10*? cm ™2 (top curve). The density is increased in increments
of 2 x 10! cm ™2
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Fig. 4.22. Absorption spectrum (solid curve) for the carrier density
Nag =2 x 10" cm™2. The difference between the dashed and solid curves shows
the nondiagonal correlation contribution, while the difference between the dotted
and solid curves shows the imaginary part of the correlation contribution

is computed by neglecting only the imaginary part of the correlation (both
diagonal and nondiagonal) contributions. Comparison with the solid curve
shows that screening effects cause a reduction of the exciton absorption as
well as a red shift that, together with the exchange shift, compensates the
blue shifts due to the field renormalization and the real part of the correlation
contributions.

In Fig. 4.23a, we concentrate on elevated carrier densities where the opti-
cal spectra show gain. Comparison of these spectra and those in Figs. 4.23b, c
illustrates the differences between the present gain calculation and the ones
using the gain formula (3.100) based on the relaxation rate approximation.
The results of the relaxation rate approximation for both Lorentzian (b) and
sech (c) lineshape functions show a steep rise in gain from the bandgap edge,
indicating the strong influence from the step function like two-dimensional
density of states. The full calculation, on the other hand, shows a gentler,
more bulk-like slope. The figures also demonstrates that correlation effects
lead to a different density dependence of the gain peak. The full calculation
predicts a blue shift in the gain peak with increasing carrier density, while
the relaxation rate results show negligible shift (see dotted lines).

To understand the origin of the differences depicted in Fig. 4.23, we plot in
Fig. 4.24 the individual contributions to the gain spectrum. The short-dashed
curve shows the gain spectrum for Nog = 1.2 x 10'2¢cm™2 in the absence of
Coulomb (Hartree-Fock and scattering) effects. The shape of the spectrum is
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0 Fig. 4.23a—c. Gain spec-
ﬁ tra for carrier densities
1 1 Nag = 8 x 1011, 1.2 x 102

3 and 1.6 x 10'? cm ™2 (from
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completely determined by the band filling factor. Since we have no homoge-
neous broadening of the optical transitions, one sees the sharp gain increase
at the band edge because of the step function-like two-dimensional density of
states. The long-dashed curve shows the pure Hartree-Fock results. There is
a frequency shift and a reshaping of the gain spectrum because of bandgap
renormalization and Coulomb enhancement, respectively. The solid curve is
the final result, obtained by additionally including the correlation effects. Be-
cause of dephasing (real part of correlations), the peak gain decreases and
the gain width increases. There is also an energy shift due to plasma screen-
ing (imaginary part of correlations). In particular, our analysis shows that
the interplay of diagonal and nondiagonal contributions shifts the gain peak
towards higher energy and leads to a long wing on the low energy side. These
modifications clearly demonstrate the strong influence of carrier correlations
on the gain spectrum.
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Fig. 4.24. Computed gain spectrum (solid curve) for the carrier density
Nag = 1.2 x 102 cm™2. The short-dashed curve is the spectrum when Coulomb ef-
fects are neglected. The long-dashed curve shows the effects of including only the
Hartree-Fock contributions

Figure 4.25 documents the separate modifications caused by the diago-
nal and nondiagonal scattering contributions. The dashed curve in Fig. 4.25
shows that the diagonal contribution alone predicts a significantly smaller
gain peak, an increased width (full width at half maximum), and a crossover
back to absorption energetically below the gain spectrum. The nondiago-
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Fig. 4.25. Gain spectrum with (solid curve) and without (dashed curve) nondi-
agonal Coulomb correlation contributions. All parameters are similar to those in
Fig. 4.24
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nal contribution compensates most of these defects and leads to important
modifications of the spectral gain shape.

A long standing problem with gain calculations is the inaccuracy of gain
predictions in the neighborhood of the renormalized band edge. Gain formu-
las based on Lorentzian lineshape functions tend to yield absorption below
the renormalized bandgap energy. This unphysical prediction is often blamed
on the oversimplified description of polarization dephasing. The argument is
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Fig. 4.26a, b. Gain spectrum for Nog = 1.2 x 10'? cm™2. The solid curve is the
result of the full calculations. The other curves are obtained using (3.100) with (az
Lorentzian and (b) sech lineshape functions. The dephasing rates are v = 10125~
(dashed curves), 5 x 1012571 (dotted curves), and 10'3s™! (dot-dashed curves)
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that the assumption of dpx/0t|col = —YPk, where v is a constant dephasing
rate, overestimates the contributions from high-k (absorbing) states. How-
ever, the dashed curve in Fig. 4.25 shows that the problem remains even
with a more precise treatment of the diagonal contribution to polarization
dephasing, which uses the k-dependent dephasing rate given by the real part
of (4.55). Figure 4.25 demonstrates clearly that the solution of the lineshape
problem is obtained through the consistent treatment of correlation effects,
which involves the evaluation of both diagonal and nondiagonal correlation
terms in the polarization equation. With the inclusion of the nondiagonal
contribution the absorption below the bandgap energy is eliminated.
Figures 4.26, 27 summarize attempts to approximate the full results with
gain expressions based on purely diagonal descriptions of dephasing. In
Fig. 4.26, the dashed curves are computed using (a) Lorentzian and (b) sech
lineshape functions, where we treat the widths of the lineshape functions
as a fitting parameter. We see that because of the significant nondiagonal
Coulomb correlation effects, it is not possible to accurately reproduce the
gain spectrum regardless of the value for the dephasing rate. On the other
hand, if one also treats the carrier density as a fitting parameter, then the
comparison improves noticeably. Figure 4.27 shows that such a two parameter
fit (dephasing time and density) can work sufficiently well for some situations.
Under these conditions, we can get reasonable agreement with experiments,
using a purely diagonal dephasing approximation. This may explain past suc-
cesses in describing experimental results with gain models that we presently
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Fig. 4.27. Quantum-well gain spectrum obtained from the full calculation (solid
curve), and from (3.100) with Lorentzian (dashed curve) and sech (dotted curve)
lineshape functions. The carrier density for the solid curve is Nog = 1.2 x 10'? cm 2.
The densities and dephasing rates for the other curves are chosen to give the best
fit to the solid curve. They are Nag = 1.32 x 102 cm™2 and v = 1035~ for the
Lorentzian lineshape function and N2g = 1.30 x 102 cm~2 and y = 10*3 s for the
sech lineshape function, respectively
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know are not fully consistent. The present and past analyses, however, pre-
dict different carrier densities. For the example treated here, the differences,
Nag = 1.20 x 102cm =2 versus 1.30 x 10'2cm™2 and 1.32 x 10'2cm~2, for
the sech and Lorentzian lineshape functions, respectively, are most likely
within the experimental uncertainty.

Figure 4.28 shows the spectra for the carrier-induced refractive index
change, d¢/dz, for different carrier densities. The dashed curves are com-
puted using the relaxation rate approximation with a Lorentzian lineshape
function and a dephasing rate, v = 10'3s™1. Clearly seen is the smoothing
of the curves in the full calculation, a similar effect as the smoothing occur-
ring in the gain spectrum. Figure 4.29 shows the antiguiding («) spectra for
different carrier densities. The points indicate the locations of the peak gain.
Note that for the low density of 9 x 10! cm ™2, there is considerable difference
between the present calculation and the relaxation rate calculation for « at
the gain peak. This results from the fact that interband Coulomb correlation
effects are more pronounced at low densities due to a partial cancellation
of the diagonal and nondiagional scattering contributions. The presence of
structure in the spectra at higher densities is mostly a consequence of the
Hartree-Fock many-body contributions.

do
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Fig. 4.28. Carrier induced phase shift spectra for different carrier densities. The
solid lines show the results of the full calculation. The dashed curves are ob-
tained using (3.100) and a Lorentzian lineshape function with the dephasing rate,
v = 10'3s71. The points indicate the values at the gain peaks. The lowest solid and
dashed curve is for the density Nog = 1.6 x 1012 cm_2, the middle curves are for
Nog = 1.2x 102 cm™2, and the top curves are for Nag = 8 x 10! cmn~2, respectively
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Fig. 4.29a—c. Linewidth enhancement (or antiguiding factor) spectra for the car-
rier densities (a) 9 x 10'!, (b) 1.3 x 10'?, and (c) 1.7 x 10'2 cm™2. The solid curves
are the results of the full calculations. The dashed curves are obtained using (3.100)

and a Lorentzian lineshape function with the dephasing rate, v = 10'3s~!. The
points indicate the values at the peaks of the respective gain spectra

4.4.2 Bulk-Material

The approach used to set up the numerical analysis for bulk semiconduc-
tor media is very similar to that for the quantum-well problem. The basic
differences are the use of (3.4) instead of (3.5) for the Coulomb potential, and

[e9) g 2
d - / dk’ k" / d¢’ sin¢’ / d¢’' (4.84)
& 0 0 0
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instead of (4.34). The diagonal Hartree-Fock contribution is then
Ae, = Oy

1V * 1702 /W /- 1/27r ’ 62(fek+fhk)
——= 0 0 d¢p —————
h(27r)3/0 dk" k | dé’ sin A oy e Vak, 0, &)z

62 0o L 2w 1
= —— dk’ k" (w 1/d9"6"/ d¢) ——
871-3€bh/0 (wk * ) 0 - 0 ¢ q(kl79/a ¢l)2
(4.85)
where q and wy, are given by (4.44, 43), respectively. As in the quantum-well
problem, we assume that there are no angular (¢’ and ') dependences in the

polarization. Then, the nondiagonal Hartree-Fock contribution is
2

e o0 s 2 1
Dk = Wk —a—— dk'k"2/ dé’' si 0// d¢) ———
%:Qk kPk! = Wk 87r3ebh/0 | sin | ¢ P CRRIE p(k "
4.

The diagonal correlation contribution for the bulk medium is

App = Ty —idg
1 (i)“/wdq > /ndesinﬁ/%dqﬁ
2m2h \ 27 0 et o 0

[e’e) ™ 2m
X / dk’ k' / df’ sin 9’/ d¢’

0 0 0

1 (Sa,b 1 A + ide

¢®e(q) 2 q”e(q)e(d) ) A +be?

X [(1 = fak,)forr (1 — for,) + far, (1 — fbk’)fbk/f] , (4.87)

where k¢, k'f and ¢’ are given in (4.56-58). For the bulk-material, the static
Lindhard formula is

G(Q)_l_e—22 > /oodk'ka/wdﬂ'sina'/%dqﬁ'M
8m3enq? = Jo 0 0 €a.k/+q| — Eak’
(4.88)

Finally, the nondiagonal correlation contribution is

, 1 e 4 /Tl’ ) /27r
= —— | — dfsin 6 d
Na,k) 272h (27r) a,bZ:;h o st o ¢

00 i 27
></ dk’ k'2/ d¢’ sinG'/ d¢’
0 0 0

1 Sap 1 A —ide
8 (q262(q) B T<1’26(q)6(q’)) A? 1 5e2
X [faforr (1= fory) + (1= fai) (1 = for ) fomy ] - (4.89)

At this point, the remaining equations needed for the numerical analysis of
the bulk-material are identical to (4.66, 67, 71, 72, 74, 75).
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4.5 Carrier-Phonon Scattering

Even though the carrier-carrier scattering process may dominate the fast
carrier redistribution under typical laser densities, this process does not dis-
sipate energy since the kinetic energy is one of the conserved quantities in
carrier-carrier collisions, see Sect. 4.2.

The most important source of energy dissipation, i.e., “carrier cooling”
is caused by the coupling of the electronic system to the lattice. The domi-
nant part of this carrier-phonon coupling can be modeled by the interaction
Hamiltonian

Hep =Y hGyal,ar (bg+b1,) (4.90)

k.q

where b, and bfl are the annihilation and creation operators of longitudinal
optical (LO) phonons, which are the quanta of the longitudinal polarization
oscillations due to ionic displacements in a polar semiconductor. Equation
(4.90) describes how an electron can be scattered in its band by emitting or
absorbing one LO phonon.

Generally, scattering between electron (hole) and other optical as well as
acoustical phonons exists in semiconductors. All these effects can be treated
reasonably well at the level of quantum Boltzmann equations. Here, we con-
centrate on the LO phonon coupling as a representative, and often dominant
scattering mechanism.

The matrix element G|, for the linear interaction of the electrons with the
lattice polarization is

2 _ wLOVs‘q i _ l
Go=—"3 (600 <) (4.91)

where wy,o is the LO-phonon frequency, and €y and €., are the low- and
high-frequency background dielectric constants of the medium. The coupling
described by (4.90, 91) is usually called Frohlich electron-LO phonon cou-
pling. This coupling influences both, the carrier intraband relaxation and the
electron-hole interband kinetics.

For example, the electron-LO phonon coupling is one of the mechanisms
behind the low-frequency lineshape (Urbach tail of the band-edge absorption)
because it gives rise to (not spectrally resolved) phonon side bands in which
not only a photon but also one or several thermal phonons are absorbed.
However, for our present discussion it is more important to study the electron
intraband relaxation due to electron-LO phonon coupling. For this purpose
we evaluate

dnek _ l
dt T h

e—p

[He—p, nek] ; (4.92)

using second-order perturbation theory, i.e., we solve (4.92) by formal inte-
gration and iterate the result twice. In this way we obtain
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dn,, 1 1
dtk =T 2”2 Ggé(Atq) [nek(l — Nek—q) <nph,iq + 5 * §>
e—p q,t
1 1
— (1 — Nek) Ne k—q <nph,:tq + 3 F 5) } ) (4.93)

which is the Boltzmann collision integral for electron-LO phonon scattering.
Here, npy, is the phonon population and the frequency differences Ai q are
given by

hA; . = ek — (ex—q = hwro) - (4.94)

The different terms in (4.93) describe the transition rates in and out of
state k under absorption or emission of LO-phonons. The different terms
describe the transitions kK — k — g and k — ¢ — k under emission (upper
sign) or absorption (lower sign) of a phonon. The phonon population function
Nph,q iN general has to be computed self-consistently. However, it is often
possible to simplify the problem by assuming that the phonons are in thermal
equilibrium, so that

1

4~ Bhoto _ 1 (4.95)

Tph

i.e., the phonon distribution is described by a thermal Bose function. Ex-
amples of the numerical solution of (4.93) without or with the simultaneous
inclusion of carrier-carrier scattering, (4.8), are shown in Figs. 4.3, 4, respec-
tively.

For the interband polarization dynamics, the LO-phonon contribution has
the form

P
ot

col

== (A" + 4 )Prta (4.96)
q

where we again kept only the terms that are linear in the polarization. For
q=0,

_ 1
ASP = ! Z Gg{ [(1 — N k—q)Nph,g + Nak—q(1 + nph,q)]g(A,tq)
q

+[(1 = nak—q)(1 + Nphg) + Nak—qnpngl9(Aig)} »  (4.97)
and for ¢ # 0,

oy 1
Ag, P ﬁG‘QI{ [(1 — Neyk)Nph,g + Mok (1 + nph,q)]g(A,tq)

+ [(1 - "a,k)(l + nph,q) + na,knph,q]g(A;,q)} ) (4‘98)
where g(A) is defined in (4.16).
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4.6 Characteristic Relaxation Times

The notion of relaxation times is a very well established concept in atomic
and molecular optics, and is also widely used in semiconductors. The basic
concept can be understood, e.g., by analyzing a system that is coupled to
incoherent reservoirs (heat baths). The system can then be de-excited through
transfer of energy into the reservoir. As long as the reservoir is infinitely big
and does not act back on the system, the relaxation of the system may be
to a good approximation characterized by relaxation times that are basically
determined by the coupling strength (coupling matrix element) of system and
reservoir.

As we have seen in the previous sections, the relevant scattering processes
in a semiconductor electron-hole plasma are mostly not of the reservoir cou-
pling type. For example, for carrier-carrier scattering, the carriers are their
own 'reservoir’ and the occupation probabilities of the carrier states enter in
a highly nonlinear fashion. Similarly, carrier-phonon scattering is also a pro-
cess which depends nonlinearly on the carrier distribution functions.

In the simplest microscopic approximation all particle scattering processes
lead to Boltzmann-type collision terms, with both, in- and out-scattering
contributions. Hence, the characteristic times associated with these pocesses
depend strongly on the situation under investigation, e.g., carrier relaxation
due to scattering with phonon occurs at the time-scale of hundreds of fem-
toseconds if one considers a nonequilibrium carrier distribution excited en-
ergetically high in an otherwise empty band. However, the same scattering
process yields relaxation times in the picosecond range if one considers situ-
ations where a quasi-equilibrium electron-hole plasma occupies the energeti-
cally lowest states.

With these precautions in mind, we concentrate the discussion in this
section to typical semiconductor laser configurations, e.g. conventional III-V
laser compounds at room temperature. For this situation, numerical evalu-
ations of the electron-phonon Boltzmann equation yield scattering times on
the order of picoseconds under normal operating conditions. Hence, in semi-
conductor lasers the carrier-carrier scattering is the dominant contributor to
the dipole dephasing rate constant 7.

In describing the carrier probabilities n,s themselves, the carrier-carrier
scattering rates yox{n} dominate the response on subpicosecond time scales.
Superimposed on this fast response is the relatively slow response result-
ing from radiative and nonradiative recombination and pumping processes
along with the somewhat faster response that attempts to equilibrate the
plasma and lattice temperatures via carrier-phonon scattering. These pro-
cesses change the quasi-equilibrium Fermi-Dirac distributions to which the
carrier probabilities are driven by the carrier-carrier scattering. Associated
with these slower responses are 77’s on the order of nanoseconds for the total
carrier density and picoseconds for the temperature equilibration. Hence in
general, semiconductor gain media involve a hierarchy of T} relaxation times.
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If we are interested in phenomena that vary little in the carrier-carrier re-
laxation times, we may be able to adiabatically eliminate the corresponding
transients by assuming that the carrier distributions are described by Fermi-
Dirac distributions. This is again the quasi-equilibrium approximation and
the slow transient response may be describeable using a single long T7.

However, if we wish to study transient phenomena on a subpicosecond
time scale, we might wonder how to define a “fast” Tj. Such a Ti; would be
the lifetime of the inversion

di = Nk + Nk — 1 (4.99)
as it shows up in the equation of motion

d d

adk = —ﬁk; + other terms . (4.100)
Substituting (4.12, 99) into (4.100), we have

d . )

g% = vee{ntner —mr{ntnne + Zei{n} + Ziiin} (4.101)

col

To write d, on the RHS of this equation, we introduce the probability “sum”

sk = Mek + (1 — nng) (4.102)

which complements the probability difference dy = nex — (1 — npg). In terms
of dy and si, we have that ne, = (dx + sk)/2 and nne = (dx — sx)/2 + 1.
Substituting these expressions into the equation of motion (4.101), we have

d

k| = =5} + me{nDde — 5 (rox{n} = k()

col
—Ye{n} + Tp{n} + Zix{n} . (4.103)
Unless the electron and hole effective masses are equal, Yer{n} # Yhe{n},
and we would not expect to be able to describe the fast response with a single
Tir. A similar situation is met in the case of the two-level atom problem with
different upper- and lower-level decay constants. There, it is fairly well-known
that the T given by

=1 (L +i> , (4.104)
2\ % M

describes steady-state saturation correctly, although it fails to account for
the transient response in general. Following a procedure similar to that used
to derive (4.104), we consider the equation of motion for the sum term sj.
Using (4.12, 102) and dropping the {n} for typographical simplicity, we have

d

— Sk

@ = —YekNek T 22;; + YhkMhk — Ei,r;c

col
1 1 in :
= —§’Yek(dk + sk) + §’th(dk — sk +2) + X — Lhk

Yek — Thk
2

dy + Yhe + X2 — xin (4.105)

— Ve Sk —
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In steady state ($x|col = 0), this gives

1 <’>’hk — Yek
Sp=—| ———
T 2
As a rough approximation to the near steady-state transient behavior of dy,

we substitute (4.106) into (4.103) and simplify to find

di + Yhe + 2% — 2;1) . (4.106)

d

d_tdk = _Tllik- + (functions of v's) (4.107)
where the carrier-carrier scattering probability-difference decay time T} is
given approximately by

1/ 1 1
Tk = - + —) ‘ 4.108
*T 2 <7ek Yhk ( )

As noted above, in the limit of Yer = Yhx = Yk , T1x = Tor. Equation (4.108)
is similar to the two-level-atom (4.104), which is also only valid near steady
state. The “steady state” considered here, however, is reached to all intents
and purposes in a fraction of a picosecond. Hence, (4.108) could be useful in
describing saturation involving hole burning by a single-mode field.

Finally, we wish to warn the reader that while relaxation rate approxi-
mations are widely used, it is important to remember that they are results
of substantial approximations to the full Boltzmann equation and therefore
have to be used with care. In general, the relaxation rates have to be ob-
tained from fits to microscopic calculations or they might be used as fitting
parameters in comparisons with experiments.
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The ability to change the energy-level structure of the gain medium through
material and structure design is one of the unique properties of semicon-
ductor lasers. To take full advantage of this capability, one needs to be able
to predict the band structure that results from a particular material and
structure combination. In this chapter and the following, we show a proce-
dure for performing band-structure calculations that are relevant to the laser
physicist.

Section 5.1 begins with a review of the important concepts of lattice-
periodicity, unit cells, Bloch functions, and energy bands. Section 5.2 de-
scribes the zone center (k = 0) states that are relevant for laser transitions
taking place in a III-V compound like GaAs. To calculate the band struc-
ture that evolves from these states, we use the Kane or k - p theory, which
is described in Sect. 5.3. Kane theory allows one to compute the band struc-
ture in the neigborhood of the zone center perturbatively, using the energy
eigenvalues and the basic symmetries of the zone-center states. First Sect. 5.4
treats the conduction bands, which have spin-degenerate zone center eigen-
states. Then, Sect. 5.5 describes the treatment of the valence bands which
have degenerate [ = 1 zone center eigenstates, and therefore requires the use
of degenerate perturbation theory. Specializing to the top valence bands in
typical III-V compounds with cubic crystal symmetry, Sect. 5.6 introduces
the Luttinger Hamiltonian, whose diagonalization gives the heavy and light
hole bands.

5.1 Bloch Theorem

An electron in a crystal sees a periodic potential due to the ions present at
each lattice site. This potential is modified by more or less localized elec-
trons that are originally bound to each atom making up the crystal. The net
result may be approximated by a periodic effective potential Vp, such that
an electronic energy eigenstate |¢,x) in the solid obeys the time-independent
Schrédinger equation

2my

(i + VO) |¢nk> = 5nk|¢nk> ) (51)
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where p is the momentum operator, mg is the mass of the free electron, i.e., of
the electron in vacuum, n is the band index, and k is the electron wavevector.
Translational symmetry in the lattice dictates that the energy eigenfunctions
obey the Bloch theorem

(r + Rlonk) = €* Fr|pn) | (5.2)

where 7+ R describes translation by a lattice vector. This condition is fulfilled
when

(r|@nk) = €* 7 (rnk) | (5.3)
where (r|nk) is the lattice periodic function satisfying
(r + Rink) = (r|nk) . (5.4)

Substituting (5.3) into (5.1), we find the eigenvalue equation for the lattice
periodic part of the wavefunction

2
D h h2k2
2 A Vot —k- = _
<2m0 + Vo + mok p) |nk) (enk 2m0) [nk) . (5.5)
The eigenstates are orthonormal
<¢mk|¢nq> = 5m,n5k,q 3 (56)
or equivalently,
(mk|nk) = 6mp . (5.7)

The first-principles calculation of energy bands and eigenfunctions in
a solid is a specialized area in the field of condensed matter physics. First, one
must develop an accurate model for the effective potential V;. Then one solves
(5.1), or equivalently (5.5), with the appropriate boundary conditions (5.2)
or (5.4). The solution requires complicated numerical computation schemes,
and a first-principles solution of all the k states involved in a laser transition
can quickly become a prohibitively lengthy process. The k - p theory provides
a shortcut through this process. This theory allows one to compute the en-
ergy eigenstates and the wavefunctions in the vicinity of any given k, and
in particular in the vicinity of £ = 0, which is the region most relevant for
optical transitions in lasers. To use the method, we need to know the k = 0
eigenstates, which are discussed in the next section.

5.2 Electronic States at k = 0

For a III-V compound like GaAs, the conduction and valence band states
at k = 0 are summarized in Fig. 5.1. Without spin-orbit coupling, the ms =
+1/2 states are uncoupled and degenerate. For typographical simplicity, we
suppress the spin indices in working with |l m;) and include a factor of 2 in
the appropriate sums over states. The conduction-band k = 0 state has s-like
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Without With
spin-orbit coupling spin-orbit coupling
1=0,5s=1/2 j=12
m, =0,m, =+1/2 m; =t1/2
(2-fold degenerate) (2-fold degenerate)
j=32

m, =+3/2, £1/2

I=1s=12 /
m, =021,m, =+1/2 ) s (4-fold degenerate)
————x .
(6-fold degenerate) \ j=12

‘\ m; =+1/2
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Fig. 5.1. The electron eigenstates at k = 0 that play a role in optical transitions.
In the absence of spin-orbit coupling, the eigenstates are |lsrm;ms), where [, m; and
s, ms are the total and z-component quantum numbers for the orbital and spin
angular momenta, respectively. With spin-orbit coupling, the eigenstates become
|ls; jm;), where j and m; are the quantum numbers for the total (orbital plus spin)
angular momentum

symmetry, with zero orbital angular momentum. We designate this state by
|S) = |0 0). The k = 0 states of the top valence band have p-like symmetry,
which may be represented by the [ = 1 states, |1 4 1) and |1 0). In the next
section, where we deal with the momentum-operator matrix elements, it is
more convenient to work with the following combinations of orbital angular
momentum eigenstates |l m;)

1

|X) = ﬂ[ll -+,
Y) = 7§[Il -nH-n1,
|Z) = [10) . (58)

In the coordinate representation, the corresponding eigenfunctions have the
symmetry

(r|X) o zf(r) ,

(r]Y) o< yf(r) ,

(r|Z) < zf(r) , (5.9)
where f(r) is a spherically symmetric function.

The coupling between the electron spin and orbital angular momenta
contributes a spin-orbit term in the Hamiltonian of the form
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where
e 1 av
~ 2mic2r dr

is the spin-orbit function [Schiff (1968)]. To obtain (5.10) we use

(SxVV).p=(VV xp)-§ . (5.11)
For a central potential
dv r
VV(r)= — -
(=97 (5.12)
so that
1dv 1dv
vV §=-= .S=-_1.
( xp)-S rdr(TXp)S rerS' (5.13)

We assume that the spin-orbit interaction is small compared to the electro-
static interaction (Russell-Saunders case or LS coupling scheme). Further-
more, since

JP=(L+8)?*=L>+8*+2L-S |, (5.14)

the new energy eigenstates are also eigenstates of the total angular momen-
tum J. These states are denoted as |l s; j m;), and they can be expressed in
terms of the old ones by

Ussims)= > [lsmma)(lsm mll s5my) (5.15)

my,ms

where (I s;m; ms||l s;j m;) are the Clebsch-Gordan coefficients. For the
conduction bands, the new states are simply

111 11
0-5--)=0-0=
P33)=303)

11 1 1 1

05 —=)=10=0 —=) .

‘ 55 2> ‘020 2> (5.16)
For the valence bands, I = 1 and s = 1/2 give j = 3/2,1/2. The Clebsch-
Gordan coefficients (I s = % my mg|l s = %;j m;) are given by the Table 5.1
(note that m; = m; — m).

Using these coefficients, we find the total angular momentum states for

the heavy and light-hole valence bands of GaAs as

35y -nn

‘g %>:_\/§|u>+\/g|0ﬂ ,
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Table 5.1. Clebsch-Gordan coefficients

. 1 . 1
j—l+§ ji=1 3

1 l+mj+1/2  [l-m; +1/2
Ms=35 2+ 1 20+ 1

_ 1 l—m]-+1/2 l+mj+1/2
Ms =735 2A+1 20+1
) [m .

§> \f|u>+\f|0¢> ,
—§>:\/;|o¢>—\/;|—m> . (517

Since in this discussion [ and s are always 1 and 1/2, respectively, we use the
following abbreviated notation for the states:

3
2
3
2
1
2
1
2

855 my) — |j my)
I s my mg) = |my ms)

with 1 (1) denoting ms = 1/2(—1/2). In terms of |[X 1) = [X)| 1), etc.,

> \[[|XT+ v,
l>:—\/1[|X¢>+i|Y¢)]+\/§|ZT) :
[|XT —1|YT]+\/7|Z¢ ;

X -y )

w
|

N o l\DlI—l

X DY 2]

N| =

ey

XD +iY ) +[Z2 )] (5.18)
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5.3 k - p Theory

Assuming that we know the band energies and eigenstates at the momentum
value ko, we show in this section how the k - p theory allows one to compute
the states in the vicinity of ko. Note that |@¢,x) cannot be expanded in terms
of |$mk,), because these functions are orthogonal to one another whenever
ko # k. However, since the states for each k are complete, we may write

Ink) =" cnmlmko) (5.19)

m

If (r|nko) is periodic with respect to translation by a lattice vector, then
(r|nk) is also periodic, so that the Bloch theorem is satisfied. The problem is
then to use (5.5) to obtain the expansion coefficient ¢, k. For this purpose
we first rewrite (5.5) as

(Ho + AHi)|nk) = Wyi|nk) (5.20)
where
p2
Hy = — 5.21
0 2m0 + VO ) ( )
h
H = —k-p , (5.22)
mo
and
h2k?
Wnk =E&nk — 2m0 (523)

We treat H; as a perturbation and use A to keep track of the order of the
terms in the perturbation expansion. Later we then put A =1

In the following we discuss the analysis for the example of kg = 0, i.e.,
for the states around the center of the Brillouin zone (I" point). These states
are the most relevant ones for the description of optical transitions near the
semiconductor absorption edge. The zone-center eigenstates and energies

lm k=0)=|m) , Emk = Em (5.24)
are solutions of the Schrédinger equation
Hylm) = epn|m) . (5.25)

At first we ignore the spin-orbit coupling so that the states |m) are given
by |l m;). For the conduction band, we have the nondegenerate eigenstate

|S) = |0 0), and for the valence band, we have the degenerate eigenstates
|1 £1) and |1 0), or |X), |Y) and |Z).
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5.4 Conduction Bands

We now apply perturbation theory to solve the Schrédinger equation for
the lattice periodic functions of a bulk semiconductor. First, we treat the
case for bands with only spin-degenerate zone center eigenstates, such as
the conduction band. Suppose we wish to find |nk), which is the state that
reduces to |n) at k = 0. First, we write |nk) and Wy as the expansions

Ink) = |nk)o + A\nk); + \2[nk)s + -+, (5.26)
Wk = WO 4w 4+ 2w 4. (5.27)

Substituting (5.26, 27) into (5.20) and collecting terms with equal powers of
A, we get

(Ho - ij?) nk), = 0, (5.28)
(Ho - W) Ink), = (W) — H1) Ink), (5.29)
(Ho— W) Ink), = (WS — Hy) Ink), + W3 Ink), (5.30)

and so on. Equation (5.28) gives

W —¢, and |nk)o=|n) . (5.31)

n

Taking the scalar product of (5.29) with (n|, we find
Wi = (n|Hiln) =0, (5.32)

which vanishes because Hy has inversion symmetry, so that |n) has definite
parity. Consequently, all diagonal matrix elements of p vanish, since p changes
sign under space inversion:

(n|p|n)=/d3 (n|r)h Virn)=0 , (5.33)

and we have no first-order correction to the energy. If we take the scalar
product of (5.29) with (m|, where m # n, then

(m|Hi|n)
k), = —-" "1 5.34
(mink); = LT (534)
provided €, # €,. Then to first order in the perturbation, the eigenstate is
(m|H 1|n
k), = k), . 5.35
k= P mink)y = 3 T (535)

Note, that we could add a term containing |n) to |nk); and still satisfy (5.29).
However, we choose not to do so in order to make the unperturbed eigenstate
orthogonal to all the higher-order corrections, that is,

(n|nk); =0 (5.36)
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for j # 0. Taking the scalar product of (5.30) with (n| and using (5.34), we
find

@ _ |(n| Hy|m)|?
Wl = . (5.37)
men En m
From (5.23, 37), we have
hzkz | nlk pim)®
2m0 2 Z

Enk = €n + (538)

— &
m;én m

Given that the eigenstates have definite parity, one can readily see that
(n|pa|m)(m|pgln) = 0 (5.39)

for oo # (. Furthermore, for bulk III-V semiconductors,

[(nlpz|m)[* = |(n|py|m)|* = |(nlpz|m)* , (5.40)
because of the symmetry about the zone center. Then, we can write
h%k?
Enk = €n + )
= et (5.41)

where the effective mass m,, g is defined by

1 — < Z |"|Pz|m

Mn eff m;ﬁn —Em

) . (5.42)

Values of the effective masses for the lowest conduction bands are

me/mO
GaAs 0.0665
InAs 0.027
4
InP 0.064 (5.43)
GaP 0.15
AlP 0.22

5.5 Valence Bands

For the valence bands, which have degenerate | = 1 zone center eigenstates,
we need to use degenerate perturbation theory. Let us assume that the first
N eigenstates are |1),]2), [3),...,|N), so that

€1 =€ =€3=--"=EN . (5.44)

The procedure involves finding N new orthonormal eigenstates |n)’ that
evolve continuously into nondegenerate eigenstates as we leave the zone cen-
ter. We write the new eigenstates as linear superpositions of the old ones,
that is
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N
= Im)y(min)’ (5.45)

where 1 <n < N and (m|n)’ =0 for m > N. The scalar product of (j| with
(5.29) gives

N
3" GlH m)(mln) =W (jln) =0 for 1<j<N (5.46)
m=1
and
H
(jIn) Z Gl Ha|m) (min)’ for j>N . (5.47)

€1 &5

Equation (5.46) provides us with N coupled equations that can be solved for
the N new eigenstates. However, if (j|Hi|lm) = 0 for all j and m between
1 and N, then Wfl}c) = 0 and we have to move to the next higher order in
the perturbation. This turns out to be the case for every group of degener-
ate states, since all states within each group have the same orbital angular
momentum. Repeating the above procedure with the second-order equation
(5.30), we find

Z Z (j|Hilm)(m|Hi|l) (Un) — WDy =0 | (5.48)

€1 —¢€
=1 m>N 1= &m

for 1 < j < N. Equation (5.48) gives a set of N coupled homogeneous

equations that can be solved for Wéi) and |n)’.
In matrix formalism, we have

HA=¢eu A, (5.49)
where H is an N x N matrix with the matrix elements
h2k? h? k- k-p,.;
Hjij=|e1+-—)b6;+— Z = Pim 2 Py . (5.50)
2mg ’ my = €1 — €Em

Note that the degenerate m = 1 to N states are excluded from the summa-
tion. In other words, the summation involves only the remote bands. The
elements of the vector A are the probability amplitudes

A;=(jln)" . (5.51)
For nontrivial solutions,
det(H —enl) =0 (5.52)

where [ is the identity matrix. The solutions of the resulting secular equation
yield e,k for n = 1 to N. The transformation matrix S that diagonalizes H
gives the new eigenstates at k = 0 according to

ST'HS=E , (5.53)
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or

Smn = (m|n)’ (5.54)
and the elements of the matrix E are

Enm = Enk 6n,m . (555)

5.6 Luttinger Hamiltonian

Specializing our discussion to the two top valence bands, we first ignore the
spin of the electron so that the k = 0 eigenstates have [ = 1 and are three-
fold degenerate, with m; = 0, +1. To second order in the perturbation, the
energy of the nth band is
2k2
Enk = En +
2m0

+w (5.56)

where W(i) is given by (5.48). Hence we have the set of three equations

3 21.2
Z [Z J|H1|m><m|H1|l> + (El + ;l k 5nk> :l <l|nk> =0,
mo

€1 —&m
= m>3
1 bm> (5.57)

where | = 1 states are excluded in the m summation, or in other words, the
summation involves only the remote bands. Nontrivial solutions of this set of
N coupled homogeneous equations occur only if

det(H —epx L) =0 (5.58)
where H is a 3 x 3 matrix, whose elements are
Hy|lm)(m|Hq|l
Hﬂ:< )5 +5 Y Gl Lol (5.59)
m>3 17 ¢&m

The computation of the matrix elements is straightforward. For example, if
we order the basis states so that |j> =1,2and 3 are X, Y and Z, then

X|H 2
Hy = (X|H|X) = ¢, + Z [(X | Ha ) (5.60)
€1 — €
m>3 m
Using (5.9), we can convince ourselves that
2
m
2 (XIHm)[? = [(X|pzm) Pk + [(X [pylm)2k2 + (X |p.|m)|*k?
I3 Y z
(5.61)
so that

[(Xlp;|m)[?
Hu=e+ Y (2m0 22 El_fsm k2 . (5.62)

j=z,y,z m>3
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Due to the symmetry of III-V compound semiconductors at k = 0,

[(X|pylm)|* = [(X|pzlm)|* (5.63)
which reduces (5.62) to
Hy=e1+Ak2+ B (K2 +k2) (5.64)
where
[(X|p=[5)1* 2
m0 531 E
X 2

2m m Ce1—e;
0 0 >3 1 J

The same procedure can be used for the remaining matrix elements, resulting
in

H =
e1+ Ak2 + B (k} + k2) Ckzky Ckzk,
Ckzky 1+ Akl + B (k2 +k2) Ckyk. ,
Ckzk Ckyk. e1+ Ak2 + B (k2 + k)
(5.67)
where
C— h_2 ) (X|pali) Glpy[Y) + (XIpyli) (lp=Y) (5.68)
. €1 — &5
0 >3 J

As discussed in Sect. 5.2, to include the effects of spin-orbit coupling, we
need to use the eigenstates of the total (orbit and spin) angular momentum
|7,m;). The spin-orbit coupling removes the degeneracy between states with
different total angular momenta. For the j = 3/2 and j = 1/2 states the
energy separation is A ~ 9(£)/8, where () is the expectation value of the
spin-orbit function, usually treated as a parameter obtained from experiment.
The spin-orbit energy in GaAs is 0.34eV. As a consequence of this large
energy splitting very often only the lower energy j = +3/2 states are directly
involved in optical transitions.

So, with the addition of spin, and taking into account only the j = 3/2
states, H in (5.58) becomes a 4 x 4 matrix, where the matrix elements are
computed using (5.67). For example, if we arrange the basis states so that

m=]33) .

w
w

~
=
Il
ol oW Nl
I
N =
\/
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3 3
14) = ’5 —§> ) (5.69)
then
o (3r)
1
= SUXTHIX D)+ (Y 1 [H]Y 1) (5.70)

TUX T HY 1) —i(Y 1 [H|X 1)]
—et 5 (k2 +ky) + 5 5 (k2 +ky +2k7) (5.71)

Here we use the fact that the momentum operator p does not couple states
with different spin orientations, so that matrix elements like (X 1 |H|X |)
vanish. In practice, instead of computing the matrix elements (n|p|m) from
first principles, one replaces them with experimentally determined parameters
called Luttinger parameters. For the material systems discussed in this book
there are three Luttinger parameters

27TLO
M = -5 (A+28) (5.72)
Yo = 3h2(A B) , (5.73)
m
Y3 = —3720 : (5.74)

These parameters are determined experimentally using various techniques
sensitive to the band structure. The Luttinger parameters for many semicon-
ductor materials are listed in books like Landolt-Bornstein. Typical values
for some III-V semiconductors are

" Y2 73
GaAs 6.85 2.1 2.9
InAs 19.67 837 9.29

InP 635 208 2.76 (5.75)
GaP 4.2 0.98 1.66
AlP 3.47 0.06 1.15
In terms of the Luttinger parameters,
h2k? h? (kg + kz)
Hy =6 — o (71— 272) — Toy (m+72) - (5.76)

The band structure calculated using the Luttinger parameters is the hole
band structure because the experiments performed to measure the Luttinger
parameters kept track of the hole in an otherwise filled valence band. Chang-
ing to the convention where the hole energy is positive, (5.76) becomes
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h2k2 h? (k2 + k2)
Hy, = Hyp = —=2 -2 — 2 v 5.77
hh 11 0 (m v2) + o m+7) ( )

where the zero-energy reference for Hyy, is usually defined such that €; = 0.
Repeating the above calculation for the other matrix elements, we find the
Luttinger Hamiltonian

Hhh —C -b 0
—c* th 0 b

H= b0 Hy —c , (5.78)
0 b* —c* Hhh
where
K2k2 h? (k2 + k2)
Hyp = z 2 2P TRy
= 5 (m+272)+ 2g (M=)
V3K2 .
= e [v2 (k2 — k2) — 2ivskaky]
h2
b = \/§ 'YBkz (kz - iky) . (579)
mo

Notice that we find several compounds in the list (5.75) for which

M>Y2 =73 (5.80)
For these systems, as long as we are interested in band properties in the
vicinity of k = 0, we can introduce the so-called axial approximation. This
approximation involves replacing the Luttinger parameters v2 and 3 in the
function ¢ of (5.79) by an effective Luttinger parameter

y=220 (5.81)
The function ¢ then simplifies to
V3hr*y ,
e e (ky —iky)? . (5.82)

In the axial approximation, the Luttinger Hamiltonian (5.78) can be trans-
formed into a block diagonal form by a unitary transformation [Broido and
Sham (1985)]

H' =UHU' | (5.83)
where
v* 0 0 —w
0 w* —w 0
U= 0 w w 0 , (5.84)
v 0 0 v
1 .
_ i(3m/4—3£/2)
v=——¢e , 5.85
% (5.85)
w= L ei-m/aver) (5.86)

V2
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and
— ky
& = atan %) (5.87)
Evaluating (5.83), we find the block-diagonal Luttinger Hamiltonian
HY 0
/ r—
H _( 0 HL) , (5.88)
where
v_(Hwmm R
HY = ( o) (5.89)
L_(Hn R
HL = (R, Hhh> , (5.90)
and
R=c| -1y . (5.91)

The block-diagonal basis is

33\ _ |3 _3
232/ Y2 "2/ °

1) ="

=3 o) -wl33)

=l -g)relsa)

m=wl33) s -3) (592)
) Iy = _U*<|XT>\J;§|YT>>_v<|X¢>$§ilYi>> ’

) :w*(IXT>\—/€_:IYT>+\/g|Z¢>>
+w('X“:;g'Y”—\/g|ZT>) ’

3) = w*<|XT)\—/éIYT)+\/g|Z¢>)
w(““jg'”)—\/;zw) ,

) = _U*(IXT>\+/§i|YT))+U(|X¢)\+/§iIY¢)> ' (5.93)
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The axial approximation removes the small anisotropy of the band struc-
ture for different directions in the k., k, plane, resulting in cylindrical sym-
metry around the k, axis [Altarelli (1985)]. To completely diagonalize the
block-diagonal Luttinger Hamiltonian (5.88), we only need to diagonalize
each block individually. This gives the eigenvalues

Hyn + Hi . \/(Hhh — Hy,

Elhk = 5 2

21.2

= 2 5.94
2110 (m +272) (5.94)

Hyn + H Hun — Hin \ 2
Ehhk = hh2 lh—\/( hh2 1h> + [c|? + |b]2

2
) Tl + [bf?

h2k?
= e (n—27%) , (5.95)

where we use 7 and -y, interchangably. Since the upper and lower blocks give
the same results, the band structure is composed of two twice-degenerate
isotropic valence bands with effective masses

mo
mpyp = ————4—— (5.96)
(1 —272)
mo
mp = ———— . 5.97
. (71 +272) (5.97)

Using the Luttinger parameters in (5.75), we obtain

Mpn/Mo  Min/Mo
GaAs 0.377 0.091
InAs 0.302 0.028
InP 0.095 0.095
GaP 0.446 0.162
AlP 0.299 0.279

(5.98)

Figure 5.2 shows the GaAs band structure in the wavenumber region of in-
terest for optical laser transitions.

/ Conduction band

Heavy hole band
Light hole band

A4
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Fig. 5.2. The GaAs energy
bands involved in optical tran-
sitions. The effective masses for
the conduction, heavy-hole and
light-hole bands are 0.067mo,
0.377mo and 0.09mo, respec-
tively



6. Quantum Wells

We continue the development of the previous chapter to include the band-
structure modifications in quantum wells resulting from the quantum-confine-
ment geometry. Section 6.1 shows how the envelope approximation method
incorporates confinement effects into the k - p theory. The influence of quan-
tum confinement on the valence band structure can be quite significant mix-
ing especially the top two bulk semiconductor valence bands, i.e. the heavy-
hole and light-hole bands. We show in Sect. 6.2 how this mixing is treated in
the context of the Luttinger Hamiltonian. Section 6.3 introduces the concept
of elastically strained systems and shows how strain effects may be incor-
porated into the band-structure calculations. In order to compute gain and
refractive index, we need the dipole matrix elements, which we derive in
Sect. 6.4. Up to that point, the hole band-structure calculations are based on
the bulk-material 4 x 4 Luttinger Hamiltonian, which ignores the effects of the
additional split-off hole states with total angular momentum j = 1/2. Section
6.5 describes how these states can be included in the band-structure calcu-
lations. Reasons for doing so involves laser compounds based on phosphides
and nitrides, where the spin-orbit energies are smaller than those of the ar-
senides. The nitride based compounds exist in the cubic and hexagonal crystal
structures. Section 6.6 shows the modifications of the Luttinger Hamiltonian
which are necessary in order to be applicable to the hexagonal geometry.

6.1 Envelope Approximation Method

Figure 6.1 schematically shows the effective potential influencing the carriers
in a quantum-well structure. For an electron in such a structure, the time-
independent Schrodinger equation is

2
(2—’”— + Vo + V) |63) = ealox™) (6.1)
mo
where V) is the periodic potential due to the lattice, V.o, is the confinement
potential due to the epitaxially grown heterostructure, and A represents the
combination of quantum numbers to be specified later for identifying the
quantum-well states. We assume that the potential V.., is sufficiently small
in comparison to Vp and varies sufficiently little within a unit cell, so that
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the new eigenstates may be approximated as the linear superposition of the
bulk-material eigenstates

\ 4
[6Y) = 3 1600 (dn k62" . (6.2)
n,k
Here |¢,, ) is the bulk eigenstate satisfying (5.1) and <¢n1k|¢gw> is the pro-

jection of the quantum-well eigenstate ’¢?W> on the bulk eigenstate |@, k).
In the coordinate representation,

(r|oXV) = " (rlbn i) (Dni| o)

n,k

Y eFTrin k) (gnrle") (6.3)

n,k

where we used the Bloch theorem and |n, k) is a lattice periodic eigenstate
of the bulk-material. Expanding |n, k) in terms of the eigenstates at k = 0,
we find

(|6 = 3 e* T lrim)(min, k) (S| oSV

ok
=Y (Z eik-rwkmk) (rim) (6.4)

where : )

Wimk = Y _(m|n, k)(¢n k83" ) . (6.5)
We note that ;6.3) may be written as

(r|e3™) = D Wam(r)(rim) (6.6)
where "’

Wm(r) = zk: e* T Wk (6.7)

Using (6.3) in (6.1), multiplying the result by exp(—ik’ - 7)(r|m) and inte-
grating over the volume of the crystal, we find

1 . ’
Wnk — 3 1(k—k)~r
ngk \ kV[/d re (m|r)

h2k?
|

ih?
?771—0+€n_6)‘ — m_ok‘v+‘/;;0n(z) <7'|n> =0 . (68)

As indicated in Fig. 6.1, the quantum-well structure gives rise to two
length scales: one for coarse spatial variations on the scale of the heterostruc-
ture and the other for fine spatial variations on the scale of the lattice unit
cell. It is sometimes useful to differentiate between these two length scales,
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Ver
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Fig. 6.1. Effective potential for a quantum-well structure showing the two length
scales: a coarse one characterized by the quantum-well width w, and a fine one
characterized by the lattice constant a

and we do so in the following by using upper-case letters (e.g., R, Z,and R )
for the coarse variations and lower-case letters (e.g., r, z, y, and z) for the
fine variations. We make use of these two scales when evaluating the spatial
integrals in (6.8). First, we write 7 = R; + p, where R, is a lattice vector and
p lies within the unit cell. Then a typical integral can be evaluated as

1 ; /
V/Vd?’rel(k-k>"<m|r><r|n>
1 s, 1 e
= 2 e [ a8tk 2 o) pln)
v=1 v

1
= b, [ &0 (mlp)(pln) = S (69)

Here we note that (R, — p|n) = (p|n) and the crystal volume, V = Nv
[compare (2.102, 103)]. Similarly,

l/d3rei<k—k’>-’<m|r> _f_k.v (r|n)
Vv v mo

= Ok L (6.10)
mo
and

1 . ’
7 [ @ i) Vo 2) o)

N
1 ; : 1 ; /
~ i(k—k') - R, v\ 3 Ji(k—KE')-p
~ & SRRy, (290 [ et P ol

v=1
~ VE, S - (6.11)

Here we abbreviated p,,,,, = (m|p|n) and
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N
Vi = v SR (2Y) (6.12)
v=1
In the evaluation of (6.11), we assumed that the external potential varies
little over a unit cell so that Veon(2) >~ Vion(Z”) and expli(k — k') - p] ~ 1
which is a good approximation in the case when the electronic state mixing
is such that |k — k'| is much smaller than the reciprocal lattice vector. With
these results, (6.8) becomes

h2k? h
(?— + 6n> Wank + — Y kD Wamk + 3 Vi Wani = eaWanik
mo mo 4= = (6.13)

This equation shows that within the current set of approximations the con-
finement potential does not mix states from different bands.

To solve the set of equations given by (6.13), we again use perturbation
theory. First we consider the bands that are nondegenerate at k = 0, except
for the spin degeneracy. An example is the s-like conduction band. We label
that band with the subscript n. Equation (6.13) for all other bands may be
approximated by

h2k? h
omg T Wik + m—ok PinWink = axWijk (6.14)

where we ignore the effects of Vo, and consider only the coupling to the nth
band. Approximating ) ~ ,, + h%k?/(2my), we have

Wijk = — : -Wank - (6.15)

Substituting (6.15) into (6.13) for the nth band gives
2k2 h2 k- 2
(0 P

5t o Wink + Z Vel Wank = axWank
mo My - o

En —Em
il (6.16)
which can be written in the form
+h2k2 Wank + > Vi Wankr = eAW, 6.17
En 2mn Ank k—k'Wank’ = ExWink ( . )

k/
where m, is the effective mass defined in (5.42). The Fourier transform of
(6.17) is
h2v2
[_ 2my,

+ VCOH(Z):| Win(R) = E)‘nW)\n(R) , (6.18)

which we recognize as the equation for a particle in a one-dimensional poten-
tial Veon(Z). Wian(R), which varies slowly compared to (r|m), is the envelope
function introduced (6.4-7).
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Equation (6.18) is separable so that
W)\"(R) = Anzn(Z)BkLTL(R_L) ] (619)

where A = nzk, and R is a vector which lies in the plane of the heterostruc-
ture. Note, that the function A(Z) is the generalization of the function {(z)
of Sect. 1.7. This Z-dependent parts of the envelope functions obey

d A d
dZ2m, dZ

i.e., the motion in the direction perpendicular to the well is that of a particle
with mass m,, in a one-dimensional square well potential. Since the effective
mass in the Z-direction of a quantum-well heterostructure depends on space,
we must symmetrize the second derivative as shown in (6.20) to assure that
the Hamiltonian is Hermitian. For the case of a single quantum-well, (6.20)
reduces to (1.39). Furthermore,

+ ‘/con(Z) nzn(Z) = EnznAnzn(Z) ) (620)

~%m 1Bk, n(RL) =€k, nBr, n(RL) , (6.21)

which describes free-particle motion in the plane of the well. The total energy
is

Enzk,n = €En + Enzn + €k n (622)
where
h2K?
Ekyn = QmL , (6.23)
n

and the solution for €,,, is discussed in Sect. 1.7. Hence, the energy of the
quantum-confined electron has contributions from the bulk structure (&,,), the
quantum confinement (£,,,), and the free motion in the z-y plane (ex, ).
Instead of an infinite number of states in every direction, the z-direction has
only a finite number of states, which are the bound solutions of (6.20).

6.2 Band Mixing

The effects of quantum confinement are much more interesting for bands that
are degenerate at k = 0, such as the top two valence bands in GaAs and simi-
lar materials. Let us label these degenerate bands with the subscripts 1 to V.
Repeating the steps discussed in the previous section for the nondegenerate
case gives now

h

WAjk 2
m0(€1 — E]

Zk PinWink (6.24)

where j > N. Substituting (6.24) into. (6.13) for the N degenerate bands
yields
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h2k? k-p,ik-Djm
(51 5o )Wxnﬁ—zz B Py,

+) Vi Wankr = exWank (6.25)
o
where we assume that the degenerate states have equal parity, so that the
matrix element of p between any two degenerate states vanishes. With the
exception of the terms containing V,°°},, (6.25) is similar to (5.49) and (5.50).
If we repeat the degenerate perturbation theory outlined in Chap. 5, we get
for the holes

Hyn Wik + RWior + z Vel Wae = exWouk
k/

HnWyok + "Wy + Z Vel Wik = exWoak
k/

HiyWsr + RWyar + Z Vil Wask = exWask
kl

exWia (6.26)

HynWiak + R*Wize + Z V2 Waarr
kl
where we used the states given by (6.5) and Hpy, Hin, and R are defined in
(5.77, 79, 91), respectively. The symmetrized Fourier transform of (6.26) is

B o N S A
0Z 2munz 0Z  2mpny X2 8Y2
2
+\/§h ki (
2m0

) Vi (Z)] Wan(R)

0
okl — 273 8Z> Wim(R) = ex1xWan (R) (6.27)

for n,m = 1,2 and 4,3 and

o K 0 h? 52 92
[_8_2 2miz 0Z  2mun. (3X2 * 8_}5) + Veon (Z)} Win(R)
V3h2k 9

for n,m = 2,1 and 3,4. Similar to the situation for the bulk-material, the
solutions to (6.27, 28) are doubly degenerate and we only need to consider
either n = 1,2 or 3,4. We identify n = 1 and 4 as hh (for heavy hole) and
n =2 and 3 as lh (for light hole), so that

mo
Mhhz = —=—
M= 27
m Mo
1h = @&
i Y1 + 272
m Mo
hhl = )
Y1+ 72
m
Mihl = 9 . (6.29)

" =72
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As in the nondegenerate case, the quantum-well states are products of
two-dimensional (X,Y") free-particle eigenstates with the one-dimensional
(Z) square-well eigenstates of (6.18). The quantum numbers are A\ —
(nz,k1), where nz is between 1 and Nzy), for the heavy holes and u, is
between 1 and Nz, for the light holes, respectively. Nz w, and Nz, are the
numbers of solutions to the Z part of (6.27, 28). A difference between the
present situation and the case of isotropic bulk semiconductors is that the ef-
fective mass in the Z-direction deviates from that in the transverse direction
for both heavy and light holes. In fact, according to (6.29), the states with
the heavier effective mass in the Z-direction have the lighter effective mass
in the transverse direction. This is commonly referred to as mass reversal.
The convention is to use the terms light and heavy holes according to the
respective mass in Z-direction. Figure 6.2a illustrates the result of mass re-
versal. At k; = 0, the hole energies are the eigenvalues of (6.27), with masses
my, = Mmphz and my,z for the heavy and light holes, respectively. Because
Mhhz > Minz, the heavy-hole state is below the light-hole state in energy
at k; = 0, as shown in the figure. If we ignore the nondiagonal terms in
(6.27, 28), then the band dispersions are given by (6.23), with m, = mun1
and myp, for the heavy and light holes, respectively. Since mpn, < muny, the
heavy-hole band has a higher curvature than that of the light hole, and the
hole bands intersect as shown in Fig. 6.2a.

Of course, the band-crossings are unphysical and are removed when we
solve the full equations (6.27, 28). To do that, we first write these equations
in matrix form,

EWnkL =&nk, Wnki y (630)

where n is the band index and H is a Nz x Nz matrix with Nz = Nz, +
Nz n. The diagonal matrix elements are

o B 8 mk

Hy;=—-—— — 6.31
0Z 2mpz 0Z  2my,, (6.31)
and the off-diagonal elements are
V3h%k, 0
H;,=—= ki —2y3s— | . .32
J 2mo <’Yz i ’YsaZ) (6.32)

The matrix elements, which involve integrals with the eigenfunctions of (6.27)
are usually evaluated numerically. The diagonalization of (6.30) then gives
the hole band structure (see, for example, the solid curves in Fig. 6.2b). The
removal of the band crossings by the nondiagonal elements, (6.32), also leads
to nonparabolic hole energy dispersions (compare solid and dashed curves in
Fig. 6.2b).

The state mixing due to the nondiagonal terms in the Hamiltonian H
involves both confined and unconfined states of the quantum well. Figure 6.3
explains the differences between the confined and unconfined states. We label
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(a) Massreversal

hh ————— k,

v

(b) Band mixing

Fig. 6.2a, b. (a) Heavy (hh) and
light (Ih) hole bands in the ab-
sence of band mixing. (b) Solution
of the full hole Hamiltonian (solid
curves) showing the removal of the
degeneracies that are present with-
out band mixing (dashed curves)

as confined states those states which are described by the bounded solutions
of (6.27,28). The eigenfunctions of confined states are typically localized
within the quantum well. The unconfined states are the states whose energies
exceed the quantum-well confinement potential. The eigenfunctions of the
unconfined states extend into the barrier regions.

The band-structure calculation then involves solving (6.30) for a basis
consisting of confined and unconfined states. To do so, we first evaluate the
matrix elements, (6.31, 32), and then diagonalize H, (6.30), which gives the
hole band structure and eigenfunctions. Figure 6.4 shows the results for a 4 nm
Ing 2 Gag.sAs quantum well between 8 nm GaAs barriers. For this example, the
confined states are the n = 1 and 2 heavy hole states. The unconfined states
consist of three heavy hole and two light hole states. The effects of mixing
between confined and unconfined states are clearly shown by the noticeable
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Fig. 6.4. Hole band structure for a 4 nm Ing 2Gag s As/GaAs quantum-well struc-
ture, showing the effects of coupling between confined (solid curves) and unconfined
states (dashed curves)

change in slopes in the two energetically lowest hole bands (solid curves) at
kw/m > 0.3. In this case the mixing is between the confined heavy hole states
and the unconfined light hole states.
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6.3 Strained Quantum Wells

Semiconductor heterostructures can be grown epitaxially also with materials
that are not perfectly lattice matched, provided this mismatch is not too
large. A too large mismatch may prevent epitaxial growth altogether or lead
to fractures, island formation, and other usually undesirable defects. How-
ever, under proper conditions, one may obtain a stable structure in which
the materials are under elastic strain. One situation of practical interest is
the case of relatively thick barriers and thin quantum wells grown on a sub-
strate of barrier material. Ideally, in this case the well material assumes the
lattice constant a; of the barrier material. Hence the well material is under
strain, which is compressive (tensile) if the lattice constant of the barrier is
smaller (larger) than that of the well material. Strained-layer quantum wells
are interesting for applications in semiconductor lasers, because they allow
both, a wider range of material combinations, and a certain amount of band
structure and gain engineering. The simplest example is a frequency shift of
the gain spectrum, but gain increases are also possible.

To appreciate the band-structure engineering aspect, we discuss in this
section the simplest modifications of quantum-well band structures caused by
elastic strain. For this purpose, we modify the analysis of the previous sections
of this chapter to include the most important strain effects. In particular, we
repeat the k-p analysis, here with the perturbation due to strain added
to that due to the k- p term. This theory is originally due to Pikus and Bir
(1960), and we more or less follow their original work. Rather than presenting
the general theory of band structures in strained semiconductors, we restrict
our discussion to the ideal case of a single quantum well with cubic symmetry
and bulk lattice constant a,,, which grows under elastic strain in the z-y
plane and assumes the lattice constant a; of the barrier material. Under
these conditions the strain tensor is

ezz O 0
e= 0 ey O , (6.33)
0 0 e,

where the in-plane components are given by the lattice mismatch parameters
ap —a
ere = €yy = 2% o ey - (6.34)
Qo

As a consequence of the structural geometry, all strain components
eap=0fora#p , (6.35)

so that the only other nonvanishing component is e,,. To determine e,, we
make use of the fact that there is no net force acting pependicular to the
quantum-well plane. We can write

Z, = Cizezy + Cl2eyy + Chiez, (636)
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where Z denotes the force acting in z-direction and the index of Z is the nor-
mal of the plane, which in this case is also in the z-direction [Kittel (1971),
Chap. 4]. The quantities C;; are the elastic moduli or elastic stiffness con-
stants. Without going into detail, we just note that cubic symmetry requires
that only three, i.e., C11, C12, and Cyq4, of the generally possible twenty-one
C;; are unequal to zero. The values of these material dependent constants
can be found, e.g., in Landolt-Bdrnstein (1982)

a(A) C11(GPa) C12(GPa) Cy4(GPa)

GaAs 5.653  11.88 5.38 5.94

AlAs 5660 125 5.3 5.4

InAs  6.058 8.33 4.53 3.96 (6.37)
InP 5869  10.22 5.76 4.6

GaP 5451  14.1 6.2 7.0

AP 5451  13.2 6.3 6.2

where the MKS units for C;; is giga Pascal (GPa). For the condition that
Z, =0, (6.34, 36) yield
Cr2

€2z = 201160 . (6.38)

Knowing the components of the strain tensor, we now proceed with the
analysis of the band-structure modifications. Clearly, in the strained material
an equation like (5.5) holds, where however all space variables are now in the
strained system. On the other hand, the material parameters are given in the
unstrained coordinate system. Therefore, we need to transform (5.5) from the
strained coordinate system back to the unstrained system. Since we always
assume small amounts of strain, we can expand the functions of the new
variables in the basis of the old, unstrained variables. In terms of the vector
r in the unstrained lattice, the component « of the vector ' of the strained
lattice is

T =Tq + Zeagrg . (6.39)
B

Ignoring all terms of order O(e?) or higher, we can write

Z a’f‘g
ar! drg

_ Z__l___i
o 3 5a,g+eaga'rg

)
> Y (bas — €at) gy (6.40)

B

and correspondingly
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62 62 62
a2 = 2 2%:6“"—67«,1(%5 : (6.41)
kaPly = kaPa — Y _ kaCappp (6.42)
]
and
Vo(r') = Vo (r) + ) Vapeas (6.43)
aB

where V5 is the derivative of the lattice periodic potential V; () with respect
to eqp.
Inserting these expansions into (5.5), we obtain

V2 h
[ o +Vo(r)+—k p+ZS Pe g]|nk>
af
R2k2
= <5nk — 2m0) |nk) (6.44)
where
h B2 0?2

Saﬂ = _kapﬁ + ea,ﬁa 87' + Vaﬁ . (645)

The comparison shows that (6.45) and (5.5) differ only by the additional
term proportional to the strain tensor elements. Hence, we can now repeat
all steps of the previous sections including the additional strain terms. For
example, in the k- p theory of Sect. 5.3 we obtain

ZWIJ(k) { [— + E;(0) — E,»(k)] 8ij + — n k Py +s,]} =0 (6.46)

where

« {e3 1
Sij = ZSﬁﬂeag and Sijﬁ =7 /d?’r uf(0,7)Su;(0,7) . (6.47)
ap

In the subsequent perturbation theory we keep terms of order k, k2, as in
Sect. 5.3, but now we include also terms linear in the strain tensor, O(e). We
ignore all contributions containing products of £ and strain tensor, or higher
orders. This way, the effective k - p Hamiltonian is generalized as

Hy = Eodij + — k P+ > (D?jﬁkakg-i-sgﬁeag) . (6.48)

a,f=z,y,z

Equation (6.48) shows a one-to-one correspondence between the terms pro-
portional to koks and to eng. Hence, we can proceed to generalize the Lut-
tinger Hamiltonian simply by adding the proper e,g terms to the correspond-
ing ko kg terms. As in the unstrained case, where we introduced the empirical
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Luttinger parameters, we do not attempt to explicitly compute the matrix
elements entering the strain part of the Hamiltonian. Instead, we introduce
new parameters, the so-called hydrostatic and shear deformation potentials,
which are obtained from experiments.

The strain induced addition to the term b, (5.79), vanishes for the present
example,

bstrain X (ezz - iez'y) =0 ; (649)

since e,; = e,y = 0, see (6.35). The correction to the term ¢, (5.79), vanishes
as well,

Cstrain X C1(€zz — eyy) —cCoezy =0 (6.50)

since ezg = eyy and ez, = 0. Hence, we have only strain corrections to the
diagonal terms in the Luttinger Hamiltonian

Hggram 0 0 0
0 Hjemo 0 0
o= . 6.51
Hstram 0 0 Hlsk:ram 0 ( )
0 0 0  Hprein

Using the one-to-one correspondence between the terms proportional to
kokp and to eqp, and replacing the parameter combinations h%y1/2mo and
h2y2/2mg in (5.77, 79) by a; and ag, respectively, we write the strain correc-
tions Hyirain and H§™" in complete symmetry to the respective unstrained
parts:

Htrain — _e (ay — 2a2) — (ezz + €yy)(a1 + a2) (6.52)
and
Hitrain — _e_ (a1 + 2a2) — (ezz + €yy)(a1 — az2) . (6.53)
Reordering the terms and using (6.34, 38) we obtain
HEr2in = ) (egy + €yy + €22) — a2(€qq + €yy — 2€22)
— e Cuu—Ci2 9ane C11 +2C12
= 105 200
des
= —bey — == (6.54)
2
where
Cun—-C
S = 2a160———22 (6.55)
Cn
and
Cn +2C
(565 = QGQCOLE . (656)
Cn

Similarly, we obtain
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; 1)
Hlsttl,ram = ey + % . (6.57)

Representative values for the deformation potentials are listed below:

a (eV) az (eV)

GaAs -T7.1 -1.7
AlAs —5.64 —-1.5
InAs -5.9 -1.8 (6.58)
InP —6.35 -2.0
GaP -9.3 -1.5
AlP -554 —1.6

To compute the strain-induced energy changes, we diagonalize the total
Hamiltonian

Htotal =H' + Hstrain s (659)

where H' and Hgtrain are given in (5.88, 6.51), respectively. For the case of
bulk-material we obtain

Hyn + H Hyn — Hin — 6e5\°
ey = g “‘+55Hi\/<———“‘ - ) +lef? + [b]?

2k2

I} Ocs
= ——(m £ 72) +8em £ =2 + Olka, kg, # 3) . (6.60)
2m0 2

This result shows that dep shifts all valence bands by the same amount.
Hence, it can be considered a strain-induced bandgap shift. The term de/2,
however, enters the heavy- and light-hole energies with opposite sign. Using
the definitions (5.96, 5.97), we obtain from (6.60)

h2k2 O
= (5 _— — . 1
Ehh 2mhh + €H 2 (6 6 )
R2k2 d¢e
= ) = 62
€hh omm + oy + 5 (6.62)

showing the occurrence of a strain-induced heavy-hole light-hole splitting by
the amount de,.

Figure 6.5 indicates that the strain-induced energy shifts can be very
different for compressive and tensile strain. The figure shows the heavy and
light hole energy levels at k£ = 0. For compressive strain, the hydrostatic shift
increases the hole energies of the heavy and light holes by an equal amount,
eg. However, the shear shift decreases the heavy hole energy and increases
the light hole energy by €5/2. This leads to a greater separation between
heavy and light hole states, as shown in the figure. For tensile strain, the
hydrostatic and shear energy shifts reverse in sign from the compressively
strained case. The usual result is a reduction in the heavy and light hole
energy separation (Fig. 6.5).
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Fig. 6.5. Strain-induced energy shifts for heavy and light hole states

The relative energy placement of the heavy and light hole states at £k = 0
plays an important role in the energy dispersions of the hole bands. A good
example for illustrating this an In,Ga; _;As quantum well between InP barri-
ers. The structure is unstrained for z ~ 0.53, and under tensile (compressive)
strain for smaller (larger) indium concentration. For a well width of 2 nm,
the confined states consist of a heavy hole and a light hole state. In the un-
strained structure, the bandgap energies for the heavy and light holes are
equal. As discussed earlier, the heavy hole has the lowest energy as shown in
Fig. 6.6 (middle). The lowest energy band then starts out from k& = 0 with
a curvature corresponding to mpp. , until mixing with the light hole states
changes it to a smaller curvature. For the compressively strained case (bottom
figure) with z = 0.73, the light hole bandgap is shifted further up in energy.
This shifts the mixing of heavy and light hole states to higher k, resulting in
a higher band curvature over a greater range of k£ > 0 for the lowest energy
hole band. The situation is reversed for the tensile strained case (top figure)
with £ = 0.33. Here the light hole bandgap energy is sufficiently reduced so
that the light hole state has lower energy at k = 0. The lowest energy band
curvature then corresponds to that for the higher mass, m .
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Fig. 6.6. Band structure for 2 nm In,Ga;_,As/InP under tensile strain (top), no
strain (middle), and compressive strain (bottom) conditions

6.4 Dipole Matrix Elements

In order to use the computed band structures in the calculation of gain and
refractive index, we have to replace the kinetic energy terms in the micro-
scopic expressions by the respective single-particle energies computed from
(6.30). In addition, we have to take into consideration that the dipole matrix
elements also change. We therefore compute the dipole matrix elements for
light which propagates along the z-y plane of the quantum well, as is usually
the case in edge emitting semiconductor lasers. Here we can have two possible
polarization directions of the light: in the case of a TM mode the polarization
is parallel to the z-direction, and for a TE mode the polarization is in the z-y
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plane. To have a well defined configuration we assume TE polarization along
the z-direction. In addition to the energy dispersions, the calculation of gain
requires the dipole matrix elements. To proceed with the derivation of the
dipole matrix elements for TE and TM polarizations, we first summarize our
results for the wavefunctions of the conduction and valence bands.

The wavefunctions for the conduction electrons are

(P|Gok . ) = €5+ L Aen(Z) (r|Sms) (6.63)

Correspondingly, the wavefunctions for the hole states are

<r‘¢nki>_elki Z Z nm,n mnm( )<r|m) (664)

m=1n,,=1

for the upper block, and

(r| o, ) = ek B Z Z L aAmn,, (2)(rm) (6.65)

m=3 nm,m=1

for the lower block of the Luttinger Hamiltonian (5.88).
For the TM mode we have to evaluate the matrix element

prm = (G, m, | €2|0nk, ) (6.66)
where h = U or L. Substituting (6.63, 64) or (6.65) into (6.66) gives

W= 3 A2 A (22 [ Ep(smuloles(rim)
o (6.67)

where we split the integral over all space into the sum over unit cells v and the
integral within the unit cells, (2.102). The m-summation runs over m = 1,2
for h = U, and m = 3,4 for h = L. The n,, summation is over the number
of heavy or light hole confined quantum-well states.

We first note that because of the symmetry between ms = +1/2 electron
states, and the symmetry (except for phase factors) between the upper and
lower eigenfunctions corresponding to the heavy (or light) holes, we have

(05, ]ez] 0%, )| = [(¢ Oy |ezlol, )|
= (5,1 lez|oB ) =1 S, lezlob ) (6.68)

Therefore, in terms of the gain calculations, we can limit the dipole matrix
element derivation to electron states involving ms; = 1/2 and hole states in
the upper block. We obtain,

}L;EM = \/‘Z n2 ]N ZAez A2 TL2(Z )(S T |€Z|ZT> ) (669)

and the absolute square is
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2
(AcilAz.n,)| (ST le2lZ 1), (6.70)

where

(Al Az) = = 37 Aci(2) Az, (2) (6.71)
and we used (5.86) to see that

w2 = % (6.72)

For the TE mode we have to evaluate

HMTE = <¢nklms|em|¢nkl> . (6.73)

Using the same arguments as before, we can convince ourselves that for
the case of conduction band spin 1 the only nonvanishing matrix element
is (S 1|X 1). Furthermore, we use the results from Chap. 5 to get

WIE = %;Aei(zu)[—\ﬁv Z Crs A1 (22)

1 *
e }:c,z,jAz,m(zy)] (1 lealX 1) . (6.74)
n2
The absolute square is

e

2
n1 J AetlAl n1 Ae1|A2 n2>

an

|<S¢|ea:|z¢ {

<Z e g (Aei A1 n, ) <Z 2, ¢ ei|A2,n2>> cos(2¢>)] .

(6.75)

Here we used

viw = —1e?

(6.76)
where ¢ is the angle between k and x.

Figure 6.7 shows typical quantum-well TE and TM dipole matrix elements
as a function of carrier momentum. To identify the transitions we use the
following notation: we label each band according to the quantum numbers
that are valid at the zone center, k¥ = 0. The conduction bands are labeled
en, where n = 1,2,3, ... are the square-well bound state quantum numbers.
Similarly, since there is usually little band mixing around & = 0, the valence
bands can be denoted as hh1,hh2,... and Ih1,1h2, ... where hh and lh stand
for heavy hole and light hole, respectively. We emphasize that away from the
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Fig. 6.7. TE (top) and TM (bottom) dipole-transition matrix elements versus
transverse carrier momentum for 4 nm Ing.1Gao.9As/Alp.1Gag.9As

zone center, the valence bands are mixtures of heavy and light hole states
with possibly different square-well quantum numbers. This is evident, e.g.,
by the changes in the band curvatures for & > 0, as seen in Figs. 6.2, 4.

The behavior shown in Fig. 6.7 can be understood from symmetry ar-
guments. From the derivations resulting in (6.69) and (6.75), we note that
because of the symmetry of the electron and hole lattice periodic functions,
the TM dipole matrix element only couples the electron state to the light hole
components of a state, whereas the TE dipole matrix element has contribu-
tions from both electron to heavy hole and electron to light hole transitions.
This property shows up in Fig. 6.7 (bottom) where the TM el-hhl dipole
matrix element is negligible for small £ values. This matrix element increases
at higher k because of the mixing of heavy hole and light hole states in the
hhl band. The figure also reflects the fact that the dipole matrix elements

6.5 6 x 6 Luttinger Hamiltonian 185

involve inner products of envelope functions. Since the envelope functions
are the orthonormal eigenfunctions of a square well potential, a dipole ma-
trix element that couples states with different square well quantum numbers
is negligible around the zone center, thus explaining the smaller values for
the el-hh2 curves in Fig. 6.7. Again, because of state mixing these matrix
elements grow with increasing k.

6.5 6 X 6 Luttinger Hamiltonian

In this section, we describe the changes to the hole band-structure problem
when the j = 1/2 states are taken to account. Reasons for including these
states involve laser compounds based on phosphides and nitrides, where the
spin-orbit energies are smaller than those of the arsenides (e.g., 0.11eV and
0.017eV for InP and GaN, respectively, compared to 0.34eV in GaAs). The
derivation of the Luttinger Hamiltonian is similar to what is described in the
previous chapter. The end result is again a block diagonal Hamiltonian:

H= (I%U ;L> (6.77)

where

Hyhn Hunh  Hihso
H*=| Hhnn Hn Hnso | (6.78)
Hso,hh Hso,lh Hso,so

and HL = (H ")T. The diagonal matrix elements for the submatrices Hyp,
Hy,, and Hy, are

¢ h2k?
Hphnhhn = —Frpoy — —— , 6.79
hhn,hh hh, 2me (71 + 2] ( )
h2k?
Hin = —peonf _ 2% (o _ 6.80
lhn,lhn lh,n 2mo (m—7) , ( )
h2k?
Hsons = _Econf - ) .81
,s0n so,n 2mo Ba! (6 8 )

respectively, and the off-diagonal elements are
Honom =0 . (6.82)

The couplings among heavy, light and split-off holes are described by the
matrix elements for the submatrices Hpp i, Hyh,ch, and Hip ch:

V3H2k,

e d
Hynnlhm = 2_7710/ dz upn,n(2) (”_yki _ZVSE) Uh,m(2) , (6.83)

3 R%k ° d
Hhhn,som = \/j = dz Uhh,n(z) <7k_L + ’73d—z'> uso,m(z) ) (6'84)

2m0
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Hinnsom = / dz U n(2)
Es hz'YQ ( 2 d2 > 3}7,2’)’3]{,1 d :|
x| = + k2 42— ) + 0 ugom(2) .
[\/E V2me \ 5 Td2? mo dz m(2)
(6.85)

The diagonalization of (6.77) gives doubly degenerate hole bands, one
from the upper block and the other from the lower block. The eigenfunctions
from the upper and lower block are similar except for phase factors. Figure
6.8 shows an example of the contibutions of the spin-orbit states to the band
structure of a 4nm Ing 5Gag 5P/ (Aly.5Gag.5)0.5In9 5P quantum well. The low-
est energy hole band keeps its purely heavy hole character at £ = 0. However,
the second hole band is now a mixture of the light hole and split-off states
at k=0.

— hhl

40 lh 1/sol ~

- <

E (meV)

80

KN

0 0.4 0.8 1.2

VZ

Fig. 6.8. Hole band structure for 4 nm Ing.5Gao.s P/(Alo.s Gao.5 )o.5Ino.sP quantum-
well structure with (solid curves) and without (dashed curves) split-off states taken
into account

120

The effects of mixing between the j = 3/2 and j = 1/2 states are more sig-
nificant in the optical dipole matrix elements. As in the previous sections, we
can use the spatial symmetry of the bulk-material states to identify the elec-
tric field polarizations parallel (TM) and perpendicular (TE) to the growth
direction. For the corresponding dipole matrix elements we obtain

2

2 z
|N;rjM |P Z 2 .g (Aeil A2,ny) — Z 'ns.j (Aeil A3 ng) (6.86)

na=1 n31
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2

Z no ] €i|A2,n2 Z ns ] Ei|A3,n3>

nzl nz=1

T Zl m] €i|A1,n1)|2> . (6.87)

n11

LB = ||

Figure 6.9 shows the quantum-well dipole matrix elements for transitions
involving the electron band el and the two lowest energy hole bands hh1l and
Ih1/sol.
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2
Mre | S L ™~
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Fig. 6.9. TE (top) and TM (bottom) dipole-transition matrix elements versus
transverse carrier momentum for 4 nm Ing.5Gao.s P/(Alg.5 Gao. 5)0.5In9 5P quantum-
well structure. Only the transitions involving the two lowest-energy hole bands are
shown. The solid and dashed curves are computed with and without the split-off
states, respectively
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6.6 Wurtzite Crystal

A very interesting and significant recent development in semiconductor lasers
is the demonstration of lasing in wide bandgap group-III nitride compounds.
There are many applications for compact light sources emitting in the spectral
region of blue-green to uv wavelengths. In several aspects the group-III nitride
compounds are quite different from those of conventional near-infrared lasers.
For example, the spin-orbit splitting is significantly smaller so that the effects
of the j = 1/2 states are magnified. Also, these compounds typically grow in
the hexagonal wurtzite crystal structure.

In this section we discuss a k- p treatment for wurtzite structures. We
consider quantum wells of AlGaN or InGaN alloys, pseudomorphically grown
along the c axis of the hexagonal wurtzite crystal structure. Figure 6.10 com-
pares the bulk cubic and wurtzite structures. We see several basic differences.
They are: (a) the asymmetry between the directions parallel (z) and per-
pendicular (L) to the ¢ axis, (b) the removal of the heavy and light hole
degeneracy at the I" point (zone center, k = 0) due to the spin-orbit interac-
tion, (c) the small spin-orbit splitting leading to significant mixing between
j=1/2 and j = 3/2 states, and (d) the nonparabolicity of the hole bands in
the L direction due to this mixing. For the conduction band, the zone center
states are the degenerate states |\S 1) and |S |). For the valence bands, the
important zone center states are the six p-like hole states with total angular
momenta j = 3/2 and 1/2.

Bulk wurtzite Bulk zincblende
E E
A A

/e
\
N

e T
lh
e
k <=

/L

ch

k, ——— k| - >k,

Fig. 6.10. Bulk-material band structures for wurtzite (left figure) and zincblende
(right figure) semiconductors. The conduction band (e) is shown together with the
top three hole bands. Following the usual convention, the hole bands are labeled
heavy-hole (hh), light-hole (lh) and crystal-field split-hole (ch) for the wurtzite
structure. For the zincblende structure, the spin-orbit split-hole (so) band replaces
the ch band
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Other bulk-material properties important to the quantum-well band
structure include the effective masses for the electron (e), heavy hole (hh),
light hole (Ih) and crystal-split hole (ch), parallel and perpendicular to the
c-axis. The hole effective masses may be expressed in terms of parameters
usually denoted as A;, A; and As. The energy separation between the hole
states at k£ = 0 are described by the two energy splittings A; and A,. The pa-
rameters relating to strain effects are the lattice constants a (L direction) and
¢ (z direction), the elastic constants C;1, C12, C13 and Cs3, the conduction
band deformation potentials a., and a.,, and the valence band deformation
potentials Dy, Dy, D3 and Dy. Table 6.1 lists the typical values for these
parameters

Table 6.1. Material parameters for AIN, GaN and InN used in quantum-well band-
structure calculations

AIN GaN InN
Me,z /Mo 0.31 0.18 0.11
Me, 1 /Mo 0.32 0.20 0.11
Ay —4.00 —6.67 -9.09
Az —0.23 —0.50 —0.63
As —2.07 -3.12 —4.36
E, (eV) 6.20 3.44 1.89
A (eV) —0.221 0.019 0.025
Az (eV) 0.0043 0.0063 0.0003
diz (1072 mV™1) -2 -1.7 -1.1
a (A) 3.081 3.150 3.494
c (R) 4.948 5.142 5.669
C11 (GPa) 398 396 271
Ci2 (GPa) 140 144 124
C13 (GPa) 108 103 92
Cs3 (GPa) 373 405 224
(ac: — D1) (eV) —4.21 —6.11 —4.05
(acL — D2) (eV) —12.04 —9.62 —6.67
D3 (eV) 9.06 5.76 4.92
Dy (eV) —4.05 —3.04 —1.79

For the bandgap energies of the composite materials, typical empirical
formulas are:

Ey =189z + 3.44(1 — z) — 1.02z(1 — ) (6.88)
for In,Ga;_,N, and
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E, = 6.282 + 3.44(1 — z) — 0.98z(1 — z) (6.89)

for Al,Ga;_,;N

In materials like the group-III nitrides the strain induces an electric field
because of an effective displacement between the core electrons and the ions
(piezoelectric effects). It is convenient to incorporate this piezoelectric effect
in the band-structure calculations instead of including it into the electron
many-body Hamiltonian, (3.6). For this purpose the energy eigenfunctions
are now written as superpositions of the subband states,

Ser(T) = eFTe Z alem(2)(PST) (6.90)
Yo (r) = ek re Z nlem(2)(P|S L), (6.91)
for the electrons, and

3 N,

Sra(r) = ¥ Y 0 Y AL umn,, (2)(rlm) (6.92)
m=1n,=1
6 N,

Gra(r) = e® 7NN AL stumn, (2)(rm) (6.93)

m=4n,=1
for the holes. The basis (r|m) for the holes are the bulk-material hole eigen-
functions at zone center in the absence of spin-orbit coupling and uq, m(2) is
an envelope function. These eigenfunctions may be expressed in terms of the
orbital angular momentum |I,m;) and spin eigenstates | T (})):

1) = a*|L 1 1) +ofl,~1)] 1) (6.99
2) = BIL -1 1)+ FIL1I Y (6.95)
3) = BL0)[ 1) +BL,0)| 1) (6.96)
[4) = " [L, D[ 1) —ell,-1)[{) , (6.97)
5) = BIL -1 1)~ AL Y1) | (6.98)
6) = 8110} 1) + BILO) L) (6.99)
\];vh/elze V20 = expli(37/4 + 3¢/2)], V28 = expli(r/4 + ¢/2)], and tang =

The influence of strain on the energy levels may be determined with the
help of Fig. 6.11, which shows the bandedge shifts for the electron and holes
in the presence of compressive strain. (The sign of the shifts are reversed for
tensile strain.) The shifts may be grouped into

ge = —2e (aCL — gﬁacz> , (6.100)
Cs3

c
en = —2e [Dz + Dy — C—: (D + D3)] : (6.101)
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Unstrain Compressive strain
(no lh-ch coupling) (no lh-ch coupling)

increasing hole energy

\

Fig. 6.11. Energy shifts at zone center due to strain in the wurtzite quantum well.
The level shifts are drawn for the case of compressive strain, ignoring coupling the
lh and ch states. The shifts are in the opposite direction for tensile strain

c
£ = —2e <02 - C_;ZDl) , (6.102)

where eg = (ay — ag)/aq and ay() is the lattice constant in the quantum-well
(barrier) regions.
Using a basis consisting of the following 2N, eigenfunctions,

§nr (1) = ten(2)(r|ST) (6.103)
€ni(r) = Uen(2)(r|S 1) (6.104)

where 1 <n < N, we get the matrix equation

He 0 ch ct
( 0 He) <CJ,) - Een_L (CZ) ) (6105)

where the elements for the N, x N, matrix H, are

e conf h2k2
Hy . =(E% +2m¢ On,m + €FE, (N)/ dz ue n(2) 2Uem(2)
(6.106)

and the elements of the column submatrix C, are the amplitudes C7, , =

C}n’n = Cp,n in (6.90, 91). The off-diagonal matrix elements in H® are due
to the presence of a strain-induced electric field along the ¢ axis, that is,
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sometimes appreciable because of the large piezoelectric constant ds; in the
wurtzite structure. For finite carrier densities the strain induced electric field
is reduced due to screening. The resulting effective field has to be computed
from the coupled Schrodinger and Poisson equations taking into consideration
the spatial separation in the electron and hole distributions (Fig. 6.12). The
net electric field is

where
2
Ep(0) = 2dsic (Cu + Cr2 — 2013) (6.108)
Eb Cs3

is the piezoelectric field in the absence of carriers. The effective screening
field may be estimated by spatially averaging the electric field due to the
combined electron and hole distributions over the quantum well:

1 (/2  eN [*® 2 91 Z— 20
Brer (V) = w /w/2 a0 2ep /—oodz [|ue(z)| e (=) ] |z — 2ol
where N is the two-dimensional carrier density, and the spatial carrier distri-
butions u.(z) and up(z) are approximated by the lowest order electron and
hole subband envelope functions at zone center. The screening field Eg., (V) is
determined by iterating (6.107) and the solution to (6.105) until convergence
is reached.

,(6.109)

Fig. 6.12. Piezoelectric effect in
a strained wurtzite quantum well
piezo schematically shown as dashed
scr line. The piezoelectric field Epiezo
causes a spatial separation of elec-
tron (top) and hole (bottom) dis-
tributions. The charge separation
-- creates a screening field Escr, which
n T leads to the carrier density depen-
_________ ) D e oo - dence of Epiezo

As a consequence of the carrier density dependent screening of the piezo-
electric field we have now a density dependent band structure. In principle
one could include this density dependence in the many-body Hamiltonian
and deal with a zero density band structure, as in the cases without the
piezoelectric effect. Even though this would be a more systematic approach
we use the simpler treatment presented here since this avoids modifications
in our many-body theory.
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For the holes, the basis consists of the 2N}, = 2(Nyp+ Ny, + N.p) functions,
where Npy, N, and Ng, are the number of solutions for o = hh, 1h and ch,
respectively. These functions are

Cnym (1) = g n(2)(r|m) (6.110)

where a = hh, lh and ch for m =1 or 4, 2 or 5, and 3 or 6, respectively. The
eigenvalue equation in this representation is

HY 0 AY AU
o gL\ AL )= Emi| 42 (6.111)
where Hfj = (H")};, and the elements of the column submatrix AYE) are

the amplitudes AZTS,LQL in (6.92, 93). The N}, x Nj, matrix HY may be written

in the form
Hy,  Hpnn  Hiheh
H*=| Hhwn Hn  Hunen | - (6.112)
Honwh Henin Henen

The diagonal matrix elements for the submatrices Hyp, Hy,, and Hy, are

272
Hyhnhn = — B0 + 4—mO[A1 + A,] (6.113)
f h2k?
Hipnhn = —Ejyn — 242+ (A1 + A2) (6.114)
4m0
conf h2k2
Henpenn = —Eqy, — A1 — Az +ep — &5+ Ay (6.115)
2m0
respectively, and the off-diagonal elements are
Honom = eEp(N)/ dzua.n(2) 2uam(z) . (6.116)
—oo

The couplings among heavy, light and crystal-split holes are described by the
matrix elements for the submatrices Hpy 1, Hin ch, and Hyy, ch:

h2k2 os}
Hyhninm = 2mg As /_Oo dz unh,n (2)um,m(z) (6.117)
2k *
Hyhn,chm = "o (A2 — Ay +4A5)/_00 dz Uhh,n(z)%uch,m(z) )
(6.118)
Hiwnychm = \/§A2/ dz Ui n (2)Uch,m (2)
2k > d
— Ay — A 4A -—
\/imo( 2 1+ 5) /—oo dzulh,n(z)dzuch,m(z)
(6.119)

The diagonalization of (6.111) gives doubly degenerate hole bands, one
from the upper block and the other from the lower block. The eigenfunctions
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Fig. 6.13. Band structure for strained 2 nm Ino.2Gag.sN quantum well between
GaN barrier layers, (a) at low carrier density where the piezoelectric field is un-
screened, and (b) at high density where the piezoelectric effect is strongly screened

from the upper and lower block are similar except for phase factors. Figure
6.13 shows examples of the quantum-well band structure obtained using the
calculation procedure outlined above.

Finally, to compute the optical dipole matrix elements we make use of the
wavefunctions, (6.90-93). From the spatial symmetry of the bulk-material
states, the dipole matrix elements for the electric field polarizations parallel
(TM) and perpendicular (TE) to the growth direction are

2
Ne Nen 0
M = WBu‘kZ' Y 6 Al / d2 e n(2)ucnm(2)| (6.120)
n=1m=1 —o©
2
Ne Ni
2 ulk,z U(L
TP = “‘B tiee | SN Aty / d2 e (2) e, m (2)
n= ln1 1
2
N. N»
Z Z Cn 1Agz(]§)/ dz Uen(2)Uny 2(2) (6.121)
n=1ng=1

if j is an upper (lower) block state. The bulk dipole matrix elements are

K2 m A1+ A
2 0 1 2
akzl? = ———— —1) (1+ =222 6.122
| Bulk, 2| moFys (mez > ( + By > ( )
K2 mo Al + Az)
o2 = ———— —1) 1+ =) . 6.123
|LBulk,z| ImoFge (m‘EL ) ( + Ey ( )
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Fig. 6.14. TE dipole transition matrix elements versus transverse carrier momen-
tum for wurtzite structure of Fig. 6.13. The limits of low (a) and high (b) carrier
densities are shown

Figure 6.14 shows the quantum-well dipole matrix elements for transitions
involving some of the low energy electron and hole states. Note that unlike the
near-infrared III-V compounds where the spin-orbit splitting is large, both
heavy and light hole contribute strongly to the TE mode in the wurtzite
structure. This is because the strong mixing between the j = 3/2 and 1/2
states lead to hh and lh states that have basically z or y symmetry. The z-like
state at zone center occurs only with the higher lying crystal-field split state.
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This chapter combines the gain theory of Chaps. 3, 4, with the band-structure
calculation techniques of Chaps. 5, 6, to study some important material com-
binations which often serve as gain media in semiconductor lasers. First of
all, the widely used laser heterostructure consisting of a GaAs quantum well
between lattice matched AlGaAs barriers is treated in Sect. 7.1. Strained
quantum-well structures on the basis of the InGaAs—AlGaAs material sys-
tem are studied in Sect. 7.2. Here, we illustrate some of the advantages of
the strain-induced band-structure changes, such as reduced carrier density
for transparency, and polarization selection. Section 7.3 describes results for
another strained quantum-well structure, InGaAs-InP, which allows us to
obtain some systematic understanding of strain effects. In this context, it
is particularly interesting that one can vary the quantum well continuously
from tensile to compressive strain by changing the InGaAs composition. Sec-
tion 7.4 describes and analyzes results for InGaP-InAlGaP quantum wells,
which are interesting for applications requiring optical emission at red wave-
lengths below 700 nm. This section also discusses carrier leakage, which is an
important loss mechanism for short wavelength or high temperature opera-
tion of InGaP lasers. Section 7.5 describes the wide bandgap II-VI CdZnSe
quantum-well structure, where strong Coulomb interactions lead to signifi-
cant contributions of the many-body effects discussed in Chaps. 3, 4. We end
the chapter with a discussion of wide bandgap group-III nitride structures. In
addition to exhibiting strong Coulomb effects, this material system deviates
noticeably from the more conventional near-infrared laser materials because
of the strong influence of the split-off 7 = 1/2 states. Furthermore, the typical
crystal symmetry for group-III nitride laser structures is hexagonal instead
of cubic as in most other semiconductor laser materials.

Whenever possible, we make connections to experiments. In particular,
Sects. 7.2, 4, 5 contain comparisons between theory and experiment that il-
lustrate the importance of band structure and Coulomb effects.

7.1 GaAs—AlGaAs Quantum Wells

Semiconductor lasers using lattice matched GaAs—AlGaAs quantum wells
typically emit between 780 to 870 nm. Countless devices are made with this
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material combination, including the first microcavity lasers and laser arrays.
The material growth technology is well established and one has consider-
able data on device performance and reliability. The relevant bulk-material
parameters may be found in Chap. 6. For the bandgap of Al,Ga;_;As, the
composition dependence of the bandgap energy can be fitted by the empirical
formulas,

2

= 1.519 + 1.247z — 0.0005405 ————— .
€g0 + z 05T+204K (7.1)
for z < 0.45, and
2
ggo = 1.519 + 1.247z + 1.147(z — 0.45)% — 0.0005405 (7.2)

T +210K

for x > 0.45. The offset ratio between conduction and valence band is usu-
ally taken to be 67 : 33. Figure 7.1 shows two computed GaAs—Alp 2Gag gAs
quantum-well band structures using the theory of Chap. 6. Since the spin-
orbit splitting is around 340meV in GaAs, the j = 1/2 valence bands are
well removed from the lowest energy j = 3/2 bands. Hence, it is sufficient to
use the 4 x 4 Luttinger Hamiltonian to determine the hole band structure.
Following the convention introduced in Chap. 6, we label each band accord-
ing to the quantum numbers that are valid at the zone center, k = 0. The
conduction bands are labeled en, where n = 1,2,3,... are the square-well

(a) (b)
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Fig. 7.1a, b. Band structures of (a) 5nm and (b) 10 nm GaAs-Alp 2Gag.sAs quan-
tum wells. All examples in this chapter are for a temperature of 300 K
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bound state quantum numbers. Similarly, the valence bands are denoted as
hhl,hh2,... and 1h1,1h2,... where hh and lh stand for heavy hole and light
hole, respectively. We emphasize that away from the zone center, the valence
bands are mixtures of heavy and light hole states with possibly different
square-well quantum numbers. This is evident, e.g., by the changes in the
band curvatures for k > 0.

For narrow well widths, there are only few confined well states, and the
relevant band structure is relatively simple. For example, Fig. 7.1a shows
the computed band structure of a 5nm GaAs quantum well with only one
conduction and three valence bands. For a wider quantum well the band
structure becomes more complicated because of the increase in the number of
confined states. For a 10 nm quantum well, Figure 7.1b shows that the number
of conduction and valence bands increases to two and five, respectively, with
the valence bands originating from three heavy-hole and two light-hole states
at k=0.

Besides the dispersion of the energy bands, the band-structure calculation
also gives the electron and hole eigenfunctions, which we use to compute the
dipole transition matrix elements. Figure 7.2 shows the results for the 5nm
quantum well of Fig. 7.1a. We see that the curves exhibit a rather strong k
dependence. In terms of the gain, the important values of the dipole matrix
elements are those around the zone center (I" point) because the inversion
is highest in this region of the Brillouin zone. Since there is usually little
band mixing around k = 0, one can get a feeling for the significance of the
individual transitions to the dipole matrix elements already from symmetry
arguments. In Chap. 6 we show that because of the symmetry of the electron
and hole lattice periodic functions, the TM dipole matrix element only cou-
ples the electron state to the light hole state, whereas the TE dipole matrix
element has contributions from both electron to heavy hole and electron to
light hole transitions. This property shows up in Fig. 7.2b where the TM
el-hhl dipole matrix element is negligible for small k. Its value increases at
higher k£ because of the mixing of heavy hole and light hole states in the hhl
band.

Chapter 6 also shows that the dipole matrix elements involve inner prod-
ucts of envelope functions. Since the envelope functions are the orthonormal
eigenfunctions of a square well potential, a dipole matrix element that cou-
ples states with different square well quantum numbers is negligible around
the zone center, thus explaining the smaller values for the el-hh2 curves in
the figure. Again, because of state mixing these matrix elements grow with
increasing k.

Our discussions in Chaps. 2—4 are presented for the idealized case of two-
band bulk and quantum well structures and ideal two-dimensional quantum
confinement. However, by applying the results of Chaps. 5, 6, we can compute
realistic band structures. To use these band-structure results in gain calcula-
tions and thus avoid the restriction to a perfectly two-dimensional structure,
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Fig. 7.2. Absolute square of the dipole matrix elements for TE (a) and TM (b)
polarization versus k for the band structure shown in Fig. 7.1a. The transitions are
el-hh1 (solid line), el-1h1 (long dashed line) and el-hh2 (short dashed line). ppu
is the bulk GaAs dipole matrix element for the electron to heavy hole transition

we introduce a form factor that accounts for the deviations from the ideal
case. For a finite quantum-well width, the Coulomb potential becomes

1% ¢’

vl (7.3)
where the form factor is

fo= / dz / a2’ [u(2)|Pu(z)|2 e~ 1= . (7.4)

To obtain an analytic expression for the integrals we approximate the enve-
lope functions with those of an infinitely deep well extended from 0 to w

Up(2) = \/gsin (%) . (7.5)

Then, the form factor becomes

fo= 2 /Ow dzsin? (%) F(z) , (7.6)

_w2
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where F(z) involves the z’ integral

z / w /
_ o [(nmz , o (w2 .
F(z) =e % / dz’ sin? ( > e’ + eqz/ dz’ sin? <——> e v
0 w . w

(7.7)

Performing the integrations in (7.7) gives

2
F(z) = 1 d 5 COS e

w

(l' ‘——i;:v)<dﬂ2+eqm’“ﬁ - (78)

@ g (2m)

Using the result (7.8) in (7.6), and performing the z integration leads to

2
1 1 q _ 1 (1 q
fa= 2 lot st ™ =)= |- ——— | | . (79
T CR e e Vi e B

Equation (7.9) captures the essence of the well width dependence of the
quantum-well Coulomb potential. Some improvement of the above result may
be achieved by using the eigenfunctions for finite well depth. However, the
resulting expression for f; becomes significantly more complicated, and the
differences in the final results are not significant for the cases that have been
tested.

With the more accurate band structures and a well width dependence
in the Coulomb potential, we are now in the position to study the prop-
erties of a realistic gain structure under different experimental conditions.
For example, we can investigate the influence of the well width on the emis-
sion properties of quantum-well systems. We have already demonstrated in
Fig. 7.1 that the band structure can vary noticeably with the quantum-well
width. Comparison of Figs. 7.3, 4 now shows the corresponding changes in the
gain/absorption spectra. These spectra are computed using the many-body
gain theory of Chap. 4. First, we examine the spectra of the 5nm GaAs-
Aly 2Gag gAs system. We note that the TM gain spectra are shifted toward
higher frequencies than the corresponding TE gain spectra, and a higher car-
rier density is necessary to reach transparency. These results are consequences
of the property that there are no TM transitions to the energetically lower
heavy hole states as discussed in the previous paragraph.

Figure 7.4 shows that a wider quantum-well width leads to broader gain
spectra. Furthermore the change in the shape of the gain spectrum with car-
rier density is larger in wider wells than in the narrower ones. At a carrier
density of Nag <4 x 10'2cm~2, the TE and TM gain of the 10nm quan-
tum well has a simple shape because the small carrier density only causes
appreciable population of the el, hhl and lh1l bands. At the peak gain fre-
quency, the main contributions to the gain result from transitions involving
the recombination of an electron from the el band and a hole from the hhl

N
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Fig. 7.3. TE (top) and TM (bottom) gain spectra for 5nm GaAs-Aly >GaggAs
quantum well for carrier densities, Noq = 2 x 10'%, 6 x 101,102, 2 x 102, 3 x 10*2

and 4 x 10'* cm™? (from bottom to top). The dotted line shows the energy of the
el-hhl bandedge

or lh1 band. The transitions involving the different valence bands are essen-
tially indistinguishable because their energetic separation is not much greater
than the transition broadening (effective dephasing). When the carrier den-
sity is sufficiently increased such that an inversion is established between the
conduction band, €2, and the valence bands, hh2 and 1h2, a secondary peak
appears in the gain curve, as seen in the TE and TM gain spectra in Fig. 7.4
at Naq =6 x 10'? and 8 x 10'2cm ™2, respectively. These peaks are due to
the combined contributions of transitions originating from el and e2. They
may eventually become larger than the original peaks, as shown in the TE
gain spectra for Nog = 8 x 102 cm—2.

One feature of the general approach described in Chap. 4 is that it
correctly predicts the appearance of the exciton resonance at low carrier
densities. Such resonances are clearly visible in the low density spectra of
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Fig. 7.4. TE (top) and TM (bottom) gain spectra for 10nm GaAs—Aly.2Gao.gAs
quantum well for carrier densities, Nog = 2 x 10'%, 6 x 10'*, 102, 2 x 10'?, 3 x 102,
4 x 10", 6 x 10 and 8 x 102 cm™2 (from bottom to top). The dotted line shows
the energy of the el1-hh1 bandedge

Figs. 7.3, 4. The lowest energy absorption resonance in the TE spectrum
is due to the el-hh1l exciton. The dotted lines in the figures indicate the
el-hhl bandedges. The energy differences between the resonances and the
corresponding bandedges allow us to determine the el-hhl exciton binding
energies of 15 and 12meV for the 5 and 10 nm quantum wells, respectively.
These values illustrate the dependence of the exciton binding energy on the
quantum-well width. In terms of the three-dimensional exciton binding en-
ergy €33 we have for the 5nm well the binding energy of 3.4e3d, while the
wider well gives a binding energy of 2.95%1. In the limit of an ideal two-
dimensional well with infinitely high potential barriers the binding energy
approaches four times that of the corresponding bulk material.

Another feature of the excitonic resonances is that their energetic posi-
tions are basically independent of carrier density. This is alluded to in Chap. 4
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and is a result of the proper cancellation of the respective influences of the
diagonal and nondiagonal Coulomb contributions.

The increased band-structure complexity in wider quantum wells also re-
sults in additional structures in the spectra of the antiguiding or linewidth
enhancement factor, a. Figure 7.5 plots the a spectra for the 5nm (solid
curves) and 10nm (dashed curves) quantum wells. The densities (3 x 1012
and 6 x 10'?cm~2 for the 5 and 6nm quantum wells, respectively) are
choosen to give peak gains values in the range of 2 x 10%-3 x 103cm™!. Both
cases show a flattening of the spectra in the energy range where gain exists.

The value of o has important implications on the fundamental linewidth of
quantum-well lasers. As o approaches zero, the refractive index is increasingly
decoupled from changes in gain (e.g., due to spontaneous emission), resulting

1.38 1.50 1.62
Photon Energy (eV)

Fig. 7.5. Spectra of linewidth enhancement factor for 5 nm (solid curve) and 10 nm
(dashed curve) GaAs-Alp.2Gag.sAs for TE (top) and TM (bottom) polarization.
The densities are 3 x 10'? and 6 x 10’2 cm~2 for the 5 and 10 nm quantum wells,
respectively. The dots indicate the values at the gain peaks
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in a reduction of the spontaneous emission contribution to the laser linewidth.
The coupling between refractive index and gain also leads to filamentation
or self-focusing, which limits the scalability of semiconductor lasers to higher
output power. Specifically, small a values allow broad-area semiconductor
lasers to operate more efficiently far above threshold. Whether we can make
use of these advantages depends on a at the peak gain frequency, which is
where a laser usually operates. The dots in the curves in Fig. 7.5 indicates
the position of the gain peaks.

7.2 InGaAs—AlGaAs Strained Quantum Wells

As described in Chap. 6, quantum wells may be grown with materials having
different lattice constants. Under suitable conditions, the thin quantum-well
material grows in a strained configuration in order to become lattice matched
to the barriers. The possibility to epitaxially grow strained quantum wells
makes it possible to use a wide variety of material combinations that leads to
laser emission over wavelength ranges that are desirable for applications. An
extensively investigated strained quantum-well structure is InGaAs between
AlGaAs barriers. Lasers fabricated with this structure typically emit between
910 and 980 nm. Wavelengths as long as 1.07 wm having been reported. Such
lasers are of interest, e.g., as pump sources for fiber amplifiers.

In addition to the lasing wavelength, strain also changes the shape of the
valence bands. To see this for the InGaAs—AlGaAs structure, we first note
that the lattice constant for InGaAs is larger than that for AlGaAs. As a re-
sult, the InGaAs quantum well is under compressive strain. To compute the
band structure, we use (7.1, 2) for the bandgap of AlGaAs and the following
empirical formulas for the bandgap of InGaAs: In,Ga;_,As at 77K,

g0 = 1.508 — 1.47x + 0.3752° | (7.10)
and at 300K
g0 = 1.43 — 1.53z + 0.452% . (7.11)

The bandgap energies at the other temperatures are assumed to be those ob-
tained by linear interpolation. Figure 7.6 shows the calculated band structures
for In,Ga;_,As—Alg oGag.gAs with indium concentrations of 0.1 and 0.2. Ac-
cording to Fig. 6.5, compressive strain causes the heavy and light hole square-
well states to shift such that the energy separation between the hhl and lhl
bands at £ = 0 increases. This moves the crossing of the heavy and light
hole bands to higher k values (compare Fig. 6.2). Consequently, the highest
valence band hh1l maintains its smaller curvature over a larger region, as may
be seen by comparing the solid and dashed curves in Fig. 7.6a. Figure 7.6b
shows that increasing the indium concentration to 0.2 further increases the
average hhl band curvature.
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Fig. 7.6a, b. Band structures for 5nm In,Ga;_;AsAlp2Gap sAs strained quan-
tum wells with (a)  =0.1 and (b) z = 0.2. For comparison, the dashed curves
depict the valence bands for 5 nm GaAs-Alp.2Gag.gsAs

A consequence of the changes in the band structure due to compressive
strain is a reduction in the carrier density at transparency. As discussed in the
earlier chapters, increasing a band curvature (or equivalently for a parabolic
band, reducing its effective mass) makes it easier to populate the states
around the band extremum. Figure 7.7 shows that for a given carrier density,
the hole chemical potential lies further inside the valence bands for higher
indium concentration.

One of the problems in creating gain in a semiconductor medium is to
obtain a sufficent hole population. Here, the introduction of strain helps al-
leviate the problem by increasing the curvature of the lowest energy hole
band, which is equivalent to reducing its density of states. This is seen in
Fig. 7.8, where we plot the peak gain versus carrier density for the two cases
of 5nm Ing 2 Gag gAs—Aly 2Gag gAs and 5 nm GaAs—Aly 2Gag gAs. The curves
also show that until the onset of rollover, compressive strain gives rise to
a greater differential gain dG/dN.

Another result of compressive strain is the possibility to introduce polar-
ization discrimination. Compressively strained structures usually have signif-
icantly smaller TM than TE gain (Fig. 7.9). This is again a consequence of
the TM dipole transition occurring only between the electron and light-hole
states. As a consequence of the increased splitting between the hhl and lhl
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Fig. 7.7a, b. Hole chemical potentials (dashed lines) for 5nm In,Gai_,As—
Alp.2Gao.gAs, where the left figure (a) is for z = 0.1, and the right figure (b) is
for z = 0.2. The densities are Noq = (i) 2x, (ii) 3x, and (iii) 4 x 10*®* cm™>. For
the unstrained GaAs-AlGaAs, the hole chemical potentials for the same densities
all lie inside the bandgap
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Fig. 7.8. Plots of peak gain versus carrier density for 5nm Ing.Gag.sAs-
Alp.2Gap.sAs and 5nm GaAs—Aly.2Gag.sAs
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Fig. 7.9. TE (top)and TM (bottom) gain spectra for 5nm Ing.GagsAs—
Alp.2Gap.g As showing much lower TM gain for the same carrier density. The carrier
densities are Nog = 2 x 10, 6 x 10!, 10'2, 2 x 102, 3 x 10' and 4 x 102 cm 2
(from bottom to top). The arrows indicate the transition energies from the different
bandedges

band it is harder to populate the lhl band, which provides most of the TM
gain. Furthermore, because of the larger hh1 and lh1 band separation, the TE
and TM gain spectra are further apart in frequency than for an unstrained
structure (compare Figs. 7.3, 9).

Figure 7.10 compares the linewidth enhancement factor at the gain peak
for the 5 nm Ing.2Gag gAs—Aly 2Gag gAs and 5 nm GaAs—Alg 2Gag gAs struc-
tures. The InGaAs curve for TM polarization is not shown because there is
negligible gain for experimentally realizable carrier densities. For low gain
values, a(vpk) in the strained quantum well is below that of the unstrained
structure. However, at high excitation levels the increase in peak gain results
in a much larger value of a(vpk) for the strained quantum well. This is a re-

sult of gain rollover in the compressively strained system which reduces the
denominator dG/dN in « [see (2.110)].
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Fig. 7.10. Linewidth enhancement factor at gain peak as a function of peak gain
for the TE mode in a compressive strained 5 nm Ing.2Gao.s As—Alo.2Gao.s As (solid
curve). The TM gain is negligible in this case. Dashed and dotted curve, respec-
tively, show the results of the TE and TM modes in an unstrained 5nm GaAs-
Alp.2Gagp.sAs quantum well

Replacing the barrier layers with GaAs leads to an interesting effect in
InGaAs strained quantum wells. If the barriers are GaAs instead of AlGaAs,
the confinement potential is too weak to yield a bound light hole state re-
gardless of well width. Consequently, only the heavy hole bands are confined
(Fig. 7.11a). However, this band is strongly influenced by the unconfined
states. The dashed curves show the least squares fit using a parabolic ap-
proximation. The fit was performed for 0 < k < 1.28 x 108 m ™!, and gives
for the effective masses 0.105mg and 0.132mg for hhl and hh2, respectively.

Figure 7.11b shows that one may actually realize an almost ideal two-band
system with a 5nm Ing ;Gag.gAs—GaAs structure. A similar least squares fit
gives a hole effective mass of 0.147mg in this case. One should note that
because of mixing with the light hole unconfined states, the band curvature
does not approach the value corresponding to transverse mass of the heavy
hole.

One way to check the theoretical results is a detailed comparison with
experiments. Figure 7.12 shows theoretical and experimental gain spectra for
an 8nm Gag.g5Ing.05As—Aly.oGag.gAs single quantum-well gain region. The
experimental gain spectra are extracted from transmission measurements us-
ing a spectrally broad low intensity laser probe-light, and injection currents of
3,5, 8,10 and 20 mA [Ellmers et al. (1998)]. The theoretical spectra are com-
puted for the carrier densities, Nog = 1.6, 2.0, 2.4, 2.8 and 3.5 x 1012 cm~2.
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Fig. 7.11a, b. (a) With GaAs barriers the only confined state in the valence band
is the heavy hole. The band structure is computed for a 5nm Ing.2Gag sAs-GaAs
structure. The effective hole mass is strongly influenced by the unconfined states.
(b) With a 5nm Ing.1Gag9As-GaAs structure, one almost realizes the idealized
two-band system. The dashed curves show the least squares fit with parabolic bands
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Fig. 7.12. Comparison of the experimental (crosses) and calculated (solid curves)
TE spectra of an 8 nm Ing.o5 Gao.g5 As—Alp 2Gao s As quantum well. This figure was
originally published by [Ellmers et al. (1998)] where calculational details and ma-
terial parameters are given
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These carrier densities are chosen to best fit the experimental data. The figure
shows that the theory reproduces the experimental data very well, especially
the gradual bulk-like gain increase with increasing photon energy, and the
blue shift in the gain peak for higher excitation levels.

7.3 InGaAs—InP

An interesting strained quantum-well structure consists of an In,Ga;_,As
quantum well between InP barriers. The structure is unstrained for z ~ 0.53,
and under tensile (compressive) strain for smaller (larger) indium concen-
tration. Lasers fabricated with InGaAs—InP quantum wells typically operate
between 1.45 to 1.62 pm, which is a useful wavelength range for optical-fiber
communications.

Figure 7.13 shows the band structures of 5 nm In,Ga;_;As—InP for the
three cases of strain. These band structures are computed using the param-
eters given in Chap. 6. The bandgap energy of InGaAs is given in (7.10-11)
and the bandgap energy of InP is

€g0 = 1.42667 — 0.000326436T (7.12)

which is determined using a linear fit to the data in Landolt-Bornstein (1982).
For z = 0.33, there are three valence bands originating from one light and
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Fig. 7.13a—c. Band structures for 5nm In,Ga;_.As-InP with (a) z = 0.33,
(b) z = 0.53 and (c¢) =z = 0.73, showing the increase in the average hhl band
curvature with increasing indium concentration
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two heavy hole states at k = 0, with the light hole state being associated with
the lowest energy hole band. For z = 0.53, the number of conduction and
valence bands increases to two and four, respectively, because of the deeper
well. Note that now the energetically lowest hole band is predominately heavy
hole in character and therefore has a higher average band curvature than for
the case with = 0.33. For z = 0.73, the light hole bandgap is shifted up in
energy until two heavy hole states lie below it. This shift reduces the mixing
of heavy and light hole states in the energetically lowest hole band, resulting
in an even higher average hhl band curvature. Not to be forgotten is the
overall bandgap change with strain (from 0.73eV with z = 0.73 to 1.01 eV
with = 0.33), which broadens the range of wavelengths accessible for lasing.

Figure 7.14 plots the gain spectra obtained using the band structures
shown in Fig. 7.13. The carrier density is varied to give a peak gain of approx-
imately 3000 cm™! for all the structures. The explanation for the variation of
the gain spectra in relation to the corresponding band structures is similar
to that for the InGaAs-AlGaAs system, especially for the z = 0.73 structure,
which is under compressive strain. The gain spectrum is dominated by the
el-hhl transition, since these bands have the highest electron and hole pop-
ulations at the chosen density of N = 8.0 x 10!! cm~2. There is no TM gain
because the Ih1 band is too far removed from the bandedge to be populated
at this density.

For the unstrained structure with z = 0.53, the lowest energy hole band is
still hh1 and the el-hh1 transition dominates the gain spectra. However, the
energy separation between hhl and lh1 is reduced. This has two effects. One
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Fig. 7.14. In;Ga;_,As-InP gain spectra for TE mode (solid curves) and TM
mode (dashed curves) for the indium concentrations z = 0.33, 0.53 and 0.73. The
densities, Nog = 2 x 102 cm™2 for z = 0.33 and = 0.53. For z — 0.73, we use
N2g = 8 x 10! cmn~2 so that all three cases have similar peak gains of ~ 3000 cmn !
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is a higher hole population in lh1 and the other is a stronger heavy hole-light
hole coupling, which increases the light hole content in hhl, and conversely
the heavy hole content in lhl. This is responsible for the reduction in the
difference of the peak gain values between the TE and TM modes seen in
Fig. 7.14.

For indium concentrations z < 0.53 the quantum well is under tensile
strain. At £ = 0.33, the lowest hole band is 1h1, which is mostly light hole in
character around the zone center and therefore contributes more to the TM
than to the TE mode. As we can see in Fig. 7.14, the TM mode dominates
for z = 0.33. For indium concentrations z > 0.53 the TE gain spectra are
red shifted with respect to the TM gain spectra because the lowest hole band
has predominately heavy hole character around the zone center. On the other
hand, for indium concentrations, z < 0.53, the lowest hole band has mostly
light hole character around the zone center and therefore the TE gain spectra
are blue shifted with respect to the TM gain spectra. There is, of course,
an overall shift of the gain spectra to higher frequencies with decreasing
indium concentration in InGaAs, due to the corresponding increase in the
alloy bandgap.

More details on the effects of stain are summarized in Fig. 7.15. Here we
plot the peak gain versus carrier density, for the three indium concentra-
tions in the previous figure. As expected, the carrier density for a given TE
peak gain is reduced by compressive strain. The curves also show that strain
can be used for polarization selection. Tension favors the TM mode while
compression favors the TE mode.
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Fig. 7.15. Peak gain versus carrier density for 5nm In;Gai—;As-InP with z =
0.33, 0.53 and 0.73. The solid (dashed) curves are for the TE (TM) polarization.
The TM gain for z = 0.73 is negligible
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Fig. 7.16. Linewidth enhancement factor spectra for 5nm In;Ga;_,As-InP. For
z = 0.73 and 0.53, the spectra are for the TE polarization and carrier densities
Naqg = 7.5 x 10! and 1.9 x 10'? cm™2, respectively. The spectrum for z = 0.33 is
for the TM mode and Nag = 1.9 x 1012 cm 2

The slope of the curves in Fig. 7.15 gives the differential gain, dG/dN
at the gain peak. Unlike the free-carrier model, this derivative involves more
than the Fermi-Dirac distributions. There are contributions from the Hartree-
Fock and collision effects, in addition to band filling. From Fig. 7.15 we see
that for the TE mode, the differential gain increases with compressive strain.
However, a high differential gain can also be obtained under tensile strain in
the TM mode.

Figure 7.16 shows the spectra of the linewidth enhancement factor. The
dots indicate the values at the gain peak. In more extensive studies, apk 1s
found to exhibit a complicated dependence on carrier density and strain. On
the other hand, there are also common features among strained quantum-
well structures. One is the increase in apy with decreasing compressive strain
caused by band-structure effects.

7.4 InGaP-InAlGaP Red-Wavelength Lasers

Heterostructures made of InGaP quantum wells and InAlGaP barriers are
important because they provide gain in the visible wavelength region be-
low 700 nm. Light emission as short as 570 nm (yellow) is possible for ma-
terial compositions where the quantum well is under tensile strain. Electri-
cally injected vertical cavity surface emitting lasers (VCSELSs) using these
heterostructures demonstrated operation at wavelengths between 639 and
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661 nm. Potential applications include optical displays and light sources for
plastic fibers.

The bulk-material parameters for InP, GaP and AIP are given in Chap. 6.
Parameter values for InGaP and InAlGaP are taken to be the properly
weighed averages of those of InP, GaP and AIP. The bandgap of In;_,Ga.P
at room temperature as given by Adachi (1982) is

€0 = 1.35+ 0.643z + 0.786z7 . (7.13)

However, the results of VCSEL experiments are found to fit better to the
formula [Stringfellow et al. (1972)],

g0 = 1.421 +0.73z + 0.72% . (7.14)

The composition dependence of the bandgap for In;_;(Al,Ga;_y)P is even
more uncertain. A reasonable fit to available data appears to be

€g0 = €g0(1n1_wGazP) + 0.6y , (715)
for y < 0.6 and
Eg0 = 8go(1n1,zGazP) +0.36 (7.16)

otherwise. Reported values for the band-offset ratio ranges from ~ 0.39 to
~ 0.67. For the calculations in this section, we use the more recently reported
band-offset ratio of 0.67 [Dawson and Duggan (1993)].

Figure 7.17a shows the hole band structure for a gain material composition
often used in vertical-cavity surface-emitting lasers (VCSELSs). It consists of
6nm Ing56Gag.44P quantum wells and (Al 4Gag.g)o.5Ing 5P barrier layers.
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Fig. 7.17a, b. Band structures for 6nm (a) compressive strained Ino.s6Gao.s4P—
(Alp.4Gaog.6)0.5Ino.5P and (b) tensile strained Ino.4s Gao.ss P—(Alo.4Gao.¢)o.5In0.5P
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The quantum wells are under compressive strain, with the lattice mismatch
parameter, (6.34), e = —0.0044. The bandgap energy is 1.882eV which
gives a transition wavelength of 660 nm. The calculation, which uses a 6 x 6
Luttinger Hamiltonian, shows that the lowest energy hole band has a heavy
hole state at k = 0. Because of the coupling between j = 3/2 and 1/2 states,
the zone center state in the second band is a mixture of light hole and split-off
state, with the approximate ratio of 0.84/0.16.

Shorter transition wavelengths are possible by reducing the In concentra-
tion in the quantum well. Experiments involving edge-emitting laser diodes
have demonstrated 610 nm operation with tensile strained quantum wells. In
this case, the TM polarized mode has the lower threshold. Figure 7.17b shows
the band structure for a 6 nm Ing.45Gag.55P—(Aly.4Gag 6)o.5Ing 5P quantum
well structure, which is under tensile strain. The bandgap energy is 2.261 eV
which converts to 550 nm in transition wavelength. Here, the lowest energy
hole band has a light hole state at k = 0. Unlike the earlier example for the
compressively strained quantum well, there is little mixing with the split-off
state because of the large energy separation between light hole and split-off
hole states. The lower band curvature suggests that the threshold carrier den-
sity will be higher than for the compressively strained structure. In addition,
we expect the threshold carrier density to be higher because of carrier leakage
because of the smaller confinement potentials. For example, the state lh1 lies
only about 60 meV below the top of the quantum-well confinement potential,
whereas the hhl state in the compressively strained structure of Fig. 7.17a
is 115 meV below the top of the quantum-well confinement potential, which
substantially reduces the leakage problem.

Carrier leakage in the InGaP—-AlGalnP system places a practical limit on
short wavelength operation. The cause of this limit is the I" — X conduc-
tion band crossing at which the conduction band minimum at the X point
(boundary of the Brillouin zone) becomes lower than that at the I" point
(zone center). If the X point minimum is below the I" point minimum the
material is a semiconductor with an indirect bandgap, such as Si or Ge. This
I"' — X crossing in AlGalnP occurs at an Al mole fraction of approximately
0.56 to 0.7 in the quaternary alloy (Al,Ga;_;)o0.48Ing 52P used in the barrier
layers. Figure 7.18 shows the bandgap energy as a function of Al concentra-
tion for (Al;Gai_;)o.5Ing 5P at the X (dashed curve) and I' (solid curve)
points of the Brillouin zone. The laser transition originates from the I’ point,
which has a direct energy gap. As long as e40(I") < £40(X), most of the
carrier population remains at the I point. However, when ego(I") > eg0(X),
electrons created at the I" point will escape to the X point via the emission
or absorption of phonons or by impurity and/or alloy scattering. Accord-
ing to Fig. 7.18, the bandgap crossing occurs at an Al concentration of 0.58.
This crossing limits the size of the potential used for carrier confinement,
with the limitation being more serious in structures with higher quantum-
well bandgap energy. This in turn, places a practical limit on the shortest
achievable lasing wavelength.
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Fig. 7.18. I' and X
point bandgap energy
versus Al concentration
in (Alea1_z)o,5Ino,5P
showing a crossing at
r = 0.58

Fig. 7.19. TE gain
(top) and phase shift
(bottom) spectra for
a 6.8nm compressively
strained Gao.41Ino.50P-
(Alo.5Gao.5)0.51In0.49P
quantum-well struc-
ture. The carrier densi-
ties are Naa = 2.4x 102
(solid curves), 2.8 x 10"
(dashed curvesg and
3.2 x 102 cm™? (dot-
dashed curves)
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Figure 7.19 shows the computed TE gain and phase shift spectra for
a 6.8 nm compressively strained Gag.41Ing.59P—(Alp 5Gag.5)0.51In0.49P quan-
tum-well structure. There is no gain for the TM polarization for the car-
rier densities considered. This quantum-well structure provides yet another
opportunity to make comparison between theory and experiment. In many
applications, it is important for the theory to correctly predict the peak gain
and gain peak energy as functions of carrier density. Figure 7.20 shows the
computed and measured peak gain and gain peak energy for the TE po-
larization versus chemical potential separation. The electron-hole chemical
potential separation is a quantity that can be determined relatively unam-
biguously both theoretically and experimentally. The experimental points
are extracted from spontaneous emission spectra measured through a 4 pm
wide opening in the top contact of 50 um wide oxide stripe lasers [ Chow et al.
(1997)]. The relationship between gain and emission (2.77) was used to deter-
mine the gain spectrum. The results show that agreement obtained with the
full many-body theory extends over a wide range of excitation densities. The
dashed curves are computed using the effective rate approximation, (3.100),
with dephasing rate and carrier densities chosen to best fit the experimental
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i energy versus chemical
L potential separation for
structure in Figs. 7.19.
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Pk gk periment [Chow et al.
(eV) (1997)], the solid curve
is from the full many-
L body theory, and the
dashed curve is from ef-
B fective relaxation rate
2. S T S R S S S S approximation, with

v = 103571, chosen to
best fit the experimen-
tal data
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data. The results impressively demonstrate that the more detailed treatment
of Coulomb collision effects is crucial, especially at low excitations, or when
the accurate location of the gain peak is desired.

7.5 II-VI Wide-Bandgap Systems

Semiconductor compounds with large bandgap energies are under intensive
investigation because of the many potential electro-optical applications for
visible and ultraviolet wavelength light sources. These applications include
optical data-storge, optical displays and chemical sensing. The wide bandgap
laser compounds are either II-VI compounds or group-III nitrides. The for-
mer includes ZeSe and CdSe, while the latter includes InGaN and GaN, to
list just a few representative examples.

Table 7.1 below summarizes the approximate bulk-material exciton bind-
ing energies and Bohr radii for GaAs, GaN and ZnSe.

Table 7.1. Exciton binding energies and Bohr radii for GaAs, GaN, and ZnSe

GaAs GaN ZnSe

g3d 4meV 23 meV 19 meV

ad? 12nm 3nm 5nm

The values for the exciton Bohr radius a3? are calculated from e using

(1.15). The large binding energies in bulk-materials point to the importance
of excitonic effects (and of Coulomb effects, in general) in the wide bandgap
compounds. The case is even more convincing for quantum wells, where the
exciton binding energies are typically increased in comparison to the respec-
tive bulk values by a factor of two or more.

We begin the discussion of wide bandgap laser structures with the II-VI
compounds. An example of a II-VI laser heterostructure is a CdZnSe quan-
tum well between ZnSe-barriers. Similar to GaAs, the spin-orbit splitting of
the valence bands in II-VI compounds is significant (of the order of 420 meV).
Therefore, we can neglect the influence of the split-off states and return
to using the 4 x 4 Luttinger-Kohn theory for calculating the band struc-
ture. Figure 7.21 shows the band structure for a 7nm compressively strained
Cdg 25Zng.75Se-ZeSe, which consists of two electron, four heavy-hole and one
light hole bands that are confined in the quantum well. The four lowest en-
ergy hole bands have heavy hole character around k£ = 0. The calculations for
Fig. 7.21 use a bulk Cdy 25Zng 75Se bandgap energy of 2.520 eV, which also
takes into account the contribution from strain.

The TE gain spectra of the 7nm Cdg.25Zng.755e-ZeSe quantum well
are shown in Fig. 7.22. The carrier density ranges from Nzq = 5 X 10! to
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Fig. 7.21. Band structure for a 7nm Cdg.25Zno.75Se—ZeSe quantum well showing
the two energetically lowest conduction bands and the five top valence bands
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Fig. 7.22. TE spectra of 7nm Cdg.25Zng.75Se—ZeSe quantum well at 7' = 300 K and
for carrier densities Noq = 5 x 101, 10'2, 1.5 x 1012 2.0 x 10" t0 8.0 x 102 cm

from bottom to top, in increments of 1012 K



220 7. Applications

8 x 102cm™2. The low density spectra show two excitonic absorption lines
due to the hhl — el and the hh2 — e2 transitions. While conventional III-V
semiconductors such as GaAs display clear excitonic absorption lines only at
low carrier densities and temperatures, these features dominate the spectra
in II-VI materials even at room-temperature, and for carrier densities up to
Nag ~ 102 cm~2. With increasing carrier density, the computed absorption
resonances are gradually bleached, but remain basically at their respective
spectral position, in agreement with experiment.

For carrier densities Nog > 1.5 x 102 cm ™2, gain is present due to the
el — hhl transition. Figure 7.23 shows the gain portion of the spectra in
more detail. The energetic position of the gain maxima shifts slightly to higher
energies when the carrier density is increased. As in the other semiconduc-
tor gain media the carrier density dependence of the gain peak is a result
of a combination of competing effects, the important ones being bandgap
renormalization, band filling and Coulomb correlations. Although the sub-
bands other than the first one are also populated at higher carrier densities,
the spectral shape of the gain hardly changes. Only for very high densities
of Nag > 6 x 10'2cm~2, when an inversion develops between the n = 2 sub-
bands, one notices qualitative modifications in the spectral shape of the gain
spectra, e.g., at Nog = 8 x 10'2cm ™2 a shoulder in the gain develops.

The spectra for TM-polarization are plotted in Fig. 7.24. For this polar-
ization, the first conduction band is only weakly coupled to the three ener-
getically lower hole bands, which have predominately heavy hole character.
As a result, the spectra show only weak absorption and gain at low ener-
gies (hv < 2.52€V). The dipole matrix elements are larger between the first

12

CdZnSe QW

2.32 2.42 2.52 2.62
av (eV)
Fig. 7.23. Gain portion of the spectra in Fig. 7.22 on a larger scale
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Fig. 7.24. TM spectra of 7nm Cdo.25Zno.75Se-ZeSe quantum well at 7' = 300 K.
The carrier densities are Nog = 5 x 10" (bottom), 102, 1.5 x 10'2, 2 x 10'2 up to
8 x 10> cm™? (top) in increments of 10'2 cm™2

conduction band and the fourth and fifth hole bands, which are superposi-
tions of heavy and light hole states. These interband transitions lead to the
strong excitonic TM-absorption resonance apparent in the figure. The com-
parison with Fig. 7.22 shows that an absorption resonance at approximately
the same energy exists also in the low density TE spectra. This coincidence is
a consequence of the less than 3 meV separation between the energies for the
hh2 — €2, hh4 — el and hh5 — el transitions. Similar to the TE-spectra,
the TM exciton resonance is bleached with increasing carrier density. Because
the TM optical transitions involve the higher energy hole bands, the onset of
gain occurs at very high plasma densities. Even then, the value of TM gain
achievable is significantly smaller than that of the TE polarization.

Thus far in this book we have considered only homogeneously broad-
ened structures, where the quantum-well thicknesses and compositions are
precisely known. This may be a reasonably good assumption for the red or
near-infrared wavelength lasers, where growth techniques are well developed.
However, for the relatively new II-VI and group-III nitride laser structures,
the experimental spectra are likely to be inhomogeneously broadened by lo-
calized regions of varying quantum-well thicknesses and compositions.

In a simple phenomenological way, we approximate the inhomogeneously

broadened spectrum gi,,(w) as a statistical average of the homogeneously
broadened spectra

Gian(w, N, T) = / dz P(z) G(z,w, N, T) (7.17)

where a typical weighting function is a normal distribution
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P(z) = (V2ro) eXP{~ [(z — xo)/(x/ia)]z} : (7.18)

representing the variation in z, which can either be the quantum-well thick-
ness or indium concentration. The distribution (7.18) is characterized by an
average xp, and a standard deviation o.

Figure 7.25 shows examples of the effects of inhomogeneous broadening
as predicted by (7.17). In this case, we assume that the net effect of either
quantum-well thickness or composition variations is a distribution of bandgap
energies, whose standard deviation is given by o. Figure 7.25 (top) shows
broadening of the exciton resonances as well as reduction in the peak ab-
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Fig. 7.25. Effects of inhomogeneous broadening on absorption (tpp) and gain
(bottom) spectra. The solid curve is are for homogeneous broadenn}g, the othgr
curves are for quantum-well thickness or composition fluctuations leading to a vari-
ation in the bandgap energy of standard deviation o = 10 (long-dashed curve), 20
(short-dashed curve), 30 (dot-dashed curve) and 40 meV (dotted curve)
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sorption with increasing inhomogeneous broadending. Figure 7.25 (bottom)
presents the results for high carrier densities where gain exists. We clearly
see how the inhomogeneous broadening reduces the gain and shifts the spec-
trum to lower energies. This red shift may be understood by noting that the
inhomogeneously broadened spectrum consists of a superposition of homo-
geneously broadened spectra, each shifted with respect to another because
of their different bandgap energies. In this superposition, the gain portion
of a higher lying spectrum overlaps the absorption portion of a lower lying
spectrum, such that the lower lying spectra contribute more to the net gain.

Using our simple inhomogeneous broadening model, we are in the posi-
tion to make comparisons with experiments. The points in Fig. 7.26 shows
experimental gain spectra for a 6.9 nm Cdg 27Zng 73Se quantum well between
Zng 94S0.6Se barrier and ZnMgSSe cladding layers. The entire structure is
lattice matched to GaAs. The different spectra are obtained by varying the
injection current from 45mA to 60mA. The solid curves show the calcu-
lated spectra for the same structure and carrier densities Nog = 2.8 x 1012,
3.2 x 102, 3.5 x 102, 3.6 x 102, 3.8 x 10'2 and 4 x 10'2cm~2. We also as-
sumed an inhomogeneous broadening of ¢ = 10meV. The good agreement
between experiment and theory is significant because it shows that the room
temperature experimental gain spectra in II-VI lasers may be well described
by our model of an interacting electron-hole plasma. Many of the differences
in the optical properties between these lasers and conventional near-infrared

G (arb. units)

Detuning (meV)

Fig. 7.26. TE spectra of 6.9 nm Cdo.27Zno.73Se—ZeSe quantum well at 7" = 300 K
and for different carrier densities. The points are from experiment [Yoshida et al.
(1996)] and the curves are from the theory [from Girndt et al. (1998), where also
the material parameters can be found|
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lasers are a result of the significantly stronger Coulomb correlation effects in
the II-VI materials.

7.6 Group-III Nitrides

This section discusses the wide bandgap group-III nitrides. Laser structures
of these compounds show considerable promise for light emitting diodes and
lasers operating in a wide spectral range from the visible up to ultraviolet
wavelength regions. Like the II-VI lasers, the optical properties of group-III
nitride structures are significantly influenced by strong Coulomb effects. In
addition, there are differences in behavior from the red and near-infrared
wavelength lasers because nitride structures are typically grown with the
hexagonal or wurtzite crystal symmetry. The most relevant aspects of the
wurtzite band-structure properties are discussed in Chap. 6.

To illustrate some of the unique gain and absorption features, we choose
the example of a 2nm compressively strained Ing,GaggN-GaN quantum-
well structure. The confined bands consist of one electron, two heavy hole
and two light hole bands. Figure 7.27 shows the conduction band e and the
two energetically lowest hole bands, hh and lh. The other bands are more
than 200meV separated in energy at & = 0, and therefore have negligi-
ble hole populations. The band structure is computed with a sufficently low
(< 10'° cm~?) carrier density so that the piezoelectric effect is essentially un-
screened. (See Fig. 6.13 for a comparison of the high and low carrier density
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cases). In the present case we obtain over 100 meV reduction in the bandgap
energy due to the piezoelectric effect. Comparison with the computed band
structures of earlier examples (e.g., Fig. 7.21) shows the much larger effec-
tive mass mismatch between the conduction and lowest energy hole band in
the group-III nitrides. The large hh effective mass is one contribution to the
difficulty in creating a population inversion in nitride gain structures.

Figure 7.28 shows the TE and TM dipole matrix elements versus carrier
moment. As discussed in Chap. 6, because of the hexagonal crystal symmetry,
both el-hh and el-lh transitions contribute to the TE polarization. On the
other hand, their contributions to the TM polarization are negligible. The
very small but still discernible TM dipole for the e-lh transition is due to
mixing between the confined light hole and unconfined crystal-split states.
As a consequence of the results shown in Fig. 7.28, the TM gain is negligible
for the carrier densities realizable in experiments.

0.15
AN e-hh
\\
' \
0.1 F \
2 TE '
HPow ! eh
M Buik \
1
0.05 |l
1
e-lh (TM) |
\ [}
0 1 TR
0 4 8 12 16
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Fig. 7.28. TE and TM dipole matrix elements versus carrier momentum for the
2nm Inp.2Gao.sN-GaN quantum-well structure. The transitions are between the
one electronic state e, and the two hole states, hh and lh. The e-hh TM dipole
matrix element is essentially zero and therefore not shown

Figure 7.29 (top) shows the TE gain/absorption spectra for the 2nm
Ing.2Gag sN-GaN quantum well at carrier densities ranging from Napq =
2x 10" to 6 x 1012 cm™~2. The spectra display the transition from the exciton
absorption resonance at low electron and hole densities, to gain from an inter-
acting electron-hole plasma at high carrier densities. From these spectra, we
again recognize several indications of strong Coulomb effects. Concentrating

first on the spectra for lower carrier densities, we extract from the energy dif-
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Fig. 7.29. (Top) TE spectra of a 2nm Ing.2Gao.sN-GaN quantum-well structure
for carrier densities Nog = 2 x 10'? to 6 X 102 cm*2, from bottom to top, in

increments of 102 cm™2. The arrow indicates the quantum-well bandglz;p energlyz.
(Bottom) Gain portion of TE spectra for carrier densities Nog = 4 x 107, 5 X 10
and 6 x 10'2 cm™2, from bottom to top

ference between the exciton resonance and the quantum-well bandgap energy
(indicated by arrow), a quantum-well exciton binding energy of 55 meV. This
high binding energy is a clear evidence of strong attractive Coulomb effects.
It is also the reason why an exciton resonance still exists at the relatively high
carrier density of Nag ~ 2 x 1012 cm~2. Figure 7.29 (bottom) shows in more
detail the gain portion of the spectra for the carrier densities Nog = 4 x 102,
5 x 1012, and 6 x 10'2 cm~2. The curves clearly exhibit an even more gradual
rise in gain from the bandedge than in the earlier examples involving other
I11-V lasers (compare, e.g., Fig. 7.12). Another indication of strong Coulomb
effects is the significant shift to lower energy of the gain peak relative to
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the quantum-well bandgap at 3.087eV. This energy shift is largely due to
bandgap renormalization.

Similar to the case of II-VI gain structures, experimental data suggest
that the nitride quantum-well gain region is inhomogeneously broadened by
spatial variations in quantum-well thickness or composition. Using (7.17),
we obtain the curves in Fig. 7.30 which show the effects of inhomogeneous
broadening due to an In variation in the quantum well. Figure 7.30 (top)
shows that even a 5 % fluctuation in indium concentration (standard devia-
tion o1, = 0.01) leads to a significant reduction in the absorption resonance.
With o1, > 0.04, the exciton resonance becomes unobservable. Also present
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Fig. 7.30. Effects of inhomogeneous broadening due to indium fluctuations in the
2nm Ing.2Gap.sN-GaN quantum well. The density is Nog = 2 x 102 cm™2 (top)
and 6 x 10'"? cm~2 (bottom). The it solid curve is for homogeneous broadening,
the other curves are for indium fluctuation of o, = 0.1 (long-dashed curve), 0.02
(short-dashed curve), 0.03 (dotted curve) and 0.04 (dot-dashed curve)
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is a blue shift in the absorption resonance with increasing inhomogeneous
broadening due to the asymmetry in the homogeneously broadened spec-
trum. For carrier densities sufficently high to produce gain, inhomogeneous
broadening reduces the gain and shifts the gain peak to lower energy, as
shown in Fig. 7.30 (bottom). With o1, = 0.04, the gain peak is red shifted by
122 meV, compare the discussion in Sect. 7.5. Together with the 60 meV shift
in gain peak of the homogeneously broadened spectrum, we get a significant
181 meV red shift of the gain peak relative to the unrenormalized quantum-
well bandgap. Significant red shifts of the gain peak relative to the bandedge
have also been observed in experiments. Figure 7.31 summarizes the two pri-
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Fig. 7.31. Peak gain (top) and gain peak energy (bottom) vs. carrier density
for indium concentration standard deviation om = 0 (homogeneously broadening),
0.01, 0.02 and 0.03. The dotted curve shows the quantum-well bandgap energy which
increases with carrier density due to plasma screening of the piezoelectric field. The
results are for a 2nm Ing.2Gag.sN-GaN quantum-well structure at 7" = 300 K
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mary effects of inhomogeneous broadening. The top part of Fig. 7.31 shows
the degradation of the peak gain, and the bottom part shows the red shift of
the gain peak with increasing inhomogeneous broadening.

We conclude this section with a discussion on how one may estimate
the laser threshold current density. This discussion is particularly appro-
priate for the group-III nitride lasers because systematic experimental in-
vestigations aimed at determining lasing threshold properties are particu-
larly difficult to perform, currently mainly due to uncertainties in sample
growth. The calculation involves first using (2.77) to compute the spon-
taneous emission spectra SE(w) from the corresponding gain/absorption
spectra. Figure 7.32 shows the spontaneous emission spectra for the 2nm
Ing 2Gag sN-GaN quantum-well structure and carrier densities ranging from
Nog = 4x10'2 to 8 x 10'2 cm~2. Each spectrum is changed by inhomogeneous
broadening, as shown in Fig. 7.33. However, all the spectra in Fig. 7.33 have
the same area. In other words the total spontaneous emission rate,

Wep = /°° dw SE(w) (7.19)
0

is independent of inhomogeneous broadening.
Two experimentally useful parameters can be derived from the sponta-
neous emission rate. One is an effective radiative lifetime,
N

sp = ) 7.20
Tsp Wisp ( )

where N is the two-dimensional carrier density and w is the quantum-well
width. Figure 7.34 shows the spontaneous emission rate and the correspond-
ing radiative lifetime as a function of carrier density. The second parameter
is the spontaneous emission contribution to the injection current density

Jsp = ewwyp (7.21)
—~ 15
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Fig. 7.33. Effects of inhomogeneous broadening on spontaneous emission spectrum.
The solid curve shows the spontaneous emission spectrum for the 2 nm Ing 2Gag sN—
GaN quantum well and carrier density Nzg = 6 X 10'2 cm 2. The other curves are
for Indium fluctuation of o1, = 0.1 (long-dashed curve), 0.02 (short-dashed curve),
0.03 (dotted curve) and 0.04 (dot-dashed curve). Each spectrum has an area of
wsp = 9.1 x 10 cm ™35!
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Fig. 7.34. Radiative decay rate wsp (solid curve) and the corresponding radiative
lifetime 7sp (dashed curve) as a function of carrier density for a 2nm Ing.2Gao.sN—
GaN quantum-well structure and 7' = 300 K. As discussed in the text, the results
are independent of inhomogeneous broadening
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Fig. 7.35. Peak gain versus spontaneous emission current for a 2 nm Ing.» Gag.gN—
GaN quantum-well structure and 7' = 300 K. The different curves corresponds to
different In concentration fluctuations in the quantum well

where e is the electron charge. Figure 7.35 shows the peak gain as a func-
tion of the spontaneous emission current density. The different curves are for
different inhomogeneous broadening due to composition fluctuations in the
quantum well.

The threshold current density may be estimated using one of the curves
in Fig. 7.35. For example, choosing a nominal material threshold gain of
G = 2x 103 cm™! and a homogeneously broadened sample, the figure shows
a threshold current density of Ji, ~ 2kA/cm?. Of course, this is a prediction
for the fundamental limit to the current density because we have neglected
extrinsic contributions, such as those due to nonradiative recombination and
current leakage.

A similar exercise can also be carried out to see if lasing in a particu-
lar GaN-AlGaN quantum well is feasible. Figure 7.36 shows gain/absorption
spectra of a 2nm GaN-Aly 2Gag gN quantum-well structure. From the lower
figure, we see that transparency occurs at Nog ~ 4 x 10'2cm~2. At higher
densities, the spectra show gain in the ultraviolet wavelength region. To learn
more about the emission wavelength, we plot in Fig. 7.37 the gain and sponta-
neous emission peak energies as functions of carrier density. The spontaneous
emission peak ranges from 348 to 350 nm. The corresponding stimulated emis-
sion peak is about 3 nm longer in wavelength. Both sets of peaks show a blue
shift with increasing carrier density.

The solid curve in Fig. 7.38 shows the peak gain as a function of sponta-
neous emission current for the 2nm GaN-Alp 2Gag gN quantum-well struc-
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Fig. 7.36. TE gain for 2nm GaN-Al 2Gao.sN. The top figure is for carrier densi-
ties Nag = 2 x 102 to 8 x 10'? cm~2 (from bottom to top) in 10'? cm™? increments.
The bottom figure is for carrier densities Nog = 4 X 10'? to 6 x 10?2 cm ™2 (from
bottom to top) in 5 x 10'* cm™? increments

ture. For comparison, we also plotted the curve for the 2 nm Ing o Gag sN-GaN
quantum well. The theory predicts GaN-Aly 2Gag sN quantum-well thresh-
old current densities that are twice as high as those for the InGaN quantum
well. This higher threshold current density is due primarily to band-structure
differences.
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Fig. 7.37. Gain and spontaneous emission peak energies versus carrier density for
a 2nm GaN-Alp 2Gao sN quantum well. The corresponding wavelengths are shown
on the right axis
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Fig. 7.38. Peak gain versus spontaneous emission current for a 2nm GaN-
Alp.2Gap.sN quantum well. For comparison the dashed curve shows the plot for
the 2nm Ing.2Gag.sN-GaN quantum-well structure



References

Chapter 1

Basov, N. G., O. N. Kroklin, and Y. M. Popov (1961), Pis’'ma Zh. Eskp. Theor.
Fiz. 40, 1879 (see also Sov. Phys. JETP 13, 1320).
Haug, H. and S. W. Koch (1994), Quantum Theory of the Optical and Electronic
Properties of Semiconductors, 3rd Edition, World Scientific Publ., Singapore.
Chow, W. W., S. W. Koch, and M. Sargent III (1994), Semiconductor-Laser
Physics, Springer-Verlag, Berlin.

Meystre, P. and M. Sargent III (1991), Elements of Quantum Optics, 2nd Edition,
Springer-Verlag, Heidelberg.

Agrawal, G. A. and N. K. Dutta (1986), Long- Wavelength Semiconductor Lasers,
Van Nostrand Reinhold Co., New York.

Streifer, W., R. D. Burnham, T. L. Paoli, and D. R. Scifres (1984), Laser Fo-
cus/Electro Optics, June, 1984.

Thompson, G. H. B. (1980), Physics of Semiconductor Lasers, John Wiley, New
York.

Yariv, A. (1975), Quantum Electronics, 2nd Edition, John Wiley, New York.

For general information on semiconductor lasers, see

Agrawal, G. A. and N. K. Dutta (1993), Semiconductor Lasers, 2nd Edition, Van
Nostrand Reinhold Co., New York.

Chuang, S. L. (1995), Physics of Optoelectronic Devices, Wiley, New York.

Coldren, L. A. and S. W. Corzine (1995), Diode Lasers and Photonic Integrated
Clircuits, Wiley, New York.

Ebeling, K. L. (1993), Integrated Opto-Electronics, Springer-Verlag, Berlin.

Kressel, H. and J. K. Bulter (1977), Semiconductor Lasers and Heterojunction
LEDs, Academic Press, San Diego.

Streifer, W., R. D. Burnham, T. L. Paoli, and D. R. Scifres (1984), Laser Fo-
cus/Electro Optics, June, 1984.

Thompson, G. H. B. (1980), Physics of Semiconductor Lasers, John Wiley, New
York.

For laser theory and quantum optics, see

Louisell, W. H. (1973), Quantum Statistical Properties of Radiation, Wiley, New
York.

Meystre, P. and M. Sargent III (1991), Elements of Quantum Optics, 2nd Edition,
Springer-Verlag, Heidelberg.

Sargent, M. III, M. O. Scully, and W. E. Lamb, Jr. (1974), Laser Physics, Addison-
Wesley, Reading.

Siegman, A. (1986), Lasers, University Science Books, Mill Valley.

Yariv, A. (1975), Quantum Electronics, 2nd Edition, John Wiley, New York.



236 References

For more information about properties of low-dimensional structures, see

Arakawa, Y., K. Vahala, and A. Yariv (1986), Surf. Sci. 174, 155.

Asada, M., Y. Miyamoto, and Y. Suematsu (1986), IEEE J. Quantum Electron.
22, 1915.

Banyai, L. and S. W. Koch (1993), Semiconductor Quantum Dots, World Scientific
Series in Atomic, Molecular and Optical Physics — Vol. 2, World Scientific Publ.,
Singapore.

Jacak, L., P. Hawrylak, and A. Wéjs, (1997), Quantum Dots, Springer, Berlin.

Kapon, E., J. P. Harbison, R. Bhat, and D. M. Hwang (1989), p.49 in Optical
Switching in Low-Dimensional Systems, H. Haug and L. Banyai, eds., NATO
ASi Series B, Vol. 194, Plenum, New York.

Vahala, K. (1988), IEEE J. Quantum Electron. 24, 523.

Woggon, U. (1997), Optical Properties of Semiconductor Quantum Dots, Springer
Tracts in Modern Physics 136, Springer-Verlag, Berlin.

Zory, P. S. (1993), Quantum Well Lasers, Academic Press, San Diego.

The above texts and reviews give also references to the original papers.

For more information about properties of quantum wires and quantum dots, see

Banyai, L. and S. W. Koch (1993), Semiconductor Quantum Dots, World Scientific
Series in Atomic, Molecular and Optical Physics — Vol. 2, World Scientific Publ.,
Singapore.

Arakawa, Y., K. Vahala, and A. Yariv (1986), Surf. Sci. 174, 155.

Asada, M., Y. Miyamoto, and Y. Suematsu (1986), IEEE J. Quantum Electron.
22 1915.

Vahala, K. (1988), IEEE J. Quantum Electron. 24, 523.

Kapon, E., J. P. Harbison, R. Bhat, and D. M. Hwang (1989), p.49 in Optical
Switching in Low-Dimensional Systems, H. Haug and L. Banyai, eds., NATO
ASi Series B, Vol. 194, Plenum, New York.

Woggon, U. (1997), Optical Properties of Semiconductor Quantum Dots, Springer
Tracts in Modern Physics 136, Springer-Verlag, Berlin.

These reviews give also references to the original papers.

Chapter 2

For free-carrier treatments, see

Chow, W. W., S. W. Koch, and M. Sargent III (1994), Chap. 3 in Semiconductor-
Laser Physics, Springer-Verlag, Berlin.

Chuang, S. L. (1995), Physics of Optoelectronic Devices, Wiley, New York.

Coldren, L. A. and S. W. Corzine (1995), Diode Lasers and Photonic Integrated
Clircuits, Wiley, New York.

Thompson, G. H. B. (1980), Physics of Semiconductor Lasers, John Wiley, New
York.

Zory, P. S. (1993), Quantum Well Lasers, Academic Press, San Diego.

Early references of the linewidth enhancement and antiguiding factors include:

H. Haug and H. Haken (1967), Z. Phys. 204, 262.

Lax, M. (1968), in Brandeis University Summer Institute Lectures (1966), Vol.II,
ed. by M. Chretien, E. P. Gross, and S. Deser, Gordon and Breach, New York.

Thompson, G. (1972), Opto-Electron. 4, 257.

Henry, C. (1982), IEEE J. Quantum Electron. QE-18, 259.

References 237

Chapter 3

For more details on the semiconductor Bloch equations and for further references
see:

Binder, R. and S. W. Koch, Progress in Quantum Electronics 19, 307 (1995).

Koch, S. W., N. Peyghambarian, and M. Lindberg (1988), J. Phys. C21, 5229.

Haug, H. and S. W. Koch (1989), Phys. Rev. A39, 1887.

Haug, H. (1988), Ed., Optical Nonlinearities and Instabilities in Semiconductors,
Academic, New York (1988).

Stahl, A. and I. Balslev (1987), Electrodynamics of the Semiconductor Band Edge,
Springer Tracts in Modern Physics 110, Springer-Verlag, Berlin.

Haug, H. and S. W. Koch (1994), Quantum Theory of the Optical and Electronic
Properties of Semiconductors, 3rd ed., World Scientific, Singapore.

Lindberg, M. and S.W. Koch (1988), Phys. Rev. B38, 3342.

Discussions of the two-level Bloch equations can be found in:

Allen, L. and J. H. Eberly (1975), Optical Resonances and Two-Level Atoms, John
Wiley, New York; reprinted (1987) with corrections by Dover, New York.

Meystre, P. and M. Sargent III (1991), Elements of Quantum Optics, 2nd Ed.,
Springer-Verlag, Heidelberg.

Sargent III, M., M. O. Scully, and W. E. Lamb (1977), Laser Physics, Addison
Wesley, Reading, MA.

The classical theory of plasma screening is discussed in:

Ashcroft, N. W. and N. D. Mermin (1976), Solid State Theory, Saunders College,
Philadelphia.

Harrison, W. A. (1980), Solid State Theory, Dover Publ. New York.

Haug, H. and S. W. Koch (1994), Op. Cit.

General many-body theory and sum rules are discussed in:

Lundquist, B. I. (1967), Phys. Konden. Mat. 6, 193 and 206.
Mahan, G. D. (1981), Many Particle Physics, Plenum Press, New York.

For the modifications of the plasmon-pole approximation in an electron-hole plasma
see:

Haug, H. and S. Schmitt-Rink (1984), Op. Cit.
Zimmermann, R. (1988), Many-Particle Theory of Highly Excited Semiconductors,
Teubner, Berlin.

For the Padé approximation, see:

Gaves-Morris, P. R. (1973), Ed., Padé Approzimants and Their Application, Aca-
demic Press, N.Y.
Haug, H. and S. W. Koch (1989), Phys. Rev. A39, 1887.

We have used the integral tables in:

Gradshteyn, I. S. and I. M. Rhyzhik (1980), Tables of Integals, Series and Products,
Academic Press, New York.



238 References

Chapter 4

Many references listed in Chap. 3 are also relevant to this chapter. Additional ref-
erences include:

Binder, R. and S. W. Koch (1995), Progress in Quantum Electronics 19, 307.

Jahnke, F., M. Kira and S. W. Koch (1997), Z. Physik B104, 559.

Binder, R., D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch
(1992), Phys. Rev. B45, 1107.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988), Nu-
merical Recipes, Cambridge University Press, Cambridge.

The solutions of the Boltzmann equation in Figs. 4.2, 4.3, and 4.4 are presented in

Jahnke, F. and S. W. Koch (1995), Appl. Phys. Lett. 67, 2278.
Jahnke, F. and S. W. Koch (1995), Phys. Rev. A52, 1712

Chapter 5

Much of the material discussed in this chapter can be found in many solid state
physics textbooks and review articles, e.g.,

Altarelli, M. (1985), p. 12 in Heterojunctions and Semiconductor Superlattices, Eds.
G. Allan, G. Bastard, N. Boccara, M. Lannoo, and M. Voos, Springer-Verlag,
Berlin.

Ashcroft, N. W. and N. D. Mermin (1976), Solid State Physics, Saunders College
(HRW), Philadelphia.

Bastard, G. (1988), Wave Mechanics Applied to Semiconductor Heterostructures,
Les Editions de Physique, Paris.

Callaway, J. (1974), Quantum Theory of the Solid State, Part A, Academic Press,
New York.

Kane, E. O. (1966), Semiconductors and Semimetals, edited by R. K. Willardson
and A. C. Beer, Academic, New York, p. 75.

Kittel, C. (1971), Introduction to Solid State Physics, Wiley & Sons, New York;
Kittel, C. (1967) Quantum Theory of Solids, Wiley & Sons, New York.

The block diagonalization of the Luttinger Hamiltonian has been done by: Broido,
D. A. and L. J. Sham (1985), Phys. Rev. B31, 888.

The spin-orbit coupling scheme is discussed, e.g., in
Schiff, L. (1968), Quantum Mechanics, McGraw-Hill, New York. Chap. 12.

A large number of material parameters for many semiconductors can be found in:

Landolt-Bérnstein (1982), Numerical Data and Functional Relationships in Sci-
ence and Technology, ed. K. H. Hellwege, Vol. 17 Semiconductors, edited by O.
Madelung, M. Schulz, and H. Weiss, Springer-Verlag, Berlin.

References 239

Chapter 6

The Hamiltonian for strained semiconductors has been derived by

Bir, G. L. and G. E. Pikus (1974), Symmetry and Strain-Induced Effects in Semi-
conductors, Wiley & Sons, New York.

Pikus, G. E. and G. L. Bir (1960), Sov. Phys. — Solid State 1, 1502 [Fiz. Tverd.
Tela (Leningrad) 1, 1642 (1959)].

Kittel, C. (1971), Introduction to Solid State Physics, Wiley & Sons, New York;
Kittel, C. (1967), Quantum Theory of Solids, Wiley & Sons, New York.

Landolt-Bornstein (1982), Numerical Data and Functional Relationships in Sci-
ence and Technology, ed. K. H. Hellwege, Vol. 17 Semiconductors, edited by O.
Madelung, M. Schulz, and H. Weiss, Springer-Verlag, Berlin.

For papers and reviews dealing with bandstructure calculations and optical prop-
erties of strained superlattices see, e.g.,

Ahn, D. and S. L. Chuang (1988), IEEE J. Quantum Electron. 24, 2400.

Chuang, S. L. (1991), Phys. Rev. B43, 9649.

Dawson, M. D. and G. Duggan (1993), Phys. Rev. B47.

Duggan, G. (1990), SPIE 1283, 206.

Marzin, J. Y. (1986), Heterojunctions and Semiconductor Superlattices, eds. G.
Allan, G. Bastard, and M. Voos, Springer, Berlin, p. 161.

Chuang, S. L. (1995), Physics of Optoelectronic Devices, Wiley & Sons, New York.

For references on the composition dependence of the In;_,Ga,P bandgap see, e.g.,

Adachi, S. (1982), J. Appl. Phys. 53, 8775.
Stringfellow, G. B., P. F. Lindquist, and R. A. Burmeister (1972), J. Electron.
Mater. 1, 437.

For the wurtzite group-III nitrides see, e.g.,

Pearton, S. J., Ed. (1997), GaN and Related Materials, Vol. 2, (Gordon and Breach,
Netherlands).

Nakamura, S., et al. (1996), Appl. Phys. Letts. 69, 4056 (1996).

Miles K. and I. Akasaki, Eds. (1998), GaN-Based Lasers: Materials, Processing,
and Device Issues, IEEE Journal of Selected Topics in Quantum Electronics 4.

Chuang, S. L. and C. S. Chang (1996), Phys. Rev. B54, 2491.

Chapter 7

For AlGalnP bandstructure and optical properties see:

Dawson, M. D. and G. Duggan (1993), Phys. Rev. B47.

Duggan, G. (1990), SPIE 1283, 206.

Adachi, S. (1982), J. Appl. Phys. 53, 8775.

Stringfellow, G. B., P. F. Lindquist, and R. A. Burmeister (1972), J. Electron.
Mater. 1, 437.

For nitride lasers see e.g. the reviews:

Nakamura, S. and G. Fasol (1997), The Blue Laser Diode (Springer, Berlin).
Pearton, S. J., editor, (1997), GaN and related materials (Gordon and Breach,
Netherlands).



240 References

Calculations of quantum well bandstructures can be found in

Sirenko, Y. M., J.-B. Jeon, K. W. Kim, M. A. Littlejohn, and M. A. Stroscio (1996),

Phys. Rev. B53, 1997.
Chuang, S. L. and C. S. Chang (1996), Phys. Rev. B54, 2491.

Additional references for the bulk material parameters include

Suzuki, M., T. Uenoyama, and A. Yanase (1995), Phys. Rev. B 52, 8132.
Nykhovshi, A., B. Gelmonst, and M. Shur (1993), J. Appl. Phys. 74, 6734.

Examples of the gain calculations have been published in

Chow, W. W., A. F. Wright, A. Girndt, F. Jahnke, and S. W. Koch (1997), Appl.
Phys. Lett. 71, 2608.

Experimental results for II-VI lasersare presented e.g. in

Ding, J., M. Hagerott, T. Ishihara, H. Jeon, and A. V. Nurmikko (1993), Phys.
Rev. B47, 10528.

Theory /experiment comparisons have been published

Chow, W. W., P. M. Smowton, P. Blood, A. Girndt, F. Jaknke, and S. W. Koch
(1997), Appl. Phys. Lett. 71, 157.

Ellmers, S., M. Hofmann, W. Ruehle, A. Girndt, F. Jahnke, W. Chow, A. Knorr,
S.W. Koch, H. Gibbs, G. Khitrova, and M. Oestreich (1998), phys. stat. sol.
b206, 407; Ellmers et al., Appl. Phys. Lett. 72, 7647 (1998).

Girndt, A., S. W. Koch, and W. W. Chow (1998), Appl. Phys. A66.

The experimental data for the II-VI gain spectra have been reported by

Yoshida, H., Y. Gonno, K. Nakano, S. Taniguchi, T. Hino, A. Ishibashi, M. Ikeda,
S. L. Chuang, and J. Hegarty (1996), Appl. Phys. Lett 69, 3893.

Subject Index

absorption

— coefficient 81

— free-carrier 82

— spectrum 126

acceptor 4

active region 4

amplitude gain 28,47
angular momentum, orbital 151
annihilation operator 29
anticommutation relations 29
anticommutator 30
antiguiding

— factor 54

— parameter 69

— spectra 142

arsenides 185

axial approximation 162,164

background dielectric constants 145
band

— dispersions 172

— extrema 10

— filling contribution 101
— offset ratio 214

band structure 10
band-crossing 172
bandedge shifts 190
bandgap

— absorption 81

— crossing 215

— energies 189, 204

— energy 7,197,210

— renormalization 15, 88
— renormalized 89

— shift 88

band structure 164

— engineering 175

— hole 161

— modifications 176
basis set 32

basis states 160

Bloch equations

— semiconductor 73,78

— two-level 79

Bloch theorem 151, 155

block-diagonal Luttinger Hamiltonian
163

Bohr radius, exciton 13,92

Boltzmann

— collision integral 146

— equations 145

— scattering integral 111

Bose function 146

Brillouin zone 10

bulk semiconductor media 143

cancellation 142

carrier

— cooling 145

— distribution, nonequilibrium 114
— interaction, intraband 75

— leakage 215

carrier-induced phase shift 93, 99
carrier-relaxation rates 43

cgs units 15

charge carrier 12

charge distribution, induced 85
chemical potential 16,19, 25, 53
Clebsch-Gordan coefficients 153
collision contributions 33,40, 110, 127
complex susceptibility 27
composition variations 222
compounds, [I-VI 218
compressive strain 179, 190, 205, 211
computer time 134

conduction band 11, 157
confinement

— factor 6,8

— potential 21,23

conservation rules 111

constitutive relation 26
continuum absorption 82,83



242 Subject Index

correlation contributions 78,108, 127,
130

Coulomb

— enhancement 82,83, 92, 95, 101,
126

— interaction 75,79

— potential 75,199

—— screened 86, 98

— scattering 76

Coulomb-hole self energy 88,93

creation operator 30

current injection 40

cut-off 120

Debye shift 88

deformation potentials 178,179, 189

degenerate bands 170

degenerate perturbation theory 157,
171

density distribution 31

density of states 25

— energy 18

— joint 48

— momentum 18,25

— two-dimensional 49

density operator 84

dephasing

— diagonal 117,129

— optical 116

detailed balance 111

diagonal

— collision terms 127

— dephasing 117,129

— dephasing approximation 142

dielectric function, longitudinal 86

differential gain 205, 213

dipole

— interaction 37

— lifetime 45

— matrix element 37,68, 181-183,
186, 194, 198, 225

— operator 39

direct bandgap 10

displacement electric field 26

donor 4

doped gain region 45

doping 3

double heterostructure 8

Drude dielectric function 87

el-hhl exciton 202

effective Luttinger parameter 162
effective mass 12, 76, 157, 164, 169
effective radiative lifetime 229

effective single-particle Hamiltonian
85

eigenstates 30

elastic constants 189

elastic moduli 176

elastic strain 175

electrodes 4

electron

— field operator 29,75

— population equation 109

electron-hole

— mass, reduced 14

— representation 12, 30, 38, 76

electron-LLO phonon coupling 145

electrostatic potential 84

Elliot formula 81

emission properties 200

energy

— bands 151

— conservation 112

— density of states 18

— shift 129

— subbands 23

envelope function 169, 185

equivalent functions 133

exchange contributions 135

exchange shift 79,125

exciton 13,80

— absorption resonance 220, 225

— binding energy 14, 126, 202, 226

— Bohr radius 13,92

— peaks 82

excitonic effects 218

expectation value 32

experimental gain spectra 208, 223

factorization approximation 109
Fermi-Dirac distributions 16, 34
field amplitude 27

field operator, electron 29, 75
filamentation 204

fitting parameter 141

form factor 199

forward bias 5

four-operator terms 77,109
free-carrier

— complex susceptibility 47

— Hamiltonian 37

— theory 37

free-carrier absorption 82

GaAs bandstructure 164
GaAs—AlGaAs quantum wells
196

gain 93,99

— coefficient 6, 49

— guided 4

— region 53

— saturation 62

gain rollover 208

I' point 155

generalized J-function (Heitler Zeta
function) 110

group-III nitrides 188, 218, 224

Hamiltonian
— free-carrier 37
— two-band 76

Hartree-Fock

— approximation, screened 83
— contribution 77,123

— factorization 78

heavy hole 171

— light hole coupling 212
— light-hole splitting 179
Heisenberg

— equation 108

— picture 34,38
heterostructure 4,7, 166
— separate confinement 8
hierarchy of equations 78
hole 12

— bandstructure 161,172
— burning, spectral 47

— chemical potential 205
— effective mass 76

— operators 30, 76

— population 205

hole bands 180, 186, 193
homostructure 7
hydrostatic shift 179

identity operator 32

Ing.2Gag.sN-GaN quantum well
224

induced charge distribution 85

InGaAs—-AlGaAs structure 204

InGaAs-InP quantum wells 210

InGaP quantum wells 213

inhomogeneous broadening 222, 227

injection current 6,41, 229

interband polarization 77,110

interparticle distance 89

intraband

— carrier interaction 75

— scattering 41

inverse screening length 92, 99

inversion energy distribution 55

Subject Index 243

joint density of states 48

k- p theory 151

k - p theory 155

k - p Hamiltonian 177

Kane matrix element 69
Kramers-Kronig transformation 51

large optical cavity 8

laser threshold current density 229

lattice

— constants 189, 191

— matched 204

— mismatch 175

— periodic function 151

— vector 151,155

length scales 167

light hole 171

Lindhard formula 86, 129

— static 144

lineshape

— function 50, 141

— problem 141

linewidth enhancement factor
70,203, 213

local gain 27

longitudinal

— dielectric function 86

— optical phonons 145

Lorentzian lineshape 46, 50

Luttinger Hamiltonian 162

— block diagonal 163

Luttinger parameters 161, 162

magnetic

— field 26

- flux 26

many-body hierarchy 109

Markov approximation 108

mass reversal 172

Maxwell’s equations 26

Maxwell-Boltzmann distribution
19

memory effect 108

memory requirement 122

MKS permittivity 15

MKS units 15

momentum

— conservation 112

— density of states 18,25

— operator 66

nitrides 185, 224
non parabolicity 188



244 Subject Index

nondiagonal

— correlation contributions 130

— damping 117

nonequilibrium carrier distribution
114

noninteracting electrons 31

nonlinear susceptibility 65

nonradiative

— decay 40

— recombination 13

number

— conservation 112

— operator 30, 39

numerical computations 133

optical

— dephasing 116

— susceptibility 81

orbital angular momentum 151, 190
oscillator strength 82

Padé approximation 91

parity 171

partition function 33

Pauli exclusion principle 14, 29
peak gain 96

periodic boundary conditions 17
perturbation theory 169

— degenerate 157

phase shift 27

phase-space filling 14
phenomenological gain 53
phonon

— frequency 145

— population 146

phosphides 185

plasma

— frequency 87

— screening 83,84

— temperature 112
plasmafrequency 92
plasmon-pole approximation 87
Poisson’s equation 85
polarization 26, 37

— amplitude 81,118,122

— decay (dephasing) 40

— discrimination 205

— interband 77,110

pump

— blocking 41

— rate 40

quantum
— confinement 21

— dots 21

— efficiency 6,41
— well 21,98

— well laser 8§,49
— wires 21

quasi-equilibrium 111
— distributions 16

Rabi frequency 79

radiative recombination 13,43
rate equation approximation 45,90
recombination rate 6

reduced electron-hole mass 14
reduced-mass energy 48
refractive index 7, 28,47, 142

— change 54

relaxation rate 109

— approximation 117
relaxation times 147

remote bands 158

renormalized

— bandgap 89

— transition energy 79
rotating-wave approximation 46
Runge-Kutta method 133
Rydberg energy 92

— exciton 14

saturated gain 62

saturation intensity 62

scattering

— integral 109

— terms 110

Schrodinger picture 34

screened

— Coulomb potential 86,98

— exchange (SX) shift 89

— Hartree-Fock approximation 83

screening 116

— field 192

— length 14

— length inverse 92,99

— model 84

— plasma 83,84

sech lineshape 50

self-consistency equations 28

self-focusing 204

semiclassical approximation 25

semiconductor Bloch equations 73,78

separate confinement heterostructure
8

shear shift 179

single plasmon pole 129

singularity 124

slowly varying envelope approximation

small signal gain 62, 117

space operator 65

spectral hole burning 47

spin 29

spin-orbit

— coupling 151, 160

— interaction 11

— splitting 188, 197

— states 186

spontaneous emission 40, 46, 229
square-well quantum numbers 184
state mixing 169, 172, 185

static Lindhard formula 144
statistical average 33

statistical operator 33
steady-state saturation 148
step size 120, 124

stiffness constants 176

strain
— corrections 178
— effects 175

— induced bandgap shift 179
— induced electric field 191

— induced energy changes 179
— tensor 175,177

strained quantum-wells 175, 204
sum rules 86, 87

susceptibility

— complex 27

— free carrier 47

— function 91

— nonlinear 65

— optical 81

TE dipole matrix element 184
TE gain spectra 218

TE mode 181

temperature

— dependence 59

— plasma 112

Subject Index

tensile strain 179, 212, 215

third-order theory 64

threshold current density 232
TM dipole matrix element 184

TM gain spectra 201
TM mode 181

total chemical potential

total radiative recombination rate

transformation matrix

53
43
158

transition energy 12,39, 77

— renormalized 79
transition frequency 18
transparency point 53
trapezoidal rule 119
two-band

— approximation 38

— Hamiltonian 76

— model 11,18

two-dimensional joint density of states

49

two-level Bloch equations 79

unconfined states 208
unit cell 168

— integral 67

unitary transformation
Urbach tail 145

162

valence band 11,153, 157
vertical cavity surface emitting lasers

213
visible wavelength region

Wannier

— equation 80

— excitons 80

wave equation 27
wurtzite crystal

— structure 188,195
— symmetry 224

zone-center eigenstates

213

155

245



