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Preface to the Preface

Dear Reader,

Before you read this book, and even its preface, the following remarks
might be useful to you. Since this book is"Volume 2’ you may be inclined
to believe that you must know all the contents of "Volume 1 before you
can start reading (and, of course, understanding) ""Volume 2”. But this is
not the case. The present "Volume 2” again starts at a rather elementary
level, and then proceeds step by step to more difficult matters. Only at these
later stages some more advanced theoretical background is required which
then can be taken from ""Volume 1”°. | have chosen this way of presentation
to make the theory of laser light accessible to a broad audience-ranging
from students at the beginning of their graduate studies to professors and
scientists interested in recent developments. For details on the relations
between the chapters of these books consult the list at the end of the
introduction.

H. Haken
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This book is a text which applies to students and professors of physics.
Because it offers a broad view on laser physics and presents most recent
results on the dynamics of laser light, such as self-pulsing and chaos, it will
be of interest also to scientists and engineers engaged in laser research or
development. Thistext starts at a rather elementary level and will smoothly
lead the reader into the more difficult problems of laser physics, including
the basic features of the coherence and noise properties of laser light.

In the introductory chapters, typical experimental set-ups and laser
materials will be discussed, but the main part of this book will be devoted
to a theoretical treatment of a great variety of laser processes. The laser, or
the optical maser, as it was originally called, is one of the most important
inventions of this century and has found a great number of important
applications in physics, chemistry, medicine, engineering, telecommunica-
tions, and other fields. It bears great promises for further applications, e.g.
in computers. But also from the point of view of basic research, a study of
the physical processes which produce the unique properties of laser light
are equally fascinating. The laser is a beautiful example of a system far
from thermal equilibrium which can achieve a macroscopically ordered
state through " self-organization™. It was the first example for a nonequili-
brium phase transition, and its study eventually gave birth to synergetics,
a new interdisciplinary field of research.

| got involved in laser physics at a rather early stage and under most
fortunate circumstances. In 1960 | was working as visiting scientist at the
Bell Telephone Laboratories, Murray Hill. There | soon learned that these
laboratories were searching for a revolutionary new light source. Two years
earlier, in 1958, this source had been proposed by Schawlow and Townes,
who derived in particular the laser condition and thus demonstrated the
feasibility of this new device. At Bell Telephone Laboratories | soon got
involved in a theoretical study of the laser processes and continued it at
Stuttgart University. | developed a laser theory whose basic features |
published in 1962 and which | then applied to various concrete problems,
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jointly with my coworkers. At about the same time, in 1964, Willis Lamb
published his theory, which he and his coworkers applied to numerous
problems. It is by now well known that these two theories, which are called
semiclassical and which were developed independently, are equivalent. The
next step consisted in the development of the laser quantum theory which
allows one to predict the coherence and noise properties of laser light (and
that of light from lamps). This theory which | published in 1964 showed
for the first time that the statistical properties of laser light change dramati-
cally at laser threshold. In the following years my group in Stuttgart carried
thiswork further, e.g. to predict the photon statistics close to laser threshold.

From 1965 on, Scully and Lamb started publishing their results on the
qguantum theory of the laser, using a different approach, and Lax and
Louisell presented their theory. Again, all of thesetheorieseventually turned
out to be more or less equivalent. In those years experimental laser physics
developed (and is still developing) at an enormous pace, but because | shall
mainly deal with laser theory inthisbook, | haveto cut out a representation
of the history of that field.

From my above personal reminiscences it may transpirethat laser theory
and, perhapsstill more, laser physicsin general have been highly competitive
fields of research. But, what counts much more, laser physics has been for
us al a fascinating field of research. When one looks around nowadays,
one can safely say that is has lost nothing of its original fascination. Again
and again new laser materialsare found, new experimental set-ups invented
and new effects predicted and discovered. Undoubtedly, for many years to
come, laser physics will remain a highly attractive and important field of
research, in which fundamental problems are intimately interwoven with
applications of great practical importance. | hope that this book will let
transpire the fascination of this field.

Over the past nearly 25 years | greatly profited from the cooperation or
discussion with numerous scientists and | use this oppprtunity to thank all
of them. There is Wolfgang Kaiser, who was the first at BTL with whom |
had discussions on the laser problem. Then there are the members of my
group at Stuttgart who in the sixties, worked on laser theory and who gave
important contributions. | wish to mention in particular R. Graham, H.
Geffers, H. Risken, H. Sauermann, Chr. Schmid, H.D. Vollmer, and W.
Weidlich. Most of them now have their own chairs at various universities.
Among my coworkers who, in later years, contributed to laser theory and
itsapplicationsarein particular J. Goll, A. Schenzle, H. Ohno, A. Wunderlin
and J. Zorell. Over the years | enjoyed many friendly and stimulating
discussions with F.T. Arecchi, W.R. Bennett, J., N. Bloembergen,
R. Bonifacio, JH. Eberly, C.G.B. Garret, R.J. Glauber, F. Haake, Yu.
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Klimontovich, W. Lamb, M. Lax, W. Louisell, L. Lugiato, L. Mandel,
L. Narducci, E.R. Pike, M. Sargent, M. Scully, S. Shimoda, S. Stenholm,
Z.C. Wang, E. Woalf, J. Zhang, and many other scientists.

| wish to thank my coworker, Dr. H. Ohno, for his continuous and
valuable assistance in the preparation of the manuscript. In particular, he
carefully checked the formulas and exercises, contributed somein addition,
and drew the figures. My particular thanks go to my secretary, Mrs. U.
Funke, who in spite of her heavy administrative work assisted me in many
waysin writing the manuscript and typed various versions of it both rapidly
and perfectly. Her indefatigable zeal constantly spurred me on to bring it
to afinish.

The writing of thisbook was greatly helped by a program of the Deutsche
Forschungsgemeinschaft. This program was initiated by Prof. Dr. Maier-
Leibnitz, whom | wish to thank cordialy for his support for this project.

H. Haken
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Chapter 1

| ntroduction

1.1. The maser and laser principle

The word "laser” is an acronym composed of the initial letters of "light
amplification by stimulated emission of radiation™. The laser principle
emerged from the maser principle. The word "maser™ is again an acronym
standing for " microwave amplification by stimulated emission of radiation™.
The concept of stimulated emission stems from Einstein when in 1917 he
derived Planck's law of radiation. It took nearly 40 years until it was
recognized that this process can be used in a device producing coherent
microwaves and - in particular - a new type of light - laser light.

The maser was proposed by Basov and Prokhorov (1954-1955) and by
Townes (1954), who performed also experiments on that new device. We
owe the extension of this principle to the optical region Schawlow and
Townes (1958).

One of the first proposals to use stimulated emission was contained in a
patent granted in 1951 to V.A. Fabrikant, but being published in the official
Soviet patent organ, it became available only in 1959.

In 1977 patents on aspects of the laser principle were granted to Gould.
Since hiswork had not been published it remained unknown to the scientific
community.

Because the laser principle is an extension of the maser principle, first
the word "optical maser” had been proposed by Schawlow and Townes.
However, nowadays the word "laser” is widely used because it is shorter.

In order to understand the laser principle it is useful to first consider the
maser principle. The device realizing this principle, which is again called
maser, essentially consists of two components. On the one hand a cavity,
on the other hand molecules which are in the cavity or which are injected
into it. A cavity is practically a metal box of certain shape and dimension.
Init specificel ectromagnetic waveswith discrete wave-lengths can beformed
(figs. 1.1 and 1.2). The corresponding standing waves shall be denoted in
the following as ""modes”. They possess a discrete sequence of eigen-
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Fig. 1.1. Electro-magnetic field mode in a cavity. Local directions and sizes of the electric
field strength are indicated by the corresponding arrows.

frequencies. These modes, which can exist in the cavity in principle, are
now to be excited. To this end energetically excited molecules, e.g. ammonia
molecules, are injected into the cavity. In order to understand the maser
process, for the moment being it is only important to know that a transition
between the excited state of the NH, molecule and its ground state can
take place which is accompanied by the emission of an electro-magnetic
wave with quantum energy hv = W, - W, where v is the frequency of the
emitted wave, whereas W, and W, are the energies of the initial and final

A E
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Lrigireii
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\walls /

Fig. 1.2. Standing electric wave between two ideally conducting walls.
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Fig. 1.3. Emission intensity of a molecule versus circular frequency. In most cases, in the

microwave region the mode frequencfbs are so far apart that only one frequency comesto lie
within the emission line.

state of the molecule, respectively. As we know (cf. Vol. 1), excited atoms
or molecules can be stimulated to emit light quantaif one or several quanta
of the electro-magnetic field are already present, and the whole processis
called stimulated emission. By means of excited molecules in the cavity, a
specific mode can be amplified more and more by stimulated emission. In
order to achieve an efficient energy transfer from the molecules to the
electro-magnetic field, the frequency of the molecular transition must
coincide with the frequency of the mode to be amplified. More precisely
speaking, it is necessary that the mode frequency lies within the line-width
of the molecular transition. With respect to the molecules used in the maser
we can achieve the amplification of a specific mode by choosing the
dimensions of the microwave cavity correspondingly. In this way only one
frequency falls into the line-width whereas all other mode frequencies lie
outside of it (fig. 1.3).

Schawlow and Townes suggested to extend the maser principle to the
optical region by using optical transitions between electroniclevelsof atoms.
When one tries to realize the laser principle, fundamental new problems
arise as compared to the maser. These problems stem from the fact that the
light wave-length issmall compared to acavity of any reasonable dimension.
Therefore in general the distance between different mode frequencies
becomesvery small so that very many modes cometo liewithin thefrequency
range of the atomictransition (fig. 1.4). Therefore a suitable mode selection
must be made. One possibility consists in omitting the side walls of the
resonator and to use only two mirrors mounted in parallel at two opposite
sides. The thus resulting Fabry—Perot resonator, which was suggested by
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Fig. 1.4. Examplefor the positions of mode frequencies in the optical region. In general many
frequencies come to lie within an emission line.

Schawlow and Townes, and Prokhorov and Dicke, makes a mode selection
possible in two ways. Let us consider figs. 1.5 and 1.6. Before the laser
process starts, the excited atoms emit light spontaneously into all possible
directions. On account of the special arrangement of the mirrors only those
light waves can stay long enough in the resonator to cause stimulated
emission of atoms, which are sufficiently close to the laser axis, whereas
other modes cannot be amplified. This mechanism is particularly efficient
because only waves of the same direction, wave-length, and polarization
areamplified by the stimulated emission process. I n thisway the Fabry—Perot
interferometer givesriseto astrong discrimination of the modes with respect

£
Fig. 15. The excited atoms in the laser resonator can radiate light into al directions. Waves

‘mirrors'
which do not runin parallel to the laser axis, leave the resonator quickly and do not contribute
to the laser process.

AN




41.2. The problems of laser theory 5

NANANAAL
NAARRTATRY

Fig. 1.6. The electric field strength of a standing axial wave in the laser resonator.

to their lifetimes. Furthermore the mirror arrangement can support only
those axial modes for which

A
=L
n2 .

where A is the wave-length, L the distance between the mirrors, and n an
integer. Even under these circumstances quite often still many frequencies
may exist within an atomic line-width. The final mode selection, often the
selection of a single mode, is achieved by the laser process itself as we shall
demonstrate in this book.

The first experimental verification of the laser principlein 1960is due to
Maiman, who used ruby, a red gem. Since then laser physics has been
mushrooming and it is till progressing at a rapid pace. Practically each
year new materials or laser systems are discovered and still important tasks
are ahead of us, for instance the extension of the laser principle into the
X-ray and y-ray region. Today a great many laser materials are known and
we shall briefly discuss some typical of them in section 2.3.

1.2. The problems of laser theory

In this book we shall focus our attention on the theoretical treatment of the
laser process. As we shall see, a wealth of highly interesting processes are
going on in the laser and we shall treat them in detail. But what are the
physically interesting aspects and problems of a laser theory? To this end
we have to realize that within a laser very many laser-active atoms, say 10"
or more, are present which interact with many laser modes. Thus we have
to deal with a many-particle problem. Furthermore the laser is an open
system. On the one hand the laser emits all the time light through one of
its mirrors which has some transmissivity, and on the other hand energy
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must be continuously pumped into the laser in order to maintain the laser
process. Thus the system is open with respect to an energy exchange with
its surrounding. Because the atoms are continuously excited and emit light,
the atomic system is kept far from thermal equilibrium. Over the past years
it has become evident that the laser represents a prototype of systems which
are open and far from thermal equilibrium. Clearly the optical transitions
between the atomic levels must be treated according to quantum theory.
Indeed, the discrete structure of spectral lines is a direct consequence of
guantum theory. Quite evidently we have to deal here with a highly compli-
cated problem whose solution required new ways of physical thinking. This
task has been solved in several steps.

1.2.1. Rate equations

The simplest description which still has the character of a model rests on
equations for the temporal change of the numbers of photons with which
the individual "cavity" modes are occupied. A typical equation for the
photon number n is of the form

dn . S
a:generatlon rate — annihilation rate.

These equations are quite similar to those with which Einstein derived
Planck's formula (cf. Vol. 1). Such kind of description, which has been
used by Tang and Statz and DeMars and many others for laser processes,
isstill used today when global phenomena, such astheintensity distribution
of laser light, are studied. On the other hand such a model-like description
based on photon numbersisinsufficient for the treatment of many important
processes in modern laser physics. Thisisin particular so if phase relations
between laser light waves are important. A theory which describes most
laser processes adequately is the semiclassical laser theory.

1.2.2. Semiclassical theory

This theory deals with the interaction between the electromagnetic Jield of
the " cavity" modes and the laser active atoms in solids or gases. The field
istreated as a classical quantity, obeying Maxwell's equations, whereas the
motion of the electrons of the atomsistreated by means of quantum theory.

The source terms in Maxwell's equations, which in a classical treatment
stem from oscillating dipoles, are represented by quantum mechanical
averages. Furthermore, pumping and decay processes of the atoms aretaken
into account. The resulting coupled equations are nonlinear and require
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specific methods of solution. Such atheory was developed in 1962 by myself
and was further developed by my coworkers and myself in the subsequent
years. This theory, which we shall present in this book in detail, allows us
to treat the multimode problem both in solid state as well as in gas lasers.
In thisway we shall understand under which conditions only asingle mode
can be selected by the laser process or, when severa modes can coexist.
Furthermorewe shall find that by means of the laser process the frequencies
of the emitted laser light are shifted with respect to the atomic and cavity
frequencies. Under well defined approximations, in particular that there
are no phase relations between the individual mode amplitudes, the rate
equations can be derived from the semiclassical equations and thus given
a sound basis. A theory equivalent to our theory was developed indepen-
dently by Lamb and published by him in 1964, whereby Lamb treated the
gas laser. A number of important new phenomena, such as ultrashort pulses
occur, when phase locking between modes takes place. The semiclassical
equations are still used by numerous scientists as a basis for the study of
variouslaser phenomenaand weshall present a number of explicit examples.
In this way, the semiclassical theory will form the central part of this book,
dealing with the dynamics of laser light.

1.2.3. Quantum theory of the laser

The semiclassical theory, which describes the behavior of the atoms by
means of certain quantum mechanical averages and treats the light field as
a classical quantity, has a strange consequence. Whereas above a critical
pump power, by which the atoms are continuously excited, laser light is
created in the form of a completely coherent wave, below that critical pump
strength no light emission should take place at all. Of course, asatisfactory
laser theory must contain the emission of usual lamps as a special casa al so,
and it must be capable of explaining the difference between the light from
lamps, i.e. from thermal sources, and laser light. As we know, light of
conventional lamps is produced by spontaneous emission. Spontaneous
emission of light is a typical quantum mechanical process. Quite evidently
the semiclassical theory cannot treat this process. Thus it becomes necessary
to develop a completely quantum mechanical theory of the laser. The
previously known gquantum mechanical theory, in particular the detailed
theory of Weisskopf and Wigner, could explain this spontaneous emission
of an individual atom in detail, but this theory was insufficient to describe
the laser process.

Thus we were confronted with the task of developing alaser theory which
is both quantum mechanical and contains the nonlinearities known from
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semiclassical theories. This theory, which | published in 1964, showed that
laser light differs basically from light from conventiona lamps. Whereas
light from conventional |amps consists of individual incoherent wave tracks,
laser light essentially consists of a single wave whose phase and amplitude
are subject to small fluctuations. Subsequent measurements of the intensity
fluctuations of laser light below and above threshold by Armstrong and
Smith (1965), and Freed and Haus (1965) fully substantiated my predictions.
My approach required the exclusion of the immediate vicinity of the laser
threshold. This gap was closed in 1965 by Risken (and subsequently by
Hempstead and Lax). Risken interpreted my quantum mechanical laser
equation asaclassical Langevin equation and established the corresponding
Fokker—Planck equation. The stationary solution of the Fokker—Planck
equation describes the photon statistics in the laser. We shall deal with the
coherence and noise properties of laser light as well as with its photon
statistics in chapters 10 and 11. In order to treat these questions, besides
the Langevin and Fokker-Planck equations the density matrix equation was
used also. Density matrix equations, which describe both the atoms and
the light field quantum mechanically, were derived by Haake and Weidlich
(1965), and by Scully and Lamb (1966). Solutions of laser density matrix
equations in different kinds of representation were given by Scully and
Lamb (1966), and by Weidlich, Risken and Haken (1967). This work was
carried further by a number of authors, who used still other representations
and included higher order terms.

1.2.4. Quantum classical correspondence

In this section we are abandoning the main stream of this book, to which
we shall return in the next section, 1.2.5, and make some technical remarks
of interest to theoreticians.

An interesting question arose why a quantum mechanical process can be
described by a classical Fokker—Planck equation. This lead to a further
development of the principle of quantum classical correspondence which
allows us to establish a connection between a quantum mechanical descrip-
tion and a classical formulation without loss of quantum mechanical infor-
mation. Such a transcription had been initiated by Wigner (1932) who
treated quantum systems described by the position and momentum operator.
A further important step was done by Glauber and Sudarshan (1963) who
treated Bose-field operators. In particular, Glauber's careful study of quan-
tum mechanical correlation functions provided a general frame for the
description of the coherence properties of light. But, of course, being a
general frame, it did not make any predictions on the coherence properties
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of laser light. For that purpose, the quantum theory of the laser had to be
developed (cf. section 1.2.3). In it the inclusion of the atomic system is
indispensable and required a considerable extension of the principle of
guantum classical correspondence which was done by Gordon (1967), and
Haken, Risken and Weidlich (1967) along different though equivalent lines.
Because the principle of quantum classical correspondence has important
applications not only in laser physics but also in nonlinear optics, we shall
present it in section 11.2.

1.2.5. The laser - trailblazer of synergetics

New vistas on laser theory were opened in 1968 when it was recognized
that the transition from light from thermal sources to laser light within an
individual laser bears a striking resemblance to phase transitions of systems
in thermal equilibrium. Thus the laser became the first example in which
the analogy between a phase transition of a system far from thermal
equilibrium and one of asystem in thermal equilibrium could be established
in al details (Graham and Haken, 1968 and 1970; DeGiorgio and Scully,
1970; Kasanzev et a. 1968). It soon turned out that there is a whole class
of systems which can produce macroscopic ordered states when driven far
from thermal equilibrium. This gave birth to a new branch of scientific
study, called " synergetics”. In this way deep rooted anal ogies between quite
different systemsin physics, chemistry, biology and evenin the soft sciences
could be established. In this new development the laser played the role of
a trailblazer. Within the frame of synergetics it became possible to make
further predictions on the behavior of laser light. For instance, on account
of analogies between fluid dynamics and laser light the phenomenon of
laser light chaos was predicted (Haken, 1975). Various routes to chaotic
laser light could be discovered experimentally. We shall come to these
fascinating questions in chapter 8.

1.2.6. Optical bistability

In this book we shall include other aspects of laser theory aso, for instance
that of optical bistability. Whilein conventional lasers the laser is pumped
incoherently, devices leading to optical bistability can be viewed as lasers
which are driven coherently by an external field. For this reason a good
deal of the theoretical methods developed for the laser can be applied to
optical bistability. A thorough theoretical treatment is due to Lugiato and
others. The name'* optical bistahility" stemsfrom thefact that under suitable
conditions the transmission of light through a resonator filled with atoms
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can acquire two different states. The " optical bistability'" device bears great
promises for the construction of an optical transistor.

12.7. Two-photon laser

The main part of this book deals with laser processes in which an optical
atomic transition generates one photon. As we know, in optical transitions
also two or several photons can be absorbed or emitted simultaneously.
This has led to theideaof atwo-photon laser to which substantial contribu-
tions have been given by Walls, Wang and others. We shall include a short
description of its theoretical treatment in chapter 12.

1.3. The structure of laser theory and its representation in this book

Let us finally discuss the structure of laser theory and its representation in
this book. In astrict logical sense the structure of laser theory is as follows.
At its beginning we have a fully quantum theoretical treatment of atoms
andthelight field aswe presented it in chapter 7 of Val. 1. The corresponding
equations describe the interaction between atoms and light field. But in
addition, theatomsaswell asthelight field are coupled to their surroundings,
for instance the field is coupled to loss mechanisms in the mirrors, or the
laser atoms are coupled to their host lattice (fig. 1.7). The coupling of field
and atoms to their corresponding surroundings leads to damping and
fluctuations which we treated in Vol. I. In this way the basic quantum
mechanical equations for thelaser result, which istreated as an open system.
If we average these basic equations over the fluctuations of the heatbaths
representing the surroundings and form adequate quantum mechanical
averages, we arrive at the semiclassical laser equations. When we eliminate
from these equations the dipole moments of the atoms and average over
phases we obtain the rate equations. The rate equations have a much simpler

atoms | +—————{ lightfield

heatbaths | heatbaths II

Fig. 1.7. Scheme of the coupling between atoms, light field and heatbaths.



§1.3. The structure of laser theory ||

Table 1.1
— oy
qg_ fully quantum mechanical equations —3
8 l =
» semiclassical equations <
el l =]
5 . 8
2 rate equations g
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structure than the fully quantum mechanical equations, at least what the
degree of difficulty of interpretation and solution is concerned. For this
reason a conflict results with respect to the logical sequence and the pedagogi-
cal requirement.

In the present book 1 prefer the pedagogical aspect in order to keep my
promise | gavein the preface, namely to present the wholefield in a manner
as simple as possible. For this reason | start with the rate equations which
| derive heuristically. They will allow us to treat a number of important
phenomena (compare table 1.2). After that we shall treat the semiclassical
equations which we derive in detail but where we do not need to make use
of the fully quantum mechanical equations. The semiclassical equations
form the basis for the central part of this book in which we treat a variety
of different phenomena such as single and multimode operation and in
particular mode locking phenomena, which for instance give rise to ultra-
short pulses. Furthermore we shall be concerned with a detailed description
of chaotic laser light.

Finally we shall turn to a fully qguantum mechanical treatment in which
we shall give an outline of the method of quantum mechanical Langevin
equations which have the advantage of being tractable in close analogy to
the semiclassical equations. We shall include in our representation the
density matrix equation and the method of quantum classical correspon-
dence which will allow us to derive a classical Fokker—Planck equation for
the quantum mechanical laser process. In this way we shall give a detailed
account of the coherence and noise properties of laser light and its photon
statistics. The structure of the laser theory is explained in table 1.2

In conclusion of thisintroduction | should like to give the reader a hint
how to read this book depending on his requirements.

If a reader wants a survey over the whole field without the necessity of
going into al the details the following reading can be suggested:
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Table 1.2. The structure of laser theory

1 Rate equations for photon numbers and atomic occupation numbers
These equations alow the treatment of the following problems: laser condition, intensity
distribution over the modes, single mode laser action, multi-mode laser action (coexistence
and competition of modes), laser cascades, Q-switching, relaxation oscillations.

2. Semiclassical equations

These rest on Maxwell's equations and the Schrodinger equation of electrons taking into
account coupling to heatbaths.

These equations allow a treatment of the following problems (among others): frequency
shifts, frequency locking, population pulsations, active and passive mode locking, un-
damped oscillations, ultrashort pulses, laser light chaos and routes to it, photon echo, wave
propagation inan "inverted" material, optical bistability, two-photon laser, and all problems
quoted under 1.

3. Quantum mechanical equations
They rest on a fully quantum mechanical treatment of the light field and the atoms by
means of the Schrodinger equation or equationsequivalent toit, in particul ar the Heisenberg
equations. These equations alow a treatment of the following problems (among others):
line-widths of laser light, phase, amplitude and intensity fluctuations (noise), coherence,
photon statistics, and all problems quoted under 1 and 2.

List of sections for a first reading

21-23 Basic properties and types of lasers

31 Laser resonators

42 Photon model of single mode laser

4.4 , Q-switching

5.1-5.6,5.8-5.9 Semiclassical equations

6.1-6.3 Single mode laser action including transients
6.8 Single mode gas lasers (perhaps)

The further reading depends on the reader's interest.
Readers interested in the quantum theoretical foundation of the basic
equations and their applications:

Chapter 10 Coherence, noise and photon statistics. Quantum theory of
the laser
and perhaps chapter 11.

Readers interested in further “mactoscopic properties', frequency lock-
ing, ultrashort pulses, chaos, €tc.:

6.4-6.5 Multimode laser
6.6 Frequency locking
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6.7 Laser gyro (perhaps)

71 Ultrashort pulses. Some basic mechanisms
81 Laser light chaos

8.2 (now needed 7.2)

83

9.1 Optical bistability

9.2

Readers can also proceed by reading the chapters individually if they
want to get to know specific applications of the rate equations, semiclassical
equations or the fully quantum mechanical equations. The most advisable
way will be to get a survey along the lines indicated above and then to
penetrate deeper by reading more sections of the corresponding chapters.

In conclusion of this chapter | present a table showing which knowledge
of Volume 1isrequired for an understanding of the chapters of the present
book.

Chapters of Volume 1 needed (if not known otherwise):

Present Vol. 2 Vol. 1

number of chapter needed chapters

1 1. What is light?

2 2. The nature of light

3 —

4 2. The nature of light

5-9 2+3. The nature of matter

10 6,7.1-7.6, 8.1, 9.1-9.4. Quantization of field and elec-
tron-wave field, coupling to heatbaths

11 5, 6, 7.1-76, 8.1, 91-95

12 Chapters 5 and 6 of Val. 2



Chapter 2

Basic Properties and Types of Lasers

2.1. The laser condition

Let us consider the laser depicted in fig. 2.1 more closely, and let us discuss
the tasks of its individual parts. The two mirrors mounted at the endfaces
fulfil the following functions. When we treat light as a wave, between the
two mirrors only standing waves can be formed. Their wave-lengths, A, are
connected with the distance between the mirrors, L, by therelationnA /2= L
where n is an integer. In section 3 we shall briefly discuss the influence of
the finite size of mirrors on the formation of these standing waves. On the
other hand, when we consider light as consisting of photons, thetwo mirrors
reflect photons running in axial direction again and again. Therefore these
photons can stay relatively long in the laser, whereas photons which run
in other directions leave the laser quickly. Thus the mirrors serve for a
selection of photons with respect to their lifetimes in the laser.

Flishtube

\
Trigger electrode Ruby

Fig. 2.1. The first experimental set-up of the ruby laser according to Maiman. The ruby rod
in the middle is surrounded by a flashlamp in form of a spiral.
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AUV hy = W,- W,

W,

Fig. 2.2. The energy W of a two-level atom with the energy levels W, and W, of which the
upper one is occupied. During the transition from level 2 to level 1 a photon of quantum
energy hv = W, — W, is emitted.

Let us consider a single kind of photons, for instance those which run in
axial direction and which belong to a certain wave-length A, and let us
study how their number n changes on account of the processes within the
laser. Tothisend we have to make some assumptions on the atoms partici pat-
ing in laser action. We assume that each of the laser atoms has two energy
levels between which the optical transition which leads to laser action takes
place (fig. 2.2). The external pump light serves the purpose to bring a
sufficiently large number of atoms into the excited states of the atoms,
whose number we denote by N,. The rest of the atoms with number N,
remains in the ground state (fig. 2.3). The excited atoms emit photons
spontaneously with a rate proportional to the number of excited atoms, N..
Denoting the rate with which a single excited atom generates a photon per
second by W, the total spontaneous emission rate of photons reads WN,.
Aswe know, in addition photons can be generated by stimulated emission
(cf. Vol. 1). The corresponding generation rate can be simply obtained from
the spontaneous emission rate by a multiplication by n, i.e. for stimulated
emission the generation rate is N, Wn. On the other hand, atoms in their
ground states, absorb photons with the absorption rate — N, Wn. Finally we
must take into account that the photons may leave the laser, for instance
by passing through one of the mirrors or by scattering by impuritiesin the
laser, etc. We denote the inverse of the corresponding lifetime, ¢, of the
photons by 2«. The loss rate is then given by —2«n. Adding up the contribu-
tions which stem from the individual processes just mentioned we obtain
the fundamental laser equation

dn

3, = (Na= N Wi + WN, = 2ccn. 2.1
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w

pump light

W I—eo—eo 9o o o o o > N\

number
of atoms
(a)
¢ W
W2 Nz
emission
W1
number
of atoms

(b)

Fig. 2.3. (a) Through the pump mechanism anumber of atoms arelifted from their levels 1into
their levels 2. Thus the number of atoms in their ground states, N,, is lowered and those of
the atoms in their excited states increased. (b) The excited atoms can make transitions into
their ground states by light emission.

The explicit expression for W was derived in Vol. 1 (eq. (2.96)). Let us
rederive that result by some plausibility arguments. The spontaneous
emission rate of an atom with respect to all possible kinds of photons is
connected with the lifetime = of the atom with respect to spontaneous
emission by W=1/r. In the present context we are interested in the transi-
tion of the atoms leading to spontaneous emission of a specific kind of
photons only. Therefore we have to divide the transition rate per second,
1/7, by the number of all kinds of photons possible. Therefore we have to
form W=1/(7p), where according to Vol. 1, eg. (2.56) the number p is
given by

p=V8m’lAv/c’. (2.2)
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Init Visthevolume of thelaser, v the laser light frequency, 4» the atomic
line-width and ¢ the velocity of light in the laser medium.

By means of the formulas derived above we may immediately present
the laser condition. Laser action sets in if n increases exponentially. This
is guaranteed if the r.h.s. of eg. (2.1) is positive, where we have neglected
the spontaneous emission rate WN, which is then negligible. In a detailed
guantum theoretical treatment of the laser in chapter 10 we shall see that
in addition to the argument just presented the light spontaneously emitted
(which is described by the term WN,) is incoherent whereas stimulated
emission gives rise to coherent light. Using the abbreviations for W and «
we immediately obtain the laser condition

N, ~2N1 >l' (23)
8w Av
V———7

03

This condition tells us which laser materials we have to use and how we
have to construct a laser. First of al we have to take care that the lifetime
1, of photons within the laser is big enough. As we shall see below this can
be reached by making the distance between the mirrors sufficiently large.
In order to find an estimate of ¢, we imagine that the photons run in axial
direction and that they quit the laser with a certain probability each time
they hit one of the mirrors. This probability can be expressed in a simple
way by the reflectivity, R, of the mirrors. As one readily sees, the lifetime
of a photon is proportional to the distance between the mirrors, inversely
proportional to the velocity of light, and inversely proportional to 1- R.
We thus obtain the relation

L

t'=(1—R)c' (2.4)
In order to treat a concrete example let us put

R=90%, L=30cm. (2.5)
We thus obtain

t=10"%s. (2.6)

Now let us discuss the left hand side of the inequality (2.3). In order to
fulfil (2.3) we must make N, - N,, i.e. the inversion, as big as possible. The
volume V should be as small as possible or, if we form the ratio between
the inversion and the volume, the inversion per volume or, in other words,
the inversion density, must be sufficiently large. The factor u® should be as
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small as possible but because in each case one wants to generate light of a
specific wave-length the size of v? isfixed and cannot be circumvented. But
we see that with increasing frequency it becomesincreasingly more difficult
to fulfil the laser condition which makes it so difficult to build an X-ray
laser. Both the atomic line-width Av and the lifetime = of an atom (with
respect to light emission) should be chosen as small as possible. But here
fundamental limits exist. Asis known from quantum mechanics, the uncer-
tainty relation Avr=1 holds.
Inserting some typical data such as

r=10"s", ¢=3x10"cms™", ==10"%s, Av=10"s", (2.7)
we obtain the inversion density which is necessary for laser action

(N,- Ny

TR 10" [ecm ™). (2.8)

In section 2.3 we shall get to know a number of pump mechanisms by
means of which we may achieve the necessary inversion.

Exercises on section 2.1

(1) Calculate W for the following laser data (ruby):
V=628 cm’,
v =4.32x10" Hz,
Av=2.49x10" Hz,
€ =2.9979 x10° m/s,

7=3.0ms.

(2) Calculate the number of modes of a closed resonator whose edges have
the length L =1 cm, 10 cm, 100 cm, which are present within the line-width
Av=6.22x10° Hz. How big is the number of modes in these cases if the
modes are axial modes (E =sin kx) in a Fabry—Perot interferometer?

(3) Calculatethe quality factor 2« =1/t, using formula (2.4) for the follow-
ing cases. length of the laser resonator (=distance between the mirrors)
L =1cm, 10 cm, 100 cm, reflectivity R =99%, 90%, 10% . How dothe results
change if the index of refraction is n=2, n=3? Compare the resonator
line-width « =1/(2t,) with the distance between the mode frequencies and
the optical line-width of ruby (compare exercise 2).
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(4) Calculate the critical inversion density of ruby by means of the laser
condition where the following data may be used:

V =628 cm?®,

v=4.32x10" Hz,
Av=2.49x10" Hz,

r=3.0ms,

¢'=1.70x10* m/s (¢’=light velocity in ruby),
R=99%.

Hint: Neglect the degeneracies of the levels.

2.2. Typical properties of laser light

Thetypical properties of laser light make the laser an ideal devicefor many
physical and technical applications. Let us quote some of its most important
properties.

(1) Laser light can have high intensities. Within laser light pul ses, powers
far greater than 10'® W can be achieved. In order to visualize this power
just think that 10® light bulbs, each with 100 W, are needed to produce the
same power. It is more than the power of all American power stations taken
together. For applications in laser fusion, lasers with the power of more
than 10" W are built or tested experimentally at present. High cw emission
can also be achieved. It reaches an order of magnitude of about 10° W. The
achieved top powers are not published (for obvious reasons).

(2) Laser light possesses a high directionality. This stems from the fact
that the light within the laser hits the mirrors at its endfaces in form of a
plane wave, whereby the mirrors act as a hole giving rise to diffraction (fig.
2.4). In this way the ideal divergence of a plane wave diffracted by a dlit is
closely approached. A laser with a diameter of a few centimeters can give
rise to a laser beam which, when directed to the moon, gives rise to a spot
of afew hundred meters in diameter. The strict parallelism of the emerging
light results in an excellent focusability which jointly with the high laser
light intensity allows a production of very high light intensitiesin very small
volume elements. When one calcul ates the electric field strength belonging
to the corresponding light intensity, field strengths result which are far
bigger than 10® V/cm. These are field strengths to which otherwise electrons
in atoms are subjected. In this way ionization of atoms by means of laser
light becomes possible.
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Fig. 2.4. By means of the laser process a plane parallel waveis produced in the laser (a). The
divergence of the emitted beam corresponds to that of a plane wave diffracted by a dit (b).

(3) Thespectral purity of laser light can be extremely high. Thefrequency
width which isinversely proportional to the emitted power can be v =1Hz
for 1W emitted power in the ideal case. Experimentally dv=100H has
been realized. Taking év =1, the relative frequency width for visible light
is 8v/v=10""° which is of the same order of magnitude as that of the
Mossbauer effect. It is important to note that this frequency purity is
achieved jointly with a high intensity of the emitted line quite in contrast
to spectrographs where high frequency purity is achieved at the expense of
intensity. The frequency purity of laser light is closely connected with its
coherence (see point (4)).

(4) Coherence. While light of usual lamps consists of individual random
wave tracks of a few meters length, laser light wave tracks may have a
length of 300,000 km.

(5) Laser light can be produced in form of ultrashort pulses of 10™'*s
duration (picosecond) or stll shorter, e.g. 30femtoseconds (1 femto-
second =107""g).

Quite evidently the properties of laser light just mentioned make the laser
an ideal device for many purposes which we shall explore in the present
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}E(t)
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Fig.2.5. (a)Theelectricfieldstrength E( t)of light of alamp consists of uncorrelated individual
wave tracks. (b) Laser light consists of a single coherent very long wave track.

and the subseqguent volume. A most interesting question which we shall
study later in great detail consists in the problem how the transition from
the emission of alamp to that of the laser takes place. If we pump the laser
only weakly and plot its electric field strength E versus time we obtain the
picture shown in fig. 25. The light field consists of entirely uncorrelated
individual wave tracks. The whole light field looks like spaghetti. When we
increase the pump power beyond a certain threshold, an entirely new
behavior of laser light emerges. It becomes an extremely long wave track.
This sudden transition which transforms light from one quality into that of
another quality becomes apparent also when we plot the emitted power (of
a single mode) versus pump power (fig. 2.6). While below laser threshold,
1.e. in the range of thermal light, the emitted intensity increases only slowly,
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'

noise

threshold

Fig. 2.6. The emitted power | versus pump power. Within the region of operation of the laser
as a lamp the field consists of noise only and increases only sowly with increasing pump
power. Above threshold the emitted intensity increases much more strongly with pump power.
The intensity is taken with respect to a specific mode.

above threshold it quickly increases. Thisis a hint that the internal state of
order of the laser changes abruptly at laser threshold. This is a process
which is strongly reminiscent of phase transitions of superconductors or
ferromagnets. Indeed we shall show in chapter 13 that this analogy is very
close. Among the more recently discovered properties of laser light are the
following. Under suitable conditions, namely high pumping and bad cavity
quality, laser light can exhibit chaotic behavior. Laser light chaos is an
entirely new type of light which must not be mixed up with so-called " chaotic
light from thermal sources™. Aswe havejust seen, light from thermal sources
consists of very many individual wave tracks. Chaotic light on the other
hand still consists of a giant wave track which, however, may show specific
fluctuations which we shall explore later in this book. Indeed the study of
chaotic laser light has become a new chapter in laser physics.

2.3. Examples of laser systems (typesof lasersand laser processs)

As we have seen above, a typical laser consists of the following parts: the
laser-active material, the pump source, and the resonator. In this section
we wish to get to know a number of examples of laser materials. Today
there is a great variety of materials which can produce laser action and
new materials are still developed. The list of our examples is by no means
complete and we wish rather to discuss some laser materials which are of
particular importance. Readers who are interested in the basic principles
of laser physics only can skip this section totally or may consider only our
first example, the ruby laser.
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Fig. 2.7. Pumping process and laser light emission of a two-level atom.

2.3.1. Energy and pump schemes; kinds of line broadening

Before we discuss individual laser materials it will be useful to give a survey
on different energy schemes used between which pump and laser processes
go on. Indeed we shall find only a few basic types. We got to know the
simplest type already above. In this case the laser material consists of
individual atoms each having only two levels. The optical transition which
leadstolaser action takes place between thesetwo levels. Because sufficiently
many atoms must be excited to obtain laser action the atoms must be
pumped energetically from their level 1 into their level 2 from the outside
(compare fig. 2.7).

This model is entirely sufficient for a theoretical derivation of most
properties of laser light. When we wish to build an actual laser, the energy
level scheme becomes somewhat more complicated. We may distinguish
between three basic types. The first type is represented in fig. 28. The
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pump light transition
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1

Fig. 2.8. Pumping process, radiationless transition, and laser transition of a threelevel atom,
where the lower transition leads to laser action.
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Fig. 29. Pumping process, radiationless transition, and laser transition of a three-level atom,
where the upper transition leads to laser action.

electron of the atom in the ground state 1 is excited into a state 3. This
excitation can be done by an irradiation of the atom by pump light with a
frequency corresponding to the transition frequency from level 1to level 3
(optical pumping according to Kastler). The electron can make a radiation-
less or radiative transition from level 3 into level 2, from where it makes
an optical transition to level 1. This optical transition forms the basis of
the laser process. A further pump scheme is represented in fig. 29. The
ground state of the atom is denoted by 0. Out of this ground state the system
is brought into level 2 by optical pumping. From this level 2 the optical
transition into the level 1 can take place. The electron in level 1 can
recombine to its ground state by a radiationless or radiative transition. The
radiationless transitions can be caused by several mechanisms, for instance
collisions between gas atoms among each other, or collision of gas atoms
with the walls, interaction of atoms in lattices with lattice vibrations, etc.
As we have seen when deriving the laser condition, a sufficiently high
inversion N,— N, must be achieved. Because according to the scheme of
fig. 2.8initially practically all atomsareintheir ground states, the production
of a sufficiently high inversion requires a much higher pump power than
that corresponding to the scheme of fig. 2.9. If the recombination from level
1 to level O occurs sufficiently rapidly, level 1 will remain occupied only
weakly and theinversion can be established by the number of excited atoms,
N,, alone.

Another pump scheme which is used quite often is that of fig. 2.10. Here
the optical pumping occursfrom level Ointo level 3. From there aradiation-
less or radiative recombination of the electron into level 2 occurs. Level 2
serves as initial level for the optical transition to level 1 thus serving as
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Fig.2.10. Four-level atom with pumping process, radiationlesstransitions, and laser transition,
where the middle transition leads to laser action.

basis of the laser process. A radiationless or radiative recombination then
happens between level 1 to level O.

It is well known that not only individual electronsin atoms may possess
discreteenergy levels but that al so complex quantum systems possess energy
levels. Aswe shall see below, practically all laser materials can be subsumed
under the system of transition processes indicated above. In practical cases,
however, a more detailed consideration may be necessary. Quite often the
pumping takes place using a whole set of different levels. The reason for
that rests in the fact that one wishes to pump the system as strongly as
possible. Furthermore the optically active levels 2 and 1 are broadened.

We briefly remind the reader (cf. also Vol. 1) that we have to distinguish
between different kinds of line broadening. On the one hand there are level
broadenings which are common to all atoms of the system in the same way.
This kind of broadening is called "homogeneous line broadening™. A
broadening which is always present is the " natural line broadening™ (fig.
211). It results from the finite lifetime of the electron which is leaving the
excited state in order to make its optical transition. The linewidth Av is
connected with thelifetime = by the relation Av =1/ We shall meet other
kinds of broadening when we consider concrete cases of laser materials.
For instance laser active atoms in solids experience different external per-
turbations, in particular local electric fields, depending on their individual
positions. In this way the atomic energy levels are shifted depending on
the individual atomic position. This leads to inhomogeneous line broaden-
ing. When we consider the ensemble of atoms, due to theindividual energy
shifts of the atoms the total line appears as a superposition of
(homogeneously broadened) lines (fig. 2.12). Another important
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Fig. 2.11. The Lorentzian line.

inhomogeneous broadening is caused by the Doppler effect of moving
atoms. This effect is well known from acoustics. When a car, which sounds
its horn, passes, the horn seems to have a higher frequency when the car
approaches us and to have alower frequency when the car has passed. This
effect occurs also in optics. When an atom moveswith the velocity v towards
an observer, the frequency of the light emitted by the atom seems enhanced
according to the formula »' = »(1+v/c), where v isthetransition frequency
of the atom at rest. When an atom flies in opposite direction the opposite
sign applies, »'=v(1—v/c). If a gas contains atoms moving with different
velocities, for instance according to the thermal velocity distribution (Max-
wel's distribution), this velocity distribution leads to a corresponding

A Tv)

— \/

Fig. 2.12. Aninhomogeneously broadened line of Gaussian shape (solid line). For comparison
the Lorentzian line of the transition with a homogeneously broadened width is indicated also
(dashed line).
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frequency distribution. In such acaseweshall speak of a Doppler broadened
line (fig. 2.13).

2.3.2. Laser materials

In this section we wish to consider a number of examples. This list is by
no means exhaustive but may serve rather the purpose to give the reader
an idea how varied laser materials can be. Let us first consider transitions
of electrons in atoms. Such atoms can be built in as impurities in solids.
This leads us to our first class of laser systems, namely:

Solid state lasers

(&) Ruby. Ruby was the first material in which laser action was found.
Ruby, a well known gem, isa crystal consisting of aluminumoxide, Al,Os.

b flv)

> V
(a)
b IV

>V

(b)
Fig. 2.13. (a) Maxwellian velocity distribution function f(v) of gas atoms which move at a

velocity v in parallel to the laser axis. (b) The Doppler broadened emission line of gas atoms
due to the Maxwellian velocity distribution according to fig 2.13a.
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Fig. 2.14. Energy level scheme of ruby: (1) ground state; (2) excited state from which the
transition occurs; (3) pump levels. [T.H. Maiman, Phys. Rev. Lett. 4, 564 (1960).]

The lattice is doped with Cr’* ions, i.e. triply ionized chromium, typically
with a concentration of 0.05% (in weight). The chromium ions lend ruby
its red color. Laser action takes place between levels of Cr’* whose corre-
sponding energy level scheme is shown in fig. 2.14. Thus basically we are
dealing with the scheme corresponding to fig. 2.8, where the participating
levels 2 and 3 are split. Optical pumping takes place into the levels denoted
by *F, and “F, in fig. 2.14. From these levels the chromium ion relaxesinto
the level 2 of fig. 28 which in fig. 2.14 is denoted by *E. In fact this level
is split into two further sublevels. The lower one of these two levels, which
is denoted by E, serves as the initial state for the optical transition, i.e. for
the laser transition into level 1 of fig. 28 (which actually is fourfold
degenerate). The optical transition denoted by R, takes place at 0.6943 pm.
The lifetime of the upper laser level E is about 3x107° s, The linewidth Av
strongly depends on temperature. At 300 K, Av=2x10"" Hz. Usually ruby
is excited by intense flash lamps but other light sources are used also in
order to generate cw emission.

(b) The neodymium glass laser. In this case glass serves as the basic
substance which is doped with laser active neodymium ions (Nd**). The
pump scheme is that of fig. 2.10, but instead of the singlelevel 3 of fig. 2.10
a whole set of levels is used. It is important to note that the lower laser
level 1 is separated from the ground state 0 energetically so far that even
at room temperature the occupation number of level 1 differs from that of
the level 0 by afactor e '°. Thus we may assume that the level 1isinitially
practically unoccupied. The optical transition between levels 2 and 1 takes
place at A =1.06 pm.
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Fig. 2.15. Comparetext. [A. Yariv, Quantum Electronics, 2nd ed. Wiley, New York 1976.1

(c) The neodymium YAG laser. In this case the neodymium ions are
embedded in yttrium—-aluminum garnets which consist of Y;AlsOy,. The
level scheme corresponds to that of fig. 2.15. Laser action takes place at
A =1.0641 ym at room temperature.

(d) Neodymium pentoxidecrystals. Neodymium can bebuilt in at regular
lattice sites in the crystals mentioned above and can show laser action.

(e) Asalast exampleof solid statelasers we mention calcium wolframate
doped with ions of the rare earths.

Gas laser

In this case the laser active atoms form a gas. The first example found
experimentally was the He—Ne laser in which a gas mixture of helium and
neon atomsisused (fig. 2.16). Thelaser transitionstake placein Neespecially
at A=06328ym, A=115um and A =3.39 ym. The pumping of the Ne
atomsis particularly interesting. In the gas mixture which typically contains
1.0 mm Hg of He and 0.1 mm Hg of Ne a dc or ac discharge takes place.
By it electrons of sufficiently high energy are liberated which can excite the
He atoms by collisions. The electrons of the He atoms recombine by means
of a cascade and preferably accumulate in the long living metastabl e states
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Fig. 2.16. Example of an experimental set-up of the He—Ne laser. The gas discharge tube of

the laser is denoted by L. At the endfaces the mirrors are mounted under the Brewster angle.
The laser is mounted in the way indicated in order to avoid vibrations.

2*°S and 2'S (fig. 2.17). Because these long living levels practically coincide
with the 2S and 3S levels of Ne, by means of collisions the excited He
atoms can transfer their energy to the Ne atoms which are thereby brought
into excited states. These states serve as initial states for the laser transition
or even for a cascade of laser transitions.

A further important class of gas lasers is represented by ion lasers. Laser
active transitions occur in ions of the gases of He or Ar. lonization and
excitation is achieved by electron impact. The wave-length of the emitted
light lies in the ultraviolet.

Electronic transitions in molecules
Excimer lasers

In order to understand the concept of excimers let us consider two atoms
or moleculeswith closed electronic shells, e.g. two He atoms. Being in their
ground states they repell each other, therefore no He molecule can exist.
But if an electron of one atom is excited this atom can form with the other
atom a molecule which is called an excimer. If the excited electron recom-
bines, the molecule decays. In this way the laser condition can be fulfilled
in an ideal manner because the ground state of the molecule does not exist
so that N,;=0. Laser action of excimer systems was first found in liquid
xenon which was energetically pumped by an electronic beam. In the
meantime laser action of excimers was found in gaseous Xe,, Kr,, Ar, as
well asin gaseous compounds of nobel gases and hal ogenides such as XeBr,
XeF, XeCl, KrF, ArF, and KrCl. The atoms are excited by electron beams
of high energy or by fast discharges. These lasers can emit light in the
ultraviolet and vacuum-ultraviolet.

Chemical lasers
Here the excited state of an electron in a molecule is generated by a
chemical process. An example is provided by the reaction between fluor
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Fig. 2.17. The energy level scheme of helium and neon. The energy of the excited helium
atom is transferred by means of collisions to neon. [W.R. Bennett, Appl. Optics, Suppl. 1,
Optical Masers, p. 24 (1962).]

and hydrogen
F+H,->HF*+H

in which the fluor atom is excited.

Dye lasers

Many organic dyes can exhibit a pronounced luminescence which covers
a large range of wave-lengths in the visible range of the spectrum. A dye
molecule which is quite often used for lasersis Rhodamine 6G. Itsmolecular
structureisshowninfig. 2.18. The optical transitions are caused by electrons.
We have to distinguish between two kinds of excitations. In one case the
spin of the electron in the excited level is opposite to that of the remaining
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Fig. 2.18. Molecular structure of Rhodamine 6G.

molecule so that a total spin equal 0 results. We call these states S-states
(singulet states). In the second case the spin of the excited electron is
parallel to that of the remaining molecule. The total spin equals 1 and we
are speaking of triplet states. Both kinds of states are further split due to
molecular vibrations. The levels are represented in fig. 2.19 by heavy lines.
Finally astill finer splitting exists. It stemsfrom the rotation of the molecules
which, according to quantum theory, is quantized. In usua experimental
setups the dye molecules are in solution. The dye molecules are excited by
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Fig. 2.19. Energy level scheme of a dye. On the left-hand side the groups of the singlet states
are plotted which are further split due to oscillations and rotations (compare text). On the
right-hand side the triplet states are plotted.
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other lasers, eg. the argon laser, whereby a transition from the group So
into the group S, occurs. Thisexcitation isfollowed by afast recombination
to the lowest level of group S,. From there the optical transition in one of
the states of group S, occurs. Besidesthis optical recombination a transition
from S, to T, happens with a relatively small transition rate. Because the
optical transition from T, into the ground state of S, isforbidden, the states
T, arelong living. Unfortunately the absorption frequency of the transition
from T, to T, coincides with the emission frequency from S; to S,. As a
consequence the emitted laser light is strongly reabsorbed so that laser
action is quickly suppressed. Therefore in such a case only laser light pulses
can be emitted. However, by adding new substances to the solution a quick
recombination of the states T, can be achieved so that reabsorption is
suppressed. Besides Rhodamine 6G there are a number of further organic
dyes showing laser action. By a combination of different kinds of dye
molecules a range of wave-lengths from 430 till 800 nm can be covered. On
account of their broad luminescence lines, organic dyes are particularly
well tunable. Tuning can be achieved, for instance, by reflection gratings.

Laser action caused by molecular oscillations

The most important example is provided by the CO, gas laser. In these
molecules the individual atoms can perform oscillations. The three funda-
mental kinds of oscillations are shown in fig. 2.20. According to quantum
theory the different kinds of oscillations must be quantized so that discrete
energy levels result. The energy level diagram belonging to some low lying
oscillation levels of CO, is represented in fig. 221. One of the laser
processesrestson the optical transition between thelevelswhich aredenoted
infig. 221 by 001 and 100. The excitation of the uppermost level is usually
achieved in a plasma discharge in which N, and He participatein addition
to CO,. In the plasma discharge a large fraction of the two-atomic N,
moleculesis excited to make vibrations, whereby the molecules accumulate
inthe excited state with the vibration quantum number n = 1 of the harmonic
oscillator. Collisions with CO, molecules in their ground states make a
transfer of the energy from the excited state of N, to an excited state of
CO, possible. The remaining small energy difference is transformed into
kinetic energy of the molecules after their collisions. The efficiency of CO,
lasers is very high and lies at about 30%. In order to achieve high power
emission, lasers with alength up to several hundred meters have been built.
According to quantum theory, besides the vibrational levels of CO,
molecul es also discrete rotational levels are possible which may also partici-
pate in the laser process. If the gas pressure is increased above 5 Torr, due
to the numerous collisions aline-broadening occurs which exceedsthe usual
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Fig. 2.20. Oscillatory states of the CO, molecule.
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Fig. 2.21. Oscillatory states of CO,. [C.K.N. Patel, Phys. Rev. Lett. 12, 588 (1964).]
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Fig. 2.22. Typical arrangement of a gas dynamic laser. [J.D. Anderson, Jr., Gas Dynamic
Lasers. An Introduction. Academic Press, New York 1976.1

Doppler broadening. This gives rise to a second laser regime of the CO,
laser which is of particular interest for applications.

Particularly high emission powers can be achieved by gas dynamiclasers.
Here a mixture of CO,, N,, H,O or Heis used. This gas mixture, which is
initially held under high pressure and is very hot, can expand through
supersonic jets. During expansion an inversion of the gas atomsis reached
so that a laser active medium results. The supersonic gas passes through
an arrangement of mirrors whereby alaser light beam is generated (cf. fig.
2.22).

Electronic transitions in semiconductors

Here we are dealing with a further class of solid state lasers. But the
el ectronic states between which the laser transitions take place do not belong
to individual impurity atoms but rather to the total crystalline lattice which
forms the semiconductor.

A semiconductor is usually a crystal in which the individual atoms form
aperiodiclattice. In such a periodic structure electrons may propagate like
periodically modulated waves with a wave-vector k (cf. Vol. 1). To a definite
k-vector there belongs a whole set of energies W;(k), j=1,2,... (fig. 2.23).
When we consider W;(k) as a function of k, the energies form continuous
bands which are separated by gaps (compare fig. 2.24 which presents an
example of two energy-bands with a single gap). In the electronic ground
state of thetotal crystal theindividual energy levels, which we can visualize
ashbeing discrete but very dense, arefilled up from the bottom with electrons.
More precisely speaking, each level is filled with two electrons having
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Fig. 2.23. Scheme of the energy bands of an electron in a solid. Theenergy W of an electron
in the valence band (lower part) and of an electron in the conduction band (upper part) are
plotted versusthe k-vector. a is the lattice constant.

opposite spins. In an insulator the valence band is filled up entirely with
electrons. The subsequent band, which is called the conduction band, is
empty. Asis shown in solid state physics, optical transitions can occur in
a periodic lattice only under conservation of the k-vector, i.e. in the energy
level scheme of fig. 2.25 the transitions must take placein vertical direction.

How can we achieve laser action in such a crystal? To this end we have
to generate an inversion, i.e. we must excite electronsfrom the valence band
into the conduction band. An example is shown in fig. 2.26 schematically.
Because of the just mentioned k-selection rule the electrons can make their
transitions independently of each other so that a sufficiently high inversion
can be generated if we only bring enough electrons into the upper band,
i.e. the conduction band. Experimentally such an inversion can be achieved
by irradiating the crystal by a beam of electronswith sufficiently high energy.
In this way electrons of the valence band are kicked into the conduction
band where they accumulate at its bottom. In many practical applications,
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Fig.2.24. When we project the energy levels onto the W-axiswe clearly seethat the conduction
band and the valence band (black) are separated by a gap (white).

other kinds of pump mechanisms are used, however. If impurity centers
are implanted into a crystal, not only new energy levels are generated but
also the conduction and the valence bands are shifted. If different kinds of
impurity atoms are implanted into different regions of the crystal, as indi-
cated infig. 2.27, an energy scheme asindicated in that figure arises. Because
in the energetic ground state of the crystal the electrons occupy the lowest
electronic energy levels, an occupation scheme as shown in fig. 2.27 results.
Because the energetically lowest state is occupied, no optical transitions
can take place. In order to generate an inversion, according to fig. 2.26, an
electric field is applied to the crystal. This electric field causes an increase
of the energy of the electrons at one end of the crystal and a lowering of
their energies at the other end. In other words, the energy scheme is tilted.
Because the electrons again wish to occupy the energetically lowest states,
quite evidently they must make transitions as indicated in fig. 2.28. These
transitions are optical transitions from an occupied into an unoccupied
energy level and form the basis for laser action. We have been describing
the general scheme of a p-n junction, where p and n are abbreviations for
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Fig. 2.25. The optical transition of an electron from the valence band into the conduction
band takes place under conservation of the k-wave vector, i.e. vertically.

"positive” and "negative" (charge). An important example of such a semi-
conductor laser is provided by gallium arsenide (GaAs).

The simple scheme of optical transitions must still be modified because
the electronic transitions are strongly influenced by the impurities. In this
way the k-selection rule is violated.

Semiconductor lasers can be very small and may have diameters of less
than a fraction of a millimeter. Because these light sources are nevertheless
very intense, they can be used in medicine and also in communication
networks. For technical reasons the simple p-n junction we just described
has to be modified in various ways. In particular multiple p-n junctions
are used of which fig. 2.29 shows an example.

A further class of semiconductor lasers is formed by exciton lasers. We
briefly remind the reader of the concept of an exciton. Let us consider an
insulator and let us visualize it as a crystal being built-up of its individual
atoms with their localized electrons. If we excite such an insulator, an
electron can be removed from its mother atom and transferred to another
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Fig. 2.26. When we excite a number of electrons optically or by electronic collisions, the
electrons occupy statesin the conduction band to which unoccupied states (holes) correspond
in the valence band. In this way an inversion can be generated.

atom. In this way a positively charged hole at the mother atom remains.
The negatively charged electron senses the attractive Coulomb force of the
remaining hole and can circlearound that (cf. Val. 1). According to qguantum
theory, the total energy of the system electron +hole is quantized. This new
kind of electronic system, consisting of an electron and a holewith quantized
energiesis called "exciton™. If semiconductors are irradiated by high light
intensities, high densities of such excitons are generated. When the electron
and the hole of the exciton recombine, they can emit their total energy in
form of light. When many excitons participate in this process, we might
expect laser actionto occur. However, atypical difficulty arises with excitons,
because the emitted light can again generate new excitons and is thus
reabsorbed. In this way the exciton system alone can never produce laser
action. However, a new kind of process can occur in crystals. Namely the
energy which is liberated by the recombination of an electron and a hole
can be split into the energy of a photon and that of a phonon, which is a
quantum of the lattice vibrations. In this way not enough photon energy is
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Fig. 2.27. The energy bands can be localy shifted by doping a semiconductor with various
impurities. In this figure the energy is plotted as a function of the spatial coordinate. The
donors are impurities in the crystalline lattice which can give their electrons to the conduction
band. On the other hand, acceptors are impurities which can bind electrons or, in other words,
which can generate holesin the valence band. Fisthe Fermi energy up to which the electronic
levels can befilled up. W, isthe lower edge of the conduction band, W, is the upper edge of
the valence band. p and n refer to "' positive™ and " negative'" according to the doping.
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Fig. 2.28. When an external electric field is applied the electrons are shifted to one side (in
our figure to the left side), whereas the oppositely charged holes are driven to the opposite
side. In this way occupied electronic states come to stand above the unoccupied hole states
so that electrons can make a transition as indicated by the vertical arrow and emit photons.
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Fig. 2.29. Example for the experimental arrangement of a semiconductor laser. The cross
section shows various layers. Laser action takes place in the recombination region.[H. Kressel,
I. Ladany, M. Ettenberg and H. Lockwood, Physics Today, May 1976, p. 38.]

availablefor reabsorption and laser light can indeed be generated by exciton
recombination (fig. 2.30).

As afinal example of laser processes in solids we mention color center
lasers. These are ionic crystals of sodium chloride (NaCl), potassium
bromide (KBr), etc. The positively or negatively charged ions of sodium or
chloride, respectively, are regularly arranged to form a lattice. In such a
lattice defects can be formed in various ways. An important defect consists
in the lack of a negatively charged chloride ion at a lattice site. Because
the total crystal has been neutral it appears as if the defect possesses a

hv

exciton exciton

hv

phonon

Fig. 2.30. In the exciton laser the total energy liberated by the recombination of an exciton
is split into the light quantum energy hv and the phonon energy hv,nonon- 1N this way not

enough light quantum energy is available to regenerate the exciton because reabsorption
processes cannot take place.
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Fig. 231. The NaCl lattice. The negatively charged chlorine ions are represented by big white
balls, the positively charged sodium ions by small black balls.

positive charge (fig. 2.31). Such a positively charged center can capture an
electron which circles around that center. According to quantum theory the
energy levels of the electron are quantized. The electron can make optical
transitions between them and can emit or absorb light. Because these centers
lend the above mentioned crystals their color, they are called color centers.
If sufficiently many of these centers are excited, laser action can take place.

An entirely different class of lasers is provided by thefree electron laser.
In this case the electrons move in vacuum and pass within an electronic

beam through a spatially modulated magnetic field (fig. 2.32). By means of

the Lorentz force the electrons are periodically deflected. It is well known
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Fig. 2.32. Experimental arrangement of the free electron laser. The pulsed electron beam
enters from the right-hand side into a helical magnet. In the experiment indicated, the emitted
light is superimposed on that of a CO, laser and the modulated radiation isregistered. [D.A.G.
Deacon, L.R. Elias, JM.J. Madey, H.A. Schwettman and T.I. Smith, in: Laser Spectroscopy
I11, eds. JL. Hall and J.L. Carlesten, Springer, Berlin 1977.1
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from classical electrodynamics, that deflected, i.e. accelerated, charges give
rise to the emission of electromagnetic waves. By means of the collective
emission by many electrons, laser action may become possible. The advan-
tage of this system which has been realized, for instance, at the linear
accelerator of Stanford University, isits tunability, which ceuld be reached
by a continuous variation of the magnetic field strength.

X-ray and y-ray lasers

Dueto the many applicationsof laser light it is, of course, highly desirable
to build lasers with very short wave-lengths. With respect to the X-ray and
y-ray region so far only proposals exist. Possible laser-active quantum
systems could be excited atomic nuclei which can emit y-rays. With respect
to resonators the principle of the distributed feedback laser has been
suggested. Because of thefactor »*inthelaser condition (2.3), therealization
of such lasers seems to be very difficult, however.



Chapter 3

L aser Resonators

3.1. Survey

In principlethelight field or, more generally speaking, the electro-magnetic
wave field contains all possible wave-lengths, al directions of propagation
and all directions of polarization. On the other hand the main goal of the
laser device consists in the generation of light with definite properties. A
first selection, namely with respect to frequency, is achieved by the choice
of the laser material. By means of the energy levels W of the chosen system
the frequency v of the emitted light is fixed according to Bohr's formula
hv = Wi isa — Wana- Of course, the frequencies of the optical transitions are
not sharp but they are broadened due to various causes. Such causes may
be the finite lifetimes of the levels due to optical transitions or collisions,
inhomogeneous crystalline fields, etc. In order to select frequencies further,
resonators are used. We met the simplest type of aresonator in Vol. 1 when
we studied the modes in a cavity. In a cavity, whose walls have an infinitely
high conductivity, standing waves with discrete frequencies can exist. These
waves are well defined eigenmodes of the cavity. When scientists tried to
extend the maser principle into the optical region it was an open question
whether a laser with just two mirrors but otherwise open side walls would
allow modes at al (fig. 3.1). Because of the diffraction and transmission
losses due to the mirrors, no permanent field could stay in such an open
resonator. It turned out, however, that the concept of modes can be well
applied to open resonators. The first proof was given by computer calcula-
tion. Fox and Li considered an arrangement of two plane parallel mirrors
and they prescribed 'aninitial field distribution on one of the mirrors. Then
they studied the propagation of light and its reflection. After the first steps
theinitial light field got distorted and its amplitude lowered. However, after
say 50 round trips the field mode acquired a final shape and its overall
amplitude was decreasing by the same constant factor after each reflection.
In this way it was clear how to generalize the concept of modes. One has
to look for such field configurations which remain the same in the course
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N /

plane parallel mirrors

Fig. 3.1. Laser resonator with plane parallel mirrors.

of time with the exception that their amplitudes decrease after each step
by the same factor. In this way it becomes possible to calculate the modes
of open resonators and we shall give two explicit examplesin the second
part of this chapter.

In analogy to a closed resonator, in an open resonator a sequence of
discrete modes may exist with which a series of discrete frequencies is
connected. The emerging mode configurations can be characterized by their
specific intensity distribution on the mirrors. Examples are shown in fig.
3.2. By means of the finite lifetime of the modes due to diffraction and
especially due to the transmissivity of the mirrors, the amplitude is damped
which gives rise to a frequency width. In most lasers this frequency width
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Fig. 3.2. Left part: Distribution of the electric field strength of the laser field over the endfaces
of alaser with rectangular cross section. The abbreviation TEM means "transverse electric
mode" . Theindicesrepresent the number of nodes of thefield in vertical or horizontal direction.
Right part: The same for a laser with circular cross section.
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f

Fig. 3.3. Laser arrangement with a convex and a plane mirror.

is much smaller than the original atomic line-width (**good cavity case™).
Important dynamic effects of laser light occur if the frequency width caused
by the cavity is bigger than the atomic line-width (*'bad cavity case™). A
misunderstanding should be avoided at any rate. By the laser processitself,
which we shall treat in our book, the effective line-width will be lowered,
as compared to cavity and atomic line-width, by many orders of magnitude.

Ascan be easily visualized, light can sufficiently often be reflected between
the mirrors only if these are precisely adjusted in a parallel position. If the
laser mirrors aretilted, the light wave track will leave the laser very quickly.
Its lifetime in the laser has dropped strongly and the laser condition can
no more be fulfilled. For these reasons other arrangements of resonators
have been developed where the light modes depend less sensitively on the
adjustment of the mirrors. Such an arrangement is shown in fig. 3.3 where
one plane mirror is replaced by a mirror with the shape of a section of a
sphere.

Another arrangement often used is that of confocal mirrors where the
center of one mirror just coincides with the focus of the other mirror. Plane
parallel mirrors are often mounted at the end surfaces of the material itself.
But also other arrangements are used in which one or both mirrors are
separated from the laser active material. Such arrangements may influence
the mode selection done by the laser process and can be used correspond-
ingly. As we shall see later in our book, laser action can simultaneously
take place in modes which are standing waves. These modes are made
possible by experimental setups corresponding to figs. 3.1-3.5.

Fig. 3.4. Laser arrangement with two confocal mirrors.
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Fig. 3.5. Laser arrangement in which one of the mirrorsis mounted in a certain distance from
the laser material.

mirrors

In order to achieve higher reflection coefficients for polarized light, a
definite angle between the laser axis and the mirrors is used in order to
make use of the Brewster angle. Thisarrangement isoften used in gas lasers,
for instance the helium-neon laser. I n order to obtain avery sharpfrequency,
the selection of a single mode becomes necessary. This can be achieved,
for instance, by the ring laser shown in fig. 3.6. In such a ring laser running
waves are generated. By additional means, e.g. by a Faraday rotator put
in-between two mirrors, it becomes even possible to select one direction of
propagation. The ring laser in which two waves propagate in opposite
direction forms the basis of the laser gyro which will be studied in more
detail in section 6.7. The most important property of all these mirror
arrangements consists in the fact that in this way thelight is fed again and
again into the laser (feed-back) whereby the laser wave is more and more
amplified until a stationary state is reached. In a way the light is back-
scattered coherently into the material. Such a coherent back scattering can
be achieved in a quite different way by a method which is well known from

= N

Fig. 3.6. Mirror arrangement of a ring laser. Also four mirrors are in use.
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X-ray diffraction. When crystals are irradiated by X-rays each atom acts as
ascattering center. If the X-raysimpingeon the crystal in specific directions
and with specific wave-lengths, the individual back-scattered wave tracks
can interfere with the incoming light field, and thus standing waves are
formed. These standing waves correspond to the modes we have been
discussing before. However, the difference to the former mirror arrange-
ments consists in the fact that the scattering centers (centers of reflection)
are distributed all over the crystal in a regular fashion. This principle can
be applied to the optical region. By means of a grating the back scattering
of the wave tracks is achieved. In this way we arrive at the principle of
distributedfeed-back lasers.

In anumber of cases thelaser process can be achieved without the specific
feed-back mechanisms we just have studied. For instance in a number of
semiconductors the difference between the index of diffraction of the
material and that of air is so big that the internal reflection is big enough
to achieve the same effect as a mirror. In addition to the arrangement of
mirrors we just have mentioned, also more exotic arrangements have been
suggested and even verified, e.g. the whispering gallery mode (fig. 3.7).

Before we turn to a more detailed description of methods how the modes
in an open resonator can be calculated we mention a few technical terms.
The " quality of aresonator”, Q, isdefined by Q = wt, where w isthe mode
frequency and ¢, its lifetime in the unloaded cavity, i.e. a cavity not yet
filled with laser active material. t, is the time in which the mode intensity
drops down to 1/e of itsinitial value. In our book we shall use the decay
constant k =1/(2¢4,). In order to obtain a high Q, according to physical
optics (theory of diffraction) the following criterium must be fulfilled. In
the case of two mirrors with apertures 24, and 2A,, respectively, and
separated by a distance D, the inequality

AA,

W> I, (3.1

whispering
/gallery mode

Fig. 3.7. Example of a whispering gallery mode.
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where A is the wave-length, must be fulfilled. The parameter N = A%/AD
obtainedfor A,=A, = Aiscalled Fresnel number. Itisapproximately equal
to the number of Fresnel zones seen on one mirror from the center of the
other mirror. A resonator theory should explain the following points:

(1) the mode pattern on the mirrors;
and more generally
(2) the mode distribution in the interior of the open resonator;
(3) the losses due to diffraction, reflection, mirror misalignment, and
aberration;
(4) the far field pattern.

In sections 3.2 and 3.3 we shall give two examples how the mode patterns
can be calculated.

3.2. Modes in a confocal resonator*

This resonator is formed by two spherical mirrors of equal curvature
separated by their common radius of curvature. The focal length of a mirror
isone half of its radius of curvature, so that the focal points of the reflectors
coincide.

The reflectors are assumed to be square with the edge length 2A (compare
fig. 3.8), which is small compared to the spacing D=R where R is the
radius. A and R are large compared to the wave-length. Because of the
symmetry of the problem we can choose the electric field vector either in
x or y direction. In the following we shall drop that index x or y. Actualy

Fig. 3.8. Confocal resonator with mirrors S and S'. The coordinates used in the text are
indicated.

*The specific form of the modes we are going to derive in this and the following section is
not very important for most of the theoretical conclusions we shall draw in our later chapters.
For this reason, readers who are interested mainly in laser processes can skip the reading of
sections 3.2 and 3.3 entirely.
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al the essential steps of the mathematical analysis can be seen when we
deal with a scalar field using Huygens principle.

Let the field strength at point X' be given by E(x'). Then according to
Huygens' principle this point is a starting point of a new spherical wave
which produces a field strength at point x which is given by

2'—k7; Sxpltix — Yl [;‘f I;‘|' e 0y, (3.2)
Here k is the wave number; x and x' are vectors defined by
x=(x,y,z). (3.3)
x'=(x"Yy, 7). (3.4)
The total field at point x isfound by integrating over al original points x'
on a surface. In the following we shall consider the spherical mirrors as

such a surface and we shall choose the coordinates X and y on them.
Corresponding to the two mirrors Sand S we write

E(x)= Es(x,y) (3.5)
and

E(x')=Es(x',y"). (3.6)
The field on mirror Sis given by

ik exp[—ik,
Es(x,y)= J Py expl ~tkp] Es(x',y) dS’, (3.7)
s 2T

where

|x — x| =p. (3.8)
Because of 2A< R we approximate p by

P_—xxtyy

R R* . (39)

In accordance to what we have stated in section 3.1 we define a mode by
the property that its field distribution is repeated when going from one
mirror to the other one, besides a constant factor o,

Es(x,y)=0Egs(x, y). (3.10)

Inserting (3.7) into (3.10) wefind an equation for Es.. To solvethis equation
we proceed in several simplesteps. Becauseit will turn out in aself-consistent
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fashion that the spot-size of the field distribution is much smaller than R
we make the following approximation:
exp[—ikp] exp[—ikR] [—ik(xx' + yy’)]
= exp .
p R R

(3.11)

But when weinsert (3.11) into ther.h.s. of (3.7) we may factorize theintegral
into one referring to xx' and one referring to yy'. This suggests to make the
following hypothesis in the form of a product:

Es=E, f(x) g(y), (3.12)

where E, is a constant. For formal reasons we decompose also o into a
product:

o=0'c". (3.13)
Inserting (3.12) and (3.13) into (3.10), where we have used (3.7) and (3.11),
we find

. —ik A ik’
o 1059 0" () = TP [7 ) oxp T g

R

XJ g(y") exp[m] dy’". (3.14)

Because on each of both sides there is a product of a function of x and
one of y this equation can be fulfilled only if the factors fulfil the following
equation:

A

f(X)=const|s f(x')exp[ikxx'/R]dx' (3.15)

and a corresponding equation for g(x). Eq. (3.15) is called an integral
equation and it has been solved exactly. The solutions are given by the
angular wave functions in prolate spherical coordinates as defined by
Flammer. But probably hardly anybody is familiar with this kind of wave
functions. Fortunately, for our purposes the solution of (3.15) can be written
in a very familiar form provided the field has not too many nodes in the
X,y plane. In such a case it is well concentrated around the axis so that
x/ A< 1. If thefieldisstrongly concentrated, the contributions of theintegral
in the region of x'=+A are practically negligible and we can extend the
limits of the integral to infinity. Therefore instead of (3.15) we now have
to solve

+a,

f(x) =const [ T (x') explikxx'/ R] dx'. (3.16)
J -0
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After a little bit of guessing one may quite easily find the solution of the
equation (3.16). It is nothing but a Gaussian distribution
f (x) =exp[- 3 kx*/R]. (3.17)

We leave it as a little exercise to the reader to check that (3.17) is indeed
a solution of (3.16) and to determine the constant in front of the integral.
Inthefollowingit will be convenient to havea suitable abbreviation, namely

X=xvk/R, Y=yJk/R. (3.18)
With (3.17) and (3.18) and choosing the same solution for given y we find
the field distribution on the mirrors. It is a Gaussian distribution

E(X,y)=Esexp[-3(X** Y?)]. (3.19)
We may define the spot radius, w, by that radius where (3.19) has dropped
to 1/e, whieh yields

w, = RA/ . (3.20)

Huygens principlealows onealsoto calculate thefield insidethe resonator.
Because the derivation of the result is of a more technical nature we just
write down the corresponding formulas. We use the abbreviation

£=2z/R, (3.21)
and find
2 -(X*+Y?
B 0= — §zexp[ Ers )]sin o(X. V0, ()
where

—k(R ¢ 2 yy)) (7o
ox v, 0=k(R0+o T (e v)) - (F-0). G2

and

_1-¢
%0=17s (3.24)

As we may see, in x, y-direction the field is still Gaussian though the spot
size varies along the laser axis. Thefunction sin ¢ looks rather complicated
but a little analysis reveals that it has the fellowing structure;

sin @ ~sin(kz +f (2)), (3.25)

where sin(kz) describes the fast oscillations of the field, whereas f(z) isa
slowly varying function. That meansthat in z-direction, i.e. in the direction
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of the laser axis, the field mode strongly resembles that of a mode in a
closed cavity. The field outside the cavity can also be found by means of
Huygens principle and reads

[ 2 -(X’+Y?
E(x, .V; Z): ctEO 1 +§2 exp[ ((1 +‘;2> )] exp[—l(P(X’ }/’ g)]'
(3.26)

where ¢, isthe transmissivity of the mirrors. The far field pattern has a spot
size which at a distance z is given by

1/2
w, = (& (1 +§2)_) . (3.27)
2

The angular beam width ® can be defined asthe ratio w,/z for z » oo which
yields

_JRrE_ R 222
0= 20z V27 R VzR (3.28)
The results are represented in figs. 3.9 and 3.10. Thefield distribution (3.19)
represents just the mode which has the lowest losses.
A closer analysis shows that the whole sequence of modes is again of a

form quite familiar to physicists. Namely, the general solution of (3.14)
can be written as

E(x,y) = EgH,.(X)H,(Y) exp[—3(X*+ Y], (3.29)
where H,, are the Hermitian polynomials, m=0,1,2,... and
X =xvk/R, Y=yJk/R,

at least in the case in which the Fresnel number N=(1/27)(A%k/R) - .
For sake of completeness we represent also the field inside and outside
the resonator in the general case. The field outside the resonator is

2 2 2
Bl n = ekt (X E) (i)

1
1+ &

Xexp[—(Xz-f- Y?) ] exp[—ie(X, Y)]. (3.30)
To obtain the field inside the resonator, the factor ¢, must be omitted and
exp[—ig(X, Y)] be replaced by sin(¢(X, Y)). In order to calculate the
losses by diffraction, the finite size of the mirrors is, of course, crucial.
The analysis shows, however, that the losses due to diffraction are in
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’ position of mirror

o .
position of mirror

(a)

ho S .
position of mirror

(b)

Fig. 3.9. (a) Field distribution between two confocal mirrors, according to eg. (3.22). (a) and
(b) show only the envelope. The rapidly oscillating function sin ¢ has been omitted. (b) In
order to bring out the narrowing of thefield distribution, in the middle part thefield distribution

of (&) is somewhat exaggerated.
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Fig. 3.10. Field distribution outside the confocal resonator, according to eg. (3.26). In this
figure only the envelope is shown. The rapidly oscillating function exp [i¢] has been omitted.

general much smaller, typically by a factor of 100, than losses due to the
finite transmissivity of the mirrors. Therefore we shall not be concerned
with these kinds of losses. We mention that in z-direction only discrete
values of k are admitted which are given by

2ul=2(mw/2—kR+(m+n)m/2), (3.31)

where m, n and ! are integers.

3.3. Modesin a Fabry-Perot resonator

It is not our purpose to present resonator theory in full length. We rather
wish to give the reader a feeling how the modes look like. In the foregoing
section we have seen how the application of Huygens' principle allows one
to determine the field configurations within a confocal resonator in arather
simple fashion. In the present section we want to briefly indicate the results
of amodel calculation which avoids the approximation on which Huygens
principle is based. For simplicity we consider a two-dimensional model of
a Fabry—Perot resonator which consists of two plane strip metal mirrors.
In the present approach we assume that the space between the mirrors is
filled with active material being described by a complex susceptibility
x =x'+ix". For a rigorous treatment Maxwell's equations must be used.
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Due to the symmetry of the problem we may put either

E,=U(y, 2),
__ iU i (32
7 uw dz” 7 pw dy’
or
H.=U(y,2),
; aU ; U (3.33)

7=

E=—— - ‘
Y (et+x)w 9z’ (e+x)w 8y

Inserting the hypothesis (3.32) or (3.33) into Maxwell's equations we readily
verify that U must obey the wave equation

AU +k3, U=0, (3.34)

where the wave number is given by
w
K2, =—2-(1 +’;‘) (3.35)

within the active material and

AU +K*U =0, (3.36)
with
k’=w?/c? (3.37)

outside the active material. e is the dielectric constant. The mirrors are
assumed to have a reflectivity r, close to one, so that the tangential com-
ponents of E and H must satisfy a certain boundary condition, called the
Leontovich condition. It reads

s
Eppng= \/% —(1=nnxH, (3.38)

where n is a vector normal to the mirror surface.
Theessential results can be summarized asfollows. If the Fresnel numbers
are sufficiently high, the electric field has thefollowing spatial dependence:

sin[(y +A)'2—"£] sin[(z-*r-lz—)) %T] (3.39)



§3.3. Modes in a Fabry-Perot resonator 57

The solution can be readily generalized to a three-dimensional resonator,

sin[(x+Al){% sin[(y+A2)2m71T] sin[(z +§) %T] (3.40)

2A, and 2A, are the edge lengths of the rectangular end mirrors in x and
y-direction, respectively; D istheir distance. 1, m and n are integers. This
result has been derived for axial or nearly axial modes so that n is a big
number (An--D) whereas 1 and m are small integers of order unity.

The resonance condition reads approximately

9—2~<—l’f—)2+<m)2+<"—ﬂ)2 Lmn=0,1 (3.41)
c2 2Al 2A2 D ’ i ’ ’ e )
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Fig. 3.11. Amplitude (above) and phase (below) distribution of the lowest mode of even
symmetry for thetwo-dimensional resonator (N =6.25).[H. Risken, Z. Physik 180, 150(1964).]
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Fig. 3.12. Amplitude (above) and phase (below) distribution for the lowest mode of odd
symmetry for the two-dimensional resonator (N = 10).[H. Risken, Z. Physk 180, 150 (1964).]

A more detailed analysis reveadls that in higher order approximation the
functions (3.39) and (3.40) have to be changed in two ways. The I's, m's
and n's acquire additional small imaginary parts and the expressions (3.39)
and (3.40) have to be supplemented by additional terms. Because the explicit
resultsdo not give us much physical insight we rather show the correspond-
ing amplitude and phase distributions for the lowest modes in figs. 3.11
and 3.12. In the remainder of this book we shall be satisfiedwith the explicit
representation of the wave functions in the form (3.39), (3.40) when we
deal with standing waves.



Chapter 4

The Intensity of Laser Light.
Rate Equations

4.1. Introduction

Inthischapter we shall deal with rate equations. Wegot to know an example
of such equations when we derived the laser condition in section 2.1. Asis
well known (cf. Vol. 1), when treating the light field quantum mechanically
we may attribute the photon number n to each mode. In this chapter we
shall treat n which, according to quantum theory should be an integer, as
a continuous variable. A completely satisfactory derivation of the rate
equations can be done only by means of a fully quantum theoretical
treatment of the laser or in a rather good approximation by means of the
semiclassical laser equations. We postpone this derivation to later chapters
and start here right away with the rate equations in order to get a first
insight into the physical processes in the laser.

4.2. The photon model of a single mode laser

Let us consider a single kind of photons whose number we shall denote by
n. Because in the following we are interested in the genuine laser process
we shall neglect the spontaneous emission rate WN, (cf. section 2.1). We
shall see later anyway that the stimulated emission rate (N, — N;) Wn plays
quite a different role than the rate WN,. This becomes manifest in the
statistical properties of laser light which we can treat only later, however.
Therefore we start from the following equation for the temporal change of
the photon number:
%=(N2—N,)Wn—2xn. 4.1)
Due to the laser process not only the photon number changes but also
the occupation numbers of the atoms change. Let us consider for simplicity



60 4. The intensity of laser light. Rate equations

N,

Fig. 4.1. The various optical transitionsin a system of two-level atoms with the occupation
numbers N, and N,.

a system of two-level atoms, and let us study the temporal change of the
occupation numbers N; and N,. The number N, increases by the excitation
of electrons by the pumping process. The transition rate is proportional to
the number of electrons available in the ground states of the individual
atoms, i.e. itisproportional to N,. The corresponding proportionality factor
will be denoted by w,, (fig. 4.1). Here and in the following we have to note
that we must read the indices of the w's from right to left, i.e. w,; refersto
thetransition from level 1tolevel 2. Thistransition rate depends, of course,
on the optical properties of the atoms or, more precisely speaking, on the
corresponding optical transition matrix elements. Finally w,, is proportional
to the intensity of the pump light. We shall not discuss this in detail but
we shall rather consider w,, as a "control parameter” which we can
manipulate from the outside.

Atoms being in level 2 can make transitions into the ground state by
means of radiationless transitions in which no photons are emitted. Such
processes can be caused, for instance, by collisions in gases or by the
interaction between atoms with lattice vibrations in solids. The rate of these
transitions is, of course, proportional to the number of excited atoms, N,.
The corresponding proportionality factor will be denoted by wi,.

By means of this description we also take care of radiative processes
which do not belong to the emission of the kind of photons under considera-
tion here. Finally the processes of stimulated emission and absorption take
place. The number of transitions per second is given by (N,— N;) Wh,
Collecting all the contributions just mentioned we obtain the rate equation
for the occupation number of level 2,

dN,
dt

=W2|N1—-W|2N2—(N2—N1)Wn. (4.2)
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Level 1 can be treated in a completely analogous fashion. We then obtain

d..ﬂl: W12N2—W71Nl+(N2_N|)Wn. (4 3)
dt '
Adding the egs. (4.2) and (4.3) resultsin
d(N: +N,) _
FrR— (4.4)

This means that the total occupation number of levels 1 and 2 remains
constant. It is equal to the total number of al laser atoms

N1+N2=N. (4.5)

Because egs. (4.1) to (4.3) contain the difference of the occupation numbers
or, in other words, the inversion N,— N;, we introduce this quantity as a
new variable

Nz_ Nl = D. (4.6)
On the other hand N, and N, can be expressed by means of N and D,

Because N is a constant we have to deal with a single variable D only.
Therefore it suggests itself to express egs. (4.1)—(4.3) by means of that
variable. Subtracting (4.3) from (4.2) and using (4.7) yields

d_,_)= N(W2| - W|2) - D(Wzl + le) - ZWDn.
dt

This equation can be brought into a form which lets transpire its physical
meaning still more when we remember that the w's have the meaning of
transition rates, i.e. that they are inversely proportional to certain transition
times. Therefore we introduce a time constant T by the relation

l/ T = le + W|2. (4.9)

(4.8)

Furthermore we study which inversion D = D, will result if only pump and
relaxation processes occur but no laser process. We obtain that quantity by
putting the Lh.s. of (4.8) =0 and by omitting the last term in (4.8). We then
readily obtain

W21~ Wi

Dy= N—/— (4.10)
Wy + Wy,

For reasons which we shall explain below, this inversion is called the
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unsaturated inversion. Inserting D, and (4.9) in (4.8) we finally obtain

dD 1

P T(D(, D)—2WDn. (4.11)
When we neglect for the moment being the last term in (4.11), we can
readily solve this differential equation and find a solution which tells us
that D relaxes towards the value D, within the time T (compare the
EXErcise).

By use of (4.6) we can writethe rate equations of the photonsin the form
dn_ DWn —2kn. (4.12)
dt

Egs. (4.11) and (4.12) are the fundamental laser equations which we shall
discussin more detail. Becausether.h.s. of these equations contain products
of the variables D and n, these equations are nonlinear and in general
cannot be solved in closed form. Therefore we shall proceed from thesimple
caseto morecomplicated cases when discussing and solving these equations.
In the most simple case n and D are time independent, i.e. we consider
the stationary state.

Stationary solution

In this case we have

dn dD
an_ _ 4.
it and il (4.13)

so that (4.11) reducesto
(Dy—D)=2TDWnh. (4.14)
Solving this equation with respect to the inversion D we obtain

D,

D=——7—. 4.15
1+2TWn ( )

Eqg. (4.15) teaches usthat the actual inversion D decreasesfrom theinversion
D,, which is prescribed by pump and relaxation processes only, when the
photon number increases. Thisfact is expressed in technical terms by saying
that a saturation of the inversion occurs. This effect can most easily be
represented when the photon number nisstill small. In this case we replace
(4.15) by the relation

D=~ Dy—2D, TWh. (4.16)
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As noted above, D, isthe unsaturated inversion. The term containing nis
called saturation. Inserting (4.15) in (4.12) and using dn/dt=0 we obtain
after a slight transformation

n(av—;/l;—a/;—n) =0. (4.17)
This equation possesses the two solutions

n,=0 (4.18)
and

no=(WD,—2«k)/(4xTW). (4.19)

(Because n is a stationary solution we have supplied n with the index 0.)
ne=0 means that no photons are produced, i.e. that no laser action takes
place. Therefore let us consider (4.19) and in particular the first factor on
the r.h.s., (WD, —2k).

If we pump the laser only weakly, D, is small so that

(WD, —2k) <0. (4.20)

But because the photon number must not be negative, (4.19) is eliminated
as a possible solution and only (4.18) remains. Therefore no laser action
takes place. If we increase D, such that

(WD, —2k)>0 (4.21)

holds, the solution (4.19) with n,> 0 becomes possible and we obtain laser
action. It is a simple matter to convince oneself that (4.21) isidentical with
thelaser condition (2.3) (compare exercise). Theincrease of n, with increas-
ing D, is represented in fig. 4.2. While below the critical value Dy =2/ W
there is no laser action, it occurs above that value and n, increases rapidly.
These considerations do not explain why we can exclude the solution n, =0
in the region (4.21). To this end we have to consider the time dependent
equations.

Our result that below laser threshold no photons are present at al stems
from our neglect of spontaneous emission. We can take that effect into
account only much later when we consider in chapter 10 the quantum theory
of the laser.

Approximate time dependent solutions

Because the time dependent equations cannot be solved in closed form
we shall try to solve them approximately. To this end we make two
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Fig. 4.2. Emitted photon number n, versus unsaturated inversion D,. In this model, below
the critical inversion Dy=2«/W no laser emission takes place. Beyond that inversion the
photon number increases linearly.

assumptions. Let us consider the deviation of D from the unsaturated
inversion D,, i.e. D — D,

Let us assume that D — D, changes only little over times T (compare
exercises). Expressed mathematically this means that

<|D-D)/T (4.22)

d
+(D-Dy)

shall hold. Because D, istime independent, i.e. d Do/ dt =0, we may neglect
the Lh.s. of (4.11), i.e. dD/dt compared to (D,— D)/ T which occurs on
ther.h.s. or, in other words, we may put dD/dt=0in eq. (4.11). Thisalows
us to solve (4.11) immediately by expressing D(t) by means of the instan-
taneous value of n(t) as we did in (4.15) above. But in contrast to that
former result n and D now depend on time t. Inserting (4.16) in (4.12) and
dlightly rearranging the terms we obtain the laser equation

j—':= (DoW —2k)n —2D, TW?n?. (4.23)

This equation can be interpreted asfollows. When the laser is pumped only
weakly the inversion D, is small or even negative. In this case we have
(Do W —2k) < 0andthetotal r.h.s. of (4.23) isnegative, i.e. dn/dtisnegative.
Even if at an initial time some photons are present, for instance by spon-
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taneousemission, the photon number decreasesexponentially. If weincrease
the pump strength we finally obtain (D, W — 2« ) > 0. Because usually in the
beginning of the laser processthe photon number n can be assumed small
we may first neglect the quadratictermin nin (4.23) compared to the linear
term. In this case an exponential increase of the photon number happens
according to (4.23). In other words we have to deal with an "instability™.
Spontaneously produced photonsaremultiplied by the processof stimulated
emission like an avalanche. Of course, the photon number does not increase
exponentially for ever because finally the term quadratic in (4.23) becomes
influential and lets the r.h.s. of (4.23) tend to 0. This implies that dn/dt
tends to 0 and eventually the stationary state n=n, will be reached. The
guadratic term stems from the saturation of the inversion as can be easily
derived from (4.16). The saturation makes it possible that a stationary state
is reached. If we start with a photon number n which is bigger than that
of the stationary state, n,, the second term in (4.23) dominates. In this case
the r.h.s. is negative and consequently the photon number decreases and
eventually acquires the stationary value, n,. These results are represented
in figs. 4.3a and 4.3b. The explicit time dependent solution of eq. (4.23) is
derived in exercise 3 of this section.

Exercises on section 4.2

(1) Solve the equation

dD 1
== =—(D,- D).
ar 7P~ D)

What does it mean that D relaxes towards D, within the time T?

(2) Convince yourself that the condition (4.21) is identical with the laser
condition (2.3).
Hint: Use the definitions of k and W as introduced in section 2.1.

(3) This exercise deals with the time dependent solution of eq. (4.23) for
the photon number n,

dn
—=an—bn?,

dt

where a= D,W -2k, b=2D,TW?, and at initial time t=1t, the photon
number is given by n= ny,> 0. Convince yourself that the solution of (4.23)
reads as follows:
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Fig. 4.3. The photon number n versustime t. (a) At time ¢t =0 afinite number of photons was
given, but the laser was operated below laser threshold. (b) The laser condition is assumed
to be fulfilled. The photon number approaches, according to the initial photon number, the
stationary value ny from above or from below, respectively.

(@) for a>0
ac expla(t—1t,)]
1 +bc expla(t—ty)]’
where ¢ is given by
Ny

=(a_bno) ;

n(t)=

c
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(b) for a<o0

la|c expla(t—to)]
1—bcexplalt—1t,)]

n(t)=
Discuss the time dependence of n(t).

(4) Investigate under which conditions the slowness condition (4.22) is
fulfilled.
Hint: Use egs. (4.15) and (4.11), and the results of exercise 3 of this section.

4.3. Relaxation oscillations

In this section we wish to further study the time dependent processes in
the single mode laser. But we shall no more assume that the inversion
follows the photon number instantaneously. While this assumption is well
justified if the photon numbers are small (compare exercise 4 of section
4.2), thisisno more the casefor higher photon numbers. Instead we consider
small deviations of n and the occupation numbersfrom their corresponding
stationary values. To this end we assumethat nor N, initially deviate from
their stationary states a little. We wish to show that n and N; perform
damped oscillations or, in other words, relaxation oscillations. Let us
consider as an example a 3-level laser in which the optical transition occurs
between the two upper levels (comparefig. 4.4). The corresponding occupa-
tion numbers are again denoted by N, and N,. Let us assume that the lower
transition from level 1to level 0 takes place very rapidly (compare also the
exercise at the end of this section). In this case the laser equations read as
follows:

Equation for the photons
dn/dt=—-2kntDWn, (4.24)

where D= N,— N,.

2

WZONO \ w12 NZ I w21 N1 ' WnN1 lwnN2

1
’ l Wor Ny

0

Fig. 4.4. Transition scheme in a system of three-level atoms in which the optical transition
takes place from the uppermost to the middle level.
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Equation for the occupation numbers
sz/dt = NW20_ leNz_ WNzn. (425)

N isthe total number of atoms. Because of our assumption that the lower
laser level is practically unoccupied we may replace D by N, intheequation
for the photons. We now assume that deviations of n and N, from their
stationary states N, and N3, respectively, have occurred. We study whether
and in which way a stationary state will be reached again. To this end we
make the hypothesis

D= N,= NJ%+8N,, (4.26)

n=nytSN, (4.27)
where the stationary solutions n, and N3 are fixed by the conditions

-2k + WN3=0 (4.28)
and

Nwayo— NSw,—ngNYSW =0. (4.29)

Inserting (4.26) and (4.27) in (4.24) and (4.25) we obtain terms which
contain only the stationary solution, terms proportional to én or 8N, and
finally expressions which contain the product Sh8N,. We assume that the
deviations from the equilibrium values are only small. This allows us to
neglect the term SnéN, being of higher order. Because the stationary
solution obeys the egs. (4.28) and (4.29), this solution drops out and we
only retain the equations

d SN.
Iy on = —N—gz 2xn, (4.30)
and
d 5N.
—d—t’6N2= —WOZ Nwayo—8n NSW. (4.31)
2

These are two coupled linear differential equations which we can solve as
usual by the exponential ansatz

én = A exp(at) (4.32)
and

8N, = B exp(at). (4.33)
Weinsert (4.32)and (4.33)in (4.30) and (4.31), perform the differentiation
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with respect to time, and divide the resulting equations by the exponential
function. We then obtain the following two equations

2kn
aA= Ng" B, (4.34)
and
N
aB=~—2p_ NIWA. (4.35)
N;

These are homogeneous equations for the unknowns A and B. According
to elementary theorems of algebra a non-trivial solution is possible only if
the corresponding determinant

«a —2kny/ N3

=0 4.36

vanishes. This determinant can be easily evaluated. Inserting the values for
N$ and n, according to (4.28) and (4.29) we obtain an equation for a:

a’+(wa e NW/2k)a +( WNwyo— 2w k) = 0. (4.37)
We represent the solution of this quadratic equation in the form

a=—-I+lo, (4.38)
where I" is given by

I' = Wyow 5/ 2We, (4.39)
and w, by

o] (), T (@0

dwy,, Winr

We have assumed that the second term in the bracket in (4.40) is bigger
than thefirst term, so that », isa real frequency. Furthermore we have used
the abbreviation

W‘hr=2W12K/NW (4'41)

Theindex"thr'* isan abbreviation of **threshold" . The most general solution
for the photon number may be represented in the form

dn=A, exp[—(I' —iw)t]+ A, exp[ —(I" +iwy)t], (4.42)

where A, and A, are fixed by the initial conditions for the photon number
n and the occupation number N,. Obviously the system relaxes towards
the stationary state while it performs oscillations (fig. 4.5).
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Fig. 4.5. Example of relaxation oscillations. [L.F. Johnson, in: Lasers, ed. A.K. Levine. Dekker,
New York 1966.1

Exerciseson section 4.3

(1) Establish the rate equations for the photon number n and the atomic
occupation numbersfor thetransition scheme of fig. 4.4. Discussthe limiting
casethat w,, becomes very large. Convince yourself that inthiscase N, =0.
Under which assumptions may one replace the first term on the r.h.s. of
(4.25), which in an exact treatment should read Nyw,o, by Nw,,, Where N,
is the number of atoms in the ground state? Why is one allowed to keep
for the whole set of equations only those for the photon numbers and for
the N,?

(2) Determine 8N, which corresponds to (4.42) and determine A, and A,
by means of the initial condition at time t=0,

8n(0) = dn,, SN(0) = 8N,

Hint: Express B by meansof A (for A,,a= -T +iw,,andforA, a=-TI -
iw,) using eq. (4.34).

4.4. Q-switching

The rate equations of the single mode laser (section 4.1) allow us to study
the performance of the Q-switched laser. In such a laser the reflectivity of
one of the mirrors can be suddenly changed. This change can be achieved
by mounting one of the mirrors in a certain distance from one end of the
laser material and letting this mirror rotate. In practical cases a rotating
prism is used (fig. 4.6). In order to achieve very short switching times, Kerr
cells are used also, which are especially practical if the light of the laser
active atoms is already polarized for instance in ruby crystals.
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24 )

| R

mirror  laser'material rotating prism

Fig. 4.6. Scheme of an experimental arrangement to achieve Q-switching.

The basic idea of Q-switching is as follows. If we first omit one of the
mirrors, the photons in the laser material have a very short lifetime. Even
if we pump very highly, the laser condition cannot be fulfilled and no laser
action takes place. Because laser action would decrease the inversion, by
the absence of laser action we may achieve a very high inversion if a mirror
is lacking. If suddenly this mirror is brought into its correct position, laser
action canstart with avery highinitial inversion. Sinceineqg. (4.12), DW -2«
is very big we expect an exponential increase of the photon number nin
an avalanche, i.e. a giant pulse to be emitted. The pulse height and width
will be limited because according to eq. (4.11) a big photon number n in
the last term of that equation will cause a decrease of the inversion. This
in turn will decelerate the photon number production according to eq.
(4.12), and if D becomes negative will even lead to a decrease of the number
of photons.

Let us consider these effectsin more detail. We start from eg. (4.11) and
assume that laser action takes place much more quickly than pump and
relaxation processes within the atoms. Furthermore we neglect as usual
spontaneous emission. Eq. (4.11) then reduces to

dD/dt=-2WnD. (4.43)

According to (4.43) the inversion decreases rather slowly for small values
of n, so that we may replace D on the right hand side of

dn/dt=(WD-2k)n (4.44)

and of (4.43) by D,. Furthermore we assume that initially a certain number
of photons is present due to spontaneous emission. Their number will be
denoted by n, The solutions of (4.44) and (4.43) read

n=n; exp(at) (4.45)
and
D = D,{1 +2Wn,[1 —exp(at)]/a), (4.46)
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where
a = WD, -2«k. (4.47)

In the initial phase of the pulse, n increases exponentially with the gain
constant a where upon the inversion decreases on account of (4.43) or
(4.46). Theincrease of n stops at |atest at time ¢, when D(t,)=0. (In reality
it ends earlier because of the loss constant 2«.) If we neglect in (4.46) “1”
against the exponential function exp(at) it follows from eq. (4.46) that

n; exp(at) =a/2W = ng,,, (4.48)
or equivalently
ti=(l/a)In{a/2Wn,). (4.49)

Eqg. (4.48) incidentally represents the number of photons present at time ¢,.
After time ¢, we may assume D =0. The photon number then decreases
exponentially according to

n(t)=ng,, exp[ —2x(t—1t,)]. (4.50)

The equations just presented are quite useful at least for an estimate of the
quantities t,, n,,, and n(t) .Tosolve theequationsmore accurately computer
solutions must be used. Some typical results are presented in fig. 4.7.

4.5. The basic rate equations of the multimode laser

In the preceding sections we have studied a laser, assuming that the atoms
emit light only into a single mode. This is, of course, in contrast to the
emission of atoms in conventional light sources where light is emitted, for
instance, into all possible directions. As we mentioned above, a reason for
mode selection is the different lifetimes of different kinds of photons. In
this section we wish to study in more detail how mode selection in a laser
isachieved. Weshall seethat simultaneous emission of photonsinto different
modes can happen also.

To this end we have to discuss the structure of the coefficient W which
occurs in the laser equations more closely. So far we have taken this
coefficient from Einstein's theory of absorption and emission of photons.
As we shall show in detail in later chapters, W cannot be considered as
constant for al kinds of photons. We wish to visualize how W looks like
in reality and to derive its form in a heuristic fashion. (For its derivation
from first principlescf. section 6.9.) W stems of course, from theinteraction
of thelight field with the atoms. If we consider a single standing light wave,
eg. in the form sin kx, it is quite clear that this light wave cannot have any
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Fig. 4.7. Example of the time dependence of the emitted intensity of a Q-switching laser for
various degrees of excitation.[W. Wagner and B.A. Lengyel, J. Appl. Phys. 34, 2040 (1963).]

interaction with an atom at the position x =0 or at any of the other nodes
of the sine wave. On the other hand we may expect a maximal interaction
between atom and light wave if the sine function hasits maximum. Because
energy is exchanged between the atom and the light field we must assume
that W does not depend on the field amplitude but rather on theintensity,
i.e. on the absolute square of the field amplitude. Instead of a sine wave
also other kinds of wave forms can be generated in the laser resonator (cf.
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chapter 3). Denoting the corresponding wave forms by u, (x,) and using
the ideas just mentioned we are led to assume the transition probability in
the form

W |u, (x,)|%. (4.51)

Because we shall deal with several wave forms we distinguish the u's by
theindex A where A shall remind the reader of the wave-length. But in our
present context it may also denote the various directions of propagation of
a wave or its polarization, etc. x, denotes the space point where an atom
is located. The individual atoms are distinguished by the index w. In this
sense W represents a transition rate caused by the interaction of the wave
A and the atom w (fig. 4.8).

A further dependence of W on thelight field and on the atomic quantities
follows when we take into account the polarization of the light field and

A Wix)

Xp——————
—

(a)
A Wix)

(b)

Fig. 4.8. The interaction function W (eq. (4.51)) versus the spatial coordinate x along the
laser axis. L is the distance between the mirrors of the laser resonator, x,, the coordinate of
atom u. (a) x coincides with an antinode; (b) x coincides with a node.
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4 Wiy

Fig. 4.9. This figure shows the dependence of the interaction function W on the angle x
between atomic dipole moment and field polarization.

of the atoms. The electronic motion within the atoms can be described as
that of oscillating dipoles. Here and in the following we shall assume for
simplicity that the dipoles in the laser material are oscillating in the same
direction.

A light wave A having the direction of polarization e, can interact with
an atomic dipole moment only to an extent in which the dipole moment of
the atom 9 has its component in the direction of the polarization vector
e,. Because only intensities play arole we are led to assume the dependence
of W on the polarization in the form (fig. 4.9)

W e, 8. (4.52)

Finally we have to discuss how the positions of the mode frequencies
relative to the frequencies of the optical transitions within the atoms enter
into W. From now on we shall use in this book till its end the following
notations for the circular frequenciesof atoms and fields: circular frequency
of the atomic transition w, circular frequency of the light wave in the laser
resonator o,. Asis well known from experimental physics, the emission of
atoms possesses a certain line shape (cf. fig. 4.10). A single atom therefore
does not uniformly radiate light in the region of its line-width into the
individual frequencies but rather according to an intensity distribution. In
case of a Lorentzian line the intensity of a light wave with frequency w,
and the central atomic transition frequency @ is given by

2y

P (453

where we omitted a factor, I,. Here y is the line-width or, more precisely
speaking, the half width at half intensity. Now let us recall that W is the
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Fig. 410. An illustration of the function W according to eq. (4.53).

rate with which an atom emits light into the mode A. Therefore we shall
require that W is proportional to the expression (4.53) (fig. 4.10).

In some cases we have to generalize (4.53). For instance, laser-active
atomsin asolid may occupy different kindsof positions within the crystalline
lattice. Due to their different positions the atoms have different centra
frequencies @ which we will have to distinguish by the atomic index w. If
there is a distribution of 6,'s over a certain frequency range, an
inhomogeneous broadening is present. An inhomogeneous broadening is
caused also in gases because of the Doppler shift due to the motion of the
gas atoms. In the cases of homogeneous and inhomogeneous broadening
we have to assume W in the form

0(2—2’y
.),2+(6, _w/\)z.

Because W depends on the mode A and on the laser atom w under
consideration, we attach the indices A and w to W,

Let us collect the individual conditions which we impose on W and let
us anticipate the still lacking proportionality factor which we explicitly
derive in a later chapter. W,, can then be written in the form

w (4.54)

2y
W,=———— 2 4.55
Ap ')’2+(¢5,L_w;\)2|g#)‘| > ( )

where we have used the abbreviation
Gur = i0e,u, (x, ),/ (2he,)]">. (4.56)

Evidently al factors within g,, are known from our above considerations
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except for thelast onewhich can be derived by an exact quantum mechanical
calculation only.

We are now in a position to formulate the laser equations. We assume
that there exists a certain set of modes in the laser resonator and we
distinguish them by the index A. Each mode can be occupied with a certain
number of photons n. Because the lifetimes of different modes in the
resonator can be different weintroduce decay constants «, which in general
will differfrom each other. Because the individual atoms interact with the
laser modes in a different way we have to consider the atoms individually.
For simplicity we again consider the 2-level scheme leaving its extension
to a 3-level scheme as an exercise to the reader.

We denote the occupation numbers of the atom w in the states 1 and 2
by N,, and N, ,, respectively. The corresponding inversion of atom w is
described by d,=N,, - N,,. Generalizing the laser equation (2.1) we
can immediately write down the laser equation for the mode A

%= =2k\m, t 0, Y, W, d, +Y Wy N, . (4.57)
dt ” "
Though this equation was not derived exactly here (what we shall do |ater)
its form is quite plausible. The temporal change of the number of photons
of kind A is given by:
(1) losses (first term on the r.h.s.);
(2) the stimulated emission and absorption processes by the individual
atom w (first sum on the r.h.s.);
(3) aterm representing spontaneous emission (second sum on the r.h.s.).
We shall omit this last term when we consider the laser process.

A critical reader will quite rightly ask why no phase relations between
the modes and the oscillating dipole moments of the electrons of the atoms
are taken into account. In fact, (4.57) implies an approximation whose
meaning we shall study in a later chapter. Eq. (4.57) can be obtained only
if phase relationsare neglected which isallowed in many cases but definitely
not always. Indeed, very important effectsin thelaser, such as modelocking,
are due to specific phase relations.

The rate equations for the individual atom w must take into account
pump and relaxation processes and, in addition, the effect of stimulated
emission and absorption. Because not only a single kind of photons but
various kinds of photons are emitted, all the photon numbers must be taken
into account. On account of these ideas we obtain the rate equations for
the atom

dN,,

dt

= W21N|.,L_W12N2,,L_dp PR Wi (4.58)
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and
dN
d[l’“z - W2|N1,“ +W12N2,“ '+‘d”' Z n, W,\p_. (4.59)
A

By adding (4.58) to (4.59) we obtain the conservation law for the total
occupation humber of the atom w«

d
E(Nl,y, +N2,p.) =0a

and thus
Ni,+N,,=N,=1. (4.60)

Because we are dealing with a single atom, we have put N, =1. In a way
analogousto the single mode laser (section 4.2), we may derive an equation
for the inversion d, = N, , — N, , from (4.58) and (4.59),

d 1

a—tdu=?(do—d#)—2d#§mww. (4.61)
Egs. (4.57) and (4.61) are the basic laser equations which we wish to discuss
Now.

Exercise on section 4.5

(1) Formulate the rate equations corresponding to egs. (4.57), (4.58) and
(4.59) for three-level atoms with the pump scheme of fig. 2.9.

4.6. Hole burning. Qualitativediscussion

Within the frame of rate equations it will be our goa to calculate the
intensity distribution over the individual modes of the laser or, more
precisely speaking, we wish to calculate the number of photons belonging
to the individual modes A. Because the rate equations are nonlinear, this
task is not quite simple. However, one may get some useful insight into
some important mechanisms by a study of the inversion d,, which is crucia
for the determination of the photon numbers. To this end we start from eqg.
(4.57) where we shall ignore the last term describing spontaneous emission
as already mentioned above. Asisevident from eq. (4.57), theinversion d,,
of theindividual atoms determines whether the losses described by the term
—2k,n, can be compensated. In the following it will be important to note
that the inversion 4, is determined in turn by the photon numbers as can
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be seen by means of eq. (4.61).We confine our discussion on the stationary
state by putting

. 0.
at (4.62)
In analogy to the single mode case, in our discussion we may include also
processes in which d, follows the photon number instantaneously in which
(4.62)also holds. By means of (4.62)we may resolve (4.61)with respect to
d

"

do
d=———>= 4.63
12T W, (4.63)
A
In the following we shall be interested in laser action not too far above
threshold. In such a case we may assume that the photon numbers n, are
small so that we may expand the r.h.s. of (4.63)into a power series with

respect to the photon numbers. As it will turn out it is sufficient to confine
the expansion to the first two terms

dﬁdo(l -2TY nAWW>. (4.64)
A

We first consider the special case in which only one photon number is
unequal 0. In such a case (4.64) reduces to

d, ~dy(1-2TnW,,,). (4.65)

The mode index A has been omitted from n because we are dealing with
one mode only. Weremind the reader that theindex w distinguishesbetween
the different atoms. We now study how the photon number n influences
theinversion d,, of theindividual atoms. To thisend we recall the definition
of W,,. which was given in egs. (4.55) and (4.56). According to that
definition, W,, essentially consists of two parts namely onereferring to the
spatial behavior of the mode and another one depending on the relative
positions of the frequency of the mode A under consideration and of the
central transition frequency of the atom u. We wish to study the influence
of these two factors on the behavior of d, separately. We first consider the
case in which we deal with running laser waves which may be realized, e.g.
in aring laser. In such a case the spatial function u,(x,) which occursin
W,,. according to (4.55)and (4.56)is given by

uy(x,)= \/I—V explik,x, ], (4.66)
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where V is the volume and k, the wave vector. Because in (4.55) only the
absolute value of (4.66) enters, W,, becomes independent of the spatial
coordinate. Therefore we may confine our discussion to that part of W,,
which has the form

%y
y2+(wA —a—)y.)z '

W, o

i

(4.67)

After these preparatory steps we discuss hole burning in an inhomo-
geneously broadened line. We consider an inhomogeneously broadened
atomic line where the transition frequencies @, depend on the atomic index
u. We first study the behavior of d,, (4.65) when we change g For sake
of simplicity we shall omit the index w and consider fig. 4.11. In it the
inversion d is plotted versus @ If no laser action takes place, i.e. if n=0,
we obtain the unsaturated inversion d, which is shown as the upper dashed
line. When n is unequal zero we must subtract the Lorentzian curve (4.67)
from d,. The maximum of that curvelies at that atomic transition frequency
@ which coincides with the frequency w, of the laser mode under consider-
ation. The half width of this curve is given by y. Thus we obtain the solid
curve shown in fig. 4.11 which exhibits an incision in the inversion. That
meansthat dueto laser action theinversion is reduced closeto the resonance
line 3 =w, or, in other words, that a hole is burned into a line.

How does this hole burning affect the equationsfor the laser modes? The
photons are produced by stimulated emission, i.e. by the second term on
the r.h.s. of eq. (4.57). In this term the inversion d,, occurs under a sum

%m
Wy

Fig. 4.11. The unsaturated inversion d, and the saturated inversion d(&) versus the atomic
trangition frequency @; w, isthe mode frequency.
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over atomic indices
> W,.d. (4.68)
M

Since we have, at least in general, to deal with very many atomsin a laser
(say 10" or more) we may replace the sum by an integral. We first will give
a qualitative discussion and then below we shall do the corresponding cal-
culations explicitly. A small region of transition frequencies . .. (3 +da)
may contain a certain number of atoms. In general this number is biggest
close to the central frequency @, and decreases with increasing frequency
difference. In general we have to assume that the number dZ of atoms
within the frequency interval do depends on @. Therefore we write

dZ =p(w)da. (4.69)

In many cases of practical interest, for instance in solid state lasers, we
may assume that p(@) possesses a Gaussian distribution (cf. fig. 4.12). In
order to evaluate the sum over u in (4.68) we have to proceed from the
individual atomic indices u to the new variable o, .

Y W,.d, - J W, (@) d(®) p(&) da. (4.70)

We have replaced W,, by W, (&) and d, by d(&) because we wanted to
replace the variable w by @ In fact the sum over w does not only run over
the distribution of atoms over the frequencies @ but also over the spatial
distribution of atoms. But because in the present context we treat space-
independent W's we shall not discuss the corresponding integration over

A p(T)

! -
@,

Fig.4.12. Thedensity of atoms, p, versustheir transition frequency & ; @, isthe center frequency.



82 4. Theintensity of laser light. Rate equations

+dw

— W

RN

Fig. 4.13. The inversion density d(@) versus the atomic transition frequency @. The hole
burned at the position w, (=mode frequency) can easily be seen.

the atomic positions here. (4.70) suggests to introduce the inversion density
d by the relation

d(@)=d(a) p(@). (4.71)

In order to represent d we haveto multiply the curves of figs. 4.11 and 4.12
with each other. We thus obtain fig. 4.13 showing the dependence of the
inversion density on the transition frequency . Of course, again a hole is
burned into the inversion density at the frequency @ =w, How does this
kind of hole burning affect the gain which is proportional to (4.68)?
Evidently in the sum (4.68) or in the corresponding integral the factor
= W(a 2y 5= 472

W,\#=W(w):constxyz_‘_(w)‘_‘a)z, 6=a, (4.72)
occurs once again (compare also (4.67)). Thus those contributions to the
'sum (4.68) are most important which stem from the surrounding of @ =w,
Because the depth of the hole is the same for all mode frequencies w,, the
effective gain will become the biggest if the position of the hole coincides
with the atomic central frequency @.. In the stationary state the depth of
the hole is determined from the condition

dn

=0 4.7
o, @73)

i.e. that the relation
2k, =3 W,,d, (4.74)
M
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4 dzd@

L | » J

Fig. 4.14. The unsaturated inversion d, and the saturated inversion d (6)versus 6. The modes
with frequencies w, and w, have burned two holes into the inversion. If the photon numbers
of the two modes differ, the depths of the holes differ also.

isfulfilled. In section 4.7 entitled " quantitative treatment™ we shall evaluate
in particular the expression (4.74) explicitly.

But here we shall continue our qualitative discussion and consider the
behavior of the inversion when two modes are present, i.e. when n, # 0 for
A=1and A =2 In order to discuss in which way the inversion is lowered
we may proceed in the same way as with one mode but we have to take
into consideration that the corresponding Lorentzian lines must be sub-
tracted from the unsaturated inversion d, at two positions at @ =, and
& = w,. Thus we obtain fig. 4.14 which corresponds to our fig. 4.11 above.
Fig. 412 can again be used without changes so that we obtain fig. 4.15 as

4 dlw)

w, W, W

Fig. 4.15. The inversion density belonging to fig. 4.14. The curve results from that of fig. 414
by a multiplication with that of fig. 4.12. The two holes are clearly exhibited.



84 4. Theintensity of laser light. Rate equations

final result for the inversion density. Thisfiguredeal swith the casein which
the frequencies w; and w, of the corresponding laser modes have a distance
from each other which is large compared to the homogeneous line-width
y. As we have observed above when treating a single mode, the factor W,,,
which occursonce again inthesum (4.68) essentially picks out the surround-
ing of @ = w,. This means, of course, that when two modes are present they
do not influence each other with respect to their gains. When we visualize
the two laser modes 1 and 2 as two cows on a meadow it means that these
cows are grazing on two different parts of the meadow or, in the context
of a laser, that the modes draw their energy from two entirely different
kinds of atoms. Thesituation changesdrastically when the distance between
the two mode frequencies becomes so small that they are lying within the
line—width 2y. Then the two cows, so to speak, graze on the same part of
the meadow and the question arises how the resulting competition will end.
We shall discuss this question in section 4.9.

We now turn to holeburning in gaslasers because here especially interest-
ing effects occur. We confine our discussion to a single laser mode. For the
case of several modes | have to refer the reader to my book Laser Theory
(Encyclopedia of Physics). Because gas atoms move, the Doppler effect
plays a role which becomes of special importance if laser action takes place.
According to the Doppler effect, the transition frequency @, of an atom
flying away with the velocity v from the observer appears shifted according

to
@ =ao(1-1v/c). (4.75)

Correspondingly the frequency of an atom flying towards the observer
,appears shifted according to

@ =wy(l +v/c). (4.76)

Because the individual atoms w have different velocities v, an effective
line broadening is brought about. We may take over our above discussion
of the inhomogeneously broadened line of atoms at rest when we use the
@,’s occurring in (4.75) and (4.76). However, an important difference with
respect to the solid state laser occurs because (4.75) and (4.76) contain the
velocity components, v, of theindividual atomsin the direction of propaga-
tion of the laser waves. When we deal with standing waves, the laser mode
consists of two waves running in opposite directions. As a consequence the
laser mode resonates with two kinds of atoms, namely those moving in
opposite directions with a certain velocity |v|. Thus each wave burns two
holes into the atomic inversion.

In complete analogy to our earlier discussion we still have to take into
account the distribution of frequencies. According to (4.75) and (4.76) this



§4.7. Quantitative treatment of hole burning 85

4 d(w)

> W

Fig. 4.16. In a gas laser with a standing wave two holes in symmetric positions with respect
to the center of the atomic emission line result.

distribution is determined by the distribution of velocities v which according
to the theory of gases is given by a Maxwellian distribution. In this way
we obtain fig. 4.16 where we have assumed

|(I))\ _(;)0|>2y. (4.77)

By a change of the distance between the mirrors the laser mode frequency
may be tuned in such a way that this frequency coincides with @,. As a
result both holes coincide and yield a particularly deep incision. Because
the laser mode nearly exclusively interacts with the atoms in the region of
the incision only, and only here the inversion is strongly decreased, we
obtain the following result. If we tune the laser line on the atomic line the
gain will become smaller compared to the case in which (4.77) is valid at
least for small detuning. We shall treat this effect, which plays an important
role in Doppler-free spectroscopy, in section 6.8 quantitatively.

4.7. Quantitative treatment of hole burning. Single mode laser action of an
inhomogeneously broadened line

We now return to single mode laser action in a solid state laser with an
inhomogeneously broadened line. We start from the mode equation (4.57)
which we write down for the special case of a single mode where we drop
theindex A of n but retain it for sake of clarity in W,,. Neglecting as usual
spontaneous emission this equation reads

i==2kn+ny d,W,,. (4.78)
I
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We insert in it the saturated inversion which according to (4.64) reads
d, =dy(1-2TnW,,). (4.79)

We adopt running waves (cf. (4.66)) so that W,, does no more depend on
the space coordinate x. Using the explicit form of W,, as defined in (4.55)
and (4.56) and replacing the index w by 1 we may write
A 4

W= Wi(a)=2——2
A A(w) v y2+(ai—wA)2’

(4.80)

where we have used the abbreviation
A = 030'1?9‘2/h50. (481)
By inserting (4.79) into (4.78) we cast eg. (4.78) into the form

i=nY W,,(do—2TnW,,do) - 2xn. (4.82)
"

We convert the sum over the atomic indices w into an integral over space
and an integral over the frequencies @,

Z"'zj'"‘deJ""da_" (4.83)
"

Because W does not depend on space the integration over the volume
elements d*x yields the volume V of the resonator. In order to evaluate the
integral over @ we usea Gaussian distribution for thefrequency distribution
plo), ie.

p(@) = pofam)™! exp[ —(“_’;“_")) ] (4.84)

Here po is the density of atoms, p,= N/ V, where N isthe total number of
laser atoms in the resonator and V the volume of the resonator, and a is
the halfwidth of the Gaussian distribution.

We first treat the first term on the r.h.s. of (4.82),

dy Y Wy (4.85)

In order to evaluate this expression we insert (4.80) and (4.84) into it.
Observing that integration over the volume in (4.83) cancels against V in
the denominator in (4.80) we have eventually to treat

dopoA J —r(aVm)! exp{ - (“_’ — "3") ] da. (4.86)
Yy o —w,) «a
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This integral cannot be evaluated in explicit form. However, it is rather
simple to calculate it approximately if we assume y < a. In such a case we
obtain in a good approximation

(4.86) = dopoA ‘/?" exp[ — 7], (4.87)

where 6 is defined by

=1 "% (4.88)
[44

In a similar fashion we can evaluate the second term in (4.82), i.e.

~2.2TnW,, W, d,, (4.89)
which yields
Jr exp[— 67
— poAd AT~ XPLZ O ] (4.90)
2ya

Taking the corresponding terms together, we may cast (4.82) into the explicit
form

i
ri=p0Ad0—a’1exp[—52](1—3ATn/2y)n-2Kn. (4.91)

In the stationary state, dn/dt =0, this equation can be readily solved for
n Because n is the only free parameter in the formula for hole burning,
(4.79), we have thus fixed the depth of that hole. We mention that the
integrals such as (4.86) can be evaluated exactly and explicitly if the
inhomogeneous atomic line is a Lorentzian.

Exercise on section 4.7

(1) Solveeq. (4.91) for n (with ri =0) and discuss the dependence of non
the unsaturated inversion d, and on the detuning 6.

4.8. Spatial hole burning. Qualitative discussion

So far we have studied the case in which W,, does not depend on space.
Now we want to study the case in which the spatial dependence of W,, is
caused by standing waves. For simplicity we shall assume that the atomic
transition line is homogeneously broadened so that @, does not depend on
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1‘ d,=dlx)

> X
0 L

Fig. 4.17. Spatial hole burning. The inversion d(x) is lowered at the positions x where the
antinodes of the laser modes are. L: laser length.

w. In other words we assume that the central position of all atomic transition
frequencies is the same. Since we are primarily interested in the spatial part
of W,, we consider only that part. According to our equations (4.55) and
(4.56) where u,(x,)=~2/V sin(k,x,), this part is given by

Wi, o (sin kux, ). (4.92)

When we plot the inversion d,, as function of the spatial coordinate x = x,,
according to (4.65) we obtain the curve of fig. 4.17. Quite evidently holes
are periodically burned into the unsaturated inversion precisely at those
positions where the standing wave of the laser mode has its maxima. If not
only one mode is present, but, for instance, two modes according to (4.64),
both modes burn holes into the unsaturated inversion.

In the next sections we shall show how hole burning has an effect on the
coexistence or competition between different laser modes. To this end we
shall proceed in severa steps. We first discuss the special case in which
only one mode out of many survives. We then show qualitatively how the
coexistence of modes becomes possible and eventually we shall present a
detailed mathematical treatment of the effect of hole burning on mode
coexistence.

4.9. The multimode laser. Mode competition and Darwin's survival of
the fittest

We consider a laser setup which allows running waves only. This may be
achieved by a rectangular arrangement of mirrors (compare fig. 3.6) where
besides the laser-active medium a cell is present which permits the
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propagation of light in only one direction. The plane waves are
represented by

uccexpl(ikx), (4.93)
so that
|u|* = const. (4.94)

This means that all waves may participate at the atomic emission in the
same way, at least as far as their spatial behavior is concerned. Thus the
transition rate W,, (with @, =6)simplifies as follows:

_ 2y
'u 72+(‘5—‘UA)2

W, gl = Wi (4.95)
We aretreating a homogeneously broadened atomicline. A closer inspection
of egs. (4.57)-(4.61) shows that we may pull the expressions W, in front
of the sums over p occurring in eq. (4.57). This means that the photon
annihilation and production rate is determined by the total inversion

Yd,=D (4.96)
M
only. In order to derive an equation for this D we sum up eq. (4.61) over
w. Therefore we need only to take into account the ensemble of atoms but
no moretheir individual occupation numbers. When we confine our analysis

to the stationary state we may put ri, =0 and D =0. We thus obtain instead
of (4.57) the equations

0=—2k,n, +n,W,D. (4.97)
Because we may write (4.97) also in the form
(WD -2k, )n, =0, (4.98)

this set of equations means that either the photon number n, or its factor
vanish,

W,D -2k, =0. (4.99)
Let us assume that for a set of certain modes n, # 0. For these modes which
we may numerate A =1,2,..., eg. (4.99) must hold. But thisimplies
po2a_2a 26 (4.100)
W, Wi W,

Because the inversion D is uniquely determined, the right hand sides must
be equal to each other. Let us consider the following situation. All modes
have the same lifetime but they are situated at different frequencies. For
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different frequencies the corresponding W's differ from each other. Under
this hypothesis the expressions 2«,/ W,, A =1, 2, ... must be different from
each other. Thus we have found a contradiction which stems from the fact
that we have assumed a set of modes with nonvanishing photon numbers
n. This contradiction can be solved only, if at most only asingle n, differs
from 0, whereas all other n, vanish. Asone can easily convince oneself that
n, is different from 0 whose frequency lies closest to the atomic transition
frequency. Of course, our considerations can be immediately generalized
to the case where a discrimination of the modes is caused by their different
lifetimesin the laser resonator. These considerations give rise to the impor-
tant result that in a laser only one mode is selected if the frequency
distribution of the modes and their lifetimes are taken into account. In
other words, in the sense of biological selection only one mode can win
mode competition and all others haveto dieout. Thisisa precise mathemati-
cal formulation of Darwin's survival of the fittest. If we visualize the excited
atoms as food which is continuously fed into the system and the photons
as animals the result has the following meaning: One kind of animal has
a better access to the food. It grows more quickly and this kind of animal
can eat more food. The other animals cannot compete in eating and event-
ually perish.

As this example shows, coexistence of animals can be reached if they are
enabled to live from separated resources of food so that the animals eating
fastest cannot take away the food of the other animals. In biology this is
achieved by ecological niches. In the laser, in an abstract sense, a similar
situation can be achieved by letting different kinds of atoms generate
different kinds of photons. This may happen, for example, in the following
cases:

(1) The atomic line is inhomogeneously broadened.

Let us consider the specia case in which only two kinds of atoms with
different optical transition frequencies @, and @, are present whereby the
corresponding emission lines do not overlap. In such a case the photons
belonging to the modes with frequencies w, = @, and w, = @, are separately
supported and can coexist. The general case of continuously distributed
central frequencies (inhomogeneously broadened line) has been discussed
in section 4.6.

(2) The modes are standing waves.

We find a similar situation if the modes are standing waves and the line is
for instance homogeneously broadened. We explain thissituation by means
of the example of two modes whose spatial distribution is presented in
fig. 4.18. If only mode 2 is present it generates an inversion by spatial
hole burning as presented in fig. 4.19. Evidently mode 1 experiences an
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1 u1(x)
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(b)

Fig. 4.18. In order toillustrate the possibility of coexistence of standing waves, in (a) and (b)
the limiting cases of the two longest wave-lengths are shown. The mode amplitude is plotted
versus the spatial coordinate x in axial direction.

[

b dix)

- A

Fig. 4.19. In this figure that inversion is plotted against x which results from the presence of

mode 2 alone.
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unsaturated inversion there where the mode 1 itself has its maximum (fig.
4.19). Thusmode 1 can live on that part of the unsaturated inversion. Quite
evidently both modes are at least partly supported by two different kinds
of atoms which are located at different positions. Thus these modes can
coexist provided the unsaturated inversion d, is big enough. On account of
the figures it might seem as if this effect is important only for large wave-
lengths. But one may show that this effect is independent of the mode
wave-lengths in the resonator. In this way also several modes can coexist.
In the next section we want to prove this rigorously.

4.10. The coexistence of modes due to spatial hole burning. Quantitative
treatment

I'n this section we want to show how the effect of spatial hole burning can
be treated quantitatively. To this end we start from our fundamental
equations (4.57) for the temporal change of the photon numbers. These
equations read

Hy ==2kyn, +n, )y W,,d,. (4.101)
I
We assume that the inversion d, follows the laser light instantaneously as

explained in section 4.2. This alows us to put d, =0 in eg. (4.61) and to
solve that equation approximately for small enough n's, which yields

duzd0(1—2TZ nAWM), (4.102)
A

which we have derived before. By inserting (4.102) into (4.101) we obtain
a closed set of equations for the photon numbers n, aone,

H, = "2KAnA +d0nA Z W)\p, _dOnAsz WA;L Z nA’WA'#' (4'103)
© 5 A

In the following we shall focus our attention on the steady state in which
fiy =0. (4.104)
As a consequence, egs. (4.103) are transformed into

(—2,<A +doY Wy, —d2TY n,. Y WAf“>nA =0. (4.105)
M A’ ®

This set of equations can be solved if either n, =0 or the term in brackets
vanishes. Since we are interested in actually lasing modes we shall consider
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thoseequationsfor which n, # 0. Thereforein thefollowing weshall discuss
the expression in the bracketsin more detail. Especialy it will be our task
to evaluate the sums containing W,,. We treat a special case in which we
have standing waves in one direction and we shall assume that the modes
are practically constant across the cross section of the laser rod. Actually
it is not difficult to generalize the whole treatment to the case where the
modes vary spatially across the cross section. For the case under considera-
tion we may write W,, in the form

Y 2 .,
W,, =A——— —sin“(kx,), 4.106
Ap 72+(6“_w)\)2 VS ( A I-L) ( )
where we adopt a homogeneously broadened line, and where A was defined
in (4.81). We mention that sometimes it is more useful to write W,, in a

somewhat different form, namely as

2y

W, =—T7-—"5
i 'Y2+(¢l_’u_wA)2

gl (4.107)

where the last factor can be written in a formal fashion as
|8ual” = & VI (x,)I7, (4.108)

by which the new coupling constant g is defined. The factor 2/ V in front
of the sin function is defined in such a way that this function is normalized
over the volume of the laser resonator of length L and total cross section F,

L
2
j' dx F=sin’(kx) =1, (4.109)
0 V
and where
FL=V. (4.110)

Because the laser atoms are rather closely spaced we may replace the sum
over p by an integral over space. In our present case in which W,,, does
not depend on the spatial coordinates perpendicular to the laser axis we
may thus perform the replacement

Ze%{”‘ﬂﬁ (4.111)

where N is the total nhumber of atoms so that N/ V is the density of laser
atoms.
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We now apply this procedure to the evaluation of the sum over W,,, i.e.
N{(* 2 Y
W,.»> = | dxF=sin’(kx)A5———. 4.112
5 o VL v A G o (112

We denote this sum by W,. Its evaluation amounts to performing the
integration in (4.112) over the sin-function squared, which immediately
yields
- N 04
W=W,=—A5—"—.
% MV T Y (G- w,)’
It is a simple matter to evaluate also that sum over u which contains the
products of two W's again using the replacement of the sum over w by an
integral. A brief calculation yields the following result:

3W3, forA=A',
W, W,., fori#A".

(4.113)

NZ W)\;.LWA';J,:{ (4.114)
m

Inserting the results (4.113) and (4.114) into the brackets occurring in eq.
(4.105) we are readily led to the following set of equations:

- d2T - - d,T_ -
2k, +doWy ——— ¥ n, W, W, ———3W2n, =0. (4.115)
ATEA N
After multiplying these equations by
N/ W,d,T, (4.116)
we obtain
3Wan, +2 Y W, =1, (4.117)
AFEX

where we have used the abbreviation

N ZK)‘)
Lh==|1-= . -
N T( Wd (4.118)

When we introduce W,n, as a new variable y,, we readily verify that the
set of egs. (4.117) has a very simple structure. This alows us to find its
solution in a straightforward manner.,

- 20+ - +1ly)
2% Al =1 M +1 (4.119)
Using the definition of I,, (4.118), we obtain for (4.119)
- N 1 2K,\ 2(2K1/ Wl +- +2KM/ WM)]
Won == LY S ) 4.120
SRS [2M+1 doW, M +1)d, (4.120)
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In this equation, M is the total number of modes with nonvanishing n, In
(4.119) and (4.120) we have labeled the modes in such a way that the
nonvanishing modes carry the indices 1,. .., M.

Because W, is a positive quantity and we are interested in those modes
for which n, is positive, we study the conditions under which the term in
square brackets in (4.120) is positive,

L 2k 202K,/ Wy+++ - +2kp/ Way)
2M +1 d,W, 2M +1)d,

>0. (4.121)

Two examplesfor the coexistence d modes

We now want to show under which conditions spatial hole burning, which
we have qualitatively discussed in section 4.8, allows the coexistence of
several modes. To this end we treat two realistic cases, hamely:

(1) All modes have the same decay constants but the distance of their
frequencies from the line center increases according to

W) = @y + m8, (4.122)

where m are positive or negative integers including 0.

(2) The modes have practicaly al the same frequency but due to their
misalignment with respect to the laser axis their decay constants «, differ
from each other.

(1) Let us turn to the first case. We denote by A, (or m,) the index of
the mode which is farthest away from resonance. Because we assume a
symmetric position of the cavity modes with respect to the line center, mq
is connected with the total number of modesby M =2m,+ 1. After inserting
the explicit expression of W, according to (4.113) and (4.122) into (4.121)
it is a simple matter to evaluate the sum over m occurring in (4.121). After
some elementary algebra, and choosing m=m, in (4.122) we can cast the
condition (4.121) explicitly into the form

1
dmj+ mi—3mo <=5 X (8°Do =), (4123)
where we have used the usual notation for the total atomic inversion
D, = Nd,. (4.124)

This formula alows us to calculate the index m, of the mode which is
farthest away in positive (or negative) direction from the line center.
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If we are satisfied with a rough estimate of up to an accuracy of 10% we
may replace (4.123) by

1y
§m8<§ - (g°Dy— k), (4.125)

which allows usto quickly determine the number of coexisting modes once
6 (cf. (4.122)), g (cf. (4.107), (4.108)), D, (cf. (4.124)) and y and k aregiven.

(2) We now turn to the second examplein which all modes have practi-
cally the same frequency but where the decay constants «, are different.
Wetreat this case by way of a model. Our model consists in the assumption
that the modes are space independent across the direction perpendicular
to the laser axis. A more detailed treatment should take into account that
variation also. For simplicity we label the modes in a new way namely by
distinguishing them by the index m instead of A so that

km=k(1+g)""". (4.126)

g is a quantity which measures how quickly the decay constant increases
when the mode index m increases. We let m start from m=1. We shall
further assume

Mg<1. (4.127)

Inserting this hypothesis into (4.121) we readily obtain

M
m—1
I (g 4 L (1F49)
- d >0, (4.128)
M +1 doW (M +1)d, W

The geometric sum over m can be easily evaluated. The result can be
considerably simplified by making use of the assumption (4.127). After
some trivial algebra we obtain as final result

1 {d,W
M2S-—(°——1)+1, (4.129)
q\ 2k

which allows us to determine the maximum number M of modes which
can coexist. If q is sufficiently small, quite a number of modes can coexist
even slightly above laser threshold which is given by

doW -2k =0. (4.130)

(Compare exercise 1.)



§4.10. The coexistence of modes 97
Exercises on section 4.10

(1) Show that (4.130) is the threshold for the first mode to appear.
Hint: Use (4.115).

(2) Calculate m, from eq. (4.123) for

y= 10'° s—l’

k=10%s"",

§=10%s""5x10%s7",

Dy=1%,10% above D, . (single mode threshold).
Do you need g? explicitly?

(3) Calculate M from eq. (4.129) for
g=0.01,

k=10%s7",

dy=1%, 10% over the single mode threshold.
Do you need W and « explicitly?

(4) What is the relation between d, W and g>D,?



Chapter 5

The Basic Equations of the
Semiclassical Laser Theory

5.1. Introduction

In this section we start with the central topic of the present book namely
semiclassical laser theory. In the preceding chapter we have described laser
action by means of the photon picture where we could motivate the laser
equations only heuristically. Therefore it is necessary to derive those
equationsfrom first principles. Furthermore we know from classical physics
that for a complete description of thelight field we not only need itsintensity
which in a way corresponds to the photon numbers but also the phase of
the light field. Because photon numbers do not contain information on
phases the rate equations of the preceding chapter are incomplete. These
deficiencies can be overcome by the semiclassical laser theory. This theory
which we are now going to develop treats the light field as a classical
electro-magnetic field which obeys Maxwell's eguations. Because laser
action is brought about by the interaction between the light field and the
atoms we have to treat the motion of the electrons within the atoms
adequately. It turns out that we cannot ignore quantum theory entirely and
indeed when treating the motions of the electrons we must start from the
quantum mechanical treatment. In the following we shall proceed in severa
steps. First starting from Maxwell's equations we derive a wave equation
for the electric field strength. It will turn out that the polarization of the
medium acts as a source for the el ectro-magnetic oscillations. Then we shall
study how this polarization isinturn generated by the field. Thus we arrive
at equations describing the coupling between field and atoms. Finaly we
introduce some well founded approximations and thus obtain the funda-
mental equations for the semiclassical laser theory which we shall treat in
the chapters 6 to 9.
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5.2. Derivation of the wave equation for the electricfield strength

We start from the following Maxwell equations:

curl E=-B, (5.1)
cul H=j+D. (5.2)

The first equation represents the induction law. It describes how vortices
of the electric field strength E are caused by atemporal change of magnetic
induction B. Eqg. (5.2) describes how the current density j causes a vortex
of the magnetic field H (Oersted's law). The vortex of the magnetic field
can be caused by a temporal change of the dielectric displacement D, too.
As usual we need the connections between D and E as well as between B
and H. As is shown in electrodynamics, the dielectric displacement D
dependsontheelectric field strength E viathe polarization Pof the medium
in which the dielectric process takes place

D=¢E+P, (5.3)

where g, is the dielectric constant of the vacuum. We briefly remind the
reader how to visualize the meaning of the polarization P. To this end we
assume that the material is composed of individual atoms. When we apply
an electric field, the electrons of the individual atoms will be displaced with
respect to the atomic nuclei. Because the centers of the charges of the
electrons and the nucleus do no more coincide, the applied electric field
hasinduced a dipole at each individual atom. The polarization Pis defined
as the total dipole moment which stems from the individual atomic dipoles
and is taken per unit volume. Later on it will be an important task of our
theory to calculate the dipole moments of theindividual atoms. Furthermore
we wish to express the current density j by means of the electric field
strength E. To this end we assume that the material or parts of it possess
an electric conductivity o and use Ohm's law. Therefore we may assume

j=cE. (5.4)
Finally we wish to confine our considerations to non-magnetic materials

Furthermore we wish to treat wave phenomena and therefore we shall
assume that the electric field is transversal which is equivaent to the
assumption

div E=0. (5.6)
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It will be our goal to derive a simple equation from the equations mentioned
above, namely an equation for the electric field strength. If we know this
guantity we may calculate, e.g. the magnetic induction by means of eqg.
(5.1). In our subsequent treatment we shall deal only with the electric field
strength E becauseit contains all the information which we need to develop
laser theory. In a first step we differentiate (5.2) with respect to time and
obtain

curl H=j+D. (5.7)

In (5.1) we replace the magnetic induction B by u,H. Then we express H
in (5.7) by curl E according to (5.1) and thus obtain for the Lh.s. of (5.7)

—curl curl E= AE. (5.8)

In deriving (5.8) we have used the following equation, well known from
the vector calculus:

curl curl E=graddiv E - AE,

where the relation (5.6) has been taken into account. Init A isas usual the
Laplace operator, A =6*/3x>+*/39y* +*/3z>. Finally we replace the quan-
tities j and D on ther.h.s. of (5.7) by means of therelations (5.4) and (5.3),
respectively, and bring al expressions containing E to the Lh.s. of (5.7).
We thus obtain the fundamental wave equation

1 . . ..
AE =3 E +poo = P, (5.9)

where we have put eome=1/¢>, with ¢ the light velocity in vacuum. When
we put P=0, (5.9) reduces to the telegraph equation which was derived in
the last century. In the exercises we shall discuss some solutions of the
telegraph equation. In eq. (5.9) the polarization P may be considered as a
source term which produces the electric field. On the other hand an electric
field in a medium can generate a polarization. Therefore we have to deal
with the question how to calculate the polarization P

Exercises on section 5.2

Solve the telegraph equation (5.9) in one spatial dimension under the
following conditions:

(1) At the points x =0 and x =L the field strength E must vanish, or

(2) the medium extends from x =0 till x=00. At x =0, E = E, cos(w,t) is
prescribed.
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What are the most general solutions? Discuss the kind of damping of the
solution in the cases (1) or (2).

Hint: In case (1) use the hypothesis E =f (t) sin(kx) and determine k and
f(t). Note that a linear combination of solutions of the telegraph equation
yields a new solution. In case (2) try the hypothesis E = exp[iwyt] g(x) and
form an adequate linear combination.

5.3. The matter equations

We first remind the reader of classical physics. We consider atoms which
we distinguish by an index w and which are localized at the space points
x,. By means of a simple model we treat the motion of an electron within
an atom by assuming that it is elastically coupled to the atomic nucleus.
Thedisplacement of the electron from itsequilibrium position at the nucleus
will be denoted by £,. With it a dipole moment

p.=(-e)§, (5.10)

isconnected. In classical physicsthedeviation £, of the electron with charge
—e and mass m obeys the equation of motion

mé, +f€, =(—e) E(x,, 1), (5.11)

where f is Hook's constant. The electric field strength E is taken at the

position x, of the atom (fig. 5.1). Assuming E in the form of an harmonic
oscillation,

E(x, t) = Eo(x) e te.c., (5.12)

r E(x,t)

Fig. 5.1. The electric field strength E(x, t) (left part) hits an atomic dipole at space point x,,
and with its elongation ¢, (right part).
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we can solve (5.11) immediately
—e 1
b=y mart 19
where we have used the abbreviation
wi=f/m. (5.14)

Inserting this result into (5.10) we recognize that the dipole moment p,, of
the atom w is connected with the electric field strength by a constant factor
a, the polarizability of the atom,

p.=aE(x,1t). (5.15)
An inspection of (5.13) reveals that the polarizability is explicitly given by
e (5.16)

a = m wé—wz' .

Because the polarization of the medium is the sum over the dipole moments
per unit-volume it follows from (5.15) that Pis proportional to E. Because
in (5.9) the second derivative of Pwith respect to time occurs, the net effect
of the polarization isachange of the effective velocity of light in the medium.
Of course, what we have presented up to now is nothing but conventional
dispersion theory.

This theory is not able to represent laser action adequately, however.
Rather we have to deal with the quantum mechanical processes. To this
end we assume that only two energy levels within an atom participate at
theinteraction between the atom and thelight field. We denotetheelectronic
coordinate by & With respect to the electron we treat the problem fully
guantum mechanically and therefore start from the Schrodinger equation

HY =ih V. (5.17)

In it the Hamiltonian H is composed of the unperturbed operator H, and
the operator of the external perturbation H®

H® =e£ E(1), (5.18)
ie.

H=H,+e£E(t). (5.19)
H, refers to the unperturbed motion of the electron in the field of its atomic

nucleus. In the following we shall assume that the corresponding quantum
mechanical problem

Hopj=We, j=1,2, (5.20)
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has been solved already, i.e. that we know the wave functions ¢; and their
energies W,. In Val. 1 we got to know how to treat the Schrodinger equation
(5.17). To this end we construct the wanted wave function ¥ as a super-
position of the unperturbed wave functions ¢, and ¢,. In other words, we
shall assume in the following that the interaction between the electron and
the electric field strength E is only of importance for the two levels under
consideration. This may be justified by the fact that the frequency of the
electric field strength is in or close to resonance with the frequency of the
electronictransition between the corresponding two levelsso that the electric
field strength stimulates transitions between levels 2 and 1. In order to
determine the coefficients ¢, and ¢, we insert as usual the hypothesis

V(& 1) =ci(1) exp[—i Wit/ h] ©,(£) + (1) exp[—i Wat/ h] @2(£) (521
5.21

in (5.17) and multiply the resulting equation by ¢F and ¢¥, respectively.
We then integrate over the electron coordinate £ and obtain the equations

1
¢ ZEE(t)Hlszcz, (5.22)

1
C2=i_hE(t)H251C|. (5.23)

In order to simplify these equations we have introduced the matrix elements
as follows:

H;, = J @h(&) ef ¢,(§) A€ expliwmt], (5.24)
where w,,, is given by
@y = tTl(W'" -W,). (5.25)

Furthermore we have assumed that the atom does not possess a static dipole
moment so that
H? =H3,=0. (5.26)

When we know the coefficients ¢, and ¢, which can in principle be
obtained by solving egs. (5.22) and (5.23), we may calculate various impor-
tant expectation values, for instance that of the atomic dipole moment

p=J VHE 1) (—e)E V(£ 1) AL (5.27)
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In order to simplify the notation we consider only one selected atom so
that we neglect theindex w for the moment being. We have introduced that
index above in order to distinguish the atoms. The expectation value of the
dipole moment p replaces the classical dipole moment (5.15). Thus, if we
can calculate p, we may determine the polarization P of the medium so
that our task to calculate the source term of the wave equation will be
solved. Inserting ¥, eq. (5.21), in (5.27) and using the relations (5.26) we
obtain

—p =c¥e, exp[—iat] &, +c,cF expliot] 3,,, (5.28)
where we have used the abbreviations
and

Oy = J ofefo I’ (5.30)

From this result it transpires that we have to know the coefficients ¢; in
order to calculate the dipole moment p. It has turned out that it is not so
useful to solve first egs. (5.22) and (5.23) and then to determine the dipole
moment according to (5.28). Rather it has turned out to be preferable to
proceed along lines which we have presented in Vol. 1, for instance when
deriving the Bloch equations of spins. There we have seen that we may
obtain equationsfor the expectation values of the spin components directly
and in a very simple fashion. We shall follow the same procedure here, i.e.
we wish to derive equationsfor the expectation value of the dipole moment
p. We note that the dipole moment p is known if we know the quantities

c¥e, exp[—int]=a(t), (5.31)
because with their help we may write the dipole moment in the form

—p=qa(t) 3, +a*(t) 9, (5.32)
For later purposes we introduce the abbreviations

p P =—a(t) 8, p T =—a*() ., (5.33)

sothat the dipole moment of the atoms under consideration can be represen-
ted in the form

p=pP+p. (5.34)

We now wish to derive an equation for (5.31). The reader will be well
advised if he considers a(t) as a measure for the dipole moment of the
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atoms, i.e. that he connects with the | etter a the meaning of a dipole moment.
When we differentiate (5.31) with respect to time we obtain

a =—ida T cfé, exp[—iat] +éF e, exp[—iat]. (5.35)

We wish to replace the temporal derivatives of ¢, and ¢¥ by means of the
r.hs. of egs. (5.22) and (5.23) and their complex conjugates, respectively.
To this end we write those equations down in a somewhat different shape

1
é =i—f;E(t) 31, exp[—iat] ¢, (5.36)

1
¢, =3 E (t) 921 expliaot] C,. (5.37)
We then obtain for (5.35)
1

where we have introduced the abbreviation
d=|c)>—les). (5.39)

It is well known that |¢;|* represents the probability of finding an electron
in state j. Equally well, |¢;* can be considered as the occupation number
of state j. Thus (5.39) isaquantum mechanical expressionfor the occupation
number difference or, in other words, for the inversion.

I'n order to make understandabl e what follows we remind the reader once
again of the Bloch equations of spin. The electron of the atom is not only
subjected to the external light field but to other perturbations also. For
instance in a gas the atom can collide with other atoms al the time. In a
solid the electron can interact with lattice vibrations, etc. As we know from
Val. 1, chapter 7, such effects cause a damping of the dipole moments. We
introduce these dampings into the theory in a phenomenological manner
by adding the damping term -y« to the r.h.s. of eq. (5.38). The damping
constant y has the same meaning astheinverse of the transverse relaxation
time T, of aspin (cf. Vol. 1). Thuswefind for the atom under consideration
the equation

1
a=—ida— ya —i;E(t) 3,.d. (5.40)
Evidently we have been forced to introduce a new unknown variable

namely the inversion (5.39). In order to complete the equations of motion
we must derive an equation for the inversion. To this end we differentiate
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(5.39)with respect to time
d = c¥éy+éFey— ke — ¢tey. (5.41)

When we replace on its r.h.s. the time derivatives of ¢; according to the
relations (5.36)and (5.37)we obtain after a short transformation

=,3E(t)(‘l?21a* —0"?12)- (542)
ih

This equation describes how the inversion is changed due to theinteraction
of the electron and the electric field. When we wish to treat laser processes
we must not ignore the interaction of the atom with its surrounding, for
instance, we have to pump the atom energetically by a pump process. On
the other hand the electron may recombine on account of its interaction
with its surrounding. For instance, these processes can consist of radiation-
less transitions. But we also have to take into account transitions in which
light is spontaneously emitted without participating at the proper laser
process. All these processes taken together will lead to a relaxation of the
inversion towards a stationary value d, within a characteristic relaxation
time T. This effect can be taken care of by adding the corresponding
relaxation term to (5.42)so that we obtain

d =_3E(z)(az,a*—aa,2) yGo=d (5.43)

ih T

The time constant T occurring in this equation corresponds to the longi-
tudinal relaxation time T; of the Bloch theory of spins.

Now we have prepared al ingredients in order to formulate the semi-
classical laser equations but we have to remind ourselves that we are not
dealing with a single atom but with an ensemble of N atoms in the laser.
For each of these atoms we have derived equations for their "dipole
moments” a and inversions d. We remind the reader that af(t) is a
dimensionless quantity which is proportional to the dipole moment,
however. To underline the physical significance of a weshall call it adipole
moment here and in the following. In order to treat the ensemble of atoms
we attach the atomic index w to the corresponding atomic quantities in the
equations (5.40) - (5.43)Furthermore we take into account that the electric
field strength E is a function of the atomic positions x,. Thus we obtain
the fundamental matter equations of the laser

. 1
a, =(-i@—vy)a, —EE(x“’ t) &,d,, (5.44)
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. do—d, 2

d, =—°T—“+i—h E(x,, 1) (9y0%—a,9),). (5.45)
Finally we have to devise a prescription how the macroscopic polarization
is connected with the individual dipole moments. To this end we use a
mathematical trick by which we write the polarization in the form

P(x, 1)=% 8(x—x,) p,.. (5.46)

Init § is Dirac's §-function which can be visualized as having a peak at
point x = x, and which vanishes otherwise. The sum runs over all the atoms
of the material. When we change the coordinate x we pal pate the material
by means of the §-function and each time when an atomic position x, is
hit the corresponding dipole moment p prevails (compare exercise 1). The
individual dipole moments p, are connected with the quantities a, by

P. =P§L+) +P§:) = -—(au(t) 1912'1'“:’;“) 3), (5.47)

which we have got to know above. Thus we have found a closed system of
equations. They consist of the equations for the electric field strength (5.9)
and of the matter equations (5.44) and (5.45). They are connected in
particular by the polarization P according to (5.46) and (5.47). In the
following we will transform these equations so that they are more suited
for the treatment of the corresponding physical problems.

Exerciseson section 5.3
Dirac's 8-function which we introduced in eq. (5.46) is defined by the
following property:

(i) 8(x—x9)=0, for x#x,,

(ii) IXO+£ 8(x—xp)dx=1,

Xo—&

where ¢ >0 but arbitrary. If f(x) is a continuous function,

b [f(x), if a<xe<b,
[ Jeo P dx_{O, otherwise.

The ;S-function may be defined in three dimensions also:

(i) 8(x—x5)=0, for x#x,
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(i) J' S(x—x,) d®x=1,
v
provided x, is contained in V.

(1) Evaluate [, f(x) 8(x—x,) d® in analogy to the equation marked
with (#).

(2) Average (5.46) over a volume element AV which contains x,. Let AV
be so small that in it p, practically does not change. Write p, = p(x,) and
show P(x,, t) = p p(x,), where the bar above P means averaging. p is the
density of the atoms, i.e. p=A4N/A4V where A N is the number of atoms
in the volume AV.

Hint: The average is defined by

_ 1
P=— J P(x, 1) d*x.
AV

5.4. The semiclassical laser equationsfor the macroscopic quantities
dectricfidd strength, polarization, and inverson densty

By simple transformations, equations for the macroscopic polarization and
the inversion density may be derived from egs. (5.44) and (5.45). Because
we shall not immediately make use of these equations in the subsequent
sections, the speedy reader can skip this section. Once again we consider
the decomposition (5.46). When we insert the further decomposition (5.47)
in it, it suggests itself to introduce the new quantity

PP (x t)=-Y 8(x—x,) 9 a,ll). (5.48)

We denote the quantity conjugate complex to P'*) by P~
P H* = p(o). (5.49)

In a way analogous to (5.48) we define the inversion density by summing
up over the individual atoms using Dirac's 8-function

D(x,t)=Y 8(x—x,) d (5.50)
It will be our goal to derive from egs. (5.44) and (5.45) equations for the

macroscopic quantities P and D. To this end we multiply (5.44) on both
sides by 6(x-x,) &, and sum up over u. The term &(x-x,) E(x,, t)
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occurring in it may be replaced by
8(x—x,) E(x,, t)=8(x—x,) E(x, t), (5.51)

(compare exercise). Thus we immediately obtain the relation

%P(J“)(x, t)=(—iad —y) PP(x, 1) +{A17[E(x, t) 9,19, D(x,t). (5.52)

We proceed in a similar way with eq. (5.45) and obtain

d Dy—D(x,t) 2 _

I D(x )= 2 (PO p )

5 P ) =" = E(x 1) (PO - PY) (5.53)
where we have introduced the total inversion D,, which is produced by the
incoherent processes, according to the relation

Y. dy= Nd, = D, (5.54)
173

Egs. (5.52) and (5.53) represent the macroscopic matter equations. In order
to derive the complete laser equations we must supplement egs. (5.52) and
(5.53) by the field equation (5.9) which we write down once again for sake
of completeness

AE—?E— woTE = (P +P)), (5.55)

Egs. (5.52), (5.53) and (5.55) represent a very elegant formulation of the
equations for the interactions between light and matter and we shall use
them later. In these equations a great number of physically most interesting
processes is hidden. These equations do not only alow us to describe
processes in the laser resonator but also wave propagation phenomena. In
the present context, however, we wish to treat the processes within the laser
proper. To this end we must take into account the fact that the laser is
bounded by mirrors so that we have to deal with standing electric waves.

Exercise on section 5.4
Prove eq. (5.51).

Hint: Integrate (5.51) over a small volume on both sides and use the
properties of the §-function as listed in exercises on section 5.3.
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5.5. The laser equationsin a resonator

As we know, in general laser processes take place within a resonator. It is
defined with respect to the laser by the mirrors mounted at the endfaces of
the laser material or by externally mounted mirrors. First let us consider
the electric or electro-magnetic field in vacuum and the one-dimensional
case (compare fig. 5.2). Let us assume that the conductivity of the mirrors
is infinite. In such a case the tangential component of the electric field
strength must vanish on the mirrors. This boundary condition is fulfilled
by the electric field if it has nodes on the mirrors. In this case the electric
field strength can be represented by

E=E,sinkx (5.56)

Here k is given by m#/ L, where L is the distance between the mirrors; m
is an arbitrary integer. Thus in the resonator a set of different modes can
develop. In the following we shall free ourselves from the specific form of
the standing wave (5.56) and we shall denote the spatial part of the wave
function by u, (x). In the special case just considered u, has the form

1, (X) = e, Sin kyx, (5.57)

where e, is the unit vector in the direction of the field polarization, i.e. it
is paralel to the electric field strength. & is a normalization factor and the
spatial variation of u, is described by the sine-function as in (5.56). But
now we may also assumethat «, describes athree-dimensional configuration
of the electric field, for instance waves which, so to speak, do not run
parallel to the laser axis. The electric field strength which may be a general
function of space and time can be represented by a superposition of such

A E(x]

AWAWAWAWEY
RVAYAVAVAVE

Fig. 5.2. The electric field strength E(x) between two mirrors separated by the distance L.
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standing waves uy( X) :
E(x,t) =Y E,(1) u\(x). (5.58)

Init E, (1) aretime dependent amplitudes. In the following we shall assume
that the functions u, of the individual modes obey a wave equation of the
form

2
Au,(x) = —Kk2u, (x) = —%—m(x). (5.59)

As is shown in resonator theory, the functions u, obey an orthogonality
relation

J u( X) u(x) &x=8,,. (5.60)

Because a laser resonator has open sides, the relations(5. 60) are valid only
approximately. We shall not discuss this question in more detail here,
however. Our goal will rather beto derive equationsfor the field amplitudes
E,(t). Our starting point is again the wave equation for the electric field
strength which we briefly recall

| . . .
AE ~—E -~ pook = poP. (5.61)

We insert (5. 58) into it and use the relation (5. 59) so that we may replace
the spatial derivatives by a multiplication by —w3/ ¢’ Then we multiply the
resulting equation by u, and integrate over the volume of the resonator. By
means of the orthogonality relation (5. 60) we obtain

wiEA +EA +Z (U'AA'/EO)EA"—' _(l/so)ﬁ/\- (5.62)
<
In it we have used poc’=1/¢, and the abbreviation
Opn = I u, ou,. d’x. (5.63)

As we may recall, a is the electric conductivity of the material. If the
material possesses a homogeneous conductivity we may pull a in front of
the integral and may use again the orthogonality relation (5. 60). If the
conductivity varies spatially, for instanceif it is concentrated in the mirrors,
we must at least in principle be aware of the fact that also such o, may
differ from 0 for A # A’. Because this question leads to rather subtle dis-
cussions we shall not follow up this problem now but shall come back to
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it on later occasions. Finally we have to explain P, which occurs on the
r.hs. of (5.62). Thisis given by

P, = J u,(x) P(x) d’x. (5.64)

If we consider the decomposition (5.58) into the u's as Fourier decomposi-
tion, P, is nothing but a Fourier component of the polarization, P. In
order to establish the relation of P, with the microscopic representation of
the polarization, i.e. the individual dipole moments, we recall that the
polarization P isrelated to the individual dipole moments p,, by

P(x, t)=Y 8(x—x,) p,. (5.65)

Inserting (5.65) in (5.64) and recalling the property of the 8-function (cf.
exercise on section 5.3), we may immediately evaluate (5.64) and obtain

P,=P"+P, P, =-Yu(x,) d,a.(t)+cc (5.66)
# ~ AN
PE\+) PS\“)

So far we have transformed the equation for the electric field strength E
into equations for the individual amplitudes E, (t). We now do the same
for the matter equations. This means only some writing because in egs.
(5.44) and (5.45) we have merely to replace on the r.h.s. E(x,, t) by the
corresponding decomposition (5.58). We immediately obtain

Gu= (10 - Ya, ~d, T E (1) m(x,) Dan (5.67)

4=t 2 (ot - 00 T B0 1y (k). (5.68)

ih Y
Egs. (5.62), (5.67) and (5.68) represent agood starting point for thetreatment
of laser processes. In many cases these equations can be still considerably
simplified, however, by introducing two approximations which in general
are well founded. These approximations will be studied in the next section.

Exercise on section 5.5

Derive equations which generalize (5.44) and (5.45) or (5.67) and (5.68) to
three-level atoms with a pumping scheme of fig. 2.9.

Hint: Start from the Schrodinger equation with three energy levels and
derive equations for c¥c,, c¥c, |a%, |caf’, |es. Add decay terms —y(c¥Fc,)

L)

)
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and —y(c¥c,), respectively, and use in the equations for dN;/dt=d|¢;|*/dt
additional transition terms in analogy to the rate equations.

5.6. Two important approximations: The rotating wave approximation and
the slowly varying amplitude approximation

We first treat the rotating wave approximation. To this end we decompose
the mode amplitudes E, (t) into their positive and negative frequency parts

E\(1)=E\" (1) +E{ (1), (5.69)
where these parts are defined by
E{" = A, exp[—iwyt], E\’ =A% exp[iw\t]. (5.70)

We shall admit that the amplitudes A, and A¥ are time dependent, but that
their time dependence is much slower than that of the exponential functions
in (5.70). Wefurther recall that accordingtoitsdefinition (5.31), a, contains
a rapidly oscillating factor

@, Cexp[—iot]. (5.71)
Let us now consider typical expressions occurring on the r.h.s. of (5.68),
a,E, Xexpli(w, —6)t] and exp[—i(w, T6)]. (5.72)

As it will turn out by means of our later calculations, for the laser process
only such mode frequencies w, areimportant which lie close to the atomic
transition frequency @ The exponential functions occurring in (5.72) are
quite different, because in one of them the difference of w, and @ occurs,
whereas in the other one the sum.of w, and @ is present. When weintegrate
over atimeinterval which islong compared to the time of asingleoscillation
tv=2m/& but small compared with times over which'the amplitudes A,
and A¥ vary, the following happens. The exponential function occurring
in (5.72) which contains the sum of the frequencies, w, + @, oscillates very
rapidly so that when integrated over a time ¢, this contribution vanishes.
Ontheother hand, during that time the exponential functionin (5.72) which
depends on the frequency difference has not changed appreciably. As a
consequence we may ignore the second term occurring in (5.72) against the
first term. In this way (5.68) transforms into
d _d_0:£1ﬁ+_2_ * 3 o) _ EC) 9
O h a”% xO(t) u)\(xu) Oy 0‘,‘% x (1) u)‘(x“) 12}
(5.73)
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Eqg. (5.67) can be transformed in a similar manner. To this end we recall
that a, containsthe rapidly oscillating factor (5.71). When we multiply the
equation for a, i.e. (5.67), on both sides by exp[—i@t] it hits quantities E,
thus producing terms of the form (5.72). This allows usto apply the rotating
wave approximation to eq. (5.67), too. We thus obtain

. .- 1 N
a,=(-io-v)a, —ad“ 2;‘ E{N (1) u, (x,) 9. (5.74)

Eventually we may decompose the quantities E, and P, occurring in the
wave equation (5.62) into their positive and negative frequency parts (corn-
pare for example (5.69)). We thus obtain the field equation

w,Z\E(Ai) +E()\t) +Z (O'AA’/EO)E(:’) = _(l/go)ﬁ()\i)- (5.75)
t

Egs. (5.73) to (5.75) again represent aclosed set of field and matter equations.

Our next task will be to further simplify eq. (5.75). This can be achieved
by the dowly varying amplitude approximation. To this end we consider for
example the positive frequency part E{"

ES" = Ay (t) exp[—iw,1]. (5.76)

As we shall seein later chapters, in general it will not be allowed to assume
that the amplitudes A, are time independent. But it will turn out that A,
will change much more slowly than its accompanying exponential function.
This may be visualized by saying that A, performs much fewer oscillations
per unit time than its accompanying exponential function. Therefore we
may assume that the temporal derivative of A, is much smaller than w,A,,
1.€.

dA
’ 2 <|waA,l. (5.77)

dr

We use this inequality as follows. Differentiating (5.76) on both sides with
respect to time we obtain

d .. . dA .

aE& )= (—quAA +EA) exp[—iw,t] (5.78)
But according to (5.77) we may replace (5.78) by

d

a—tEg“ ~—iw,E\". (5.79)

In a similar way we proceed with respect to the second derivatives and



$5.6. Two important approximations 115

4 EM)

Alt) cos{w,t)

Fig. 5.3. The electric field strength E(t) consists of an envelope A(t) and a cosine function.

consider the expression

w?EWTED, (5.80)
Using the decomposition (5.76) weobtain thefollowing expression for (5.80)
exp[—imt] (02 A, -0l A, —2iw,A, +A,). (5.81)

In analogy to (5.77) we assume that also the inequality

Al <|w,Al (5.82)

holds. Within this approximation the leading term of (5.81) is obtained as
follows:

w?E\P+EM =~ <2iw, A, exp[—iw,t]. (5.83)

In the following we are primarily interested in E, instead of A,. Therefore
we express A, by E, whereby (5.83) is transformed into

—2iw, (E” +iw, ™). (5.84)

In a similar way we may proceed with the polarization P,. Because there
is no need to repeat all arguments once again we immediately write down
the result

P~ 2P, (5.85)
For sake of simplicity we shall assume in the following that
T ar =810y (5.86)

holds, i.e. only those contributions of o, are assumed different from 0 for
which A = A’. Using the approximations (5.79), (5.84) and (5.85) we may
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transform the original equation for the electric field strength (5.75) into
—2iw, (ESY +iw, E) — (0, / £0)iw,  EYY = (@7 o) PSP (5.87)
We divide this equation by —2iw,, introduce the abbreviation
Ky = 04/ (265) (5.89)

and put all terms except ES* on the r.h.s. Thus we eventually obtain the
rather simple equation

EY = (—iw, =k, ) E\” +[i@/(2,)]PS". (5.89)

We have assumed in addition that we may replace w, by @ in the last term.

Let us summarize the results of this section. We have first introduced the
rotating wave approximation and then the slowly varying amplitude
approximation. The resulting equations are represented in (5.73), (5.74)
and (5.89). These equations may serve as a starting point for the laser theory
and they are indeed quite often used in that form. On the other hand it has
turned out that these equations can be cast in a till simpler and more
symmetric form. In sections 5.8 and 5.9 we shall introduce this kind of
equations which incidentally will allow us to make close contact with our
gquantumtheoretical treatment of thelaser inalater chapter. Inthat quantum
mechanical treatment we shall also quantize the light field. But so far we
shall remain in the frame of a semiclassical theory.

5.7. The semiclassical laser equations for the macroscopic quantities
dectricfidd strength, polarization and inverson dengty in the rotating
wave- and dowly varying amplitude approximation

The rotating wave approximation and the slowly varying amplitude approxi-
mation cannot only be applied to the laser equations in a resonator, but
they may also serve to simplify the laser equations we derived in section
5.4. Since we shall need the thus resulting equations much later in this book,
the reader may skip thissection and read it only later when it will be needed.

We start with the field equation (5.55). With respect to its L.h.s. we have
several options depending on the specific problem, i.e. standing or running
waves. When we use standing waves, we are essentially dealing with the
field in a resonator. Since this problem was treated in sections 5.5 and 5.6,
we shall deal here with running waves. Incidentally, this allows us to treat
the functional dependence of E on x and t in a symmetric fashion. To this
end we consider a plane wave exp[i(kx —iwt)] which is slowly modulated
in time and space. We therefore write

E(x, t)=E™(x, t)TE(x, 1), (5.90)
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where

E®(x, )= E{(x, t) exp[xi(kx — wt)], (5.91)
and

kc= . (5.92)
We form

AE‘*’—%E‘” (5.93)

and insert (5.91) in (5.93). This yields
expli(kx — wt)] [-K’ESY +2i(kV)ES” + AESY +(w?/ ) ESY
+(2iw/HESY - (1/AESP) (5.94)

In the square brackets, the first and fourth term cancel each other, while
thethird and sixth term can be neglected dueto thesdowly varying amplitude
approximation. In this way (5.93) reduces to

expli(kx — ot)] [2i(kV)E" +(2iw/ ) E™M]. (5.95)
In a similar, though simpler fashion, we reduce

—uooE™ (5.96)
to

expli(kx — ot)] wooiwEy®". (5.97)

In order to transform the r.h.s. of eq. (5.55) we assume P™(x, t) in the
same form as E*)(x, t), i.e.

P™)(x, t)= P§"(x, t) exp[zi(kx — wt)], (5.98)
where P{* is a function which varies much more slowly in space and time

than exp[+i(kx — wt)]. Applying the slowly varying amplitude approxima-
tion to weP™(x, t), we readily obtain

-0’ uoP§(x, t) exp[xi(kx - ot)]. (5.99)

We now split the r.h.s. and the Lh.s. of eq. (5.55) into their positive and
negative frequency parts, respectively, and collect the corresponding terms
(5.95), (5.97) and (5.99). After dividing the resulting equation by exp[i(kx —
wt)] we obtain

2(kV)ESY +(2iw/ ) ESY + podiwES"Y = —w?uPSP. (5.100)
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In the last step of our analysis, we multiply this equation by ¢?(2iw), use
the relations

kik=e, cuo=1/g0, 0/(280)=x (5.101)

and on the r.h.s. of (5.100) the approximation w = 3. This leaves us with
the final result, namely the field equationfor the dowly varying amplitude

“e(eV) E(x, 1) T ESV(x, 1) TRE§ (x, 1)
=16/ (26 Py (x, 1). (5.102)
We wish to reducethe matter equations (5.52) and (5.53) in asimilar fashion.
To this end we insert (5.90), (5.91) and (5.98) into (5.52) and apply the

rotating wave approximation. We immediately obtain the equationfor the
dowly varying amplitude d the polarization

PP(x, t) = (1w —id —y) P§V(x, 1)
1
+£(E(()+)(x, 1)8,)3,D(x, t). (5.103)
Notethat & need not coincide with w, but that we require only |& — w| < w, @.
We insert (5.90), (5.91) and (5.98) into (5.53). When we neglect in
E(*)P(—)_E(—)P(+)_E(+)P(+)+E(—)P(*) (5'104)

the rapidly oscillating terms o exp[+i(w * @)t] we can transform (5.53) into
theequationfor theinversion density containing only dowly varyingamplitudes

d _Do-D(x, 1)
gt D(x, t) S

—i(Eé”(x, t) PS(x, t)— ES(x, t) PS7(x, 1)), (5.105)
The equations (5.102), (5.103) and (5.105) represent our final result.

5.8. Dimensionlessquantities for the light field, and introduction of a
coupling congtant

In this section we continue our outline of section 5.6. In the following we
shall introduce dimensionless variables b, and b¥ instead of the mode
amplitudes E{"” and E, respectively. The quantities E, and b, differ by
a simple factor only, namely

ES” =iVhw,/(2¢0)b,, (5.106)
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E( = ~ivhw,/(2¢e,)b*. (5.107)

As one may show, the energy of an electric field with mode amplitude E,
is proportional to |E,|>. On the other hand, in a quantum theoretical
treatment fiw, isjust the energy of a photon. Since &, is dimensionless we
recognize that |b,|* must have the meaning of a photon number, may be
except for a numerical factor. Asit will turn out later, |b, | is precisely the
average photon number. We shall elucidate this relation in a later chapter
when dealing with thelaser equations quantum theoretically. Let usconsider
the laser equations (5.73), (5.74) and (5.89) more closely. Wethen recognize
that there always the combination &,,u,(x,) occurs (or the conjugate
complex quantity). Furthermore the factor Jw,/(2he,) occurs. In order to
save space it suggests itself to replace this combination by a quantity which
we define by

8 =105, (x, )V w,/(280h). (5.108)

It isa rather simple but boring task to rewrite the laser equations by means
of the new quantities just introduced. Therefore we shall write down the
laser equations in the next section without any intermediate steps.

5.9. The basc laser equations

In this section we summarize the basic equations which we have derived
in the preceding sections. In thisway areader not interested in their detailed
derivation is enabled to start with these equations right from here. We first
explain the quantities occurring in the laser equations. Such a quantity is
the electric field strength of the light field in the laser. This function which
depends on space and time is expanded into a superposition of resonator
modes u,(x). The index A distinguishes the different modes. We assume
that the cavity modes are normalized within the volume of the cavity and
that they are orthogonal with respect to each other. We allow for an open
cavity so that a cavity may consist of two mirrors mounted at the opposite
endsof alaser rod. A one-dimensional example for such amodeis provided
by a standing wave

u, (X) ==2=sin k,x, (5.109)
J2L

where e, is a unit vector in the direction of the polarization of the electric
field. k, is the wave number and w, is the corresponding light frequency
in the cavity without laser material. Finally we assume that the light field
connected with the mode A can stay only a finite time in the resonator.
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More precisely speaking we assume that the light field amplitude decays
in the course of time by means of the damping constant «,. Thusthe electric
field strength is represented in the form

E(x,t)=Y b,(t) u,(x) - N, +conj. compl. (5.110)

where b, (t) is the amplitude of the field mode A. This amplitude is made
dimensionless by means of the factor &,,

N, =ivha,/(2¢,). (5.111)

The specific choice of &, was made so that we can establish a direct
connection with the quantum theory of the light field. The reader is advised
to remember in the following that b,(t) is connected with the electric field
strength of the mode A except for a numerical factor. While the light field
represents one subsystem of the laser, the other subsystem is provided by
matter. We assume that the laser material is built up of individual atoms
which we distinguish by the index w. With each atom n a dipole moment
p, is connected which we represent in the form

_p“=’812an(t)+821aj(t). (5.112)

Init &, isthedipole matrix element which isin quantum theory a prescribed
and time independent quantity. Its precise definition is given in eg. (5.30).
a, (t) aretime dependent functions which determine the temporal behavior
of the dipole moments p. Because p and a differ only by the constant
vector &, weshall consider inthefollowing a (t) asadimensionlessdipole
moment and shall also call it that way. When we consider a system of
two-level atoms, the only additional atomic variable still necessary is the
inversion d. It is defined as difference of the occupation numbers of the
upper and the lower level of the atom w;

d,=N,,~N,,. (5.113)
So far we have discussed the subsystems, namely the modes on the one
hand and the quantities describing matter on the other hand (dipole moment
and inversion). These two subsystems interact with each other by means of
the electric interaction between the electrons of the atoms and the electric
field. Thisinteraction is described by a coupling constant g which depends
on the indices . and A;

8ur =191, (x, )V @,/ (2hey). (5.114)

Evidently this coupling constant contains the dipole matrix element 9, as
well as the spatial field amplitude u, taken at the atomic position x,. This
assumption implies the dipole approximation. As we have shown in the
preceding sections, the following equations have been obtained for the
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fundamental equations by means of two approximations: namely the rotat-
ing wave approximation and the slowly varying amplitude approximation.
The corresponding eguations read:

(1) Field equations

by = (—iw, — k)b, —i ¥ g¥ra,. (5.115)
y

The physical content of these equations can be explained as follows. The
Lh.s. describes the temporal change of the field amplitude. The r.h.s.
describesthe causes of this change. Thefirst two terms on ther.h.s. describe
the oscillation and damping of the field amplitude in the resonator if there
is no interaction between the field amplitude and the laser atoms present.
The last term describes how the dipole moments act as a driving force on
the oscillations of the field. The second group of equations refers to the
atoms.
(2) Matter equations

a, =(-i@, —y)a, +i), gnb\d,, (5.116)
A

. dy—d )
d”=—°—7_—“+21§(g:'jAaMb’)'f—gMaﬁbA). (5.117)

In analogy to (5.115) the left-hand sides describe the temporal change of
the dipole moments and the atomic inversion, respectively. We now discuss
the right-hand sides which present the causes of the temporal changes of
a, and d,. Wediscuss thefirst term in (5.116). This contains the transition
frequency of the atom w, i.e. 6,. Because in solids, atoms may occupy sites
which are more or less different, the transition frequencies of the individual
atoms may differ from each other. We take this fact into account by using
the index w. By the interaction of the atom with its surrounding the free
oscillation of itsdipole moment will bedamped. The corresponding damping
constant isdenoted by y. Thefirst term on ther.h.s. of (5.116) thus describes
the oscillation and damping of the atomic dipole moment if no interaction
with the light field takes place. The sum over A which occurs in (5.116)
describes the interaction of all modes A with the atom under consideration.
The factor d,, is of special importance. On account of it the laser equations
become nonlinear because here the product between the two guantities b,
and d,, occurs. Thisterm describes how the electricfield represented by its
mode amplitudes b, drives the dipole moment. But because we are dealing
here with a two-level atom, the energy flux between the atom and the field
depends on the internal state of the atom. If its electronisinits upper state,
energy will be transferred from the atom to the dipole moment. On the
other hand if the atom isin its lower state, energy will be transferred from
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the field into the atom by absorption. This change of direction istaken care
of by the factor d,, whose size depends on the actual occupancy of the two
atomic levels.

Let us now turn to a discussion of the r.h.s. of eq. (5.117). The first term
describestherelaxation of theinversion caused by the pumping and incoher-
ent relaxation processes. d, represents the resulting equilibrium inversion
and T is the corresponding relaxation time. The sum over A is brought
about by the interaction between the field modes A and the atom u.. As may
be shown this term is proportional to the energy per second put into the
atom or drawn out of it because of the coherent interaction between the
atom and the field.

Aswe shall seein the next chapters, a wealth of phenomena is described
by the equations (5.115) till (5.117).

For sake of completeness we now quote aformulation, which isequivalent
to egs. (5.115)~(5.117), but which stresses the continuous distribution of
atomic frequencies, @,,, in an inhomogeneously broadened atomic line. In
such a description (compare also sections 4.6 and 4.7) the frequency @, is
replaced by the continuous (frequency) variable @, and correspondingly
also the index w. It is further assumed that g,, is space independent (cf.
also section 6.1). Therefore the equations (5.116) and (5.117) read in this
notation

da=(*i6*7)aa+i2ga,AbAd5, (5.118)
A

do—ds
T

Most important, the sum Y., in (5.115) is transformed into an integral over
& Wwhich contains the frequency distribution p(@) (cf. section 4.6), which
may be a Gaussian or, in some model calculations, a Lorentzian. In this
way, (5.115) is transformed into

d,= +2iY (gk azbf—c.c.). (5.119)
A

+o0

B,\=(—iw,\—x,\)b,\—ij daop(@) ag. (5.120)

—o0

Notethat a,, d, and b, are time dependent functions.
Exercise on section 5.9

Specialize the egs. (5.115)-(5.117) into those for a single mode laser and
assume g,, real. Make the hypothesis b=r expli¢], & =P, +iQ,, where
r, ¢, P, and Q, are assumed real and derive the equations for the new real
quantities.



Chapter 6

Applications of Semiclassica Theory

6.1. The sngle mode laser. Invegtigation of stability

As we shall see, the semiclassical laser equations are capable of describing
a wealth of laser phenomena. A solution of these equations seems rather
difficult, however. Indeed there may be more than 10° laser modes and
perhaps 10'® laser atoms which interact with each other. Furthermore the
equations are nonlinear because of theterms b,d, and b¥a, b,a¥. Inspite
of these difficultiesit will be possible to solve the laser equations in an
excellent approximation. We shall find a variety of interesting effects. In
order to get a first insight how the equations describe laser processes, we
shall first consider the special case of a single laser mode. Furthermore we
assume exact resonance, i.e. we assume that the frequency w, of the laser
mode under consideration coincides with the atomic transition frequencies
which are assumed independent of x (homogeneous line broadening).
Therefore weassume w, = . Thistuning may be achieved by an appropriate
fixation of the distance L between the mirrors. By way of a model we shall
assume that the coupling constants g,.. are independent of the mode index
A and of the atomic coordinate x,,: g, = g.T Furthermore we shall assume
that g is real. Because we are dealing with one laser mode only and we
need not distinguish between several of them, we shall omit the index A
everywhere. Under these assumptions the laser equations (5.115) to (5.117)
reduce to the following equations:

b=(-iw—k)b—-ig} a, (6.1)
"

a, =(-iw—vy)a, +ighd,, (6.2)

.1

d,= T (do—d) +(2ia,gb*+c.c.). (6.3)

1This model can be given a redlistic foundation in a ring laser (cf. exercise).
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Wefirst study the case in which the pump strength d, is so small that we
cannot fulfil the laser condition. Under these circumstances we have to deal
with a usual lamp. Asone may convince oneself, the solutions of egs. (6.1)
to (6.3)read b=0, a, =0, d, =d,. This result isin so far astonishing asthe
light field amplitude which is, of course, proportional to b, vanishes. In fact
one should expect that alamp emits light so that a nonvanishing b should
result. This discrepancy can be resolved in a satisfactory way only in the
frame of a quantum theoretical treatment which we shall present in chapter
10. The cause for our present result rests in the fact that b, which occurs
in (6.1), represents only the coherent part of the light field. Light emitted
by a conventional lamp is, on the other hand incoherent.

We study what happens when we increase the pump strength d,. In order
to check whether the solutions b=a, =0 and d, =d, remain stable, we
superimposesmall deviations éb, a,, and 8d, on b, a and d, respectively,
and linearizethe equations (6.1)—(6.3) with respect to these small deviations,
i.e. we neglect terms quadratic in these quantities, such as éd,, 8b. While in
this approximation the egs. (6.3) are still fulfilled by d, = d,, the egs. (6.1)
and (6.2) acquire the form

8b=(—iw —K)8b—igy da,, (6.4)
o
8a, = (—iw — y)ba,, +igdbd,. (6.5)

Because according to eg. (6.4) the light field is generated by the sum of all
dipole moments, it suggests itself to introduce this sum as a new variable

La, =S (6.6)
73
Correspondingly we sum (6.5) up over u and obtain on account of
¥ 1= N =total number of atoms (6.7)
M
the new equations
8b = (—iw — k)8b —igsS, (6.8)
and
88 = (—iw — y)8S +igD, b. (6.9)

D,= Nd, is the unsaturated inversion of all atoms. In order to solve these
coupled linear equations we make as usual a hypothesis in the form of
damped oscillations

b = &b, expl(—i2 + 1)1, (6.10a)
8S = 8S, exp[(-i2 + )], (6.10b)
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where 8b, and 85, are timeindependent constants. (2 isafrequency, whereas
I' is a damping constant, and both are still to be determined. Inserting
(6.10) into (6.8) and (6.9) we obtain two homogeneous linear equations for
&b, and 8S,. In order to find a nontrivial solution of these equations, its
determinant must vanish. This condition yields the " secular equation''

(iw+K—i.Q+F)(iw+'y—i.(l+F)—g2D0=0. (6.11)

When we split this equation into its real and imaginary parts, we obtain
for the imaginary part w = {2 and two solutions I'. and I'_, i.e.

+ _ 2
ri=_"2 Y, \/(" ; 7) +g°D,. (6.12)

Aslong as I'. and I'_ are negative, the deviations (6.10) relax towards 0.
The state b=0 in which no coherent emission occurs is stable. When we
increase the inversion D,, which occurs under the root in (6.12), I", event-
ually becomes positive. In this case the deviation 6 grows exponentially.
In other words, the system composed of field mode and atoms becomes
unstable. After elementary algebra we obtain from the condition I', >0,

Dy> ky/g> (6.13)

This is a condition on the inversion Dy, = Nd, of the atoms. As can easily
be shown (cf. exercise) this condition is just the laser condition which we
derived in earlier chapters.

This analysis seems to indicate that the amplitude 6b of the laser mode
increases exponentially once the condition (6.13) is fulfilled. But this
exponential growth does not last forever. Rather a stationary state is event-
ually reached, which is caused by an equilibrium between the energy input
due to pumping and the energy output due to the emission of laser light.
In the next section we shall study this stationary state more closely.

Exerciseson section 6.1

(1) Show that in the case of a ring laser with running waves, g, =
g exp(ik,x, ). Convince yourself that in the single mode laser equations (A
fixed), exp(ik,x,) can be transformed away by means of the hypothesis:

a, (t)=a., (1) exp(ik,x, ).
If g iscomplex, put g=|g|e" and show that €" can be transformed away.

(2) Show that the laser condition (6.13) coincides with that of section 2.1.
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(3) Derive the instability condition (laser condition) for the case that g,
still depends on . and a homogeneously broadened line.
Hint: Makethe hypothesis b= 8b, & = 8a,, d, = d,*6d, and derivelinear-

ized equations for &b, da,, Sd. Make the further hypothesis
8b = 8b, exp[(-i2 T I)],
da, =8a, 4 exp[(—i2 T )],
&d, =0,
&by, b, o time independent.

Eliminate from the resulting equations éa,., and convince yourself of the
following intermediate result:

(iw + k=i +T)(iw +y—iR +T)—d, ¥ |g,. > = 0.
I

6.2. Single mode laser action. Amplitude and frequency of laser light in the
dationary state

We again start from the egs. (5.115) and (5.117) which we specialize to one
mode. Therefore wedrop theindex A of o and x. In order to clearly exhibit
the connection with the rate equations introduced earlier we keep the index
A of the coupling constant g, We shall admit that the atomic transition
frequencies may differ from each other, i.e. that the lineisinhomogeneously
broadened. Therefore the laser equations are of the following form:

db

Et-=(—iw—x)b—i2gﬁAa#, (6.14)
m

da, . .

?=(—1wu—y)au+1gw\d#b, (6.15)

dd, d,-d

d—t“- OT “+2i(gﬁAa#b*—g’Matb). (6.16)

Because we are dealing with only one mode, the index A is kept fixed and
thereis no sum over A in the egs. (6.15)-(6.16). Because we expect that the
egs. (6.14)-(6.16) alow a stationary oscillation of the light field we make
the following hypothesis for the field amplitude:

b=Be (6.17)

where the time independent amplitude B and the frequency {2 must still
be determined. We expect that in the stationary state the inversion acquires
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a constant value so that we make the hypothesis
d, = const. (6.18)

Asi it transpires from eqg. (6.15), the dipole moments a, are driven by the
oscillating light field. Thismakes usexpect that theindividual atomsoscillate
at the frequency of the light field. Therefore we make the hypothesis

a,=A, e (6.19)

In(6.19) A, isatimeindependent amplitudestill to be determined. Inserting
(6.17)-(6.19) into egs. (6.14)-(6.16) we obtain the following equations
(after having multiplied them by exp[if2¢]):

B(i(w—0)+x)=—-iY g*, A,, (6.20)
I
A (i(@, -2)ty)=+ig,..d,B, (6.21)
do—d, .
0=—" 7 t2i(gir AuB* ~ g AL B). (6.22)

Eq. (6.21) can be immediately solved with respect to A, and we obtain

ig..d,B

A, =———F— 6.23

¥ i(e, - 2)+y ( )
Inserting this A, into (6.22) we obtain the equation

do" dl‘«

2
0= =24, Bllgl' - !

T @07 +y (624
[

The last terms in (6.24) are familiar to us from the rate equations. There
we introduced terms describing the coupling between the light field and the
atoms. The corresponding coupling constants where given by (4.55)

2y
|gunl? @ (6.25)

—— =W,
@, —02)+y A
Therefore we shall use in the following this abbreviation well known to us.
Eq. (6.24) is linear in the still unknown inversion d. Therefore we may

immediately solve this equation for d,, and thus obtain
do
d,=——"—7. 2
®O142TW, 0 (6:26)

Here we have introduced a further abbreviation. Namely, as we shall see
immediately the quantity |B|* is also well known to us. It just represents
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the photon number n which we have introduced into the rate equations
|B]>=n. (6.27)

Eq. (6.26) describes how the actual inversion d,, is changed with respect to
the unsaturated inversion d, when the photon number n is generated by
the laser. d, isalso known as the " saturated inversion™. By means of (6.26)
we have expressed the inversion by the photon number. When we insert
(6.26) into (6.23) we may express the amplitudes A, of the dipole moments
by the field amplitude B alone. The A, calculated in this way is finaly
inserted into (6.20). In this way we obtain the equation
I do

B(i(w—02)+k)= ’B . .
(@ =2)+) =L |8l By o T Twon (6.28)

In the following we shall assume, of course, that the laser condition is
fulfilled so that a laser amplitude B unequal zero results. Therefore we may
divideeqg. (6.28) by B. Inorder to discussthis equation further we decompose
its left- and right-hand sides into their real and imaginary parts. We obtain
for the real parts

W,
2k =dyy ——2E— (6.29)
CS1+2TW, 0

where we have used again the abbreviation (6.25).

Precisely the same relation can be derived from the rate equations (4.57),
(4.61) if specialized to a single mode. We leave it as an exercise to the
reader to convince himself of this fact (cf. exercise). If the photon number
n is sufficiently small, we may expand the ratio in (6.29) with respect to
powers of n. Retaining the first two terms we find the relation

2k =dy Y Wy, —do2TnY, W2,. (6.30)
I I

This relation can be considered as an equation for the photon number n
which may be calculated. Because the cal cul ation does not bring us anything
new compared to the single mode case treated by rate equations we just
refer the reader to our former result (cf. sections 4.7 and 4.10 where we
calculated the sums over p explicitly for an inhomogeneously broadened
line or standing waves, respectively).

Let us now study the equation which results from the imaginary part of
eg. (6.28) (after we have divided it by B). We then obtain

Wi,

—e 6.31
14+2TW,.n (631)

d,
—0=-2¥(5,-0
@ 23/%(% )
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Having determined the photon number n by means of egs. (6.29) or (6.30)
we may insert it into (6.31). This renders (6.31) an equation for the till
unknown laser frequency {2 alone. Because the photon number n occurs
in (6.31) we shall expect that the frequency 2 of the laser light depends
on the photon number n. This is indeed the case if the line is
inhomogeneously broadened. We shall present the corresponding results at
the end of this section.

Here we first deal with a homogeneously broadened line, where the
transition frequencies are all equal, &, = @. We shall show that in this case
the frequency is independent of the photon number. In this case we may
pull the factor O-£2 in front of the sum occurring in (6.31). This sum
becomes then identical with the one which occurs in (6.29). This leads us
directly to the relation

w—ﬂ=—i;-(a3—ﬂ), (6.32)

from which we may determine the frequency {2 by

oK +
g=Lrrey (6.33)
Y +k

Thisformulatells usthat in general the frequency (2 of the laser oscillation
does not coincide with the frequency of the laser mode in the unloaded
resonator. In an unloaded resonator the interaction between light modes
and laser atomsisswitched dof or, more physically speaking, it isaresonator
without laser atoms. The meaning of the frequency shift (6.33) can be easily
visuaized when we recall that the damping constants « and y are propor-
tional to the inverse relaxation times of the light field, t,, and the atomic
dipole moments, ¢, respectively. Introducing therefore instead of « and y
the corresponding time constants

2y=1/t,, 2x=1/1,, (6.34)
(6.33) can be cast into the form

_ ta(l_) + wt,

6.35
t,+14 ( )

The longer the lifetime of the subsystems composed of the dipole moments
or of the field mode are, the bigger is the weight with which we have to
attach the atomic or field frequency when we determine R.

Our above results show that by means of the semiclassical laser equations
we may justify the rate equationsintroduced earlier (at least what the steady
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state and the single mode case is concerned). But in addition we may now
also determine the frequeny of laser light. The phase of laser light remains
till undetermined. We shall come back to this problem when we shall deal
later with the quantum theory of the laser.

Our results lead to the question whether we may derivethe rate equations
from the semiclassical equationsalso in the case of multimode laser action.
We shall come back to this question in section 6.9.

In conclusion of this section we want to present the explicit results for
the equations for the photon number n and frequency 2 when the sums
over u are explicitly evaluated. We quote the important special case of an
inhomogeneously broadened line and repeat the results for n obtained in
section 4.6:

Standing wave. According to (4.91), (6.30) can be cast into the form

2k = poAd, ‘%; e (1-3ATn/(2y)), (6.36)

where we assumed y<a;
po=density of laser atoms,
A= 0_)0"’|2/h30,
8 =(0 -a,)/a (notethe change w = {21),
a =half width of Gaussian distribution (cf. (4.84)).
The integral occurring in (6.31) can equally well be evaluated under the
assumptions y <a and (1+2TW,,n) "' = 1- 2TW, ,n. The result reads

n~w=—£’—;~— ®(8) +nC, (6.37)

where
13

D(8)= J e dn,
0

é AzpodoT\/;s e_'S
2 2a?

Precisely speaking, (6.36) and (6.37) are two coupled eguations for n and
O. They can be solved iteratively by assuming in a first step 2 =w.

C=

Exercise on section 6.2

(1) Show that (6.29) followsfromtherateequations(4.57), (4.61)if dn/dt=
dd,/dt=0.
Hint: Solve (4.61) for d, and insert the result into (4.57).

(2) Solve (6.36) for n.



§6.3. The single mode laser: Transients 131
6.3. The single mode laser: Trandents

In this section we study time dependent solutions of the single mode laser
equations. Because the equations are nonlinear, this problem cannot be
solved in closed form. Even a computer solution would fail because if a
laser contains 10'* laser active atoms and only a single mode we ought to
solve 2x10'+1 coupled nonlinear differential equations. Therefore we
have to devise adequate approximation schemes. In the present and the
subsequent section we devise a general approximation scheme which allows
usto solve the problem in an excellent approximation. Our scheme requires
that thefield amplitudes|b,| are not too high. This meansthat our procedure
workswell closeto laser threshold which is, of course, of particular physical
interest. Furthermore we shall assumein the following that the cavity width
k ismuch smaller than the longitudinal and transversal atomic line-widths,
T7', y. Inlater chapters we shall see that the laser threshold is not the only
instability point wherethe qualitativebehavior of light changesdramatically.
Indeed we shall see that there is a whole hierarchy of instabilities and we
shall represent in our later chapters methods how to cope with these
instabilities. In the present section, however, we shall treat the casein which
laser action sets in and we start with the single mode laser as an example.
To elucidate the decisive steps we assume exact resonance between the
modefreguency w, = w andtheatomictransition frequencies,,i.e. w = 6,.

Furthermore we assume the coupling constant g, to be independent of w
and A, g.,» =0, Where g is assumed real. In the next section we shall show
how this procedure may be extended to the multimode case where we shall
drop the specific assumption on resonance and on g,,,.

We start from egs. (6.1)—(6.3). According to eq. (6.1) the dipole moments
generate the field mode. Eq. (6.2) in turn tells us that the light mode causes
oscillations of the dipoles. According to eq. (6.3) the cooperation of the
dipoles and the field mode causes a temporal change of the inversion. Quite
evidently these three quantities, field mode, atomic dipole moments and
atomic inversion, condition each other. In a certain sense we are dealing
here with a vicious circle. In order to escape it, we assume for the moment
being that we already know the light field b. This then fixes the «,’s and
d,’s because of the matter equations (6.2) and (6.3). Thus in principle we
can express a, by b We shall see that this is indeed possible and we shall
obtain a in the following form:

a,=cb+eblb*+: -, (6.38)

where ¢, and ¢, are certain constant coefficients. If the fields are not too
high we may neglect the higher powers of b which are indicated by dots.
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If we retain only the linear termocb in (6.38), the dipole moments of the
atoms, a, are proportional to the field amplitude b. Or, in other words,
we are back to conventional dispersion theory. Inserting the dipole moments
(6.38) in the field equation (6.1) we obtain a closed equation for b. The
circleis now closed again but we can solve this new eguation. Asthe reader
may convince himself in the exercisesthis new equation does not allow any
stable solution, at least in general. Indeed the stabilization of laser light
can be properly described only if we take into account the nonlinear term
in (6.38). It will be our goal to derive (6.38) and then to study the resulting
nonlinear equation for b.

Let us now turn to the nonlinear equations (6.1)-(6.3), where we apply
the following iteration procedure. We first assume that the field is given in
the form

b= B exp[—-iflt]. (6.39)

In the following we shall admit that B = B(t) depends on time. We shall
assume, however, that its temporal change is much slower than processes
described by the atomic relaxation constants y and 1/ T. As can be shown
in detail, B may be assumed as constant within the individual steps of the
iteration procedure. We shall further assume that in lowest approximation
a constant inversion

d, = d, (6.40)

has been established by pump and relaxation processes. On the other hand
according to eq. (6.2) a field generates nonvanishing dipole moments a,
of the atoms. Because we determine these «,,’s in a first step we call them
a'”. According to eg. (6.3) dipole moments and field jointly cause a new
inversion which we cal d\)’. By means of this new inversion which we
insert in the r.h.s. of (6.2) we obtain an improved dipole moment «'?. As
we shall see in a minute explicitly we shall succeed in expressing the dipole
moments a, by the field amplitude b alone. When weinsert the correspond-
ing expressions into the eg. (6.1) for b we obtain a closed equation for b
alone. This equation can be considered as a self-consistency condition. The
atomic variables are eliminated completely and we have determined the
reaction of the field on itself. Our procedure can be described by the
following scheme:

Start: rgg)izxp[—lﬂt]}_)aﬂ)_)dﬂ)_)a;z)_)b (6.41)
I 0 J

Before we perform theindividual steps explicitly we remark that in the case
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@ =w the frequency 2 of the hypothesis (6.39) becomes 2 =w. In order
to simplify the subseguent formulas as much as possible we shall anticipate
this relation 2 =w. Weinsert b=B exp[—iwt]} and d, =d, in (6.2)treating
B as practically time independent so that we neglect its time-derivative. The
solution (6.2) reads

aj}’(t)=%d—° b(t). (6.42)

We now calculate an improved inversion d, by inserting b= B exp[—iwt]
and (6.42)in (6.3).We assume that d, = d',’ changes only little over times
of the order of the relaxation time T, i.e. that we can neglect d,, compared
to (dy—d, )/ T. Therefore we may put in (6.3)

d,=d =0, (6.43)
and we readily obtain
T 2
dﬁj)=do—4 g do|b|*. (6.44)

Now we may repeat the first step namely the calculation of a, by means
of eq. (6.2) where we use the improved d\. instead of dy. We thus obtain

o, ()= a(1) =2 b(r)(do—“—Tidolbiz). (6.45)
Y Y

According to (6.45)a given field b causes the dipoles to oscillate with the
same frequency as the field. Of course, the field of a laser is not prescribed
but is rather generated by the laser process. This is reflected within our
formalism by the fact that we haveto insert (6.45)into (6.1).Wethus obtain
the fundamental self-consistent laser equation

2D0

: 4g*TD,
b=(—iw—r)b+5=0p 820
Y

b = |b[b, (6.46)
Y

where D, = Nd, is the unsaturated inversion. This equation describes how
the light field of the laser interacts with itself via the atoms. In order to
interpret the physical content of eq. (6.46) we use once again the
decomposition

b(t) = B(t) exp[—iwt], (6.47)

i.e. we split of the rapidly oscillating part. We then obtain the following
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equation for B:
2 4
B(t)= (—K +g—D°) B()-28 120 pgyy,
Y Y (6.48)

G C

The first term in the brackets on the r.h.s. stems from the cavity losses, the
second positive part stems from the unsaturated inversion. The last term
describes the lowering of the effective inversion by the laser process.

Thisequationtellsusthat the behavior of thelaser system isfundamentally
different depending on whether the laser is operated below or above its
threshold (6.13). This can be visualized especially nicely when we identify
B(t) with the coordinate gq(¢) of a particle (in a purely forma way). By
adding an acceleration term ng to (6.48) and abbreviating the r.h.s. of
(6.48) by K(g) we obtain the equation

mg+q=K(q). (6.49)

This equation is the equation of motion of a damped particle under the
action of the force K. When we let m— 0, we may retain the mechanical
interpretation which allows the following conclusions. Theforce K (q) may
be derived from a potential V

__9V(q)
K(q)= oq (6.50)
where V(q) is given by
__6..C.
Vig)=-5 ¢+, 4", (6.51)

and G and C were defined in (6.48). This potential is represented in fig.
6.1. When the laser is operated below its threshold, i.e.

Dy<ry/g? (6.52)

the potential isrepresented by the dashed curve. The only equilibrium point
isgiven by q=0, i.e. the light field amplitude B = q is equal to zero. If on
the other hand the laser condition isfulfilled, the solid curve applies. Quite
evidently the amplitude g =0 is no more stable and there are two new stable
positionsinstead, provided we consider g asareal quantity. If g iscomplex
as it is the case with B, there are equilibrium positions with an arbitrary
phase of B, as we shall demonstrate below. Thus above threshold, D,>
vk /g°, the amplitude of the laser light is unequal zero. g can be easily
calculated by putting g =g=0 in (6.49) and by dividing the resulting
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A Viq)

Fig. 6.1. The potential field V according to eq. (6.49) versusthe coordinate q of the fictitious
particle. Dashed line: below laser threshold; solid line: above laser threshold. Above laser
threshold two stable values result of which one, q,, isindicated.

equation by q (or B). We thus obtain
90=|Bo|=vVG/C. (6.53)

Here the phase of B,=|B,| exp[i¢] remains undetermined. Indeed it can
be chosen freely. Eq. (6.48) is valid provided the field strength does not
deviate too much from its stationary value (6.53) and if we do not drive
thelaser toofar aboveitsthreshold. Eq. (6.48), which describes the nonlinear
relaxation of the laser field amplitude, can be solved exactly by the
-hypothesis

B(t)=r(t) exp[i®(1)], (6.54)
where r and @ are assumed real. Inserting this hypothesis into (6.48) we
obtain the two equations

b=0 (6.55)
and

F=Gr—Cr. (6.56)

It follows from (6.55) that the phase @ is constant but undetermined. The
exact solution of (6.56) reads

[ _Gh(1) \'?
r—(———l +h(t)C) . (6.57)
Init h(t) is given by

2

h(1) = 5 _’°Cr2 exp[2G (1 — 15)]. (6.58)
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ro is the field amplitude at time #,. Multiplying eg. (6.56) by r and putting
r’=n we obtain the rate equation

1 =2Gn—-2Cn>. (6.59)

It agrees with the rate equation of the single mode laser of section 4.1.
Exercise on section 6.3

Solve the single mode laser equations (v =w, =, g, =g, real) in the
linear approximation, where in (6.38) only ¢, # 0 and all other ¢, =0.

6.4. Multimode action of solid state lasers. Derivation of reduced equations
for the mode amplitudesalone

In chapter 4 on rate equations we showed that in alaser several modes can
be excited simultaneously. Therefore in this section we wish to treat the
guestion which effects can be expected in multimode laser action. The
experimental and theoretical study of such effects has not yet been finished
but is going on quite actively and indeed over and over again new types of
effects are being discovered. In this and subsequent chapters we shall try
to exhibit the most important and interesting effects so far found and we
hope that our treatment will enable the reader to explore new effects.

In this section we carry on the line of thought presented in the preceding
section, i.e. we confine our analysis to laser modes whose amplitudes are
still sufficiently small and to a situation in which laser action starts at the
laser threshold introduced before. Later on we shall present further methods
and results concerning new kinds of instabilities. Becausethelaser equations
which we derived in chapter 5are nonlinear, in general it will not be possible
to solvethem in closed form. In this chapter we shall represent two approxi-
mation procedures which will allow usto get afirst insight into multimode
action. In the present section we shall apply the same method we used
when treating the single mode laser and we shall eliminate the atomic
variables, i.e. the dipole moments and the inversions. We then obtain
equations for the field mode alone which will give rise to new effects
especialy to phase locking. Furthermore we shall look into the question
whether the rate equations which we derived heuristically in chapter 4 can
be derived from the original laser equations of chapter 5. As we shall see
this is indeed possible provided one may assume that there is no phase
locking between different modes, i.e. provided we may average over the
phases of the individual modes. But let us start here with the derivation of
equations for the laser modes alone.
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We start from the fundamental equations (5.115)—(5.117) of section 5.9.
We assume that several modes with certain indices, for example A,, ..., A,
are performing laser action. For each individua mode amplitude we make
the hypothesis

b, (t) = B, exp[—i, 1]. (6.60)

The frequencies {2, are still unknown. We shall determine them later on
self-consistently. Also the amplitudes B, are still unknown quantities. We
shall admit that B,’s are time dependent but we shall assume that their
temporal changestake place on amuch longer timescal ethanthe oscillations
with the frequencies {2, and relaxation processes with the constants y and
1/ T. This allows us to use the approximation of slowly varying amplitudes.
In afirst step of our method of solution we assume that due to pump and
relaxation processes the inversion d, has acquired the value d,,

dﬁ)): dy. (6.61)

We now insert (6.61) and (6.60) into the equation for the dipole moments
(5.116). Because on the r.h.s. of (5.116) a sum over exponential functions
of the form (6.60) occurs we write the solution of the equations for a also
intheform of a superposition of exponential functions with the correspond-
ing frequencies

a’=Y A, exp[-iQ,1]. (6.62)
A

Using this hypothesis we immediately obtain the relation
A A

+iY 8., B\ exp[—if2, t]dﬁ”. (6.63)
A

On both sides of this equation we compare the factors of the corresponding
exponential functions exp[—if2,t]. Thus we can calculate A,,, explicitly and
insert it in (6.62). Then the following explicit expression for the dipole
moments results:

afu')(t)=d02 g (=0, +E)M—i7)_'bA. (6.64)
A

Within the frame of this first step of our approximation scheme, the dipole
moments of the atoms oscillate at the same frequency as the laser modes
we assumed to be present. Because the dipole moment a, is unequal zero
and the mode amplitudes B, are also assumed unequal zero an additional
term occurs in eq. (5.117) for the inversion. Thus we may calculate an
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improved inversion 4\, In order to integrate the corresponding equation
we make a hypothesis for d'.’ which just contains the exponential functions
exp[(if2, —i02,)1]. We then obtain

d\ = d0<l —2 Y g% 8. b} by D,y +conj. compl.). (6.65)
AN

The constants D,,,,- occurring in (6.65) are abbreviations for the following
expressions;

Dy =—i(@, — 2, —iy)'[1/ T+i(2, —2,)]"". (6.66)

We now insert this improved value of the inversion (6.65) and our original
hypothesis for the field modes (6.60) into the equations of the dipole
moments. The integration can be done in a fashion analogous to the one
we just have used so that we may write down the final result immediately,

agz) = doz gp.)\b/\(t)(a_)u -0, "i'Y)gl
A

—i2d, ¥ g;u\gt/\'g,m"b)\b?\"b/\”MuM')\”- (6.67)

AAA"
The constant coefficients M,,,,-,- are explicitly given by the expressions
M;u\/\‘,\”z [1/ T"”i(o)\’* QA”)]—I(QA’_QA —Q)\”+E)[J. "i')’)_l
X[(@, — Oy +iy) "' = (0, — 2. —iy)""]. (6.68)

This is, of course, a rather lengthy expression and we shall use it later on
in this explicit form only at few instances. Much more interesting, however,
is the form (6.67). The first sum is already known to us. It means that the
dipole moments oscillate coherently with the originally present laser ampli-
tudes b, (t). The additional term in (6.67) stems from the fact that the
inversion has been changed by laser action. In contrast to the single mode
laser the inversion has become a time dependent function. The inversion
performs pulsations with frequencies corresponding to the frequency differ-
ences of the individual laser modes. Thereforethis effect is called inversion
pulsation. By means of the explicit result (6.67) we can now do the last
step, namely we may insert the explicit expression for the dipole moments
(6.67) into the equations for the laser modes (5.115). We thus obtain our
final equations

db,

_d—= (—iw,\ — k)b, —i Z (‘7)“ - -QA'_i'Y)_lgﬁ/\ gm\'bx’do
t A

-2d, Y, gﬁ/\gﬂ/\lgi/\zgu)l3b/\]bfzb/\3M/,4A1/\2/\3‘ (6.69)

BA AR
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When we specialize these equationsto that of asingle mode, exact resonance,
ie. w,=w,=0, g.,=0, rea, we obtain eq. (6.46) which we found in
section 6.3.

Egs. (6.69) represent a result which is quite pleasant for a physicist
because we are primarily not interested in the oscillations of the electrons
of the laser atoms but rather in the field modes of the laser. But because
the field equations (6.69) contain nonlinear terms it is still difficult to solve
these equations.

Nevertheless in a number of cases one can rather easily visualize what
the equations mean for the b's. To this end let us consider the cubic terms.
Let us suppose that we insert for the field amplitudes by the hypothesis
b, = B, exp[—if2,t] and let us assume for the moment being that the ampli-
tudes B, are time independent. We then recognize the following. The cubic
term can be considered as a driving force for b, occurring on the Lh.s. of
(6.69). This driving force oscillates at various frequencies depending on
which term of thesum over A, A, A; isconsidered. There arespecial combina-
tions, for instance A, =A, A =A or A, =A A,=A;, where the cubic term
oscillates in phase with the field mode. In such a case in the steady state
the B's can be assumed time independent. We shall see below that in this
case we can come back to the former rate equations. On the other hand,
in egs. (6.69) additional terms occur in which the frequency of the driving
force differs from the originally assumed frequency of the laser mode A.
This causes new phenomena in which phase relations play a crucial role.
In the next section we shall treat relatively simple but rather instructive
examples of effects which are produced by phase locking. We treat these
cases because they clearly demonstrate that phase relations which have
been entirely neglected within rate equations can be quite important for
lasers.

6.5. Simple examples of the multimode case

In the preceding section we succeeded in simplifying the original problem
considerably. Whereas our original equations referred not only to the laser
modes but also to the numerous atomic variables we finally obtained
equations which refer only to the modes. In spite of this fact the resulting
equations are still rather complicated, but on the other hand they are capable
of describing a great number of phenomena. But let us try to cut a trail
through the jungle of these complicated nonlinear equations by focussing
our attention on some particularly interesting special cases. These will allow
usto get someinsightinto the structure of these equations and theinteraction
they describe. Furthermore we can treat a number of effects which are
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physically particularly interesting. The simplest case is, of course, that of
a single mode in which case we may drop the index A of b,. Furthermore
we may drop all sums over A. But in contrast to section 6.3 we retain the

indices « and may include the nonresonant case. The expression for the
inversion (6.65) now reads

2
dg>=d0(1—21|gM|2mn). (6.70)
When we recall the definition of W,,, of eg. (4.55) weimmediately recognize
that (6.70) agrees with the expression (4.64) which we derived in the frame
of rate equations. This expression describes, as we know, hole burning.
Correspondingly we obtain from egs. (6.69) an equation of the form
3—I:=(—iw—K+G0+i5w1)b—(s +idw,)|b|*b, (6.71)

where the constants G,, So,, s, and So, are real. We have derived an
equation of such a form already in the frame of the iteration procedure of
section 6.3 (cf. (6.46)). The additional terms So, and So, which occur in
the case of an incoherently broadened line are of special interest. These
terms describe a frequency shift of the laser mode. We have found such
terms in section 6.2. But there is a difference between our former result
(6.31) and our present one. In section 6.2 we had to confine ourselves to
the stationary case but could treat arbitrarily large amplitudes b. In this
section we could find also nonstationary solutions but we had to confine
ourselves to b's which are not too large.

Let us consider the second simplest case, namely that of two modes. We
obtain the following expression for the inversion:

2y
dﬂ)={do(1—2T|8m|zmn'

2y
2T 2 =7
|gu2| (02_5“)2+72 "2)}

+[-—2d0gff1gu2D“|2b’fb2 —2d0gﬁ2gM,D“21b§‘b.]
oc exp(i(€2, - 2,)1) o exp(i(2,— 2))t)
+[conj. complex]. (6.72)

Though this expression is rather long, it can be easily studied. We derived
the expression which stands in the curly bracket already in the context of
the rate equations (cf. (4.64)). It again represents hole burning. The
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expressions in square brackets, which no longer depend on photon
numbers but on the amplitudes of the individual laser modes, e.g. in the
form b§b,, are new, however. As can be shown, even in such a case the
individual laser modes oscillate essentially harmonically, i.e.

b (t) = B; exp[—if2;1]. (6.73)

As we have demonstrated abovein eq. (6.72), atime dependent modul ation

of theinversion results. Thiseffect has been called inversion pulsation. Such

effect could not occur in the rate equations because they did not take into

account any phase relations. Therefore the question arises in which case

such a pulsation can be neglected. To this end we first exhibit the explicit

form of D, and D,,,;:
1

D, = (—17:+i(.(22—.(2,)>_], (6.74)

-0+, —iy

D 1

wll =

-——T, 6.75
_Ql+(l_)u—i')' ’ ( )

where the D's were defined in (6.66). We obtain the following relation:

D, 1
= <1 6.76
D}Lll [1 +T2(02_01)2]I/2 ’ ( )
provided
IT(‘QZ—Ql)|>1’ i.e. |02_01|>1/T (6.77)

It follows that the pulsations are negligible if the frequency distance of the
laser modes is large compared to the inverse of the longitudinal relaxation
time T of the inversion. In the opposite case these quantities can acquire
the same order of magnitude as the terms occurring in the rate equations
so that pulsation processes can play an important role. The equations for
the mode amplitudes are becoming rather long. In order to get an overview
over the individual contributions we abbreviate the corresponding factors
of the mode amplitudes b, A =1,2. As an example for the resulting
equations we quote that for the mode 1 and discussthe individual contribu-
tions subsequently,

dby

= <—iw| —Kk+iY |g“1]2(-.()1 +w, +i'y)'l) b,
dt “
+(Cyn; + Ciyny)by +(Fny + F'n,)b,

+(Hbf b,b,+ H'b%b,b,). (6.78)
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The constants Cy, F, F, H, H' represent terms which can be easily deter-
mined by a comparison with (6.69). The first row and the first term in the
second row which contains the factor C;, are known to us from the single
mode laser.

The other contributions contain expressions which represent mode coup-
ling. This mode coupling is brought about in various ways. First of al there
isthe term containing C,,. It corresponds to an expression which we know
from the rate equations. It means that the inversion is not only diminished
by mode 1 but also by mode 2 (hole burning). The underlined expressions
are of special interest. The first kind of underlined expressions is given by

(Fn,* Fn,) by exp[—if, 1], (6.79)

which means that the mode with index 2 tries to modulate the mode with
index 1 viainversion pulsation. Further modulation effects are represented
by the further terms (underlined by a wavy line) where frequency depen-
dencies,

exp[~i(242, - 2))1], (6.80)
exp[—i(2€2, — 2,)1], (6.81)

occur. We recognize that an interaction between the individual modes is
brought about via the atoms whereby new frequency combinations leading
to sidebands are made possible. As we shall see in subsequent chapters
such coupling effects, where phase relations occur, play an important role
in several aspects. They may bring about phase or frequency locking, and
in the case that many modes acquire fixed phase relations ultrashort pulses
can be generated.

Exercise on section 6.5

Determine the constants G, 8w, and So, in the single mode case explicitly
by means of (6.69). Compare the expression of So, +|b}* So, with that of
eg. (6.31) under the assumption that 2TW,,n<1.

6.6. Frequency locking of three modes

The case we are going to discuss represents a particularly beautiful example
of how the semiclassical laser equations may describe effects which cannot
be treated by rate equations. We consider a laser which shows laser action
in the modes 1, 2, 3. We assume (as can be verified experimentally) that
thesethree modes belong to the subsequent resonator frequenciesw,, w,, w;.
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Fig. 6.2. Frequency locking. Scheme of mode frequencies. The abscissa representsthe circular
frequency. @, isthe atomic center frequency. w, , w, w, arethe mode frequenciesin the empty
resonator; (2,, {2,, 2, are the actual mode frequencies when laser action takes place but still
without the coupling which causes frequency locking.

In a resonator without laser material, i.e. in the unloaded resonator, these
mode frequencies are equidistant. But we know that laser action leads to
frequency shifts, some of which we got to know in section 6.2. The new
shifted frequencies will be denoted as usual in our book by {2, (cf. fig. 6.2).
When we form the difference from the frequency differences from sub-
sequent modes we obtain the expression

(02, - 02))— (25— (D). (6.82)

Experimentally the following results were obtained. The frequencies may
be usually shifted by a change of the distance between the mirrors. Usually
the threelaser modes oscillate with their corresponding frequenciesindepen-
dently of each other. When one changes the distance between the mirrors
so that the frequencies are shifted and the expression (6.82) becomes small
(typically 10° Hz) for gas lasers, the frequencies suddenly jump and get
locked in a way which we are going to derive. To treat this effect we shall
write the mode amplitudes in the form

b, = r,exp[—i,t—ig,], (6.83)

where r, are real amplitudes. We shall admit that the real phases ¢, will
be time dependent. Let us consider the cubic terms occurring in the egs.
(6.69) more closely again. When we choose A, = A;, A = A;, the r.h.s. oscil-
lates at the same frequency as b, on thel.h.s. The sameistrue for the choice
A=A A= A;. But now we wish to consider also terms where a frequency
combination occurs which is different from the frequency in the mode b,
When we consider the equation for mode 1 we obtain such frequency
combinations by the choice

)t2=/\=2, /\1:1, /\3=3, (6-84)
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or vice versa. Because we shall assume that the expression (6.82) is small
the relation

0= -Q,\2 + QA; - -QM (6.85)

is approximately (but not exactly) fulfilled. In order to elaborate the essen-
tials we shall assume in the following that the real field amplitudes r, are
time independent. Inserting the expressions (6.83) into the multimode
equations (6.69) and dividing in each case by the exponential function
(6.83) we obtain equations of the following form:

‘Ql +¢1 = (';l +Im(cl CXp[i(Ql +Q3 *2\{22)[]

xexp[-i(20,— @1 — ¢3)]), (6.86)
25+ ¢3= w3 +Im(C; expli(2, +02;—-240,)1]

Xexp[—i(2¢,— @1 = ¢3)]), (6.87)
£, + ¢, = 0, +1Im(C, exp[—i(2, + 25— 20,)1]

xexpli(2¢,— ¢, — ¢3)]). (6.88)

The quantities o,, @, @, arethose frequencies which stem from the original
mode frequencies in the unloaded resonator and the various frequency
shifts. Of course, in the general case these frequency shifts may depend on
the intensity of the laser modes. But because we assume that the intensities
are time independent we shall not be concerned with the dependence of
@, onthereal amplitudes, r,. Similarly we shall assume that the coefficients
in front of the exponential functions are time independent constants

Ci=Ci(r, ry, 13). (6.89)

Thisis justified when we neglect temporal changes of r,.
Weshall try to derivefrom egs. (6.86) to (6.88) an equation for the quantity

V=020,-0,- D)t +Q2¢,— ¢~ ¢3), (6.90)

which occurs in the exponents on the r.h.s. of (6.86)-(6.88). To thisend we
multiply (6.88) by 2 and subtract from it the egs. (6.86) and (6.87). We then
obtain a single equation for ¥ which has the following structure;

Y =¢+asin¥+Bcos V. (6.92)
In it & is an abbreviation
£=20,— 0, w;. (6.92)

« and B are constants which are composed of the real and imaginary parts
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of the C's Eq. (6.91) is a first order differential equation which can be
solved by a separation of variables. We then obtain ¥ as a function of t
in the implicit form

‘I, ’
t=J dv
v, E+asin¥ +Bcos¥”’ (6.93)

where ¥, istheinitial value of ¥ at time t=0. It will be our goal to discuss
the temporal behavior of ¥ (¢) more closely. The time dependence of ¥ (t)
depends critically on whether

(a®+BY) < & (6.94)
or
(a’+pY)>¢ (6.95)

holds. In the first case the integrand of (6.93) does not contain any singular-
ity. We may expand the integrand into a power series of sine and cosine
functions. We thus see that the integral behaves as const. ¥ +pulsations.
Neglecting these pulsations and small corrections we immediately obtain

V¥ = ¢t +const.,
where £ is given by
§=2(;)'2_(51_(6352\(22—\Q]_03. (6.96)

Thisis precisely the behavior we expect for normal three-mode laser action.

Let us consider the other case (6.95). Then the integral can diverge. This
means that time t on the Lh.s. of (6.93) tends to infinity while ¥ acquires a
finite value, namely the value

¥ =-¢-arcsin(£(a’*+BY)7"?), tane=pB/a. (6.97)

In this case ¥ does no more depend on time. As we may see by means of
(6.90), thisresult isonly possibleif the mode frequencies obey the equation

Qz“ﬂl =Q3“02. (6.98)

The frequency difference {2, - 2, is now locked to the frequency difference
02;—-10,. The transition from the unlocked to the locked state is experi-
mentally demonstrated by measuring the beat frequencies of (2,— {2, and
02;—1,. One first fixes a distance between the mirrors for which the
frequency differences are different from each other (unlocked state). Here
the condition (6.94) is fulfilled. When by tuning the resonator the central
frequency is shifted closer to the atomic resonance @, the distance ¢ of the
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frequency differences decreases. When |£1? reaches the value a® +8° a quick
transition into the frequency locked state occurs and instead of the two
different frequency differences O,— £, and {2, — 2, only asingle one occurs.

6.7. The laser gyro

A nice example for the application of lasersis provided by the laser gyro.
Incidentally this example shows us how technical applications are linked
with a profound understanding of fundamental physical phenomena. By
means of the laser gyro it is possible to detect rotations with respect to the
inertial system of the cosmos. Thus the laser gyro can replace mechanical
gyros. Basically the laser gyro consists of a ring laser which we show in fig.
6.3. If the whole arrangement is rotating with respect to the inertial system
of the universe, according to the general theory of relativity the following
happens. Observers, in our case the photons, running in the direction of
rotation proceed along a path whose length isdifferent fromthat of observers
(photons) going in opposite direction. According to the general theory of
relativity, this change of length is proportional to the area A which is
surrounded by the path and proportional to the rotation speed £ in the
inertial space. In the case of photons, flying with the speed of light, the
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Fig. 6.3. Schematic arrangement of the laser gyro. [J. Killpatrick, |EEE Spectrum, Oct. 1967,
p. 441




§6.8. The gas laser. Single mode operation 147

change of length AL is given by 4Af2/c where c is the light velocity. In
1913 this effect was shown to exist by Sagnac. For a rotation frequency of
2 Hz he could demonstrate changes of lengths of 100 to 200 A. In order to
measure very small changes of lengths, as they are to be expected for small
rotation speeds, the laser offers a possibility. In this case the fact will be
used that the laser frequency is determined by the length of the ring
resonator. An apparent change of length of the resonator leadsto afrequency
shift. By measuring the frequency shift it becomes possible to measure the
rotation speed of the gyro. An experimental arrangement is shown in fig.
6.3. Because the line-width of lasers is very small, a high sensitivity of the
gyro can be expected.

For small rotation speeds a difficulty occurs, however, which rests on the
following. Becausethe mirrors can reflect light in thedirection of theincident
beam, a coupling between waves running in opposite directions may occur
and we have to encounter the phenomenon of frequency coupling. This
mode coupling is again described by an equation of the form

Y =a+bsin ¥, (6.99)

¥ is the relative phase of the modes running in opposite directions, a is
essentially the rotation speed {2, and b is the back scattering coefficient. As
long as a> b no phase locking occurs. In the opposite case, however, phase
locking happens and the rotation can no more be measured (compare fig.
6.4). There are a number of possibilities to do away this latter effect. For
instance one may superimpose some trembling or chaotic motion on the
system.

6.8. The gas laser. Single mode operation

The essential difference between a gas laser and a solid state laser consists
in the motion of the gas atoms. Consequently, the coordinate of a single
atom is now given by x, t v,t, where x, is the coordinate of the atom w at
time t=0 and v, its velocity. (Of course, due to collisions the atoms are
"reshuffled" within their velocity distribution, but the ensemble of atoms
remains unaffected by these events.) We shall alow for arbitrary angles,
0,,, between the vector of polarization of the light mode A and the dipole
moment of the wth atom. The interaction constant g,, between the mode
A and the atom w thus takes the form

i . .
g = _Eg (explikyx, +ik,v,t]—c.c.) cOS O,,,. (6.100)

The summation over u runs in the corresponding equations over the
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Fig. 6.4. Frequency locking in the laser gyro (compare text).

positions x,, the velocities v, (for which a Maxwellian distribution is
assumed) and over al angles 8,,,.

The equations of motion can now be taken directly from those referring
to fixed atoms, (5.115)-(5.117), if the coupling "' constant' (6.100) is used.
@, is simply to be identified with the center frequency @, of an atom at
rest. (The Doppler broadening is automatically taken care of by the explicit
representation of the atomic motion in (6.100).)

In a region not too high above laser threshold we may eliminate the
atomic variables basically by the same iteration procedure we described in
section 6.4. But because of the time dependence of g,, in (6.100), one has
torepeat it step by step. Weleave the explicit performance of this procedure
to the reader as an exercise and merely quote the results for the special
case of single-mode operation. Readers interested in two- and multimode
operation are referred to my book " Laser Theory™.

Making the hypothesis

b*(t) = B* explif2t], (6.101)
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we obtain in the same approximation as in section 6.4
[k +i(w—02)]B* exp[i2t]=i) gk (1) af(1), (6.102)
where a¥(t) has the following stracture:
af (1) = B* exp[if2] {c, exp[ikx, (1)] T c_ exp[—ikx, (1)]}
+7B* expliQr]{d., explikx, (t)] +d_ exp[~ikx, (1)]
+£. exp[3ikx, ()] 1 exp[-3ikx, (1)]
+j., explikx, (t)] +j_ exp[~ikx, (1)]}- (6.103)

., d., f., j. are complex constants, independent of space and time, which
are given by

idyg 1

ct=i~2— cos @ (6.104a)

T -
—ay~-iyto,

d.=xvyTd, g lg|* cos® @

1 1 1
X + . _ . JENY
((.(2—([)0+a_)”)2+72 (9—@0_‘%)2‘*‘72) 1(0“00‘17:‘:‘%)

(6.104b)
f=% dolglz‘g cos’ @.(_‘y:l:iv)
2i(1/ T£2iw,)
1
6.104
X[(ﬂ—cﬁo)z—(@ﬁiv)z][ﬂ ~@o—iy£3e,] ( 2
. _j:do(yﬂ:iv) cos’ O |g|’g 1
* 2i(1/T+2iw,) [(R-@0) (@, Fiy)’ 2 -ao—iy+ad,]
(6.104d)

@, is the central frequency of the atomic transition, x, (t)=x, *v, t, and
@, = kv, where v, is the velocity component of atom w in axial direction
and k = (k, 0, 0). When we multiply (6.103) by g (see (6.102)) and sum over
the coordinates, the time dependence with exp[i®, t] and exp[i3®,t] drops
out on account of the orthogonality properties of plane waves so that the
r.h.s. hasexactly the sametime dependenceasitisrequired by the hypothesis
(6.101) for b*. Performing the integrals over x and the average over ©
explicitly, and assuming a symmetric velocity distribution w(a,.) as well as
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a homogeneous spatial distribution of the active atoms, we obtain:

: PAdoj y +i(@ +@,— 2)
+ Q— =
K +i{ w) 6 (0=6-60717
SYTEA ~  3yTaA )
X(I_S[(Q—a‘)o—a‘))2+y2] 5[(9—60+@)2+72])w(w)dw
pAZdOﬁJ V+i'y
10 J (1/T-2i0)(2 - @o— & —iy) (2 - @+ +iy)
Xw(6)do. (6.105)

p is the density of the atoms and A is defined in eq. (4.81). The terms
containing A under the first integral arise from a static depletion of excited
atomic states, while the second integral arises from the time dependent
response of the atomic system. This can be seen most easily by following
up the single steps of our iteration procedure.

Assuming a Gaussian velocity distribution and using constants typical
for a He—Ne laser, we can show that the last integral in (6.105) is one order
of magnitude smaller than the first one and therefore may be neglected.
Keeping terms up to order y/a and splitting (6.105) into its real and
imaginary part, we obtain an equation for the photon density and another
one for the frequency shift (a is the half-width of the Gaussian).

(1) Equationfor the photon density:
«/‘7;pAd0 e [ 3 1 v ]
e 1 - A-T —+ .
K 5 A7 <2y Ar +(0 —wo>2]) ’ (6.106)
from which we determine the photon density:

d
= — (6.107)

If the photon density is plotted versus frequency it shows a dip. This dip
is brought about by the fact that the atoms move in opposite axial directions.
As a result, two holes are burnt into the inhomogeneously broadened line
at two symmetric points of the line center. If we have fixed atoms instead,
no such dip occurs. This dip which was theoretically predicted indepen-
dently by Haken and Sauermann and Lamb, is called saturation dip or
Lamb dip. It plays a fundamental role in (nonlinear) saturation spec-
troscopy.
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(2) Equationfor thefrequency shift:

Ad, 2
.Q—w=—p—9e_6

®(8) +aC’, (6.108)
where A, § and ®(8) are defined in eqgs. (4.81), (4.88) and (6.37), respec-
tively. C' is given by

=A2pd0T\/;e_Sz<l 0 -, 15)

! __—_+_ —
¢ 2a 10 Y’ +(2~dy)* Sa

(6.109)
We compare this result with the expression (6.37) for fixed atoms and a
single direction of polarization. The first term on the r.h.s. in (6.108) agrees
with the corresponding onein (6.37) except for afactor 3 which stems from
the integration over the polarization (only 3 of the atoms participate in the
laser process on the average). This term represents power dependent mode
pulling and stems from the Doppler shape of the line.

With respect to the term proportional to i, which comes from the time
independent atomic inversion, we observe the following: The part of C'
which stems from the second term in the large brackets on the r.h.s. of
(6.109) agrees with the total expression C (6.37) except for a numerical
factor which again stems from the integration over the polarization angles.
Thissecond termin C' isin general, i.e. for not too strong detuning (& <1),
much smaller than the first term, which describes the frequency pushing
being due to the existence of two holes burnt into the inversion (note, that
a standing wave interacts with atoms whose frequencies are shifted both
by *kv, and —kv, !). The frequency pushing becomes dominant if the mode
is tuned to the center of the line within about a natural line-width. Inserting
il accordingtoeq. (6.107) into (6.108) yields asafinal result for thefrequency
shift:

8
Q:w-xi_J exp[uz]du+x( do 1)

Jr Jo 3dy,(8)
2 ? 2 7(0—(‘-)0) )
- duy +————"—"% ). 6.110
X( J7 L expli] u+2y2+(.(2—a_)0)2 ( )

6.9. Derivation of the rate equationsfrom the semiclassical laser equations

In chapter 4 we derived the rate equations completely heuristically and
promised to derive them later on from more fundamental equations. We
shall present this derivation here, where it will become clear which assump-
tions are to be made in order to obtain our previous rate equations. We
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assume that the laser equations alow laser modes of the form
b, = B, exp[—if,1], (6.111)

where the amplitudes B, may dtill be slowly varying functions of time. We
insert the expression (6.111) into the laser equations (5.116) for the atomic
dipole moments and assume that the inversion d,, is time independent or
varies only slowly in time. We then obtain quite similarly as in section 6.4
the expression

ig,.d.b,

T -0y 6.1

Weinsert this expression immediately into the equationsfor the field modes
(5.115) and multiply the resulting equations by b¥. We now add to these
equations their complex conjugates and introduce as usual the photon
numbers n, by means of the relation

n, = b¥b,. (6.113)

The sum of the complex conjugate equations can be written in the following
form:

. gm\'gﬁ/\dub).‘bf )
1, 2KAnA+§;(—_———‘_——i(ﬂ,‘r—d)ﬂ)+y+c'c' . (6.114)
Let us consider the expressions b,, b¥ which occur on the r.h.s. of (6.114)
more closely. If we have everywhere A’= A, we shall use on the r.h.s. the
photon numbers (6.113) as in the usual rate equations. We now assume
that the oscillations A are not phase locked. Let usimagine that we perform
a phase average on both sides of (6.114) and let us assume that the phases
are uncorrelated. Then on the r.h.s. of (6.114) all expressions vanish for
which A’ # A, In this way the sum over A' cancels and we may write (6.114)
in the form

fy = —2Kk10 + Y Wi, d,n,. (6.115)
In

Here we have introduced the quantity W,, which we may deduce from the
comparison of (6.115) and (6.114) and which is given by
2'Yigu/\|2
Wy =——5—. .

Ap (0)\“({)“)24")'2 (6116)
But this is precisely the transition rate we introduced in chapter 4 in a
heuristic manner. The only difference rests in the fact that the mode frequen-
cies {2, arethe actual frequencies of the laser modes and no more the mode
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frequenciesin the unloaded cavity as we had assumed previously in chapter
4. In order to obtain equations for the inversion we proceed in a similar
fashion, namely we insert the expression (6.112) in the equations (5.117)
of theinversion and again assumethat a phase average has been performed.
This leads us immediately to the equations

dﬂzdo;dﬂ_zg Wy, d,n,. (6.117)

We immediately recognize that (6.117) is identical with the previously
introduced rate equations. These considerations tell us that we may derive
our previous rate equations if we may neglect phase relations between the
laser modes and if the changes of inversion and photon numbers are slow
compared to the oscillations. This is an assumption which is practicaly
aways fulfilled because of the relatively high frequency of the atomic
transition. These equations are valid for large photon numbers also, i.e. far
abovelaser threshold. Insofar the equations we just derived go beyond those
of sections (6.3) and (6.4) where we had to confine our considerations to a
region not too far beyond laser threshold. On the other hand the rate
equations rest on the assumption of vanishing phase and frequency correla-
tionsso that they do not allow usto treat a number of important phenomena.



Chapter 7

Ultrashort Pulses

7.1. Some basic mechanisms. Active and passive mode locking

In section 6.6 we saw that locking of laser modes may occur. We wish to
study what occurs when many modes are locked together. For the beginning
we shall ignore the detailed mechanism which leads to mode locking. Let
us first recall how we have introduced theindividual modes. When deriving
the semiclassical laser equations we decomposed the electric field strength
E into the amplitudes of individual standing waves. When we assume as
usual that thereis only one direction of polarization we may consider E as
scalar. Thus the decomposition of E into modes is given by

E(t)=% E\(1). (7.1)

More precisely speaking E, is afunction of space x also,
E,(x,t), forinstance E,xsink,x. (7.2)

For the moment being we are not so much interested in the spatial depen-
dence of the complex amplitude of E, but primarily in its time dependence.
For simplicity we shall assume that all amplitudes have the same modulus,
so that we may write

E, x<explig, 1. (7.3)

We now consider two typical cases, hamely:
(1) The phases ¢, are statistically distributed. As a consequence

E,E,=0 (A#A) (7.4)

holds (compare al so the exercises). Weinvestigate theintensity which results
from the average over the phases

| =|E(0)P. (7.5)
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We may imaginethat, for instance, the phases vary statistically in the course
of time and that we average the intensity over a certain time.
Inserting (7.1) into (7.5) we obtain
Y EXE,, (7.6)

A’

which according to (7.4) may be reduced to

X L(1), (7.7)

where we have used the abbreviation

L= |E,\|2- (78)
If the sum (7.1) comprises N modes having al the same intensity,

|E\|* = |Eol. (1.9)
We obtain as fina result

Iuncorrelated = I\IIEO.2 (710)

Thus the total intensity is equal to the intensity of the individual modes
multiplied by N. Let us now turn to our second case.

(2) Correlated phases and frequencies. We shall assumethat thefrequen-
cies of subsequent modes have the same distance from one another, so that
we may write ¢, = w,t where

oy =w A, A=0,%1,%2,... (7.11)

(cf. fig. 7.1). Under the assumption that the spatial factor is constant, (7.1)
acquires the form

Epi (1) =Y Eoexpli(w +Aw")t]. (7.12)

Theindex "PL" means " phase locked". For simplicity we consider an odd

> Q

Fig. 7.1. Scheme of mode frequencies with the same distance.
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N and let the sum in (7.12) run over the following indices

N-1 N-1
z\=——,...,)\=—2—. (7.13)

The sum in (7.12) is of the geometric type and can be easily evaluated
sin(New't)

= iwt .
EPL(‘) EO exp[lw ] sin(%w't)

(7.14)
When we perform these studies from the very beginning for running waves

we have to replace (7.12) by the hypothesis
Ep (1) =Y Ejexpliwt —ikx], k,=w,/c. (7.15)
A

In this case the final result reads

sin(3Nw'(t - x/¢))

Ep=E, exp[iw(t - x/ C)] Siﬂ(%w,(t - X/ C)) ‘

(7.16)

For the following discussion of (7.16) we choose x =0 for simplicity. The
ratio of the sine functions reaches its maximum at the time

2 .
t= m—7—r m: integer. (7.17)
w

The maximum intensity belonging to (7.16) is given by
Ip = IEOIZNz = NIuncorrelateds (718)

i.e. the maximum intensity is proportional to the square of the number of
modes. In this way we have found our first important results. If mode
coupling is possible, the emitted intensity can be multiplied by a large
amount which is the bigger the bigger the number of modes locked to each
other is. Fig. 7.2 represents the ratio of the sine functions in (7.16) as a
function of t-x/c. The exponential function in front of the sine functions
in (7.16) has been ignored because it represents the carrier wave which we
are not interested in for the moment being but rather in its envelope. As
we may see, the very intense pulse is followed by several very small ones.
The width of the big pulse is given by
2

T_w'N’ (7.19)
which can easily be deduced from (7.16). No' is the range of frequencies
covering the individual mode frequencies (compare (7.11)—-(7.13)). It thus
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} Elx.t)

t-x/c

Fig.7.2. Thedectricfield strength E according to eq. (7.16) wherethe factor exp[iw(t — x/c)]
has been omitted.

represents the band width do,
No'=do. (7.20)

As may be seen from (7.19), the pulse width which can be reached is
inversely proportional to the band width Aw. Our results can be summarized
as follows. If modes can be locked, high maximum intensities and small
pulse widths can be reached if a sufficiently large number of modes can be
coupled together.

We now turn to the question how mode locking can be obtained. To this
end we proceed in two steps. We first present some more or less qualitative
ideas and in subsequent sections we shall present a detailed theory how to
cope with " passive’ mode locking.

Let us now turn to a qualitative discussion. To this end we must invent
mechanisms by which the frequency » and phase ¢ of alaser mode E, can
be coupled to the frequency w; and phase ¢, of a second laser mode E
According to fig. 7.3 we have in particular to bridge the frequency distance
o'. This can be reached by modulating the fundamental wave E, by a

Fig. 7.3. Coupling of a laser mode E, with another mode E,.
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frequency o’ so that side bands result, especially with the frequency w, =
w T o'. We may expect that side bands created in this manner resonate with
mode E, and influence in this way the field E,. Such a modulation of E,
becomes possible by a modulation of the losses produced by the mirrors.
To this end we make the following hypothesis for the loss rate:

K =kot K, Sino't. (7.22)
As we know, in the laser equations terms of the form
E-«x (7.22)

occur. When we decompose E into its individual modes and pick up E, as
well asthe frequency dependent part of k (cf. 7.21)), we obtain the scheme

Eo(t) Ky Sln o't

I d (7.23)
w o'
wi=wto'.

In this way a new field mode with the frequency o} is generated. If there
is a resonator mode just at this frequency } it can be excited to a forced
oscillation being in phase with E,. In a similar way E, can excite a further
mode E, in phase, etc.

Another way to produce mode coupling is provided by a saturable
absorber (compare fig. 7.4). In this case a saturable absorber is inserted
in-between one of the mirrors and the laser material. The action of such
an absorber can be visualized as follows. Let us consider an ensemble of
two-level atoms (cf. fig. 7.5). When we irradiate this system by light, two
different cases may occur depending on whether the incident intensity is
weak or strong. If the intensity is weak, only few atoms will be brought
from their ground states to their excited states via absorption and they

] \ satujrable I

mirror laser material mirror
absorber

Fig. 7.4. Schematic set-up of a laser with saturable absorber for the generation of ultrashort
pulses.
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W————

Fig. 7.5. Functioning of a saturable absorber. The wave coming from the left-hand side hits
atoms each with two levels (symbolized by horizontal lines) and excites some of them.

recombine again to the ground state. In this way always many atoms are
present in the ground state. When this process happens continuously, the
incident light wave tracks will alwaysfind enough atomsin the ground state
being able to absorb the light field.

Things are quite different in the case of a high light intensity, however.
In this case so many atoms make transitions into the excited state that for
the absorption process not enough atoms are available. In addition induced
emission may set in reinforcing the incident light field. Our considerations
show that the kind of absorption of the atomic system of the saturable
absorber changes when we proceed from low to high light intensities. The
precise behavior of the loss rate (1), | =|E|*, may easily be deduced from
the laser theory of two-level atoms. To this end we have only to study how
the occupation number difference depends on the incident light intensity
I. One easily finds

Ko

1+l

k(1) (7.24)
Thus the curve reproduced in fig. 7.6 results, according to which the loss

AN

> |E]
Fig. 7.6. The loss rate k versus the modulus of the field strength E, according to eg. (7.24).
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4 It

— t

Fig. 7.7. Visudization of the action of a saturable absorber. The tails of the pulse with too
low an intensity are cut away.

rate decreases beyond acritical field strength 8~"/2. Such saturabl e absorbers
can be realized by organic dyes.

We now consider what happens in the laser of fig. 7.4 dueto the saturable
absorber. We imagine that by a fluctuation of the light intensity a wave
track with a spatially inhomogeneously high intensity has resulted. If such
a wave track hits the saturable absorber, those parts of it whose intensity
is not high enough will be absorbed, but the other parts having sufficiently
high intensity will be let through. In this way the wings of the laser pulses
are again and again cut away (fig. 7.7), and the light pulse becomes shorter
and higher. In order to recognize how this picture can be connected with
loss modulation we consider more closely the pulse running back and forth
in the laser. Denoting by ¢ the effective speed of light in the total experi-
mental setup and by L the distance between the mirrors we may write the
pulse repetition time as

t,=2L/c. (7.25)

The modulation frequency for cutting away the wings of the pulse is thus
given by

oy =27/t (7.26)

Now let usassumethat we decomposethe pulseintoitsindividual stationary
laser modes with frequencies w,. Then the interaction of the modes within
the saturable absorber leads to new side bands which differ from the
fundamental wave frequency w, just by a multiple of (7.26). On the other
hand, the frequency distance of axial modesin the laser is given by (7.26)
with (7.25) when we recall the condition that half integers of the laser
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wave-length must fit in-between the two mirrors. Thusthe sidebandsresonate
with neighboring modes so that a very efficient frequency locking becomes
possible (this resonance is opposed, however, by the different frequency
shifts caused by laser action, see also below).

The third example of mode locking is known to us from the special case
treated in section 6.6. There mode locking was caused by the nonlinear
polarization. The individual contributions of the polarization occur as
nonlinear terms in the equations (6.69) and have quite generally the form

Px EEE}. (7.27)

By means of an example we again want to convince ourselves how mode
locking is achieved (cf. fig. 7.8). Let us consider the expression (7.27) as a
force exciting a mode. Then we obtain the following relation:

Eo(t) X E* (1) Eo(t)
!

w ~w+ (w_;—w)

! o'
E,

(7.28)

In practical cases not only three modes as in our case interact but a whole
set of them. This leads to the possibility of self-pulsing lasers where mode
locking results if they are pumped sufficiently highly.

The three cases, namely external loss modulation, saturable absorber,
and gain modulation via nonlinear polarization can be represented in a
unique way. To this end we consider two modes with the amplitudes b,
and b,, where the mode b, is considered as the fundamental mode to which
mode 1 is coupled. The equations of mode 1 can be written in the form

b = (—iw,—ko)b; +Gib; + Z. (7.29)

Init , isthefrequency of mode 1and «, itsloss (without loss modulation).
G, describes the saturated gain. The additional term Z describes the mode

(1)

— ) |—w—

w w w,

-1 (o]

Fig. 7.8. How a coupling between the modes w_,, @, and w, is brought about.
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locking effects and depends on the mechanisms under consideration.
According to the different mechanisms we have the following expressions:
(a) loss modulation (active mode locking)

Z:K]S.n (l)’tbg; (730)
(b) nonlinear polarization (passive mode locking)

Z=a(bf1b0)bo; (7.31)
(c) internal modulation (saturable absorber) (passive mode locking)

Z=(l :(;_))I_K()) b]z'—KlIbl. (7.32)

The intensity | of all modes is taken in the form
I =Y bW, explik,x]|. (7.33)

Exercise on section 7.1

Prove (7.4).
Hint: The phase average E,E,. is defined by

l 2 27’
[ dqoj de' E,(¢) E,(¢').

(277)2 0 0
7.2. The basic equations of sdf-pulsing lasers

In this chapter we continue the theme of the preceding section, where we
discussed how the mechanisms of phase locking can produce ultrashort
laser pulses. We shall focus our attention on a laser which becomes spon-
taneously self-pulsing, i.e. without an external modulation, e.g. of itsmirrors.
Ultrashort pulses produced by aring laser with a homogeneously broadened
atomic line werefirst predicted theoretically. Self-pulsing of laser hasindeed
been found experimentally, but with aninhomogeneously broadened atomic
line. In order to elucidate the basic mechanisms and theoretical treatment
we shall present an analytical treatment of the onset of ultrashort laser
pulses caused by laser atoms with a homogeneously broadened line. We
shall then point out recent developments.

The main results of the following analysis are presented in section 7.6
and the reader not interested in mathematical details can directly proceed
to that section. We base our analysis on the equations (5.102), (5.103) and
(5.105) for the slowly varying amplitudes E4" and P$" of the electric field
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strength E and polarization P, respectively, describing modulated running
wavesin aring cavity, and for the inversion density D. We assume that the
pumping is so strong that at least the first laser threshold is reached. The
corresponding cw-solution isdenoted by E{%,, PS5, and D.,,. For simplicity
we assume that E, P and ,, are polarized in one direction, perpendicular
to the direction of propagation along the x-axis.

It has turned out that some writing within formulas can be saved if we
use normalized quantities, i.e.

E=E{ (x, 1)/ES2, (7.34)

P=P{(x, 1)/ PS5, (7.35)

D=D/D., (7.36)
and the new pump parameter

A =(Dy— D¢y)/ Dew- (7.37)

D, isthe inversion at threshold. We further put 1/ T=1y. A little algebra
(cf. exercise) transforms (5.102), (5.103) and (5.105) into the following set
of equations:

0 A A
{i+c_+K}E=KR (7.38)
ot ox
a A A A
{5;+‘y}P= yED, (7.39)
a A A A A A

The cw-solution reads, of course,

E=P=D=1. (7.41)
Because the method by which we obtain pulse solutions of these equations
isof a more general interest also with respect to other applications in laser
physics, we first give an outline of the general method. Then in the next
step we shall apply this method to the concrete case of a ring laser with a
homogeneously broadened atomic line.

Exercise on section 7.2

Solve egs. (5.102), (5.103) and (5.105) with 0 E$Y/at =9 Py /9t =aD /3t =0.
Transform (5.102), (5.103) and (5.105) into (7.38)-(7.40) by use of (7.34)-
(7.37) using the explicit expressions for E{?,, etc. just determined.
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7.3. A general method for calculating evalving patterns close to instability
points

Let us consider a system which we describe by a space- and time-dependent
state vector U(x, t). For simplicity we treat the one-dimensional case. Since
in the following we shall have in mind to solve the egs. (7.38)-(7.40), an
explicit example for such a state space vector is provided by

E(x, 1)
Ux, )= P(x, 1) |. (7.42)
D(x, 1)

For sake of simplicity £ and P are treated as scalars but the method can
easily cope with the case in which they are vectors. We shall assume that
U obeys a set of differential equations which we write in the general form

oU
—=G(U,a, A). )
o ( ) (7.43)

G is a nonlinear function of U which may also contain derivatives of U
with respect to space. A is a parameter which may be controlled from the
outside, e.g. by the influx of energy. An explicit example for the set of
differential equations (7.43) is provided by (7.38)-(7.40). We further use
the definition

dx =0/ dx. (7.44)
We now consider the following situation. We assume that for a given A we
have found a time- and space-independent solution of (7.43). We call this

solution U,. Again the system (7.38)—(7.40) provides us with an example
because the corresponding solution reads

1
Uy=|1]. (7.45)
1

The method we are going to present here can be extended to the case where
U, is space- and time-dependent and x is a three-dimensional vector. We
have to refer the reader for that case to the book Advanced Synergetics
(see references). As we have seen in a number of instances of the present
book, a solution can become unstable if a control parameter A (e.g. the
pump power) is changed. In order to check the stability we make the
hypothesis (cf. section 6.1 for an explicit example)

U(x, t)=U,Tq(xt). (7.46)
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Inserting (7.46) into (7.43) we obtain an equation for ¢ of the form

aq(x, t)

o1 =K(A,d,) q{x, t)+N(A, q), (7.47)

where we have split theresulting r.h.s. into alinear term, Kq, and a nonlinear
term, N. If in the original equation G contains powers of U just up to
second order, N is also just of second order. We write the individual
components of N in the form

NI(A, q) = Z gl;urqp.qcr' (748)
T4

We first wish to study the stability of U,. To this end we consider the
linearized part of eq. (7.47). Denoting the solutions of the linearization by
w we then have to study equations of the form

aw(x, t)

o K(A,d,) w(x, t). (7.49)

It may be shown quite generally that this equation can be solved by the
hypothesis
w(x, t) =exp[Bt] v(x). (7.50)

In the following we shall confine our analysis to a problem with periodic
boundary conditions, so that

w(x+L, t)y=w(x,t) (7.51)
must hold. Then v(x) can be chosen in the form

v(x) = O(1/VL) explikx], (7.52)
where k must be chosen such that

exp[ikL]=1. (7.53)

The factor l/x/L serves for the normalization of this function over the
periodicity length L, while O is a constant vector till to be determined.
Inserting (7.50) with (7.52) into (7.49) we may readily perform the differenti-
ations indicated by 3 Because of

a, exp[ikx]=ik exp[ikx], (7.54)
we obtain
K (A, a,) explikx] = K (A, ik) exp[ikx]. (7.55)

Dividing the equation, which results from (7.49), by the exponential
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functions exp[Bt] and exp[ikx], we obtain a set of ordinary algebraic
equationswhere K isaconstant matrix and 8 playstheroleof an eigenvalue.
In order to find nontrivial solutions of

BO=K(A,ik) O, (7.56)

the eigenvalues B8 must be chosen properly. The matrix K is parametrized
by k so that the eigenvalues depend on k. A set of algebraic equations
(7.56) possesses a set of eigenvalues B, j=1,..., m. We therefore denote
an eigenvalue B more precisely by B;(k). Also O depends on the same
indices so that we write

B=B;(k), O=0(k). (7.57)
Using these indices, k and j, the solution (7.50) is written in the form
w(x, t) =exp[B;(k)t] v"/(x). (7.58)

We further shall assume that also left-hand eigenvectors of (7.56) exist, i.e.
that

O’(k)K =B;(k) O’(k) (7.59)

holds. We assume that the 1.h. eigenvectors and the r.h. eigenvectors form
an orthonormal set, i.e. that

O’(k) O'(k)=Y Oi(k) O'(k)= 8, (7.60)

In order to solvethefully nonlinear equations(7.47), we expand the wanted
solution g into asuperposition of the complete set of eigenvectorsin x-space
spanned by (7.58), i.e. we write

9(x )= &i(0) v*(x), (7.61)

where the amplitudes £(t) are still unknown quantities. Inserting (7.61) into
(7.47) we readily obtain for the L.h.s. of (7.47)

kZ (1) v (x). (7.62)

For the linear term on the r.h.s. of (7.47) we obtain

E' fk,j; K (4, ik) v (x), (7.63)

which because of (7.56), (7.57) can be transformed into
L Bi(k) &, v (x). (7.64)
<
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The nonlinear terms (7.48) are transformed into

Y Spo ¥ &k i (x) ¥ o5 (x). (7.65)
wo KL K

Equating (7.62) to the sum of (7.64) and (7.65) we obtain equations for the
unknowns ¢, ;(t). To cast these equations into a more convenient form we
multiply them from the left by

O/(k) exp[—ikx]. (7.66)

Then we sum up over the indices I and integrate over space from x =0 till
X=L,

X J-nL' .. dx. (7.67)

Because the exponential functions are orthonormal, i.e.
LL expl—ikx Fik'x] dxX = 8 = { (1) ;g: E; t (7.68)

and we may apply (7.60), we readily obtain

ék,j =B;(k) &, + kf;( i€ @i iy e (7.69)

"

where we have used the abbreviations

Apke jjj = E,a 8ipo Of(k) Of:(k') O’;(k"), (7.70)

L
Jerr=L7"? L expli(—k+k'+k")x]dx = 8 psi (7.71)

In general a transformation from one set of variables to another one does
not solve a problem. However, in the present case a considerable simplifica-
tion can be achieved. Tothisend we haveto distinguish between the unstable
and stable modes. We shall call a mode, j, k, stable if its eigenvalue B;(k)
has a negative real part. In such a case a small perturbation will be damped
out and the original state is reached again, for instance in the laser case
the solution

|
U0=1.
1

Thus a new state, for instance a pulsation can take place only if at least
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one of the eigenvalues becomes positive. A mode, j, k, is called unstable if
the real part of B;(k) is positive (or vanishes).

As we shall see below, in the case of a ring laser, B;(k) may indeed
acquire a positive real part provided the pump is high enough. Thisinstabil-
ity point is reached at a specific k wave number (see below fig. 7.9). We
shall call the wave number k, where this instability is reached firdt, k.. We
label the B’s in such a way that this instability occurs for j=1. We shall
denote the pair (k =k..j=1) by u indicating " unstable’. When we further
assume that all other B’s have negative rea parts, al the other modes are
till stable and we shall use the following abbreviations:

(k=k(.,j=2,3)—>s, (k#kc,jzla2’3"-')_)s'

For our general outline we need not restrict the analysis to a single
unstable mode but we may admit a set of them distinguishing them by the
index u. With the new notation of u and s we may rewrite the set of equations
(7.69) in a new self-explanatory fashion

dfu/dt = Bufu + Z Cuu,uzgulguz

uy,uz

+ Z Cuulsgulgs + 2 Cusslgsgsp (772)
where awr jpi- i 1S Written as Cuyyuys Cuwys OF Cug, depending on the
index combinations k', ', etc. Thus the unstable modes are coupled to the
stable modes. In many practical applications the terms C,,,., vanish on
account of selection rules. For sake of simplicity we shall drop the corre-
sponding sum in (7.72). For the general case consult the references.

The stable modes in turn obey equations of the form

d’fs/dt = ﬁsfs + Z Csuulgufu,

u,uy

+ Z Csus, §u§s,

u,s;

+ ¥ Cynééss (7.73)
where again the C's stand for a...J... corresponding to the various
combinations of indices k', j',.... An important aspect should be men-
tioned here. Note that "unstable™ and " stable™ refer to the linear stability
analysis. Here we deal with a nonlinear analysis, however, and we shall see
that the " unstable™ modes become stabilized because of their coupling to
the ""stable™ modes which in turn are coupled to the “unstable” modes. In
the following we shall indicate a method by which we can eliminate the
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"stable” modes so that we arrive at equations for the "unstable” modes
alone. In away this procedure is similar to the one we explained in sections
6.3 and 6.4, where we eliminated the atomic variables and were led to
equationswhich contain the field modes alone. The main difference between
the present procedure and the former one consists in the fact that in the
former case the damping constants «, y, 1/ T were directly evident, whereas
here the damping constants are obtained as eigenvalues B8 of the linearized
problem. The mode amplitudes &, will be called order parameters. As one
may show, the order parameters may serve as a smallness parameter, if we
are not too far above the instability point. One may convince oneself rather
quickly that the stable mode amplitudes are of at least one order smaller
than &.. This then suggests the following iteration procedure. We wish to
express the & by ¢,.. In lowest approximation egs. (7.73) reduce to

{d/dt=B}E= T Cou b (7.74)

u,uy

The formal solution of (7.74) is given by
g(s)z Z {d/dt_Bs}ileuulgugul' (775)

u,u,

In order to evaluate the inverse operator in brackets we decompose the
order parameters according to

&, = R(t) exp(iot), (7.76)

where we anticipate that the order parameters oscillate at afrequency which
is approximately given by

w, =Im(B.). (7.77)

We assume that close to the transition point, R(¢) can be considered as
constant compared to the oscillatory exponential functions. This allows us
to replace the operator d/dt in (7.75) by

d/dt-Im(B, +B.,)- (7.78)
In this way we may replace (7.75) by
£=Y (o, +o,) =B Coubibu (7.79)

u,uy

We shall call this procedure "adiabatic approximation™. In our present
treatment we use the " unrenormalized” frequencies w according to (7.77).
The procedure can be extended, however, to the case in which frequency
shifts are taken into account (cf. Advanced Synergetics, quoted in the
references). We mention that the form (7.75) with (7.78) implies that
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transient processes which occur on time scales shorter than 1/w, are not
covered by this procedure. When we insert the expression (7.79) into the
r.h.s. of (7.72), we obtain terms of third order in &,

éu = Bugu - bgi (780)

In many cases of practical interest, e.g. at the first laser threshold, were
"usual' laser action sets in, the sign of the cubic term is negative so that a
stabilization of the total state is achieved. Because it was found that this
need not always be the case when ultrashort pulses occur, one has to go
two orders of magnitude further and we briefly describe the corresponding
steps. In lowest approximation we treated eq. (7.74) whose solution is given
in the adiabatic approximation by (7.79).

In the next step of our approximation we insert thissolution in eq. (7.73)
which in first order then reads

[d/dt - ﬁs]ggl) = Z Csuulgugul + Z Csus, §u§§?) . (78 1)

In the adiabatic approximation the solution of (7.81) is given by

V=" T Tilubibubu (7.82)

uu,uy,s,

The constants I" are defined by

Fffu‘,uz = [wuu,uz - Bs]_l Csusl[wuluz - le]_l Cs,u,uzy (783)

where we use the general abbreviation
wuuluz...u" = Im(Bu +Bu| +Bu2 Rl +Bu,,)' (7-84)

Inserting (7.82) into (7.72) we obtain a closed set of equations for the order
parameters £, alone. Because the explicit result becomes somewhat lengthy,
we leave this step as an exercise to the reader. In the case that only one
complex order parameter is present the (typically) resulting equation reads

[d/dt - Bu]gu = B|§u|2§u + C‘ful“gu' (785)

The reader may easily convince himself that the solution of this nonlinear
equation can bediscussed in terms of a potential in analogy to our discussion
in section 6.3. We shall come back to this question explicitly when dealing
with the laser.
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7.4. Onset of ultrashort laser pulses linear stability analysis

Our starting point is the equations (7.38)—(7.40). In order to simplify these
equations further, we introduce a new scaling of space and time:

(x, =& D)y, y=wn/v, k/v=k

"woA

Dropping the "hat" ~ everywhere, the equations to be studied read

(i+ c—a—+i<> E =«P, (7.86)
Jat 0x

3
(5+7)D=7(1+A)—7AEP, (7.87)
d

(5“) P=ED. (7.88)

We remind the reader that these equations refer to normalized quantities
and that we assume that the pump strength is at least so high that normal
laser action can occur. The cw-solution is given by

E=P=D=1. (7.89)
In the following we shall study those pulse solutions in which the phases
of E and P are fixed so that we may use E and P as rea quantities.

According to the previous section we first have to study stability. To this
end we make the hypothesis

(E, D, P)=(1+e, 1+d, 1+p), (7.90)

e
wherethe vector | d| playsthe role of g. The coefficients of the nonlinearity

p
(cf. (7.48)) then read
gwuf = _7A8V2(6yl60'3 + 8/.L36¢71)/2 + 61/3(5;/.] 60’2 + 6;L160'2)/2- (7~91)

Furthermore we have

i

cdfox+xk 0 —k

yA y vA
-1 -1 1

K(A,8,)= . (7.92)

The hypothesis
(e d, p) ~exp[Bt +ikx/c] (7.93)
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transforms the differential equation of the linearized problem into an alge-
braic equation whose determinant must vanish,

B +ik +« 0 —K
yA  B+y yA |=0. (7.94)
—-1 -1 Bg+l1

The characteristic equation belonging to (7.94) reads
B+ B (1+y+k+ik)+Blik(1+y)+ y(1+ A +«)]
+iky(1+A)+2kyA =0. (7.95)

For fixed k this equation has in general three different solutions 8 which
can be distinguished by the index j=1,2, 3. A detailed discussion of the
solutions of (7.95) is, of course, rather boring. Therefore we present only
the essential results. If the cavity losses are small,

k<l+y, (7.96)

an instability occurs if the pump " power"™ A exceeds A,. The critical value,
A,,is given by

Ac=4+3y+2[2(1 +y)(2+9)]"7> (7.97)

Then a range of wave number vectors k exists in which one of the three
eigenvalues B acquires a positive real part. We shall define the critical point
as that value of k for which the first eigenvalue touches the imaginary axis.
The corresponding critical eigenvalue reads

B.=ily(3A.—v)/2]"°. (7.98)

A plot of the different eigenvaluesin the complex planeis given by fig. 7.9.
Theindividual points on each curve are parametrized by the value k. Note
that the k-values must obey the condition k=n#/L, where n is an integer
and L is the length of the ring cavity, so that exp[ikx] fits into the cavity.
The branches 1 and 2 correspond to the stable modes, branch 3 shows a
region where the modes can become unstable because 8 acquires a positive
real part. k=0 corresponds to the cross section of this branch with the real
axis. For k - —oo the eigenvalues movein thedirection of positive imaginary
parts, for k- +oo in the direction of negative imaginary parts. In order to
reach the instability of the cw-solution, the wave vector must lie in the
unstable region. The stable branches 1 and 2 do not show essential depen-
dence on k, their real parts are evidently much smaller than the negative
real parts of the unstable eigenvalues. If the fidlds E and P are complex
and if their stability is studied, we obtain the branches 4 and 5 for their
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AImin)

» Rel(n)

Fig. 7.9. The eigenvalue B in the complex plane in the good cavity case (« <!1+7y in the
notation of thissection). The pointsalong each curve correspond to different values of k which
range from — oo to +00. The branches 1 and 2 refer to modes with damped amplitudes (stable
modes). The branches 4 and 5 represent damped phase modes. Branch 3 contains modes which
can become unstable when the imaginary axis is crossed. Since the individual points on each
curve are parametrized by k, the instability occurs at a finite value of k.

phases. While the latter is strongly damped, branch 4 passes for k=0
through the origin. The corresponding mode is marginal. These branches
areindependent of the pumping A. Because one may restrict the discussion
on real fields the branches 4 and 5 can be neglected in the following.

The eigenvaluesfor k > 1+y. For sake of completeness we mention that
for k > 1%y the stable and unstable branches of fig. 7.9 exchange their
roles (fig. 7.10). While branch 3 goes to the left, the previously stable
branches 1 and 2 go to the imaginary axis and can acquire regions with
positive real parts provided the pump is big enough. The branches 4 and
5 show an analogous behavior but are also irrelevant for k >1%+y. The
instability occurs first at a value k# 0, but by a suitable choice of the
resonator length the realization of this value can be prohibited so that an
instability of the mode k=0 can be forced to occur. The fields then show
spatially homogeneous but temporally chaotic oscillations in time. We shall
treat this phenomenon in chapter 8.

7.5. Onset of ultrashort laser pulses nonlinear analysis
In the foregoing section we have shown that for a sufficiently high pump

strength the cw-solution becomes unstable and we expect a new type of
solution. I'n order to find this new solution we perform a nonlinear analysis
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A Im(n)

Fig. 7.10. The eigenvalue B in the complex plane in the bad cavity case (x > 17y in the
notation of this section). The points on each curve correspond to different k-values which
range from —oc to +o0. Branches 1 and 2 refer to unstable modes where the imaginary axis
is crossed. As can be shown, the first crossing occurs at k=0. Branches 1 and 2 contain, of
course, also damped modes at k-values unequal 0. Branch S stems from the phase mode which
can be omitted, however, in the nonlinear analysis because the phase remains constant. The
branches 3 and 4 refer to modes with damped amplitude (stable modes).

by means of the method we presented in section 7.3. Wetake as an example
the case of a good cavity, i.e. K <1*y. We further assume that only the
eigenvalues B;(k), j=u ("unstable™), k ==k, cross the imaginary axis (cf.
fig. 7.9), and that just one pulse fits into the resonator. Furthermore we
shall assume for sake of simplicity that the cavity length is chosen such
that the instability occurs at the smallest possible value of the pump
parameter as given by (7.97).
We denote the order parameters (= amplitudes of unstable modes) by

&w and &y -
The corresponding eigenvectors O are to be written as

O.(k;) and O,(—k.),
respectively. Because the fields are real, the relations

ko= Elu (7.99)
and

Ou(_kc) = O:l:(kc)

must hold. Because of J x x+ 0ccurring in (7.69) the amplitudes &, s of the
slaved modes have wave vectors k which are multipleintegers of k., k = rk,.
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Theindex s runs over the stable branches (cf. fig. 7.9). With these notations
in mind we may write the wanted solution for E, P, D,

'E 1 e
D|=|1]|+|d], (7.100)
p 1 p

in the form

1

1
1[+¢& (1) O,(k.) expl[ik.x]—=+c.c.
1 Eru(t) Oy(ke) expl ]JZ

+ Z gs,n(t) Os(nkc) exP[inkcx], (71003)

where we have used the general hypothesis (7.61). The index s runs over
all stable modes belonging to afixed nk.. Once O, ¢, and &, are determined,
we may immediately calculate the spatio-temporal functions E, P, D. Aswe
know from section 7.3 wecan express &, by &,_,,. Thereforeweareinterested
in the equation for ¢,_, alone. We shall see that we can derive an equation
of the form

E= e+ AL|E] + BElgl, (7.101)

where &,_, = & This equation will allow us to determine both the steady
state, £€=¢&,, and even transients, ¢ = £(¢), so that we can calculate both
steady state pulses as well as their transients. The speedy reader can from
here on proceed to section 7.6. Readers wanting to see how eg. (7.101) is
derived in detail can just continue reading this section. From now on we
shall simplify the notation by making the following replacements:

§kc,u -> gs
ke k, (7.102)
Bu(k:) = B (7.103)

The coefficients in (7.72) and (7.73) which are defined according to (7.70)
and (7.71) will be supplemented by indices indicating the corresponding
wave vectors. It will be our goal to eliminate the stable modes by means
of the iteration procedure explained in section 7.3. In lowest order of our
approximation we need to retain only the stable modes belonging to k, =0
and to k, =2k, because only these two kinds of modes are driven by the
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order parameter,
&o.s =[=B:(0)]2C 2 €L, (7.104)
s =[2B.— Bs(2K)] ' Cii ¢& (7.105)

Egs. (7.704) and (7.705) have been obtained by means of the adiabatic
elimination as explained in section 7.3. The expressions (7.104) and (7.105)
can now be inserted into the equation for the order parameter ¢ where they
give rise to nonlinearities of third order. Because under certain conditions
the coefficient of ¢- |¢] is positive no stabilization is reached and we have
to consider the next nonvanishing higher order term. Before we go over to
that approximation we introduce a further abbreviation, namely

0*(k.)- 0. (7.106)
We further note that
O"(—k.)- O*. (7.107)

An inspection of the formulas for ¢ and ¢, of section 7.3 reveals that the
eigenvectors O occur alwaysinthecombination O - £ whereasin theiterated

terms, e.g. (7.104), we aways find & =- - - O. This suggests to introduce
the following abbreviation
K,,(m) =Y [mB, ~B.(mk)]"'O;(mk) O;(mk). (7.108)

The first factor under the sum results from the adiabatic approximation.
This abbreviation does not only simplify the whole formalism because we
have less to write down, but allows us to calculate k in an easier way (see
below). The r.h.s. of (7.108) represents a sum of projection operators OO.
By means of the completeness of the eigenvectors O, O, i.e. in the notation
of section 7.3,

) Ol(k) OL(k) = 8,., (7.109)
we may write for m# |

K(m)=[mp.ItK (A mk)]", (7.110)
where | is the unity matrix

I, =8, (7.111)

K, (mk) is defined by (7.92) with the replacement 3/dx - imk. Because of
eg. (7.110) we need not solve the complete eigenvalue problem for each
wave vector. Rather it is sufficient to determine the inverse (7.110) of a3x 3
matrix. Only for m= 1 the eigenvectors and eigenvalues must be calculated
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explicitly and the sum (7.108) over the stable modes must be performed.
Finally we define the abbreviations
G,(0)= ¥ 2K,.(0)8,,,0%0, (7.112)

vpo

and
Gp(2)= Z va(z)gvuaoyoo" (7.113)

o

After this little excursion we return to our original problem namely to go
one step further in our approximation. To this end we assume that we have
inserted the lowest approximation for the stable modesinto the egs. (7.73).
As can be immediately seen, two further sets of modes come into play,
namely

[d/dt = B, (k))& =2C % €0y +2C 0k Enn,
= Y 203(k) ,,..[0,.G,(0) + 0} G, (2)]|£]¢

Vo

7.114
and (7.114)

[d/dt=B,(3K)]ésks = 2C 2k Ebaucs
= Y, 20.(3k) 8.,.:0,G,(2) é&&. (7.115)

The modes belonging to k, =0 and k, =2k remain unchanged within this
iteration step because of the k-selection rule. The corresponding formulas
must be inserted in the above egs. (7.114) and (7.115) and then we must
resolve (7.114) and (7.715) with respect to the stable modes.
In analogy to (7.112) and (7.113) we define
G,()=27Y K, (1) 8,.,[0.G,(0) +0%G,(2)], (7.116)

vuo

G,(3)=2 Y K,,(3) 8,.,0.G,(2). (7.117)

o

Taking into account the stable modes up to the iteration step of first order
means that we can confine our analysis to modes up to k, = 3k. Then the
order parameter equation reads

[d/dt=B.)é= T 20,80 L[0,05(0) &, + Of05(2k) £

vuo s

+2 (0L(k) 03(0) & &,

+0.¥(k) O3(2k) €fbons,
+0.*(2k) 03(3k) 5 ans)]: (7.118)
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On the r.h.s. we have now to insert the expression for the stable modes

(7.104)-(7.105) and (7.114)—(7.115). We then obtain our final order param-
eter equation

[d/dr—B,1¢ = Bl£[*¢ + ClE['e (7.119)
The coefficients are given by the expressions

B= 7Y 20,8,,[0.G,(0) +0}G,(2)] (7.120)

and
C=7Y 20,8,.,[G.(1) G,(0)+G%(1) G,(2) + G%(2) G,(3)]. (7.121)

Vo
As the reader may note the whole procedure is rather simple. It requires
only the evaluation of some sums which can easily be performed on a
computer.

7.6. Solution of the order parameter equation

The behavior of the ring laser close to the second laser threshold is entirely
described by the equation

[d/dt—B.)é=Bl¢PE+ Clel's, (7.122)

which we derived in the previous section. This equation has aform strongly
reminiscent of the form of the single mode laser equation. We decompose
the parameters ., B, C, which occur in (7.122) into their real and imaginary
parts,

B.=b +iw, (7.123)
B=d +i¢, (7.124)

In (7.125) we have explicitly exhibited the negative sign of the real part
which guarantees the stabilization of the system. We approximate the
imaginary part of the critical eigenvalue 8, by itsvalue at the critical point
(7.98). This means an unsignificant simplification and modifies the velacity
of the pulse only dlightly. We shall decompose the complex amplitude ¢
into its modulus and phase,

(1) = R(t) exp[in(1)], (7.126)
where R(t) and n(t) depend ontimeexplicitly. Inserting (7.126) into (7.122)
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and taking the real part of the resulting equation we obtain
dR/dt=bR +dR*—fR°. (7.127)

This equation can be integrated in closed form but for our purpose it is
sufficient to discuss the behavior of the equations qualitatively. To thisend
we interpret (7.127) asthe equation of the overdamped motion of a particle
in the potential field V(r), where

dR/dt=-3V(R)/R, (7.128)
V(R)=—5(6bR>+3dR* - 2fR°). (7.129)

Quite evidently the behavior of R isthat of a particle which tends towards
the closest minimal value of V(R) where it eventually acquires a stationary
state. The phase 7(t) obeys the equation

dn/dt=w T 6R>*TyR". (7.130)

Obviously the frequency contains amplitude dependent corrections. In the
stationary state the order parameter acquires the form

&= Ry expliwt], (7.132)
if we neglect the nonlinear correctionsin (7.130).

7.6.1. Thepotential at the critical point

In order to discuss how the shape of the potential changes when the pump
parameter A changes we have to study the individual coefficients. As a
detailed analysis reveals, the factor C changes but little if the pump strength
or the critical wave number k change (the critical wave number k= k. is
changed if thelength L is changed). However, the real part of the coefficient
B of the cubic term in (7.122) strongly depends on k. or, in other words,
on the resonator length. Fig. 7.11 shows the real part of B for the pump
parameter A =12 as a function of the resonator length. For more details
we refer the reader to the legend. We mention as an important result that
thereal part of B changesitssign. Therefore we obtain two types of potential
curves which define two different kinds of behavior, namely an abrupt
transition from the cw-state to the pulse state and a smooth transition
(compare figs.7.12 and 7.13).

7.6.2. Thefields d the pulse solutions

Let us briefly summari ze what we have achieved so far. We have established
an explicit order parameter equation which can easily be solved in the
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t Reln) 1 d=Re(B)
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Fig. 7.11. This figure shows the behavior of the real part of B (left ordinate and solid line)
and d = Re(B) (right coordinate and dashed line) versus resonator length. The vertical dashed
lines indicate the region of L in which the mode becomes unstable. Because the dashed line
crosses the 0-axis, the coefficient of the cubic term of the amplitude equation changes its sign
within an allowed resonator length.

stationary state but which allows us also to calculate transients. Once we
know the order parameter we can calculate the amplitudes of the-stable
modes. In a last step we can calculate the field, the polarization and the
inversion, namely by (7.100) and (7.100a). The normalization factor of the
plane waves can be taken care of by a proper normalization of the eigenvec-

pump strength—s

} VIR)

Fig. 7.12. The potential V(R) of eg. (7.129) as a function of the amplitude R for various
pump strengths, for d = Re(B)> 0 (cf. fig. 7.11).
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pump strength—

1 V(R)

Fig. 7.13. Same as fig. 7.12 but with d =Re(B) <0 (cf. fig. 7.11).

tors O and O and has been omitted in (7.100a). A number of typical explicit
results including transients are shown in figs. 7.14 and 7.15.

Egs. (7.86)—(7.88), which form the basis of this chapter, have also been
solved by direct integration. A typical result isshown infig. 7.16. In aregion
not too high above laser threshold excellent agreement between the numeri-
ca and the analytical approach is found. The advantage of the analytic

Fig. 7.14. For fixed time t the pulse shape of E, P and D is presented as a function of the
coordinate along the laser axis according to eq. (7.100a) for d >0, at the second threshold.
Note the finite amplitude. [H.Haken and H. Ohno, Opt. Commun. 16, 205 (1976).]
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t -x/v

Fig. 7.15. Same as fig. 7.14, but somewhat above the second threshold. [H. Haken and H.
Ohno, Opt. Commun. 16, 205 (1976).]

E A T
P.
24
22
20
18
16
14
12
10

L L/v I t - x/v

Fig. 7.16. Results obtained by adirect numerical integration of thelaser equations (7.86)—(7.88)
somewhat above threshold. The ordinates refer to E (left) and D (right). The field E is
represented by the dashed line, the polarization by the dash-dotted line, the inversion by the
solid line, and the intensity I by a solid line also. These quantities are plotted versus t — x/ v,
where t =time, x = coordinate along the axis of thering laser, v= pulsevelocity and L =length
of the ring laser. [H. Risken and K. Nummedal, J. Appl. Physics 39, 466 (1968).]
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approach consists in giving us a rather detailed insight into the kind of
transition which takes place at the second laser threshold.

7.6.3. Recent results

To make closer contact with reality a number of more detailed cal culations
are required. For instance, in our treatment we have assumed that there is
no spatial variation of the modes other than in the direction of propagation.
In reality, however, the mode intensity varies over the cross section perpen-
dicular to the direction of propagation, essentially inthe form of a Gaussian
distribution. If such a variation is taken into account, it can be shown that
the pulseinstability disappears. Ontheother hand adetailed analysisreveals
that the coupling of the laser to a saturated absorber may decrease the
threshold for laser pulses so that the negative effect of the spatial mode
dependence can be more than compensated. Because in the bad cavity case
the threshold for onset of pulses or chaos can be considerably lowered if
an inhomogeneous atomic line-width is involved, we may speculate that a
similar effect holds also for the good cavity case treated in this chapter.

The general method we have outlined above allows a number of further
applications, for instance to lasers with saturable absorbers as just men-
tioned, and to optical bistability (cf. chapter 9).

7.7. Models of lasers with saturable absorbers

In section 7.1 we briefly described saturable absorbers and some of their
effectson laser light emission. In this section we wish to formulate the basic
equations of a laser with saturable absorber more precisely and indicate
the main results which have been achieved so far. As it will transpire a
good deal of work has till to be doneto calculate the evolving laser pulses.
On the other hand we shall see that even under simplifying assumptions
interesting features of alaser with saturable absorber can be derived. From
an experimental point of view two main arrangements can be considered.
Infig. 7.17a the active laser material and the saturable absorber are situated
at different positions in-between two mirrors. This is the more common
experimental set-up. Another possibility is provided by alaser in which the
laser active atoms and the atoms (or molecules) of the saturated absorber
are more or less homogeneously distributed over the whole material.

We shall model the laser by a set of two-level atoms (the analysis can
easily be extended to a system of three-level atoms). The saturable absorber
is modelled also by a set of two-level atoms. But while the laser atoms are
incoherently pumped from the outside, the atoms of the saturable absorber
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arein their ground states as long as they are not coupled to the laser fields.
The formulation of the basic equations is quite simple because it is just a
straightforward extension of the basic equations (5.115)-(5.117). For sim-
plicity let us adopt the mode picture and let us consider a single mode only.
Because the amplitude b of the single mode interacts with the set of dipole
moments of the lasing atoms and with those of the absorber, eq. (5.115)
now acquires the form

b=(-iw-k)b—iY g.a, —iY gl al. (7.132)
n u'

Here and in the following the prime will indicate quantities belonging to
the absorber. The coupling coefficients g were defined in (5.114). In general
the size of the dipole moments of the laser atoms and of the saturable
absorber atoms will be different. Depending on the models depicted in figs.
7.17a and 7.17b, the following conditions must be imposed on the coupling
coefficients g and g
(& g. #0 inregion L,

=0 outside of region L ;

gl #0 in region S,
=0 outside of region S;

mirror material absorber mirror
(a)
L+S
mirror material + absorber mirror

(b)

Fig. 7.17. (a) Laser arrangement in which the saturable absorber S is separated from the
material L (schematic). (b) Same as (a), but the material and absorber fill the same volume.
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(b) g. #0

g #0} in total region within the cavity. (7.133)
L

Because of the laser atoms and the atoms of the saturable absorber we have
now two groups of matter equations. Thefirst group referstothelaser atoms:

a, = (i@, —y)a, +ig,d,b, (7.134)

and

dy,—d
d, = "T ¥ +2i(gka,b - g,akh). (7.135)
The next group refers to the atoms of the saturable absorber:

a, =(—ie, —vy)a, +ig,d,b, (7.136)
and

d/'= O_d#

123 T/

+2i(g ¥, b* — g, a,b), (7.137)

where it is assumed that the inversion dg without laser action is given by
dy=-1, (7.138)

whereas d, will be chosen positive. In general the atomic line-widths y and
v" are different from each other and the same holdsfor the relaxation times
T and T'. These equations can be easily extended to the multimode case.
We leave it as an exercise to the interested reader to write down the
corresponding equations, in which b, w, «, g, and g,.- must be supplemented
with an index A and the corresponding sums over A must be performed in
egs. (7.134)-(7.137). In the literature so far only the single mode case has
been treated and we briefly indicate the main results.

One first looks for the stationary solution. In this case one makes the
hypothesis

b(t)=Be
a,=A, e, (7.139)

al, =A, e
where B, A, A; d, andd;, aretimeindependent constants. Thishypothesis
transforms the differential equations (7.132), (7.134)—(7.137) into a set of
algebraic equationsquitein analogy to those of section 6.2where we treated
the stationary state of the single mode laser. By means of these equations
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we may express A, and d, by B, and similarly the quantities A},- and d.,-
by B in an explicit fashion, so that

A,=A.(B), A,=A,(B), (7.140a)
d,=d.B), d,=d,(B). (7.140b)

Inserting these functions of B into thefirst equation (7.132) wefind asingle
nonlinear equation for B alone,

Bli(w—0)+x]=—i Y g,A,(B)~i¥ g, AL(B). (7.141)

This allows us to determine B as a function of d,. As can be shown for
small enough but positive inversion d, a stable stationary solution exists.
The models treated use a running laser mode. For certain parameter ranges
three constant amplitude solutions may coexist and a hysteresis cycle may
occur.

When the pump parameter is increased, the onset of oscillations could
be shown. Such oscillations can be modelled only by the semiclassical
equations (7.132), (7.134)-(7.137), but not by rate equations.

The coexistence of two limit cycles under certain assumptions on the
systems parameters could be demonstrated also. Under certain parameter
conditions even the emissionless state (B= A, = A},,=0) can be unstable
against oscillations.

The problem of a laser with a saturable absorber based on the configur-
ation b (fig. 7.17b) has been formulated also in the multimode case based
on space- and time-dependent electric fields, atomic polarizations, and
inversions in a straightforward generalization of egs. (7.38)-(7.40). This
model exhibits a pulse instability, but so far no pulse-like solutions have
been constructed explicitly. An exception is provided by a simplified model
in which the action of the saturable absorber is described by an intensity
dependent cavity loss as explained in section 7.1. As it seems, still a good
deal of work has to be done in this field. The problem is rather difficult
because of the many variables and especially of the many possible free
parameters which allow oneto operate the systemin quite different regimes.
In view of the results of the single mode laser without saturable absorber,
arich variety of phenomena can be expected and still awaitsits exploration.
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the "rationality condition™ (8.2), the actual laser frequencies (2, of a free
running laser are continuously shifted against their corresponding w,’s and
may be expected to fulfil the"irrationality'" condition. Quasiperiodicity can
be easily verified by taking the temporal Fourier components of (8.1) which
can be done experimentally by a spectrograph. On the other hand, when
(8.1) is considered as a function of time, an irregular time dependence is
observed.

In chapter 7 we saw that qualitatively new effects may appear when phase
and frequency locking takes place. Here ultrashort pulses which are still
regular arise. In this chapter we want to study whether still other kinds of
behavior can be expected or have been found. One of the most surprising
findings is that of " chaotic laser light". The search for such a new type of
light was motivated by certain analogies between laser light dynamics and
fluid dynamics which we shall describe below. Unfortunately, the word
""chaos'" or "' chaotic light" is used with two entirely different meanings and
we shall first discuss this basic differences in order to avoid confusion. In
traditional optics light from thermal sources, i.e. from thermally excited
atoms, is sometimes called chaotic. In this case no laser action takes place.
The atoms are pumped only weakly. After each excitation of an individual
atom it starts emitting a wave track spontaneously. Because the acts of
spontaneous emission are completely uncorrelated, an entirely random light
field results. Neither the rate equations nor the semiclassical equations we
have introduced before allow us to treat spontaneous emission adequately.
This indeed requires a fully quantum mechanical treatment and we shall
come back to it in alater chapter. The only important thing to keep in mind
for the moment being is the following. The randomness or chaos of light
in this caseis produced by fluctuations which are of a quantum mechanical
origin which is the cause for spontaneous emission.

In this chapter we will exclusively deal with a second, entirely different
type of chaos. We start from the semiclassical laser equations which are
obviously deterministic and do not contain any fluctuations a priori.
Nevertheless it will turn out that the solutions mean that the emitted light
behaves randomly. But the kind of randomness is different from that which
we discussed with respect to thermal light, because still many atoms co-
operate coherently in order to produce chaotic laser light. This chapter will
be devoted to this new kind of chaotic light. We shall first give an example.
Then we shall discuss criteria which can tell us whether light is chaotic or,
e.g., only quasiperiodic, and then we shall discuss various simple mechan-
isms which may cause chaotic laser light emission. Finally to conclude our
discussion on chaos we shall show that there are various routes to chaos
when we start from conventional single mode laser action.
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8.2. The basic equations

In order to make contact with what is known on chaos in fluid dynamics
we shall choose a specific form of the basiclaser equations which we derived
in section 7.2 and which we repeat for the reader's convenience.

(Z49)p=D, (83)
d A A A
('a—t'+ ’)/”)D: y"(A+1)—y||AEP, (84)
d\ A "
<i+K+Cd>E=K , (8.5)
at ax

where we have assumed that £ and P are real guantities. We briefly remind
the reader of the meaning of the individual quantities. v, v1=1/T, « are
the usual decay constants used everywherein this book. It is assumed that
the pump strength is so high that it is beyond the first threshold, at which
cw laser action occurs. E and P are in our present notation the slowly
varying amplitudes of the running waves of the field and the polarization
and are normalized, jointly with the inversion density'D, with respect to
their cw values. Therefore, E = P= D = 1 represents the cw-sol ution in these
normalized quantities. A isa normalized pump parameter. In the following
we seek a solution of egs. (8.3)-(8.5), which is space independent (which
can be achieved by a proper choice of the length of the ring cavity). This
means that we seek a single mode solution. While egs. (8.3) and (8.4) remain
unchanged, (8.5) simplifies to

d A A
(—+ K)E =kP. (8.6)
ot

After these preparatory stepslet usturnto aspecific model of fluid dynamics.

8.3. The single mode laser equations and their equivalencewith the Lorenz
modd of turbulence

Let us first take a quick glance at a different field in physics, namely fluid
dynamics. There, along standing and still unsolved problem isthe explana-
tion of turbulence. The original purpose of the Lorenz equation isto provide
a simple model for turbulence. Lorenz considered a rather typical problem
of fluid dynamics which is called the convection instability or Bénard
instability. To achieve it, a fluid layer is heated from below (fig. 8.1). The
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Fig. 8.1. (a) Scheme of experiment on the Bénard instability. A fluid layer in a vessel is heated
from below. (b) Formation of rolls by the liquid beyond a critical temperature difference
between upper and lower surface (schematic).

motion of the fluid is described by the Navier—Stokes equations which we
are not going to write down here because they are not important for us.
We only mention that they are nonlinear, partial differential equations. In
order to cut down the complexity of the problem of solving these equations
Lorenz introduced a Fourier decomposition. He expanded the velocity and
temperature fields of the fluid into spatial Fourier series. The Fourier
coefficients were still time dependent variables. From the infinite series,
Lorenz retained only three terms altogether. In this way he derived three
coupled differential equations for three variables. Because their physical
meaning does not matter in the present context, we shall call these variables
X, Y, Z. The Lorenz equations have the following form:

X = oY —-oX, (8.7)
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Y=-XZ+rX-Y, (8.8)
Z=XY-bZ (8.9)

For those interested in fluid dynamics we mention that a is the Prandtl
number, and r = R/R., where R is the Rayleigh number and R. the critical
Rayleigh number (for onset of convection). b =4x2/ (7> tk}) where k; is
a dimensionless wave number. The equations (8.7)—(8.9) are of quite a
simple structure. They are ordinary differential equations and contain only
two nonlinearities in the form X Z and XY. To the great surprise of many
physicists and mathematicians these equations can have solutions which
are quite irregular. These solutions were found by means of computer
calculations. Fig. 8.2 showsthetemporal evolution of X (¢) whichisevidently
quiteirregular. A plot of X, Y and Z in various planes revealsthe following
behavior (fig. 8.3). The point X(t), Y(t), Z(t) circlesin one region for a
while, but then suddenly jumps into another region, where it moves for a
while until it jumps, seemingly randomly, back into the first region, and so
on. Quite evidently, deterministic equations of a rather simple form can
giverise to an entirely irregular motion which is called " chaotic™. In order
to produce chaotic motion we need at least three variables obeying first
order differential equations. If only two variables are present obeying
equations of the form X =F(X, Y) and Y =G(X, Y), one can show
mathematically rigorously that no irregular motion can occur.

But why are the Lorenz equations so important for laser physics? The
answer can easily be found through the following steps. Let us first make
the rather simple transformations

X=¢§ Y=n Z=r-{

qft)

Fig. 8.2. A typical coordinate q versus time of the Lorenz attractor (arbitrary units).
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(a)

(b)

Fig. 8.3. (a) Traectories of the Lorenz attractor shown is their projection on the Z-X plane.
(b) Same as (a) but with the projection on the Y-X plane. (First results of this kind were
obtained by E.N. Lorenz.)

through which egs. (8.7)-(8.9) acquire the new form
E=on—of n=lE-n, [=b(r-{)—¢n. (8.10)

But these equations are identical with the laser equations (8.3), (8.4) and
(8.6), as one may easily verify by using the following substitutions:

t>t'oc/k, E->af where a=[b(r—1)]""2 r>1,

13—>0m, D—-)(, v=«kb/o, y=«k/o, A=r—1.
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In particular the following correspondence holds:

Bénard problem L aser
a: Prandtl number oc=«/y
r=R/R. (R, Rayleigh number) r=A+1
4772 5 772
= — —_ b —
b m+ k3’ ki 2 /'y

Egs. (8.10) describe at least two instabilities which have been found indepen-
dently in lasers and in fluid dynamics. For A <0 (r<1) thereis no laser
action (thefluid isat rest),for A=0 (r= 1) laser action (convective'motion)
with stable, time independent solutions & =, ¢ occurs. Besides this well
known instability a new one occurs provided

laser:

k>y+y and A>(y+y+e)y+te)/ y(k—y—v), (8.11)
fluid:

o>b+1 and r>o(c+b+3)/(c—1-b). (8.12)

This instability leads to the irregular motion, an example of which we have
shown in fig. 8.2. When numerical values are used in the condition (8.12)
it turns out that the Prandtl number must be so high that it cannot be
realized by realistic fluids.

From a historical point of view it is interesting to note that this second
instability was found independently in laser physics and in fluid dynamics,
but the meaning of the second laser instability was recognized rather late.

A numerical analysis reveals that in lasers the pump power must be very
high in order to fulfil the condition (8.11). Therefore, after the possibility
of chaotic laser light had been demonstrated in principle, other mechanisms
were searched for in order to realize chaotic laser light at lower pump
power. The fundamental ideais to condense the laser equations (8.3)-(8.6)
into still simpler ones by, e.g., eliminating the polarization adiabatically,
but to introduce at the same time some modul ation effect so that the number
of variablesremains (at | east) three. Inthetheoretical literaturethefollowing
modulation effects have been treated:

(a) time dependent modulation of the cavity loss;

(b) time dependent modulation of the inversion dy;

(c) injection of a modulated coherent electrical field. Before we present
these examples we discuss in the next section criteria upon which one may
decide whether chaos is present.
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8.4. Criteriafor the presence of chaos

In order to decide whether or not chaos is present one might naively be
inclined just to look at a plot of the time dependence of a variable of the
system. If the plot looks irregular one would call the process ** chaotic™.
Such a procedure leads to the following difficulty, however. Quasiperiodic
motion as described, e.g., by (8.1) can also look irregular. Therefore a more
detailed analysis is necessary. To this end it has been suggested to study
the Fourier transform of (8.1), or in general, of a typical variable q(t) of
the physical system under consideration. Periodic and quasiperiodic motion
(or light emission) can be characterized by a set of discrete lines, while
broad band emission could indicate chaos. However, here again an intrinsic
difficulty arises, because light from thermal sources would have also a broad
frequency band. But in this case light emission stems from uncorrelated
spontaneous emission acts and has nothing to do with the chaos we are
studying here. Another criterion for chaos, which was suggested in the
literature, is based on correlation functions of the type (g(t+7) q(t)).
According tothiscriterion, an exponential decay of thiscorrelation function
should indicate chaos. But in the case of light from thermal sources the
correlation function decays exponentially also, though we are not dealing
here with deterministic chaos. Though both " criteria’, namely a broad band
of the Fourier spectrum and exponential decay of the correlation function,
are rather often used in the literature on chaos, these criteria are certainly
not sufficient. Therefore other criteria have to be developed.

A criterion which has been coming into the focus of research over the
past yearsis provided by the concept of Lyapunov exponents. As numerical
solutions of the Lorenz equations or of similar equations reveal, the time
evolution of the variablesis very sensitive to initial conditions. Or, in other
words, when we change the initial condition even a little bit, in the course
of time the two trajectories will increase their distance more and more.
More precisely speaking, their distance increases exponentially with elaps-
ing time.

To cast this concept into a mathematical form we consider a general set
of nonlinear equations for a state vector g,

4=N(q). (8.13)
Then at each time t we study how a neighboring trajectory evolves by putting
q'=q+u, (8.14)

where u is assumed to be a small quantity. Inserting (8.14) into (8.13) and
linearizing the resulting equations with respect to # we obtain equations of
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the form
i=L(q(t)) u, (8.15)

where L is a matrix whose coefficients are till time dependent because they
depend onthetrajectory ¢(¢). Becauseof = q' — g, |u| measuresthe distance
between two trgjectories g and g. We expect that in the case of chaos u
behaves as

u=etn, (8.16)

where A is positive and v is a function which changes less rapidly than an
exponential function. Asit turns out, the form (8.16) is an over-simplifica-
tion, but it can be shown in mathematics that one may define a quantity
which correspondsto A in the following way:

A=limlnlt|u|. (8.17)
This thus defined A is caled Lyapunov exponent. If g spans an
n-dimensional space, there exist at maximum n different Lyapunov
exponents. If at least one of them is positive the criterion for chaos is
fulfilled provided some ™ pathological** cases are excluded. For more details
and for an entirely rigorous definition of A compare the references.

8.5. Routes to chaos

According to the interdisciplinary field of synergetics (cf. chapter 13), far
reaching analogiesin the behavior of quite different systems can be expected
irrespective of the nature of theindividual partsof asystem. These analogies
become apparent especially in situations where the qualitative macroscopic
behavior of a system changes. Within laser physics, examples for such
gualitative changes are provided by the onset of laser action with increasing
pump parameter, or by the onset of deterministic chaos. Within fluid
dynamics not only the transition to turbulence as described by the Lorenz
model is known, but both theoretical and experimental studies show that
there may be a hierarchy of different instabilities before the chaotic state
is reached.

Among the routes explored are the following:

(1) With the increase of a typical " control parameter (e.g. the pump
power of alaser), more and more oscillations at frequencies a,, w,, ... set
in. In fluid dynamics this specific route is called the Landau-Hopf picture.
It can be observed in lasers where more and more free running modes start
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laser action and no frequency locking occurs. According to the original
Landau-Hopf picture, influid dynamicstheturbulent state can be character-
ized by an infinite number of oscillations at frequencies irrational with
respect to each other. Thisidea has been abandoned dueto the experimental
results according to which after the occurrence of oscillations at two or
three frequencies chaos has been observed in fluid dynamics. In laser physics
still more free running modes have been observed, however. A technical
term should be mentioned in this context.
Provided the dimension of a vector

q=2 Cuny, -y EXPli(ny0) T30, ++ - - Fp0p) 1] (8.18)

is bigger than the number of basic frequencies w,, >, ..., the endpoints
of the vector q(t) can be represented as trajectory lying on a torus.
Therefore the Landau—Hopf picture consists in the idea that with increasing
control parameter, tori of higher and higher dimensions are formed.

(2) Another picture based on mathematical arguments on ‘“‘generic
properties" was produced by Newhouse, Ruelle and Takens. According to
this picture, after a system has reached an oscillatory state at two basic
frequencies, chaos should set in. Such a route is observed in various cases
in fluid dynamics (“motion on a two-dimensional torus™) though also
motion on three-dimensional tori was found. We do not want to bore the
reader with mathematical subtleties and therefore interpret the above men-
tioned term "generic" simply as "'typical". The reader should be warned,
however, that there are some doubts whether such term, which stems from
certain mathematical properties of systems, can be immediately applied to
concrete physical situations. Clearly a laser freely running at 4 modes with
irrational frequencies contradicts that theorem.

(3) A third route to chaos, which has become rather " popular’ now,
consists of a sequence of period doublings (fig. 8.4). According to this
picture, with increasing control parameter the period of oscillations under-
goes a doubling at specific values of that parameter. In a large class of
systems the values of the control parameter a, at which such doublings
occur obeys the law

Qppy —

lim T 5=4.6692016, (8.19)
I-00 Xy — Ap4g
where § is called the Feigenbaum number. In particular cases the sequence
of period doublings could be followed up to n=5 or 6 and then chaos is
observed. The observation of hicher numbers n is impeded by the noise
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Fig. 8.4. This figure shows trajectories calculated for the Duffing equation which represents
a harmonically driven nonlinear oscillator with linear and cubic restoring forces. The trajec-
tories are presented in the plane q,, 4, = ¢,. The driven amplitude is increased in the order:
upper left figure, upper right figure, lower left and lower right figure. At critical values of the
driver amplitude, the trajectories split and it takes double as long for a point on the trajectory
to return to its original position.

level. Though it seems that period doubling sequences are a widespread
phenomenon when nonlinear oscillations are involved, other sequences can
be also observed, for instance period triplings and also mixed sequences
between doublingsand triplings. Moregenerally, other typesof subharmonic
generation are also found. Therefore a warning should be added namely
that in spite of the great enthusiasm among physicists on the universality
of the period doubling sequence quite other kinds of subharmonic gener-
ation must also be expected and experimentalists would be misled in just
finding what they are prepared to see, namely merely period doubling.

(4) Finally we mention the phenomenon of intermittency as a possible
route to chaos. Here a typical physical quantity, e.g. the velocity field of a



198 8. Instability hierarchies of laser light

fluid, remains quiescent for a while, then a chaotic outburst occurs, then a
quiescent state reappears, etc.

(5) Finaly it may be worthwhile that for instance in chemical reactions
alternating sequences between periodic and chaotic oscillations were found
when a typical control parameter is continuously increased.

Some of the routes to chaos just mentioned could be verified in the
meantime experimentally in laser physics and the study of further routes
to chaos in laser physics offers a wide field of future research. In the
subsequent sections we shall discuss some situations where laser light chaos
can be expected or has been observed. It is beyond the scope of this present
book, however, to discuss the mathematical details of these various routes
to chaos and | refer the interested reader to my books Synergetics and
Advanced Synergetics where these problems are treated.

8.6. How to produce laser light chaos. Some theoretical models

Using the analogy between the single mode laser equations and that of the
Lorenz model of turbulence we were able to revea a possibility of creating
chaotic laser light. Aswe have seen (compare (8.11)), the cavity losses must
be particularly high. Therefore this case is referred to as the " bad cavity
case". We now wish to study other means of generating chaotic laser light.

We start from the single mode laser equations (6.1)—(6.3) making the
same simplifications as in section 6.1. For the reader's convenience we
repeat these equations,

b=(-iw—k)b—ig} a, (8.20)
a,=(—-iw~7vy)a, +ighd,, (8.21)
d, = % (do—d) +2ig(a,b*—akb). (8.22)

To remove the terms containing iw we make the substitutions
b=-exp[—iot] &(r) (8.23)
and
a, =exp[—iot] &,(1). (8.24)

Because a sum over w occurs on the r.h.s. of (8.20) it suggests itself to
introduce the whole sum as a new variable

Y a,=2(1). (8.25)
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Fig. 85. (a)—(e) Period doubling approach to chaos observed in a cw-He—Ne laser. The
sequenceiscaused by tilting of one resonator mirror away from the perfect alignment condition.
[C.O. Weiss, A. Godone and A. Olafsson, Phys. Rev. 28, 892 (1983).]
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Fig. 8.6. (a)-(c) Observation of the Ruelle-Takens sequence in a cw-He-Ne laser caused by
tilting one of the resonator mirrors. An oscillation w, (a) at frequency w, is followed by two
periodic states at frequency w,, w, (b), followed by chaos (c). [C.O. Weiss, A. Godone and
A. Olafsson, Phys. Rev. 28, 892 (1983).]
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Fig. 8.7. Time dependence of laser output as a control parameter; mirror tilting angleisvaried
from stable or oscillatory state (a) to chaotic state (€). Spectra corresponding to (a) and (€)
arealso shown, observed —9 MHzfrom the main line center. Experimental set-upisin principle
the same as in fig. 8.6. The time sequence shows in the cases (b)-(d) clearly the phenomenon
of intermittency. [C.O. Weiss, A. Godone and A. Olafsson, Phys. Rev. 28, 892 (1983).]

To obtain an equation for this new variable we have to sum up (8.21) over
the atomic index u. This leads us to introduce

Yd, =3 (8.26)
mn

as a new variable. The equation for & can be found by summing up (8.22)
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over w. Thisleads us to introduce the total. unsaturated inversion via

S do=D,. (8.27)

The thus resulting equations refer to €, # and 9. In the following in a
number of cases we shall assume that an external field is applied to the
laser. Supplementing the equations, whose derivation we have just
described, by the corresponding additional term x &.., weobtain thefollow-
ing equations:

d¥/dt = — k(€ —%..)—ig?, (8.28)
dP/dt=—yP +ig8%, (8.29)
d9/dt=y(Do— D) +2ig(PE* — P*E). (8.30)

(We leave it as an exercise to the reader to establish a connection with egs.
(8.3)-(8.5) by a choice of rescaled variables.) In the following we wish to
perform a** minimal program™ to find chaos. Because atime dependent &,
introduces a new variable, we shall try to simplify egs. (8.28)—(8.30) further.
Depending on the quantity we eliminate we are led into severa models
which we are now going to discuss:
(1) Laser chaosproduced by a modulated externa field

Assuming that

K<y <Y, (8.31)

we eliminate % adiabatically, i.e. we put d?/dt=0. From (8.29) we then
obtain

P=ig€P/y. (8.32)

Making the corresponding approximation for & in (8.30) and using (8.32)
init we readily obtain

Dy

E’Z = N eal? . (8'33]
1 +4g°|€["/ vy,
Inserting (8.33) in (8.32) we finally express # by € alone
(o7
P=ig¥ D, (8.34)

A y(1 +4g1|c(£|1",1 YY) .

Inserting this % into (8.28) wefind a closed equation for . Our procedure
we just made is related to the one we described in section 6.3 but somewhat
more rigorous because we do not rely on an expansion of % in powers of
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&. The reader is advised to study the relation between

Do
y(1+4¢° €1/ vy))

and (6.46). Asone may convince oneself by use of a potential V in analogy
to (6.49)-(6.51) for &...=0, the solution of eg. (8.35) relaxes to a time
independent constant, %'=%,. Therefore, in order to produce chaos the
external field is important. Calling the frequency of the external field w.
we introduce the quantity

(wex(_ w)/K = 5(0, (836)

which measures the detuning in units of . To perform numerical calcula-
tions it is advisable to introduce a dimensionless time 7 by

dg/dt= —k(€—%.)+8° € (8.35)

t=17/k, (8.37)
and to rescale the variables according to
&= 2(7) (yy))"? explidwr]/ (2g), (8.38)
Eexe= A7) (vy))""? explidwr]/(28). (8.39)
Using furthermore the abbreviation
2
R=E&Z (8.40)
Y
we arrive at our basic equation
¢ . R .
—=—i1dwé + —1)€+A(7). 8.41
L )&+ A0 (841)

Let us first consider the effect of an external field with constant amplitude
A(r)=a By putting the left-hand side equal to zero, we can readily deter-
mine the steady state solution % by solving the equation

—i0%.+(z.~1)& +a=0, (8.42)
where we have used the abbreviations

R
= = Sw. 8.43
zg T+ 8 =dw ( )
Then we may perform a linear stability analysis with which the reader is
by now quite familiar. This analysis reveals that the steady state becomes
always unstable provided R is sufficiently large. A dightly more detailed
analysis, which we shall not enter here, reveals that this instability causes
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an oscillation of €. but no chaos. As can be shown, in this region the electric
field is modulated, although the incident electric field has a constant ampli-
tude. In order to obtain chaos we consider a modulated external field in
the form

A(rt)=a+a'cos(2'r), a>a' =0. (8.44)

A numerical solution of eg. (8.41) indeed reveals chaos for a sufficiently
high amplitude a'. When a’=0, the system shows a limit cycle* behavior
with theangular velocity 22, = 0.2714. When a' increases, the system acquires
a quasiperiodic motion with two characteristic frequencies o’ and w,. By
increasing a' further the limit cycleis entrained by the external force A(7).
As 0,/ 0’ =0.6031=3%, the entrainment occurs at a rational frequency of 0,
i.e. 20’. Therefore, when we observe the time evolution at time intervals
27/ {2, the quintuple cycle (we will use this terminology hereafter) is seen
to be realized. This periodic state loses its stability at a’ = 0.0339 to lead to
a chaotic state. The power spectra of the periodic and the chaotic states
are shown in fig. 8.8. A broad peak is clearly seen in the chaotic state. To
prove the chaotic behavior we plot the separation distance of two initially
adjacent points. The method is the following: After alarge number of steps
when the phase point can be considered to be trapped in the attractor we
take this phase point and choose another point which is separated from
this point by a small distance. In the present case the real part of & is
chosen separated by the distance 0.00001. Then the distance, D(r), between
these two pointsis plotted in fig. 89 versus the time 7. In the quasiperiodic
state (a’=0.01) it can be seen that the two phase points remain close to
each other. In the periodic state (a'=0.03) the phase points approach one
another as the system evolves. The reason is that the periodic state appears
due to the entrainment of the phase point by the external field, and the
relative phase of the phase point to the external force A(r) becomes fixed
on the attractor. Therefore, the two phase points coincide with each other
as 7— 00, On the other hand in the chaotic state the two phase points get
more separated as time goes on. The saturation behavior appears after
7—400. This is due to the fact that the size of the strange attractor (in the
present case it is of the order one) is finite. This behavior of D(r) is quite
in line with the other examples of chaos.

Atsufficiently largea’ (= 0.15), thetimeevolution of thesystemisperiodic
with the frequency 2’. Between this completely entrained state and the
chaos mentioned above there appear various states. The bifurcation scheme

*Readers not familiar with the nomenclature such as "'limit cycles", "' strange attractors", etc.
are referred to my book: Advanced Synergetics.
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Fig. 8.8. The power spectrum of the periodic (a'=0.03, left part of figure) and the chaotic
(a’=0.036, right part of figure) states. The sharp peaks at the frequency w =0.45 in both
figures correspond to the frequency of the external modulated amplitude. The average is taken
over the sequence over the spectrum 50 times. [T. Yamada and R. Graham, Phys. Rev. Lett.
45, 1322 (1980).]

shows a window structure. For example, the system has an octuple periodic
state at a' =0.05 and a chaotic state at a' =0.07. The detailed bifurcation
scheme with the variation of a' as well as with that of ' isinteresting, but
is beyond the scope of this book.

If the set of parameters, R, a and R, is chosen such that the system is
deep inside the limit cycle region, it becomes harder to find chaos. The
reason may be that near the transition region between the steady state and
the limit cycle state the orbit of limit cycle is easily affected by the external
force, while deep inside the limit cycle region a strong modulation of A(7)
is necessary to change the limit cycle orbit and it may violate the inequality
a>a.
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Fig. 8.9. The separation distance D(7) of two initial adjacent points against time . The
logarithmic value of D(r) is plotted. The three curves correspond to the quasiperiodic
(a'=0.01), the periodic (a'=0.03), and the chaotic (a'=0.036) states. [T. Yamada and R.
Graham, Phys. Rev. Lett. 45, 1322 (1980).]

The existence of chaos studied here seems not to depend critically on the
particular approximation (the adiabatic approximation) made at the begin-
ning. Sufficiently close to the transition region between the steady state and
the limit-cycle states we can always expect to get a bifurcation scheme
leading to chaos if only we choose appropriate values of the parameters to
reach the chaoticstate. Let usnow consider asecond approachto laser chaos.

(2) Laser chaos produced by an external oscillating field with constant
amplitude, and a modulated inversion
Because the inversion &, enters eq. (8.41) via R (compare (8.40)) we put

R=Ry+ R’ cos({2't). (8.45)
Thus the model equation is provided by

d¢ Ro+R’ cos(2't)

—=—idwé +
dr 10w ( 1+|%

It has been solved numerically for specific parameter values.

In order to have a three-dimensional phase space of the system, it is
necessary that both £’ and A, in eq. (8.46) are different from zero. For
2'=0o0r A,=0, eq. (8.46) may be reduced to two equations of first order.
For R'=0, eq. (8.46) has a stationary state &.. A limit cycle appears when

- 1) €+ A, (8.46)
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Fig. 8.10. Bifurcation scheme (compare text) with R as control parameter; Q.P.=
quasiperiodic, 3-P=three-periodic, 2"-BIF=periodic doubling process. [H.J.- Scholz, T.
Yamada, H. Brand and R. Graham, Phys. Letters 82, 321 (1981).]

this stationary state becomes unstable for sufficiently large R,. Choosing
Ry=2,0=0.5, A, =04, 2'=04 and varying R', one finds the bifurcation
scheme depicted in fig. 8.10. Slightly above R'=0.16, the transition from
the three-periodic state into the chaotic one takes place via an intermittent
mechanism (see fig. 811). At R'=0.1610 one observes only a few chaotic
bursts interrupting the periodic motion. The number of chaotic bursts
increases as the parameter R' becomes greater. The chaotic regime ranges
at least up to R'=0.22 where a complicated subharmonic bifurcation
behavior is observed. With increasing R' the intermittent region is followed
by afully chaotic one. This regime has been investigated by various methods
for R'=0.18. The power spectrum of the real part of the electric field
amplitude shows broad peaks. While these calculations have been confined
to the single mode case, the results indicate that chaos may be common in

i N LA L N “‘\“ i H‘“ i

Fig.8.11. Timeevolution of thereal part of the electricfield for (a) R =0.1610, (b) R =0.1615,
(c) R"=0.1620. The intermittency is clearly visible.
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multimode lasers without external modulation. Indeed, in multimode |asers
the atomic inversion felt by each mode is internally modulated at the
difference frequency between different modes and the amplitudes of modes
provide a driving field for other modes (cf. sections 6.4 and 7.1).

8.7. Single mode laser with injected signal. Chaos, breathing, spiking

In the foregoing section we studied the effect of an injected coherent light
field. We treated cases where we could eliminate the atomic inversion and
polarization so that the laser equations could be reduced to a rather simple
equation for b (or €) alone. In this section we will drop this adiabatic
approximation and treat the full set of laser equations. The basic equations
are well known to us and read

€= —iw€-k(€-%€.,)—ig?,
P=—iaP—yP +igéd, (8.47)
D= y(DBo—D,,) +2(g*PE* — gP*¥).

We start from the full set of equations (8.47), where we assume &.,, in the
form &...=Aexp[ —iwot]. In order to remove exp[ —iw,t] from egs. (8.47)
we put

&(1)= €(1) exp[ —iwot], (8.48)
P(1) = P(1) exp[ —iwot]. (8.49)

In this way we obtain

fg=[—i(w—w0)—K]%+KA—ig97’, (8.50)
P =[~i(6 — wo) — 1P +igé9, (8.51)
D= ’y“(@o—@“)+2i(g*9~’%7*—g§/3*%), (8.52)

In order to reduce the number of parameters which can be freely chosen
and also to make the system (8.50)-(8.52) more apt for a computer calcula
tion, suitably scaled quantities must be introduced. They are defined as
follows:

C=ald,/(2T), (8.53)

where a is the unsaturated absorption coefficient per unit length, L the
length of the sample, and T the intensity transmission coefficient of the
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mirrors,
T=W, (8.54)
K=x/y=CT/%Ly, (8.55)
where £ is the total length of the ring cavity,
Y=/ (8.56)
A =(&—-w)/7, (8.57)
O =(w—wy)/ (8.58)

The control parameters are C, A, ® and ¥, and y to be defined below.

We first note that the steady state solution of (8.50)-(8.52) can be found
analytically. We scale the incident field amplitude A to the square root of
the saturation intensity and call this new quantity y. Using the same scaling
for the laser field amplitude € we denote the corresponding quantity by x.
The relation between the input and output is then given by

2C 2 2CA 2]1/2
y=|x|[(l_1+42+|x|2) +(@+1+A2+|x|2) : (8.59)

A plot of thisrelation for specific parameter valuesis givenin fig. 8.12. To

IX]
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Fig. 8.12. |x| versus y according to eg. (8.59). For C =500, A = ® =5, K =1, the segment A,
B is unstable. [L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun.
46, 64 (1983).]



210 8. Instability hierarchies of laser light

o esssoommomms bt st

Fig. 8.13. Timeevolution of the normalized emitted field |x| for C =500,A =@ =5, k=y=1
The abscissa is measured in = units. The curve shows erratic behavior. Driver amplitude
y =117.[L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 46, 64
(1983).]

describe the time dependent behavior of the system computer calculations
are necessary. In these calculations vy, = y was chosen. In the following we
shall assume resonance between the cavity mode (with frequency ) and
the frequency @ of the atomic line center, w = @. When the external field
is switched on, the output intensity begins to oscillate immediately in a
regular way with afrequency  — w, where w, isthefrequency of theincident
light. The average output intensity varies in a continuous way so that the
behavior of the system is a direct continuation of the stable lasing state in
the absence of the injected signal. With further increased A the system
begins to display an irregular self-pulsing behavior (fig. 8.13). For still
higher A the chaotic pattern is well developed (fig. 8.14). The laser field
shows outbursts in which each burst is followed by a number of rapid noisy
oscillations. A further increase of A brings the system out of the chaotic
domain through a system of period doubling bifurcations. An inverse order
on irregular self-pulsing sets in (figs. 8.15). At this point the system enters
a new regime. First the amplitude of the simple oscillation decreases con-
tinuously, upon increasing y, while, at the same time a gradual Iengthening
of the time scale heralds the appearance of a ' breathing" behavior, i.e. a
stable modulation of the self-pulsing envelope, over a narrow range of
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Fig. 8.14. The same as fig. 8.13 but for a driver amplitude y = 250. The field shows bursting.
[L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 46, 64 (1983).]
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Fig. 8.15. The same as figs. 8.13 and 8.14 but driver amplitude y =279. The field exhibits a
period 4 behavior.[L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun.

46, 64 (1983).]
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Fig. 8.16. Time evolution of the normalized emitted field |x| with the same parameters as in
fig. 8.13. For y =310.3 the system displays a marked modulation of the self-pulsing envelop.
[L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 46, 64 (1983).]

values of y. The time scale of the breathing pattern is about 50 times longer
than that of simple oscillations. Larger values of the injected field bring
about a dramatic increase of the breathing pattern (*'heavy breathing™, fig.
8.16) and eventually lead to a " spiking" regime (fig. 8.17) in which very
narrow spikes arefollowed by long periods of lethargy. Normally, the spikes
have varying peak heights and their temporal separation grows as y
approaches the turning point of the state equation (8.59). Finally, wheny is
made larger than y,,., the system quickly approaches a steady state (injection
locking) in the upper branch

If the parameters are chosen in such a way that the injection locking
threshold lies beyond the turning point, breathing and spiking have not
been seen. Oneseesinstead agradual reduction of the self-pulsingamplitude
which, eventually, vanishes at the injection threshold. (The period of self-
pulsing is about 0.3 unit of = in this case.)
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Fig.8.17. The sameasfig. 8.16 but with y = 311. The field exhibits spiking action [L.A.Lugiato,
L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 46, 64 (1983).]

As we have outlined in section 8.4, a criterion for the existence of a
strange attractor is given by the exponential divergence of irregular trajec-
tories whose starting points in phase space are arbitrarily close to each
other. Such an exponential divergence isindeed found in the chaotic laser
regimes.

The chaotic behavior is independent of the Lorenz model, because for
y =0, the stationary state of the laser is stable for our chosen parameters.
On the other hand, one may select control parameters that lie within the
Lorenz instability domain (this is defined by the condition (1+« +%¥)
(k+2C)<2k(2C-1)). In this case, one observes large amplitude self-
pulsing with evidence of irregular behavior even for small values of the
injected field amplitude. Furthermore, unlike the previous case, there
appears to be no period doubling cascade upon emerging from the chaotic
domain; one finds instead an intermittent behavior of the type shown in
fig. 8.14. If y isincreased further, one arrives at simple oscillations followed
by nearly the same sequence discussed in the previous case (i.e. breathing
and spiking).

The value C=500 is not very interesting from a practical viewpoint,
butitisconsidered here becauseit presents arich phenomenology. However,
one finds nearly the same sequence of solutions as shown in figs. 8.13-8.15
for values of C as small as 20, which are, in fact, accessible to high gain
lasers. (Breathing, on the other hand, seems to be absent in resonance
{(wa=w.), or hard to find.)
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In general, in order to obtain chaotic behavior from the present model,
the rates « and y must be kept of the same order of magnitude; this is
unlike the Lorenz model (y =0) where one must insist on k > y+1v,. In
addition, chaotic patterns are seen to persist even if y and vy, are quite
different from one another.



Chapter 9

Optical Bigtability

9.1. Survey

The phenomenon of optical bistability can be used in various ways in
promising optical devices. Therefore we shall explain this phenomenon and
its theoretical treatment in some detail. Let us consider the experimental
set-up described in fig. 9.1. An incident coherent light field produced by a
laser impinges on amirror whereit is partly reflected and partly transmitted.
Then it may propagate in the form of a wave E; further within a medium
until it hits a second mirror. There it is partly reflected (E,) and partly
transmitted. We are interested in the way the transmitted light field Er
depends on the incident light field E;. In the following we shall assume that
the Fabry—Perot resonator of fig. 9.1 istuned or nearly tuned to the incident
light. When the cavity is empty, the transmitted power Ir is proportional
to the incident power I; and the proportionality constant depends on the
detuning and finesse of the cavity. Qualitatively new phenomena may occur
when the cavity is filled with material resonant or nearly resonant with the
incident field. In contrast to the usual laser case where the material in the
cavity is incoherently pumped from the outside, we are considering here a
material which is in its ground state if no coherent field E; is present.

E Ex E,

\ﬂ'\EdiUm
mirrors

Fig. 9.1. Scheme of experimental set-up (compare text).
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Thereforethe material will absorb theimpinging light. However, this absorp-
tion may depend in a nonlinear fashion on the incident light field because
saturation effects occur. Therefore E+ becomes a nonlinear function of E;.
Aswe shall see below, the behavior of the system is determined by the ratio
of the absorption parameter «L and the mirror transmissivity T, where a
is the unsaturated absorption coefficient per unit length on resonance and
L the length of the sample.

Let us discuss what happens when we increase the ratio aL/ T (compare
fig. 9.2), where we plot the transmitted intensity versus the incident intensity.
As one recognizes, the slope may become greater than unity or, in other
words, the differential gain dI./d I, becomes larger than unity. If under this
condition one slowly modulates the incident intensity, the modulation is
transferred to the transmitted field via the nonlinear relation I+ = I(I,) and
turns out to be amplified. Thus the system works as an optical transistor.
If one further increases the ratio aL/ T, the steady state curve I, = I(I;)
becomes S-shaped. While the segments with positive slope are stable, the
segment with negative slope is unstable. Hence there is a certain range of
values of I; where the system is bistable. If we slowly sweep the incident
power from 0 to a value beyond the bistable region and then sweep it back,
we obtain a hysteresis cycle with a low and a high transmission branch.
This bistable behavior arises from the interplay of the nonlinearities of the
atom-field interaction with the feed-back of the mirrors and will be the
main subject of our further study. The threshold value of «L/ T for which
oneyields bistability dependson several parametersasthe cavity mistuning,

increasing %_L

Fig.9.2. Transmitted intensity I+ versusinput intensity I; for various parameter valuesof oL/ T.
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the atomic detuning, the inhomogeneous line-width, etc. When the incident
field isin perfect resonance with the atomic line, dispersion does not play
any role so that one speaks of purely absorptive bistability. In the general
case we have to deal with absorptive and dispersive bistability. When the
atomic detuning is so large that absorption becomes negligible one speaks
of purely dispersive bistability. Besides the just described all-optical (or
intrinsic) bistable systems also hybrid electro-optical systems have been
devised in many variants. A typical device of this type is obtained by
replacing the absorber by an electro-optical crystal which is monitored by
the output field and produces changes in refractive index proportional to
the output power. From these remarks it transpires that these systems have
a great potential as devices. They can work as optical transistors, memory
elements, pulse shapers which eliminate the noisy part of the input light,
clippers, discriminators, liminators. In addition to what we shall show
below, this system can work as converter of cw-light into pulses in close
analogy to the pulses we studied in sections 7.4-7.6. Chaotic states were
aso found.

9.2. A specific model

In order to make our presentation as transparent as possible we shall focus
our attention on a specific model though occasionally we shall deal with
some more general cases. In the first step of our analysis we replace the
arrangement of fig. 9.1 by one which is seemingly more complicated but
which allows a simpler theoretical description. Because the response of the
medium in the cavity is nonlinear, the interference between the field E;
running in the right direction and of field E, running in the left direction
produces nonlinear interference effects which we want to avoid in the
theoretical treatment. To this end we consider a device which deals with
waves running in one direction only (for details consult fig. 9.3). We adopt
a specificmodel to treat the response of the nonlinear medium. To this end
we consider two-level atoms with homogeneous broadening. Furthermore
we shall assume that the waves can be described as plane waves.

We adopt the slowly varying amplitude approximation and the rotating
wave approximation. The field propagating in the medium is decomposed
as usual into its positive and negative frequency parts E‘* and E‘”. The
equations for the slowly varying amplitudes ES" and P§" of the field E
and polarization P‘*, respectively, were derived in section 5.7: (5.102),
(5.103), (5.105). We start from these equations, which we write down again
for the reader's convenience. To simplify the notation, we drop the index
“0” so that E and P are now the slowly varying amplitudes alone.
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Fig. 9.3. Experimental set-up assumed in the model calculations; 1 and 2 are semi-transparent
mirrors, 3 and 4 fully reflecting mirrors; V denotes the medium. [L.A. Lugiato, Theory of
Optical Bistability, in: Progress in Optics, Vol. XXl , ed. E. Wolf, p. 71. North-Holland,
Amsterdam 1984.1

We further assume that all vectors are pointing in the same direction and
are Lz The field equations read:
( -
oE +)+ GET i@ oo

=—0P .
at ¢ 0z 280 (9 1)

The response of the medium to thefield isdescribed by the matter equations

aP(+) 1
= [~ i(3-w) = YIP“ +—E[9F'D, ©2)
and
oD 2 o
—(')7= vyN(DO_D)___i;l(E(ﬂP( )_E( )P(+)). (93)

We include a detuning between the frequency of the atomic transition, 6,
and the frequency of the incident light, w, (= in our previous notation).
Due to the boundary conditions at mirror 1 this frequency will then be
taken over by the oscillation of thefield and polarization within the medium.
In contrast to the laser case where D, was positive we assume here no
pumping so that

Do=-N/V (N total number of atoms). (9.4)
We remind the reader that D is the inversion density
D=(N,—N)/ V. (9.5)
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In order to fix the problem entirely we have to add boundary conditions.
Assuming that the distance between the end of the cavity and mirror 2 can
be neglected the boundary condition reads

E(t)=VT E(L, ¢). (9.6)

T isthe transmissivity of the mirror. The corresponding boundary condition
at mirror 1 reads (where the reflectivity R=T-1)

E(0, 1) =T E;+R exp[—i8,] E(L, t — At). (9.7)

Here we take into account that the field E(L, t) isreinjected into the cavity.
Relations (9.6) and (9.7) can be easily transformed into identical ones for
E(+)

Evidently the second term supplies a feed-back. In it R isthe reflectivity
of the mirror, 8, a phase shift given by

W™ Wo
60_

T2

and At the time lag given by the time of flight of the light between mirrors
2 and 1 via mirrors 3 and 4 so that

At=(21+L)/C. (9.9)

9.8)

w,. is afrequency of the cavity mode closest to resonance with the incident
field and

F=2(L+)). (9.10)
9.3. Steady date behavior of the modd of section 9.2
The steady state is characterized by

aE(+)
=0. A1
o (9.11)

One can immediately convince oneself that P‘*’ and D can then be chosen
also time independent. Quite in analogy to our procedure in the case of a
single mode laser we may express the polarization and the inversion density
by E and E‘™ (cf. section 6.2). Inserting this result as well as (9.11) into
(9.1) we readily find an equation of the general form

dE(+)

——=—x|EPE™, (9.12)
dz
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where y is explicitly given by

E(+)2 -1
)(=a(1—iA)(l+A2+|T|) . (9.13)

s

From electrodynamics we know the significance of y. It is nothing but the
complex dielectric susceptibility

X = Xa+iXa. (9.14)

where x, and x, are the absorptive and dispersive components, respectively.
The quantities in (9.13) are defined as follows. A represents the detuning
between the incident light with frequency , (= @) and theatomictransition
frequency @ measured in units of vy,

A = (@ -wo)/y. (9.15)
I, is the saturation intensity defined by

— hz)")’n
4|9

1, (9.16)

When we specialize (9.13) taking A=0 and E‘* very small we find
x=aE™. (9.17)

From this jointly with (9.14) it transpires that a has the meaning of the
absorption constant. Within our specific model (9.1)-(9.3) it can beexplicitly
calculated and reads

__o8P

-——1 N 9.18
* 2e0h Vey ( )

In order to explore the physical meaning of our results we specialize them
to the case of perfect resonance between incident light, atoms, and the
cavity. We further introduce the normalized dimensionless electric field F
by putting

E(+) E™
_ET_2P9lET (9.19)
\/IS h«/yy”
Then (9.12) acquires the explicit form
dF F
o 9.20
dz . “1+F” (9:20)

where we have assumed that the field is real. We normalize the incident
and transmitted amplitudes in a fashion analogous to (9.19) so that we
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introduce the corresponding quantities y, X by

Ei"

y= , (9.21)
JI.T
E{

= . (9.22)
JI.T

In this way our original equations for the boundary conditions (9.6) and
(9.7) acquire the form

x=F(L), (9.23)

F(0)= Ty +Rx. (9.24)

It is a simple matter to solve the first order differential equation (9.20) and
to express F as a function of z We readily obtain

In (F—)(CO—)) +3[F*(0) —x*]= aL. (9.25)

When we combine (9.23), (9.24) and (9.25) wefind an exact relation between
the transmitted field X and the incident field y,

ST I R

As can be seen, this equation depends on two parameters, «L and T. The
meaning of eg. (9.26) can be understood by a graphical representation as
is shown in fig. 9.4. The steady state values of X are the intersections of the
straight line (9.24) with the curve (9.25). The first one is the boundary
condition of the cavity. The second is the transfer function of the medium
which expressesthe field at z =0 as a function of thefield at z= L and vice
versa. It has neither maxima nor minima but it has an inflection point. The
angular coefficient R. of the tangent at the inflection point is such that
0< R <. R .dependsonly on aL. For R < R_thereisonly oneintersection
point for al values of y. For R> R, there is a range of values of y in
correspondence of which one finds three intersection points x, < x, < x..
Points x, and x. turn out to be stable while point x, is unstable. Thus we
are dealing here with the bistable situation. If we plot the steady state
solutions x as a function of the incident field y we obtain an S-shaped
curve (fig. 9.5) which gives rise to a hysteresis cycle. From this analysis it
transpires that bistability arises from the combined action of the nonlinear
transfer of the medium (eq. (9.25)) and of the feed-back from the mirrors
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Fig. 9.4. Qualitative graph of the normalized field F(0) at z=0 as a function of the field
F(L)=x at z=L (transfer function of the atomic medium at steady state). For R =0 one has
F(0)=y.x andy are proportional tothetransmitted and incident fields E+ and E,, respectively.
For a generic R, the function x = x(y) is obtained by intersecting the curve with the straight
line F(0)=RF(L)+ Ty.[L.A. Lugiato, Theory of Optical Bistability, in: Progress in Optics,
Vol. XXI, ed. E. Walf, p. 71. North-Holland, Amsterdam 1984.1
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Fig. 9.5. Plot of transmitted light versus incident light at steady state for C=alL/2T fixed
equal to 10 and different valuesof aL and T. For «L - 0 one approaches the behavior predicted
by the mean field theory. (a) aL=20, T=1; (b) aL =10, T=0,5; (c) aL=2, T =0, 1; (d)
mean field, C =10. [L.A. Lugiato, Theory of Optical Bistability, in: Progress in Optics, Val.
XXI, ed. E. Wolf, p. 71. North-Holland, Amsterdam 1984.]
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(eg. (9.24)). Thisfeed-back action is essential because as one sees from figs.
9.4 and 9.5 there is no bistability for R =0.

9.4. The general case of an arbitrary susceptibility

We now wish to derive a general equation for the transmissivity of the
cavity. This quantity is defined as the ratio of the transmitted intensity and
the incident intensity, i.e.

I =I/1,. (9.27)
We define these intensities by

l,=E{), (9.28)

Ir=|E&R (9.29)

We consider the general case also with respect to the field. Because we now
admit that it is complex we write

E™(1)=p(z) explig(z)] (9.30)
and obtain by inserting it into (9.12)

d

L=—x.(p7p, (9.31)

dz

d

=2 _Xd(Pz)- (9:32)

dz
By use of (9.6) and (9.7) we readily obtain for the transmissivity (9.27)

2
g = T (9.33)

(n— R)*4Rn sin® {3{e(L) —¢(0) - 8]}’
where we have used the abbreviation

n=p(0)/p(L), (9.34)
where
n=l. (9.35)

Let us now consider some specia cases. If the cavity is empty so that
Xa=Xa=0, we have n=1 and p(L)=p(0). (9.33) reduces to
|

T = 9.36
1+4R sin® 38,/ T?) (9:36)




224 9. Optical bistability

which represents the usual expression of the transmissivity as a function of
the cavity detuning &,

In the special case of two-level atoms which we have been considering
in the model treated above, (9.33) can be cast into a slightly more explicit
form. To this end we introduce normalized incident and transmitted
intensities by

yo U (9.37)
and
X =|F(Lf ==, 9.38)

respectively, where I was defined above (9.16). From egs. (9.31) and (9.32)
with (9.6), (9.7), (9.13), (9.14) and (9.19) we obtain

X:

o [aL—(1+4% In 7], (9.39)

and

o(L)—e(0)=A1nn. (9.40)

By solving eq. (9.39) with respect to n one obtains the function n = n(X).
Hence by inserting (9.39) into (9.33) one finds the expression of the trans-
missivity as a function of the normalized transmitted intensity:

g2 T (2.41)

Y [n(X)=RP+4Rn(x) sin’B3B(A In n(X) =81 '

Therefore in this case the shape of the function J(X) is governed by the
dependence of n on X. In particular, for large X, n approaches unity so
that the transmissivity becomes constant and equal to the empty cavity value
(9.36). When dispersion is dominant, under suitable conditions one or few
resonances survive. The possibility of multistability (fig. 9.6) depends on
the number of oscillations that the function

sin[3(4 In n(X) - 8,)]

undergoes. As one sees from eqg. (9.39), n is a monotonically decreasing
function of X which variesfrom 1to exp[aL/(1+4%)]. Hence the quantity
A In 7 — 8, varies from =8, to aLA/(1 +A?) - 6,. Therefore the number of
oscillations of the sine function is determined by the parameter aLA/(1+
A%).
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Fig. 9.6. Optical multistability, x=vX is the normalized transmitted field. In al curves
C =900, A=5 0 =0,05. Curve a corresponds to the case of homogeneous broadening
(T¥=o): curve b, yT§¥=1; curve ¢, yT§=05. Clearly, multistability disappears with
increased inhomogeneous broadening.

Eq. (9.41) can be rephrased as follows
Y = X(n)75{(n ~ R +4Rn sin’ [3(4 In 7~ 8]} (9.42)

Egs. (9.39) and (9.42) together give a parametric representation X = X(7),
Y = Y(n) of the function X(Y) of transmitted versus incident intensity.

The stationary solution in the " mean field limit"
From now on, we consider exclusively the case of atwo-level atomic system.
In general, the susceptibility has the structure

x(EP)=ax(|FI*), (9.43)

where a and F are defined in (9.18) and (9.19), respectively. Therefore the
steady state solution becomes particularly simplein the case aL < 1, because
asone seesfrom egs. (9.31) and (9.32) the field becomes practically uniform
in space. More precisely, we shall perform the multiple limit

al-0, T-0, 8,-0, (9.44)
with
C=alL/(2T), constant,

6 .
@=—% L0 ongtant,
T T/&
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It is easy to derive the steady state solution in the limit (9.44). In fact, from
(9.31), (9.32) and (9.35), (9.44) we have to first order in aL

n=1+aL ,(F(L)P)=1+aL %,(X),

@(L)—¢(0) = aL x4(X). (9.45)
By inserting (9.45) into (9.33) we obtain in the limit (9.44)

={[1+2Cx.(X)P+[0 —2CRa(X)T} (9.46)

and because 9 = X/ Y we have

Y = X{[1+2C x.(X)P+[0 -2C xo( X)T}. (9.47)

The limit (9.44) is called ""mean field limit" in the literature on optical
bistability. For a homogeneously broadened system, from (9.13) we have

2V 2CA 2]
Y=X|{1+—F—) +l0-———]) |. :
[(1 1+AZ+X> (@ 1+AZ+X) (9.48)

Inthe particular case A = ® =0, (9.48) can be written in terms of amplitudes
instead of intensities as follows:

2Cx
1+x%

y=x+ (9.49)
Egs. (9.48) and (9.49) can also berecovered directly from the exact solutions
(9.39), (9.42) and (9.26), respectively, by performing the limit (9.44). Let
us briefly comment on the physical meaning of thelimit (9.44). First, aL -0
(i.e. @ » 0) isthe weak coupling limit in the interaction between the electric
field and the atoms. However, if we only let «L -0 but keep T finite, C
vanishes and therefore we obtain the empty cavity solution Y = X (I +©?).
On the contrary, if we also let T 0, the parameter C is arbitrary and we
obtain the nonlinear termsin eg. (9.47), which produce all the interesting
phenomena. The physical meaning of thelimit T - 0 isthat the mean lifetiime
aZ/cT of the photons in the cavity becomes infinite so that the photons
can experience the interaction with the atoms even when this becomes
vanishingly small. Finally the limit

W, _ Wy

On =
°T ¢/ ¥

>0, 0= T/;U’ finite

means that the cavity detuning must be smaller than the free spectral range,
but on the same order of magnitude of the cavity line-width k, given by

k=cT/&Z. (9.50)



§9.4. The general case of an arbitrary susceptibility 227

40

al
204

U T T T > Y

20 40

‘;y

40
Fig. 9.7. Plot of the transmitted amplitude x =+ X as a function of the incident amplitude y
in the homogeneously broadened case. In both figs. (a) and (b) curves a, b, c, d show the
exact stationary solution (egs. (9.39) and (9.42)), curve e is the mean field result. (a) C =50,
A=0=0; (b) C=50, A=10, ®=2.25. For curves a, «L =100, T=1; for curves b, oL =50,
T=0,5;for curvesc, «L =20, T=0,2; for curvesd, «L =10, T=0, |. [L.A. Lugiato, Theory
of Optical Bistability, in: Progress in Optics, Vol. XXl , ed. E. Wolf, p. 71. North-Holland,
Amsterdam 1984.1

Fig. 9.7 shows how the curve (9.48) is approached in the limit (9.44). The
part of the curves with negative slopeisunstableso that onefinds a hysteresis
cycle. Curve e in fig. 9.7a is obtained from (9.48) for C=50, A=0=0
(purely absorptive case); curve e in fig. 9.7b comes from (9.48) for C =50,
A =10, ® =2.25 (dispersive case). In both figures 9.7a and 9.7b the curves
a, b, ¢, d show the exact solution (9.39) and (9.42) for different values
of aL and of the transmissivity, chosen in such away that C=«L/(2T) is
constant equal to 50. For large values of aL and T, asin curve a, there is
no bistability, whereas the bistable behavior increases by decreasing aL
and T. In this way one approaches the mean field result (9.48) which is
already a good approximation for aL=1. For C and T fixed, the mean
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field curve is a better approximation in the dispersive case (fig. 9.7b) than
in the absorptive one (fig. 9.7a). This is due to the fact that absorption is
reduced in the dispersive case so that the variation of the field in space is
not strong even for oL large.

In the following two subsections we shall analyze the mean field state
equation (9.48), which expresses the incident intensity as a function of the
transmitted intensity. It depends on three parameters, the cooperativity
parameter C, the atomic detuning A and the cavity mistuning ©. In compar-
ing (9.48) with experimental data, the definition (9.44) of C must be changed
into

C=all/2m, (9.51)

where J is the effective finesse of the cavity. A general property of eq. (9.48)
is that, contrary to (9.39) and (9.42), it can never produce multistability,
but at most it can lead to bistability.

Bistability condition in the resonant case (mean field limit)

Thefield internal to the cavity isin general quite different from the incident
field, becausethereisareaction field, co-operatively produced by the atoms,
which counteracts the incident one.

Inthe purely absorptive, resonant case A = ® =0, the steady state behavior
is described by (9.49). The nonlinear term 2Cx/(1 +x?) arises from the
reaction field and hence from atomic co-operation, which is measured by
the parameter C. For very large x, (9.49) reduces to the empty cavity solution
X =y (i.e. Er=E;). The atomic system is saturated so that the medium is
bleached. In this situation each atom interacts with the incident field as if
the other atoms were not there; this is the nonco-operative situation, and
in fact the quantum statistical treatment showsthat atom-atom correlations
arenegligible. On theother hand, for small x, (9.49) reducestoy = (2C +1)x.
Here the linearity arises simply from the fact that for small external field
the response of the system is linear. In this situation the atomic system-is
unsaturated, for large C the atomic cooperation is dominant and one has
strong atom-atom correlations. The curves y(x) obtained by varying C are
analogousto theVan der Waals curvesfor theliquid-vapor phasetransition,
with y, x and C playing the role of pressure, volume and temperature,
respectively. For C <4, y is a monotonic function of x so that one has no
bistability (fig. 9.8). However, in part of the curve the differential gain dx/dy
islarger than unity sothat in thissituation one hasthe possibility of transistor
operation. Infact, if theincident intensity is adiabatically modulated around
a value of I, such that dIy/dl,=(x/y)dx/dy> 1, the modulation is
amplified in the transmitted light.
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Fig. 9.8. Plot of the mean field state equation (9.49) for purely absorptive bistability with
0 =0, for different values of the bistability parameter C.[L.A. Lugiato, Theory of Optical

Bistability, in: Progress in Optics, Vol. XXI, ed. E. Wolf, p. 71. North-Holland, Amsterdam
1984.1

For C =4 (critical curve) thegraph hasan inflection point with horizontal
tangent. Finally for C > 4 the curve develops a maximum and a minimum,
which for C > 1 correspond to

(xmu=1,ym=C) and (x,=v2C,y,=v8C).

Hence for y,, <y < yy one finds three stationary solutions x, < x, <X, AS
a more detailed analysis reveals, solutions x, on the part of the curve with
negative slope are unstable. Therefore we have a bistable situation and by
exchanging the axes x and y we immediately obtain the hysteresis cycle of
transmitted versus incident light. Since atomic co-operation is dominant in
the states x, and negligible in the states x, we shall call x, " co-operative
stationary state” and X, "one-atom stationary state', according to the
literature.

Bistability conditions in the general case (mean jield limit)

Let us now consider eg. (9.48) for general values of A and O. We assume
that A 0> 0 because for A 0<0it is more difficultto obtain bistability. For
definiteness, we take A, O=0; however, the situation is symmetrical with
respect to a simultaneous sign change in A and O. The function Y(X)
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defined by (9.48) has always a single inflection point at
2C—-A0 +1

inf = 2+1). 9.52
inf C+A@—1 (A 1) ( 5 )
In order to have bistability the conditions are
dYy
Xin >0, D <0 953
‘ dx Xint ( )

The first condition guarantees that the inflection point iswithin the physical
region X >0, while the second one identifies the values of the parameters
for which the curve Y{(X) has a maximum and a minimum. For 40 >0
the first of conditions (9.53) reads

2C> A0 1. (9.54)

The second condition gives
(2C—A40 +1)(C +440-4)>27C(A +O)°. (9.55)

The analysis of (9.55) and (9.54) leads to conclude that:

(1) Bistahility isimpossible for C < 4.

(2) For afixed value of C> 4, the largest hysteresis cycle is obtained for
A =0 =0 and bistability exists only in a finite domain of the plane{A, 0}
around the origin.

(3) If we keep C and A fixed and C satisfies condition (9.55) for @ =0,
by increasing O the size of the hysteresis cycle increases until it reaches a
maximum and then decreases. Finally the cycle vanishesin correspondence
to a value of ® smaller than (2Ct1)/ A (see (9.54)).

(4) If we keep C>4fixed and increase A and ® simultaneously from zero
with the ratio A/ © kept fixed, the hysteresis cycle of the curve X (Y) shifts
to the left and decreases in size, until it disappears.

Therefore in homogeneously broadened, two-level systems when absorp-
tive bistability for ® =0 is not possible also dispersive bistability for general
values of A and @ is impossible. This is no longer true in the case of
inhomogeneously broadened systems (T3 <o). For fixed A, ® and
inhomogeneous relaxation time T one obtains bistability provided C is
larger than a suitable value C;, which depends on A, @ and T%. Cpi,
increases rapidly with (T%)™'. The important point is that for (yT%) ' «1
one finds values of C such that the system is not bistable for A = ® =0 but
becomes bistable for A and ©® large enough. In other words, for these values
of T# and C one does not find absorptive bistability, but only dispersive
bistability.
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So far we have only considered hysteresis cycles obtained by varying the
incident field intensity and keeping the parameters C, A and O fixed. Of
course, one can aso consider cycles obtained by keeping Y fixed and
varying C, or A, or &, or some of these parameters simultaneously. E.g.,
one can perform an experiment in which one adiabatically sweeps the
incident field frequency, thereby varying A and @ together.

Absorptive versus dispersive bistability

As we said, we have purely absorptive optical bistability when the atomic
detuning A vanishes. Qn the other hand, we have purely dispersive optical
bistability when A is so large that the absorptive part of the nonlinear
susceptibility is negligible, hence the state equation (9.47) reduces to

Y = X{1+[0 = 2Ci4(X)P}. (9.56)

In the case of a homogeneously broadened, two-level system (9.56) is a
good approximation of (9.47) when

A’>1, AO>1, A 0. (9.57)
Moreover if also the condition

2C

——1l< .

10 1 (9.58)
is satisfied, (9.56) reduces in turn to the relation

2
Y=X[1+<@—%+%§X) ] (9.59)

Eq. (9.59) isa particular example of the " cubic model™ of purely dispersive
optical bistability

Y=X[l +(B-AX), (9.60)

which gives bistability for B>3. Eqg. (9.60) describes optical bistability in
several materials, e.g. in a Kerr medium in a certain limit.

Let us now describe the physical mechanisms that give rise to hysteresis
in absorptive and dispersive optical histability. In the absorptive case, let
us consider for simplicity the resonant situation @ =0. In the cooperative
(i.e. lower transmission) branch the transmission is small because the
presence of the saturable absorber drastically decreases the quality factor
Q of the cavity. Most of the incident light is reflected from the cavity.
Increasing the incident field, the absorber begins to saturate, which allows
Qtoincrease. Thisin turn increases the internal field which again increases
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the saturation and so on, until the absorber is bleached so that I1+=I;. On
the other hand, when the system isin the one-atom (i.e. higher transmission)
branch and theincident intensity is decreased, the field internal to the cavity
is already strong enough to maintain the absorber saturated and therefore
the transmitted light switches ""off'* at an incident power lower than that
necessary to switch "on', thereby producing hysteresis.

In the case of purely dispersive optical bistability the mechanism is quite
different. In the empty cavity, the transmission is low because the empty
cavity frequency . is detuned from the incident frequency w,. If the atomic
and cavity detuning have the same sign, by increasing the incident field the
nonlinear refractive index changes the effective optical length of the cavity
towards resonance. This in turn increases the internal field which further
drives the effective cavity frequency w!=w.— kx4(X) towards the incident
field frequency and so on, until resonance is reached so that Ir=1,.0n
the other hand, when the system is in the higher transmission branch and
theincident intensity is decreased, theinternal field is already strong enough
to maintain resonance, which again produces hysteresis.

In order to complete the discussion of the steady state behavior, let us
illustrate the relative advantage of absorptive and dispersive optical bistabil-
ity. First of all, it isclear that dispersive optical bistability is" easier” mainly
for two reasons:

(a) it does not require saturation of the medium as it appears from the
cubic model (9.60);

(b) in absorptive optical bistability the resonance condition between the
incident field and the atoms cannot be easily maintained for a time long
enough to alow the system to reach steady state, due to the jitter of the
laser frequency.

As we have seen in the previous section, in the case of homogeneous
broadening absorptive optical bistability has the advantage of exhibiting
the largest hysteresis cycle for fixed C, when A = ® =0. However, this is
no longer truein the case of inhomogeneous broadening. Furthermore, even
in the case of homogeneous broadening the switching from the low trans-
mission to the high transmission branch occursfor lower values of the input
field when A and O are different from zero. Thisis an important advantage,
also because the presence of afieldtoointensein the absorber might produce
undesirable effects, e.g. excessive heating of the medium.

On the other hand, from the viewpoint of theory and hence of the
comparison between experiment and theory, absorptive optical bistability
with ® =0 is certainly much easier to deal with, becausein egs. (9.1)-(9.3)
all the fields can be assumed real. This is the reason why most theoretical
papers treat the absorptive case.
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9.5. Concluding remarkson chapter 9

In this section | have tried to give a short outline of some basic ideas on
optical bistability, closely following the first part of an article by Lugiato.
Especially in the limit (9.44) a number of further phenomena could be
studied in the literature. Using the decomposition of the field E into cavity
modes, equations strongly reminiscent of the multimode laser equations
of thesemiclassical theory have been established. Their exact or approximate
solution allows one to study relaxation phenomena. In particular, qualita-
tively new phenomena could be found such asthe onset of pulses and chaos
under constant incident intensity. Also a detailed quantum theoretical
treatment of these phenomena is available. But an inclusion of these
phenomenaisbeyond the scope of our book. It may be worthwhile, however,
pointing out that the methods used in these treatments are either identical
with the methods we have presented here with respect to the laser or can
be considered as certain useful extensions, such as the " dressed mode™
approach of Lugiato and Benza. For further details of the above mentioned
results, we refer the reader to the references, in particular to Lugiato's article.



Chapter 10

Quantum Theory of the Laser |

A firg approach via quantum mechanical Langevin equations.
Coherence, noise, photon statistics

10.1. Why quantum theory of the laser?

The semiclassical theory of the laser which we presented in the preceding
chapters enabled us to explain or even to predict many properties of laser
light. According tothesestudies, laser action setsin above acertain threshold
of the pump, whereas below that threshold no emission occurs at all. But
thislatter finding is highly unsatisfactory, because even below laser threshold
light emission happens - namely the light emission by usual lamps. An
adequate laser theory must be able to describe the transition from the light
of usual lamps to laser light and it should contain light emission by usual
lamps as a specia case. Thus quite evidently, we must have left out an
important aspect of laser theory. In order to elucidate the problem we
consider the emission of light from usual light sources more closely.

As we know (cf. for example Val. 1) light is spontaneously emitted by
excited atoms. This spontaneous emission cannot be dealt with in the frame
of a theory which treats the light field classically. We have met this fact
already in the first volume when we calculated the Einstein coefficients of
absorption and emission. There we could derive the corresponding
coefficients of absorption and stimulated emission but not those of spon-
taneous emission. As we have shown in Vol. 1, spontaneous emission can
be treated adequately only when we quantize the light field. In that volume
we have also seen that the damping of a classical or quantum mechanical
quantity is always accompanied by a corresponding fluctuation. For
example, thelight field in the resonator is damped due to the transmissivity
of the mirrors. According to our studies in Vol. 1 we have to expect
fluctuations of the light field amplitude. Both the fluctuations produced by
spontaneous emission as well as those accompanying cavity losses are not
contained in the semiclassical laser equations. We shall see that a fully
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guantum mechanical description of a laser becomes necessary when we
wish to understand the difference between a laser and a conventional lamp.
As we shall see, laser light fluctuations cannot be neglected but decisively
determinethe detailed coherence properties of laser light. When we consider
the properties of laser light not so much from the point of view of optics
but rather from that of electronics we will speak of noise properties rather
than of coherence properties.

Finally, when we consider laser light as composed of photons we are led
to study photon statistics. A fully quantum theoretical treatment of the laser
is not only important with respect to the properties of laser light, its
coherence, noise, and photon statistics but it is also of a fundamental
importance for laser theory. Namely such a treatment will allow usto derive
the laser equations from first principles.

Since the rigorous quantum theory of laser light is rather involved we
shall proceed in two steps. In this chapter we shall deal with quantum
mechanical Langevin equations. This will alow us to present the most
interesting and important properties of laser light, namely its coherence,
noise and photon statistics in a way which can fairly easily be understood
and which immediately allows a comparison with experimental results.
Then in chapter 11 we shall develop a second approach to the quantum
theory of laser light, this time based on the density matrix equation. The
density matrix equation will be transformed into a generalized Fokker-
Planck equation which then will be reduced, under suitable conditions, to
the one we shall use directly in section 10.5. Readers, who are not so much
interested in the details of these quantum mechanical derivation, can skip
chapter 11. For readers, who are not so familiar with quantum theory,
especialy that dealing with quantized fields, we give an important hint. As
the reader will soon find out when reading the following sections, the basic
quantum mechanical laser equations are strongly reminiscent of the semi-
classical laser equations. Indeed, the quantum mechanical laser equations
look the same as the semiclassical laser equations with the exception of an
additional term which represents fluctuating forces. Though the correspond-
ing equations are " operator equations” their physical meaning can still be
grasped at a classical level.

10.2. The laser Hamiltonian

I'n this section we shall derive the quantum mechanical laser equations from
first principles. To this end we consider the laser system more closely. First
of al the laser consists of a material containing the laser active atoms (or
other quantum systems). We know that there may be a field in the cavity.
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Furthermore we know that the atoms and the field interact with each other.
In a quantum mechanical formulation one usually starts with writing down
a Hamiltonian which in a classical interpretation has the meaning of an
energy. In a quantum mechanical treatment the Hamiltonian becomes the
Hamilton operator. We shall write down the explicit form of the Hamilton
operators below but first we introduce the following abbreviations. The
Hamiltonian operator of the field will be denoted by Hy, that of the atoms
by H,, and that describing the interaction field-atoms by Har. A treatment
of the laser with these Hamiltoniansis, however, quite insufficient. Namely,
thefield is coupled to the mirrors which will cause damping and fluctuations
of the field. We shall describe the mirrors or other systems to which the
field (with the exception of the laser atoms) is coupled by a heatbath (or
"reservoir').

Similarly the atoms are coupled to heatbaths. They are pumped from
the outside and the excited atoms may decay in various ways. They may
decay, for instance, by radiationless transitions, or they may decay by
radiative emission into the nonlasing modes of the light field. The motion
of electrons in the atoms may be perturbed by their interactions with lattice
vibrations or by atom-atom collision. All these effects are taken care of by
an appropriate coupling of the atoms to heatbaths.

It will be important for our following discussion that the detailed
physical nature of these heatbaths need not be known. Rather for our
analysis it will be sufficient to know only a few features which we shall
discuss below.

We denote the Hamiltonians of the heatbaths 1 and 2 by Hy, and Hg,,
respectively. Similarly the Hamiltonian of theinteraction between heatbaths
landthefield isdenoted by Hg, q, that of theinteraction between heatbaths
2 and the atoms by Hp,_a.

According to the fundamental rules of quantum mechanics the Hamil-
tonian of thetotal system isobtained by a sum over theindividual contribu-
tions so that the total Hamiltonian reads

H:Hr+HA+HAf+HB]+HB‘~f+HBZ+HBZ—A' (10.1)

Here and in the following we shall speak of Harniltonians, though, more
precisely, we should speak of Hamiltonian operators.

We now have to consider the explicit form of these Hamiltonians. To
this end we use the results we derived in Vol. 1, chapters S to 7. But the
reader will note that a good deal of the results to be presented here can be
understood directly without a detailed knowledge of their previous deriva-
tion. Because the single mode case shows all the important features we will
treat only that case. We decompose the electric field strength in the resonator
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as follows
E,=i(b-b")Wha/eo1/vL)sin kx. (10.2)
In a classical treatment, b* and b are time dependent amplitudes. In our

present treatment they are operators which obey the commutation relation
(cf. Vol. 1)

bb"—b'b=1. (10.3)
With their help the quantized field energy can be written in the form
Hy=hwb™b, (10.4)

so that we have found the explicit form of the field Hamiltonian. The
operators b™ and b describe the creation or annihilation, respectively, of a
photon of the field mode under consideration. As we have seen in Val. 1,
we cannot only describe the creation and annihilation of photons, but also
the corresponding processes with respect to electrons. Let us consider a
single atom with two levels 1 and 2. The creation of an electron in level 1
is described by the creation operator a,” and in level 2 by a,. Correspond-
ingly the annihilation of an electron in levels 1 or 2 is described by
annihilation operators a, or a, respectively. For sake of completeness we
mention that these operators obey commutation relations which are as
follows:

ajai+aga; =0, (10.5)
a;a; +aa; =0, (10.6)
a;—ak + akaf = Skj, (107)

where j and k can acquire the values 1 or 2. With help of these operators,
according to Vol. 1, the Hamiltonian of a single atom, which we denote by
H., acquires the form

Haz W1a1+a| + Wza;az. (108)

W, isthe energy of the electron in itslevel j =1, 2. Because we can choose
the zero of energy arbitrarily we shall choose

W, =0. (10.9)
We relate the transition energy to the atomic transition frequency o by
W, = ha. (10.10)

Therefore in the following (10.8) will be used in the form
H,=thaasa,. (10.11)
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Because there are many laser active atoms in the cavity we shall distinguish
them as previously by the index w so that we have to attach this second
index to the operators a,

+

+
a; 2> A,

(10.12)
a; -> an'
The energy of the atomic system is a sum over the individual energies,

Hy=ho Y a;,4a,,. (10.13)
mn

Again for sake of completeness we quote the corresponding commutation
relations for the atomic operators

@ @i + A @, = 0, (10.14)
Qi A + Ay Ay, = 0, (10.15)
aj);aku' +aku'ajtt = Bjkanu" (1016)

Finally we have to deal with the explicit form of the Hamiltonian which
describes the interaction between the field mode under consideration and
an atom. This form has been derived in Vol. 1 and reads*

H,=hgaia,(b+b")+hgasa,(b+b"). (10.17)

The meaning of this interaction Hamiltonian can be easily visualized when
we recall that &, a and b*, b are creation or annihilation operators. For
instancetheterm ay a,b™ describesthe creation of a photon while an electron
is annihilated in state 2 and created again in state 1 (remember that the
sequence of operatorsis read from the right to the left). A complete survey
of the processes described by (10.17) is presented in fig. 10.1. g isacoupling
coefficient which is proportional to the optical dipole matrix element

) w
&12=~i J'<P’1k(x) exy(x) d’x u, (xo)- (10.18)
2h80
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Fig. 10.1 Schematic representation of the processes described by eq. (10.17).

"Here and in the following we shall assume g real which can always be achieved by the proper
choice of a phase factor of aa,.
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(This form can be deduced from Val. 1, eq. (7.38) by help of the relation
(7.103) of that volume.) u, isthe field mode which in the present case is
assumed to be polarized in z-direction and to be given by

u(xo)zjeil_sin kxo. (10.19)

xo= (X, Vo, Zo) IS the position of the atom. In the following we shall adopt
the rotating wave approximation which we got to know in section 5.6 and
which we can reformulate in a different manner. Namely, it amounts to
confining our analysis to real transitions in which a photon is emitted while
the atom goes fromits upper stateto itsground state, or a photon is absorbed
while the atom goes from its ground state to its upper state. Under this
assumption we may reduce the Hamiltonian (10.17) to the form

H,=hgaab" +hga;ab. (10.20)

When the field mode interacts with a set of atoms distinguished by an index
w«, we find the total interaction Hamiltonian by summing up over the
individual contributions (10.20) provided we distinguish the atomic
operators by an additional index w as before. We thus obtain

Hac=Y (hg.a/,a,,b" +hgka;,a,,), (10.21)
13
where we had to supply g by the index p because according to (10.18) g
depends on the atomic coordinate x, ,. For sake of simplicity we shall drop
the index w of g, because at least for running waves the dependence of
g, On x,, can be removed by a suitable transformation of a, «, (cf.
exercises on page 125).

When we take the sum over Hamiltonians (10.4), (10.13) and (10.21) we
find a Hamiltonian which describes the interaction of the field with the set
of atoms. But this resulting Hamiltonian is not enough to describe a laser
because thefield and the atoms are coupled to their corresponding heatbaths
(reservoirs). The effect of the heatbaths on the field operators and on the
atomic operators can be taken care of by the additional operators Hsg,,
Hy, _, Hg,, Hs,—4 in the total Hamiltonian (10.1). In contrast to Hy, Ha
and H ,; we need not know these additional Hamiltonians explicitly. Indeed
it wasshown in Vol. 1that only few general properties of these Hamiltonians
must be known. The basic idea of the next step consistsin eliminating the
heatbath variables implicitly contained in Hg,..., Hg,_a. According to
Voal. 1, this may be done in two ways, either in the frame of quantum
mechanical Langevin equations or in that of the density matrix equation.
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In sections 10.3 and 10.4 we shall follow up thefirst approach, while section
11.1 will be devoted to the second.

10.3. Quantum mechanical | angevin equations
10.3.1. A field mode coupled to a heatbath

To derive quantum mechanical Langevin equations we use the Heisenberg
picture. In thispicturethe operators aretreated astime dependent quantities
whereas the wave functions are time independent. The time dependence of
the operators is determined by the Heisenberg equations of motion which
can be obtained as follows. Let £2 be an operator whose time dependence
we wish to study. Then its time derivative is given by the equation

fz:%[H, Q]E-;;(H.()—.QH), (10.22)

i.e. the time derivative of (2 is given by the commutator between the
Hamiltonian H and the operator (2. Let us briefly remind the reader how
this formalism works by means of a simple example.

Let us consider the field operator b and its corresponding Hamiltonian
H; alone so that we consider afreely oscillating field without any couplings
to atoms or reservoirs. Using {2 = b and inserting H; (eg. (10.4)) instead of
H into (10.22) we obtain

=%hw(b*bb—bb+b). (10.23)

Because of the commutation relation (10.3) ther.h.s. can betransformed into
b= —iwb. (10.24)

Weleave the performance of thistransformation asan exercise to the reader.
Now let us consider the interaction between the field and the heatbath
1. The time derivative of b is then given by the equation

b= % [(H;* Hg, + Hyg,_p), b, (10.25)

Because the Hamiltonian of the heatbath and the interaction Hamiltonian
contain the variables of the heatbath, corresponding Heisenberg equations
must be established for the heatbath variables. As has been shown in Val.
1, the heatbath variables can be eliminated from these equations and one
finds a closed eauation for the field operatoib aone. The thus resulting
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equation reads
b= —iwb—«b+F(1), (10.26)

where k describes the damping of the field mode. « is identical with the
guantity weintroduced in the semiclassical laser equations in a phenomeno-
logical way in section 5.5. Asshown in Voal. 1, in the present case k can be
derived from first principles. F is a fluctuating force which is an operator.
The properties of F(t) and its Hermitian conjugate were derived in Val. 1
(formulas (9.83)-(9.86)). When we denote the quantum mechanical average
over the reservoir variables, which are still implicit in F, according to Val.
1 the following relations hold:

(F(1)y=(F™(1)=0, (10.27)
(F™(t) F*(¢))=(F(1t) F(t'))=0, (10.28)
(FY(t) F(t"))Y=a(T)2kd(t - t'), (10.29)
(F(t) F*())=(A(T)+1)2k8(t - t'). (10.30)

A(T) is the mean photon number of the field mode at temperature T. This
is the temperature of the reservoir to which the field mode is coupled. In
the optical case, at room temperature 7 is much smaller than unity so it
can be neglected in practically all cases. For sake of completeness, however,
we shall carry 7 on in our following analysis.

10.3.2. Electrons (d atoms) coupled to heatbaths

Now let us turn to the Heisenberg equation of the electron of an individual
atom. We start with a free atom which does not interact with any other
system. In the following we shall make contact as close as possible with
our semiclassical treatment. There we have used the inversion (or, in other
words, the population difference) as a variable. Because a; a, and a5 a, are
the operators which measure the occupation of the atomic levels 1 and 2,
respectively, we introduce the operator d via

d=a,a,~aa,. (10.31)
The Heisenberg equation for d reads, of course,

=%[Ha, d] (10.32)

with H, given by (10.11). On account of the commutation relations (10.5)—
(10.7) one readily derives (compare the exercises) that the r.h.s. of (10.32)
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vanishes,
d =o. (10.33)
Furthermore we introduce the operators
a=aja,, (10.34)
a*=aJa,. (10.35)

A little algebra with help of the commutation relations just mentioned |eads
us to the following Heisenberg equations of motion:

a=—iaa, (10.36)
a =iga” (10.37)

(compare the exercises).

We now turn to a derivation of the Heisenberg equation of motion of
the electron (atom) when it is coupled to heatbaths. To this end we again
remind the reader of the main results of Val. 1, chapter 9.

Let us introduce the mean values of the occupation numbers of the
electronic levels j=1, 2 by means of

n = (®la a|®), j=1,2. (10.39)

Because of pump and decay processes these occupation numbers may
change, the temporal change being described by the wdl known rate
eguations

dn

jzwzlm_wlznz, (10.39)
d

TS wam Ewn,, (10.40)

w,; and wy, are the transition rates caused by pump and incoherent decay
processes, respectively (cf. fig. 10.2). These pump and decay processes are

22— 2——

W12 w21

—t 1—

Fig. 10.2. Scheme of radiationless transitions or nonlasing optical transitions (left-hand side)
and pump transitions (right-hand side) with the corresponding transition rate constants.
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caused by the interaction of the electron with heatbath 2. As was shown in
Val. 1 the effect of heatbaths in the fully quantum mechanical equations
for the operators can be taken care of by the following equations:

(a3a,) =wyaia;—w,asa,+1(1), (10.41)
(aral)':: —WZIaTa,+W|2a;a2+F“(t). (10.42)

Because in this section we have introduced the inversion d (10.31) as a new
variable, we derive an equation for that quantity by simply subtracting
(10.42) from (10.41). This yields

d’=2W2|a1+a1_2W12a2+a2+r22—r”. (10.43)
Because the electron must be in any of the two states 1 or 2, the relation
aya,+aja, =1 (10.44)

holds. Writing down the eqg. (10.31) again we have

a>a,—aya,=d. (10.45)
By means of (10.44) and (10.45) we can express a, a,, a; a, by d,

ata,=x(1+d), (10.46)

aya,=%1-d). (10.47)
Introducing (10.46) or (10.47) and using the abbreviations

Y= Wizt Wa, (10.48)

dy="21" 22 (10.49)

Wy + Wy,

I~T,=T, (10.50)
eg. (10.43) acquires the form

d=1y(dy—d)+T, (10.51)

A comparison between this equation and that of the corresponding equation
(4.11) or (5.43) of the semiclassica theory reveals that d, isthe unsaturated
inversion whereas y; =1/ T isthe damping constant of the inversion which
istheinverse of thelongitudinal relaxation time T. The equationsfor (10.34)
and (10.35) can be immediately taken from the results of Vol. 1, (9.97) and
(9.98), so that

a=—ioa—vya+I_(1), (10.52)
at=iva—ya T +I (1), (10.53)
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where
r.=r,,
- (10.54)
Ii=ry,=1I,,.

For later purposeswe need the correlation functions between the fluctuating
operator forces /. When the qguantum mechanical average over the variables
of the reservoirs 2 is taken we find relations of the form

Iy () Iy(e)y= Gy 8(t—t), ... (10.55)
or more generally
(Fae(t) Di(1)) = G 16t = 1'). (10.56)

The G's have been derived in Vol. 1, formulas (9.104)-(9.109), and are
repeated here

G111 = Wiahy +woyn, (10.57)
Gi12= — Wy —wiahy = Gy, (10.58)
Gy op = Wy Ny +Wion,, (10.59)
Gi212= Gy 21 =0, (10.60)
G0 = Wiahy— Wy ny +2yn,, (10.61)
Gy g1 = Wy Ny — Wans +2yn,. (10.62)

Because in the case of the laser we have to consider many atoms being
distinguished by the index u we must say a word how the correlation
functions must be generalized to that case. We shall assume as usual that
each atom is coupled to its own heatbaths, so that the heatbath variables
areindependent of each other. I n such acaseit turnsout that quite generally

<F,u..jk(t) Fp',lm(t’)>q: 8,,1,;,&" (1063)

It is not difficult to transform the correlation functions for I'; to those
referring to the fluctuating forces of (10.50)-(10.54). A little analysis pro-
duces the following relations:

(- ()= () =T (1)) =0, (10.64)

(Fu(0) (1) = (7(1 +(d,)) +2—1T-(do—<dﬁ>)) 8., 0(1=1"), (10.65)

(Fu-(0) Li(1)) = (7(1 —(d.)) —% (do_<du>)> 8uud(1—=1"), (10.66)
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(Foa (1) Tra (1) = 2/ TY(1 = o d, )8, 8(1 = 1), (10.67)
(T a(D) T (1) = = (1/ TY(1 +do)@))8,,8(1— 1), (10.68)
Lo () Loy () =1/ T)(A —dpXa,,)B,,. 6(t—t). (10.69)

10.3.3. Field and atoms coupled to heatbaths. The quantum mechanical
Langevin equations d the laser

So far we have derived the Heisenberg equations for the field coupled to
its heatbath and for the atoms coupled to their heatbaths. Now we wish to
consider the full system in which the field and the atoms interact with each
other and each of these subsystemsiscoupled to itscorresponding heatbaths.
The field operator b then obeys the Heisenberg equation

b= [H, b, (10.70)

where H isnow given by (10.1). Because b commutes with all Hamiltonians
which do not contain the field operator b*, we need to consider on the
r.h.s. of (10.70) only those terms of H which contain b™. Since we have
treated the interaction between the field and its heatbath 1 above, the only
part of the Hamiltonian, H, which has not been considered yet, is stemming
from the atom-field interaction. Therefore, in the case of the interaction
with the single atom we have to study

db 1

gt—,f‘a h[(hgab +hga™b), b, (10.71)

where we made use of (10.20). Because b commutes with the atomic
operators we may immediately apply the commutation relation (10.3) so
that we obtain

= —iga (10.72)
This result can be immediately generalized to the case of many atoms where

we find

db

— = —j ) 10.73
driea lgg o ( )

After all these intermediate steps we are now in a position to write down
the final equation for b when it interacts with the atoms and the heatbaths.
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Taking the terms (10.26) and (10.73) together we find
b=(-iw—-k)b—igy a, + F(t). (10.74)
In

For what follows it isimportant to note that the correlation functions of F
and F* (cf. (10.27)-(10.30)) are unaffected by the interaction between the
field mode and the atoms.

In asimilar fashion we have to derive the Heisenberg equation of motion
for the atomic operators if the interaction between the field and the atom
is taken into account. The evaluation of the corresponding equation

da
dt
requires some elementary algebra using the commutation relations. We

leave this algebra as an exercise to the reader and immediately write down
the final result

da
dr

It shows that in order to determine the time dependence of a we need not
only to know that of the operator b but also that of the inversion operator
d defined in (10.31). Therefore we have to derive an equation for d also.
Before we turn to this question we write down the equation for a if the
full Hamiltonian H (10.1) is taken into account. According to the terms
stemming from the ""free" motion of a, from its coupling to heatbaths and
from its coupling to the field we obtain the equation

d=(—id—y)a+ighd +I_. (10.77)

The generalization to atoms with index w is straightforward. We just have
to supplement the atomic variables a and d by the corresponding index wu,

=% [H,, ] (10.75)

f—a

=ighd. (10.76)

f—a

a,=(—io—vy)a, +ighd, +1I', _. (10.78)
The equation for the Hermitian conjugate reads, of course,
a,=({o—y)a, —ightd,+T,.. (10.79)

Finally we have to derive an equation for d. Because the construction of
this equation is quite obvious we write it down immediately

d zdo_du

i

+2ig(e,b™ —ayb) +T,, (10.80)

The first two terms on the r.h.s. stem from the action of the heatbaths on
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the electron. The bracket stems from the interaction between the electron
and the field, and the last term represents the fluctuating force. The egs.
(10.78)-(10.80) jointly with (10.74) represent the fundamental laser
equations. For sake of completeness we mention that the atomic fluctuating
forces and the fluctuating forces of the field are uncorrelated so that

(I;(t) F(t'))y = ()X F(t)) =0, (10.81)
(I;(t) F*(t"))=0. (10.82)

We note that according to Val. 1 the correlation functions between the I"’s
and between the I'’s and F's are not affected by the coherent interaction
term H,:. so that we may apply the relations (10.27)-(10.30)' (10.64)-
(10.69), (10.81) and (10.82). We note however, that in the relations (10.64)-
(10.69) the average values on ther.h.s. must be evaluated taking into account
the total laser equations including the atom-field interaction. The final laser
equations (10.78)-(10.80) and (10.74) exhibit a pronounced analogy to the
equations of the single mode laser in the semiclassical theory (6.1)-(6.3).
There are two differences, however. The obvious one consists in the occur-
rence of the additional fluctuating forces acting on fidd and atomic
operators. The other difference consistsin the fact that the quantities b, b™,
a, a” and d are now quantum mechanical operators obeying specific
commutation relations. But as we shall see, the form of the equations will
allow us to proceed in close analogy to the case of the semiclassical
eguations.

In conclusion we indicate how to proceed from the quantum mechanical
laser equations to the semiclassical equations. To this end we take the
guantum mechanical average(: . -) on both sides of (10.74), (10.78)-(10.80).
As we shall demonstrate later in this book, above laser threshold the
quantities (bd,), {a,b") and (a,b) can be factorized in a good approxima-
tion, i.e.

(bd,)=(bXd,), (ab")=(a,Xb")=(a,Xb)*

(@ by=(a,Xb)=(a,)*(b).
Because the averages over the fluctuating forces vanish and (b), etc. are
classical quantities, we thus arrive precisely at the semiclassical equations
which in this way have been derived from first principles.
Exercises on section 10.3

(1) Derive (10.24) by means of (10.22) and (10.3).
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(2) Prove (10.33) by means of (10.32), (10.11).
Hint: use (10.5)-(10.7).
What does this result mean physically?

(3) Derive (10.36), (10.37).
10.4. Coherence and noise

It will be our task to solve the basic equations (10.74), (10.78) to (10.80).
The striking similarity of the quantum mechanical equations to those of the
semiclassical laser theory suggests to formally proceed as with these latter
equations. This isin fact possible provided we take care of the sequence
of the operators in the nonlinear terms, and by taking into account the
fluctuating forces F and I'. The first step consists in an elimination of the
atomic "variables" a, «, and d, in analogy to our procedure of section
6.3. Because that procedure was outlined there explicitly we do not repeat
it but write down the final result

b=(—iw—k+g*Dy/y)b— Cb"bb +F,,. (10.83)
D, is given by

Dy= Nd,, (10.84)
and C is defined by

C =4g*TD,/ v~ (10.85)

F... is defined by

Fio )= F(1) = (ig/v) L I.-(0). (10.86)

With respect to the terms which do not contain fluctuations, eq. (10.83)
possesses the same degree of accuracy as our former semiclassical equation
(6.46). With respect to the additional terms, i.e. to the fluctuations, it must
be noted that one term, which stems from the fluctuations of the inversion,
has been neglected, because, in general, this causes only small effects. For
what follows it isimportant to know the properties of the fluctuating force
F... Using the definition (10.86) and the correlation functions (10.27)-
(10.30), (10.64)-(10.69) and (10.81), (10.82) of the fluctuating forces we
may easily derive the following relations:

(Fir(1))=0, (Fioi(1))=0, (10.87)
(Ft:t(t) F;;t(t’)) = (Ftot(t) Ftot(f» =0, (10~88)
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(Flt) Fiod 1) = (2xnm+§—zz Y1+ )] 45 <do—<d“>))a<r— ),
(10.89)

N2,s ’
2K[n'h+(Nz—N1)mr]8(t ). (10.90)
When proceeding from (10.89)to (10.90)we have assumed that steady state
laser action occurs and that we may put within a surrounding of the laser
threshold d,-(d,) =0 in a good approximation. Finaly, N, ,+N,, =1
jointly with the threshold condition Dg .= (N, — N,)m. = ky/g’ yields the
final form (10.90). N, is the saturated occupation number of level 2 of the
atoms, and n,;, the number of photons in thermal equilibrium.

Before westart solving eq. (10.83)let us visualize its meaning by interpret-
ing basaclassical variable. Our subsequent discussions will show that such
a meaning can indeed be attached to that operator. To this end we use the
potential model which we introduced in section 6.3. Let us interpret b as
the coordinate g of a particle. Then eq. (10.83) can be considered as an
equation for the overdamped motion of a particle. Thus this equation has
the structure

mi+d=K(q)+F(1)= _2—:+F(,), (1091)

where the acceleration term mq is assumed very small. The force on the
r.h.s. (10.91) isrepresented as asum stemming from K ( g )which corresponds
to the semiclassical result and F(t)which representsthe additional fluctuat-
ing force. As we have seen in section 6.3, there are two different solutions
to eg. (10.83) depending on whether the laser is operated below or above
its threshold. For this reason we shall perform the discussion of these two
cases separately.

10.4.1. Operation below threshold

In this case G <0, where
-~k +g°Dy/y=G (10.92)

is the unsaturated net gain.

The potential V is represented by the dashed curve of fig. 10.3. In this
case the fictitious particle has a coordinate g which remains close to q=0,
i.e. we expect that g is a small quantity. Consequently we shall expect that
in eg. (10.83) the nonlinear term b*bb, if any suitable expectation value is



250 10. Quantum theory of the laser |

} Viq)

Fig. 10.3. The potentia of a fictitious particle versus coordinate g Dashed line: below laser
threshold. After each excitation act due to the fluctuating force, the particle relaxes towards
its equilibrium position. Solid line: potential above laser threshold.

taken, is much smaller than the other linear terms and may be neglected.
(Thisconclusion can bejustified also rigorously.) I n this way (10.83) reduces
to

b=(—iw—|G|)b+F,,. (10.93)

Its solution can be directly read of from our previous treatment of such
an equation donein Val. 1, section 9.1. Because (10.93) islinear, commuta-
tion relations do not play any role and we can treat at least in a formal
fashion b as a classical variable. Identifying, in a formal way, the velocity
v(t), introduced in section 9.1 of Vol. 1, with b(t), we obtain

b(0)=| expl(-iw-|GI)(1— t')] Fo(') dt' +5(0) exp[ — (iw - |G|)1].
(10.94)

In order to visualize the effect of F,,, we represent it by way of a model
in the form

Fo=Yf.0(t—t) with f, =f exp[ig,]. (10.95)

Indeed we have seen in Val. 1, eg. (9.3), that the meaning of the fluctuating
forces F can be visualized best when we consider them as a sequence of
individual pushes occurring randomly attimest, Then our fictitious particle
with coordinate q behaves like a ball in-between two hills, but being kicked
by soccer playersin a statistical sequence. The term —|G|b of eq. (10.93)
which represents the damping force can be easily visualized as the friction
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} Relblt}]

st

Fig. 10.4. This figure shows the time dependence of the amplitude b, which is interpreted as
rea quantity, and of which we have omitted the factor exp[ —iwt].

force with which the grass acts on the soccer. Let usinterpret F as a red
guantity and let us consider b, after omitting the factor exp[ —iot], asaread
quantity also. Then b(t) will exhibit a temporal behavior as indicated by
fig. 10.4. When we take the oscillations exp[ —iot] into account, we find fig.
10,5 instead. We recognize that the light field amplitude b consists of a
sequence of decaying wavetracks. Becausetheindividual kicks are uncorre-
lated with respect to their phases the individual wave tracks of fig. 10.5
possess uncorrelated phases also. When we let the inversion D, increase
by enhanced pumping, the absolute value of G decreases. As (10.94) tells
us, in this case the individual wave tracks decay more slowly. As we shall
see below, a slower decay of the individual wave tracks means that the
atomic emission line becomes smaller. Therefore a line narrowing with
increasing pumping is expected. Such effects have been found in lasers
indeed and scientists have thought for a while that the differences between

A Relb(t)]

Fig. 10.5. The same as in fig. 10.4 but taking into account the factor exp| —iwt].
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light from ordinary lamps and from lasers consists only in such a line
narrowing. But we shall seethat thisis not the only and essential difference.
In fact laser light behaves above laser threshold in a qualitatively entirely
different manner than below threshold.

But let us till discuss the situation below laser threshold and let us study
the coherence properties of light as described by (10.94). Because the kicks
occur with equal probability in both directions the mean value of (10.94)
vanishes, i.e.

(b)y=0. (10.96)

Therefore in a next step we investigate the coherence function of second
order which we derived in Vol. 1, sections 2.2 and 8.1. There we derived
the coherence functions by means of the fidd amplitude E where we
decomposed the fidld amplitude into its positive and negative frequency
parts. While the positive frequency part oscillates with exp[—iwt], the
negative frequency part oscillates with exp[iwt]. Eq. (10.24) tells us that the
positive frequency part correspondsto the operator b, whereas the negative
frequency part correspondsto b™. Thus we may use the following replace-
ment (cf. (5.106), (5.107) or Vol. 1):

E* > bivhw/2e,) u(x),

e 10.97
E > —b'ivhw/(2¢o) u(x). (10:97)

Because the factors of b and b™ are fixed quantities which do not fluctuate,
we can extract these factors from the averaging procedure.

Our former classical average of section 2.2 of Vol. 1 can be translated
into quantum statistical averages as we have shown in section 8.1 of that
volume. We shall denote the averaging by brackets. Our present discussion
shows that the coherence properties of laser light are represented by
expressions of the form

(b™(t) b(1)). (10.98)

We have met expressions of theform (10.98) with (10.94) in Vol. 1. Therefore
we can immediately use the corresponding result and obtain

(b™(1) b(1)) =explio(t - t) = |G|t - [Kb" (¢') b(1)). (10.99)

In this formulatransients have been neglected, i.e. we study the steady state
emission where time t is large but t — t' finite. Because we study the steady
state, at least in the case of sufficiently largetimes t' we may usetherelation

(b*(t") b(t")) =1, (10.100)
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where A is time independent. Because b7b is the operator of the photon
number (cf. Val. 1), i has the meaning of an average photon number. It
can be directly calculated by means of (10.94). To thisend we insert (10.94)
in (10.100) and obtain for sufficiently large times

n= '[’ dr J’ dr' exp[—|G|(2t —7— ) +iw (T — 1)K F o 7) Fiol(7')).
0 0
(10.101)

The double integral can be immediately evaluated by means of (10.90)
(compare exercises), and we obtain

_ K
|G|
where we have used the abbreviation

NZ,S
[ N
P (NZ_Nl)thr

f (N + 1), (10.102)

(10.103)

The individual expressions in (10.102) have the following meaning: ns
(= Rypermar) StemMs from the correlation function of F* and F and represents
the number of photons belonging to the modefrequency « which are present
in thermal equilibrium. In the optical range of the laser this number is
negligibly small, whereas it plays the dominant rolein the microwave region
(maser). ny, (= Ngponancons) 1S the number of spontaneously emitted light
guanta. n,, stems from the correlation function of

Fuom=(-ig/Y) L [,-(t) and Flon=(ig/Y) L .:(1).

The relation (10.103) is valid for the system of two-level atoms considered
here. N,; is the saturated occupation number of the upper atomic level.
Thus it represents the number which is realized in the laser process. (N, —
Ni)u. is the inversion of the atoms at laser threshold. The factor «/|G]
occurring in (10.102), which causes a multiplication of the photon number
(gt n.), is Of particular interest as we may see as follows. According to
(10.92), G isthe unsaturated net gain which is given below laser threshold
by
|G| =Kk —g* Do/ v.

If the inversion D,=0, i.e. if equally many atoms are in the excited and
in the ground state, the effects of stimulated emission and absorption
compensate each other. In this case |G| =« and the number of photons
actually present is given by A = ny, +n,,. When we increase D,, stimulated
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emission becomes bigger than absorption, and thus |G| becomes smaller
than «, i.e. «/|G|>1. We then obtain an enhanced number of photons
> ny, +ng,. The laser system is gtill operating below laser threshold but
within a region of amplification. When D, approaches its value at laser
threshold Dy, = ky/g°, |Gl tends to zero.

As a consequence, the amplification factor /|G| tends to infinity. It
should be noted that this divergenceis an artefact caused by our approxima-
tion which neglects the nonlinear terms — b*bb. A rigorous calculation
without linearization will show that the photon number remains finite at
laser threshold, as we shall demonstrate in section 10.5. By means of (10.99)
we can immediately calculate the complex degree of coherence. According
to the corresponding relation of Vol. 1it can be represented in the present
case by

Q—%%ﬁ:exp[iw(t—t')—|GHt—t’!]. (10.104)
As we may see, this degree of coherence decreases exponentially which is,
of course, caused by the finite duration of the individual wave tracks. The
correlation function (10.104) can be measured experimentally either directly
by Young's double slit experiment (cf. Vol. 1) or an arrangement described
in fig. 10.6. Another possibility is provided by measuring the line-width
occurring in the spectral decomposition of light in a spectrometer.

The foundation of this possibility is provided by a theorem due to
Wiener—Chintschin which we do not derive here mathematically exactly,
but which we can interpret in a rather simple fashion. Let us imagine an
ideal spectrometer which decomposes the field amplitude b(t) into its

Fig. 10.6. Scheme of an experimental arrangement for the measurement of ((b*(¢) +b"(t)) x
(b(t) +b("))). Thefirst mirror (upper left) which is semi-transparent splits the incoming beam
into two beams. The second mirror (lower left) and the third mirror (lower right) take care
of the deflection of the beam which by the mirror upper right is reunited with the original
beam. In this way on the original wave an identical but delayed wave is superimposed.
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Fourier components

b(t)=J‘+ood(w)exp(iwt) do. (10.105)

—00

Because b(t) and b*(t) are composed of fluctuating quantities according
to (10.94), the Fourier coefficients d(w) are also fluctuating, i.e. random
guantities. Asadetailed discussion shows, the properties (10.88) and (10.90)
of the fluctuating forces lead to the following relation

(d"(0) d(w)) = 8(w — o' }d'W) d(W)). (10.106)

When we form the correlation function (10.98) by means of the decomposi-
tion (10.105) the resulting double integral over w reducesto asingleintegral
because of (10.106) and we obtain

+oc

(b* (1) b(t’)):J (d*(w) d(w))explio(t- )] dw. (10.107)

But the quantity
y(w)=(d"(v) d(w)) (10.108)

represents just the intensity of the spectral line at the frequency w. The
relation (10.107) representsthe Wiener—Chintschin theorem. The correlation
function on the Lh.s. can be represented as the Fourier transform of the
spectrum. Thespectral distribution can be cal culated explicitly inthe present
case. To this end we study the steady state where we put ¢'=0. Due to
(10.99) we may write the L.h.s. of (10.107) in the form

(b™(t) b(0)) =expliat - |Gl|t]] A (10.109)
Because of (10.107), (10.108) and (10.109) we obtain the relation

+00

i expliot —|Gl|t|]]= J y(w) expliowt] do. (10.110)

According to Fourier's theorem we can calculate the spectral distribution
(10.110) by

y(w)= % [ exp[ —iwt] expliwt ~| G| |¢]] dt. (10.1112)
The integral can be evaluated without any difficulty. We obtain
y(w)=—1— 26} (10.112)

27 (@ —w)*+G*
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We see that the correlation function which is given by (10.109) belongs to
a Lorentzian line with half-width |G|. If the decay time 1/|G| becomes
longer, a line-width becoming smaller is observed. This result has been
anticipated intuitively above.

As we shall see below the fundamental difference between the statistical
properties of light from conventional lamps and those of light from lasers
appears only through correlation functions of fourth order (and higher).
In fig. 10.7 we remind the reader of how a correlation function of fourth
order can be measured. Let us consider the correlation function

(b™(r) b7(1") b(1') b(1)). (10.113)

Our subsequent calculations are somewhat clumsy. For this reason the
speedy reader can skip them and immediately proceed to the fina result
presented in egs. (10.124) and (10.125). In order to make our calculation
as transparent as possible we assume that b has been calculated according
to (10.94), where we represent the fluctuating forces by means of individual
pushes according to (10.95). Strictly speaking we are dealing here with
fluctuating operator forces but a detailed analysis shows that all what we
are doing below can be done in a strict sense with operators also. But in
our present context we rather wish to give the reader a feeling how the fina
result can be obtained rather than trying here to give a formal but rigorous
derivation. We focus our attention on the stationary state so that we can
neglect transients. This means that we may drop the term containing b(0)
in (10.94). According to the individual contributions we represent b(t),
b*(t) in the form

b() =Y B.(1), b (1)=2B.(1). (10.114)

We shall assume that the contributions which stem from different pushes
are uncorrelated so that we may use the relation

(BB ={BBu)8 (10.115)

Because theevaluation of (10.113) by meansof (10.114) issomewhat lengthy,
we first treat the case of a simpler correlation function, namely (10.98), as
an exercise. Inserting (10.114) and the Hermitian conjugate expression in
it we obtain

(b7(1) b(1) = L (B.(t) BuA1))- (10.116)

On account of the Kronecker symbol §,,.. in (10.115) the double sum over
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u, 1’ reducesto asingle sum over u. Inthisway (10.116) istransformed into
(b(1) b(1')) =% (BL(1) B.(1)). (10.117)
M

In order to evaluate (10.113) by means of (10.114) we have to consider
averages over products of four B’s, namely

(BB BB (10.118)

Again we shall assumethat the B8’s with different indices u are uncorrelated
and that also terms of the form B, B, or B, B,, With the same indices
wi=p,=p yield 0. In this case the expression (10.118) can give rise to
nonvanishing expressions in the following two cases only:

(1) w#1=pm4 and simultaneously p;=pu,,

(2) wmi=m3 and simultaneously u,=pu..

Inserting (10.114) in (10.113) we obtain

L (Bi(t) Bult) But) Bur(1)). (10.119)

pope g g
It contains only two types of contributions which do not vanish, namely

M :/.L’", I,L,——'l‘,”, (10‘120)
and

,LL — ,LL”, MV — I-Lm- (10121)
Correspondingly we can split (10.119) into two parts and reduce the four-
fold sums into double sums

(10.119) = (Z (B.(1) B,L(t)))(z (B Bu’(t,))>

+(Z (Bu(1) B#(t’)>> (Z (BLA1) B,;(O))- (10.122)

Using the intermediate result (10.116) we arrive at the following fina
formula:
(b™(2) b™(t") b(2') b(1))=(b"(2) b(1)))*+[(b* (1) b(t')P, (10.123)

where (b*(¢') b(t))={(b™(¢) b(t)). Both for theoretical studies and for
measurementsit is often useful to subtract the photon number from (10.123)
so that we introduce as a new quantity

Ky(1, t) = (b (t) b*(¢) b(¢) b(1)) - ((b* (1) b(1)))*. (10.124)



258 10. Quantum theory of the laser |

By means of (10.123) we finally obtain
Ky(1, ') = [0 (£) b(I. (10.125)

In our derivation of this result we have not been very careful with the
sequence of the B’s because in our model-like fashion we have treated them
as classical quantities. In reality they are operators which in general do not
commute with each other. A careful analysis reveals, however, that result
(10.125) holds also in the case of operators. The essential result of (10.125)
means that the fourth order correlation function can be expressed by a
correlation function of lower order. By means of the result (10.99), (10.100)
we can express K, explicitly

K2= ﬁz exp[_zyeﬂlt_ tl”a Yeti = IGI (10126)

The correlation functions can be measured in the Hanbury-Brown-Twiss
experiment which isexplained in figs. 10.7 and 10.8. As can be shown quite
generally, also all higher correlation functions can be expressed by correla-
tion functions of first and second order, i.e. by (10.96), (10.98), provided b
consists of many statistically independent contributions, or, in other words,
if bisGaussian distributed. Becausethefield strength E isdirectly connected
with b and b*, we thus have found that the fluctuating field strength of

Pinhole Beamsplitter Detector 1
| | l :
Discharge
tube
Timedela
(varioble
Detector 2 Coincidence
counter

Fig. 10.7. Experimental arrangement for the measurement of a correlation function of fourth
order by which the correlation between photon numbers is measured. In experiments made
before the discovery of alaser, a gas discharge tube was used as light source. In experiments
with laser light it is replaced by the laser and the pinhole is no more necessary. The beam is
split by a semi-transparent mirror (beam splitter). In receivers 1 and 2 the incoming photons
are registered. The photon numbers registered by the receiver 2 are transmitted with a certain
time delay to the coincidence counter where they are processed jointly with the photon numbers
measured by the receiver 1.
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(Coincidence rate
2

Gas discharge source

Time delay

0

Fig. 10.8. The results of the experiment by Hanbury-Brown-Twiss according to the experi-
mental arrangement of fig. 10.7. The figure shows the results for light from lamps. In the figure
the coincidence rate is plotted versus time delay. The curve refers to a gas discharge lamp.

usual lamps obeys a Gaussian distribution. We shall come back to this point
in section 10.5.

10.4.2. Behavior above threshold

We now study the properties of laser light above laser threshold. When we
interpret b again as a classical variable we can immediately read df the
behavior of b from fig. 10.3, where the solid curve applies. It is important
to note that b is a complex quantity. In such a case we have to extend eq.
(10.91) to equations for the real and imaginary parts of b It then transpires
that the behavior of b can be represented by means of the motion of a
fictitious particle in two dimensions, x and y, where b= X +iy. The force
occurring in the equation of motion can again be derived from the potential
which we represent in fig. 10.9. Without fluctuating forces the particle will
acquire a resting position with the distance r, from the origin, and an
arbitrary but fixed phase angle. The fluctuating forces, which we interpret
as kicks, have two kinds of effects. In radial direction they try to push the
particle up-hill, whereby the distance of the particle coordinate from the
bottom of thevalley isincreased. Weshall denotethesefluctuating deviations
by p(?). Because the particle, which is pushed up-hill, will try to relax to
its equilibrium position we can assume that p(t) remains a small quantity.
Furthermore we have to consider the kicks in tangential direction. Because
no restoring force actsin this direction, the particle will perform some kind
of diffusion process in that direction. As a consequence the phase ¢(t) will
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Fig. 10.9. The potential for the motion of the fictitious particlein two dimensions. It represents
the behavior of the complex laser amplitude above laser threshold.

fluctuate. Finally taking into account that b oscillates with the carrier
frequency w, our discussion leads us to the following hypothesis for b:

b={(ry+p(t)) explie(t)] exp[ —iwt]. (10.127)

A detailed discussion reveals that our procedure remains valid if b isan
operator. Asit turns out in this case, r, remains a classical number whereas
p and ¢ become operators. We shall not discuss the details which result
from the properties of p and ¢ being operators. As can be shown the laser
can be described in a very good approximation by treating p and ¢ as if
they are classical quantities. In order to determine p and ¢ weinsert (10.127)
into (10.83), which we repeat for the reader's convenience

b=(—iw—« +g*Dy/ )b~ Cb*bb + F,,. (10.128)

G

Inserting the explicit form (10.127) in (10.128), performing the diff erenti-
ation with respect to time, and dividing the resulting equation by the
exponential functions occurring in (10.127) we obtain

igro+p=G(ry+p)—C(ri+3rip+- - ) +expliot —ig(t)]F,.
Fio (10.129)

We determine r, by means of the condition that eq. (10.129) is fulfilled
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identically without fluctuations, i.e. for ¢ = p= F,,,=0. We thus find

G= Cr(2) (10.130)
By splitting eq. (10.129) into its rea and imaginary part we obtain

6= Im(Fyn) (10.131)
ir,
and
p=—vap +Re(F,), (10.132)
where we have used the abbreviation
Ya=2G>0. (10.133)

(10.131) can be immediately integrated. We leave it to the reader as an
exercise to convince himself that ¢ possesses the following correlation
function:

(1) — 9(0))*) =27, (10.134)
Under the assumption k <y the effective line-width vy, is given by

Yo = Aw =-h;‘" K (N +1yp), (10.135)
where

P =2«itho. (10.136)

As we shall see Aw represents the spectroscopic line-width of laser light.
We remind the reader of the meaning of the quantitiesoccurring in (10.135).
o is the laser light frequency (=central frequency of the atomic optical
transition because we have assumed exact resonance). 2« is the inverse
lifetime of a mode in the resonator without laser action. n,, and n,, are the
spontaneously emitted and thermally activated photons, respectively (cf.
(10.103)). Pisthe emission power of the laser, where 7 is the mean photon
number present in the laser. We can easily determinethe correlation function
between b at time ¢ and b(0). As we shall see, somewhat above threshold
p(t)<r,. Therefore, in a good approximation, we can neglect the term p
when we calculate the correlation function between »* and b The calcula-
tion, which we shall discuss more closely in the exercises, shows that the
correlation function is given by

(b*(t) b(0))y= rj exp[ — y,1]. (10.137)

Evidently a Lorentzian line occurs whose width decreases with increasing
laser light power P,
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But now we wish to show that the statistical properties of laser light differ
fromthose of light from usual lamps fundamentally. To thisend we consider
the correlation function K, which we introduced in (10.124) and insert
(10.127) in it. Anticipating that p is a small quantity we calculate this
correlation function only up toitsleading termsin p. Asit turns out, these
are terms quadraticin p so that we obtain

Kz=4r(z)(<PzP:'>_<Px><Pr'>)- (10138)

The quantity p, obeys eg. (10.132). This equation has a mathematical
structure which corresponds entirely to that of eq. (10.93), if we put there
w =0 and replace |G| by y, and F,,, by Re(F,,). Therefore the solution of
eg. (10.132) is readily found. In particular we obtain

(p)=(p»=0. (10.139)
In this way (10.138) reduces to

4rs{p.po). (10.140)

By means of the solution of (10.132) we can determine the correlation
function between p, and p, in analogy to the calculation of (10.99). We
then obtain our final result

Ky ()= (nsp+nm>§exp[—2C<n>f], (10.141)

where ng, is the number of spontaneously emitted photons as before and
is given by

N2,s

Ny, ="—">—.
P (NZ_Nl)thr

(10.142)

ny, is the number of thermally activated photons which in the case of the
laser is negligibly small (note, however, that in the case of the maser ny,
dominates over n,). We have further used that

Ya=2C(n), (10.143)
and the abbreviation
4T
C=rr— 10.144)
(Nz—Nl)thr (

(T isthe relaxation time of the inversion).
In order to compare the behavior of K, below and above threshold it is

useful to divide K, by the photon number # and to plot it against the
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¢ —

threshold

Fig. 10.10. The correlation function K = K,/ 7 versus pump power

emitted power. For =0 we obtain the curve of fig. 10.10. As we may see
the quantity K,/#a increases linearly below laser threshold according to eq.
(10.126), whereas it decreases above laser threshold in a way proportional

1/A. In this way the decisive difference between the behavior of laser light
and that of light of usual lampsisrevealed. The corresponding experimental

results are shown in fig. 10.11 and they substantiatethe predictionsin detail.
It should be noted that because of the mathematical methods (linearization
below and above threshold) we have to exclude a small region around laser
threshold. We shall discuss this region in the next section. Let us summarize
our results.

003
A
OOZr— [
IO
o0 ;
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22 23

INUECTION CURRENT J MA

Fig. 10.11. The first experiment by which K was measured. K of the strongest mode of a
semiconductor laser is plotted versus the injection current j which corresponds to the pump
parameter. The experimental points show error bars indicating the standard deviation of the
counting fluctuations. Incidentally the curve A of the emitted intensity of the mode is shown
in arbitrary units. [JA. Armstrong and A.W. Smith, Phys. Rev. Letters 14, 68 (1965).]
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We havefound that the physical nature of light isfundamentally different
depending on whether the laser isoperated below or abovethreshold. Below
threshold light consists of exponentially damped wave tracks whaose phases
areentirely uncorrelated. Becausethe decay time of thewavetracksincreases
with increasing pump intensity, an emission line becoming smaller and
smaller results. Above laser threshold, light acquires quite different proper-
ties. It consists of an amplitude stabilized wave which can perform small
fluctuations around its stable amplitude. On this wave amplitude a phase
diffusion is superimposed which also givesrise to a finite line-width of laser
light. This finite line-width decreases more and more with increasing
emission intensity.

Exerciseson section 10.4

(1) Prove (10.87) and (10.90).
Hint: Use (10.27)-(10.30), (10.64)—(10.69) and (10.81), (10.82).

(2) Calculate i which occurs in (10.100).
Hint: Use (10.94) and (10.90).

(3) Show that (p(1)p(0)) = ¥,p(1). . .
Hint: Integrate (10.132) and use the fact that F.,(t) and Fi(t) are
8-correlated, i.e. that

(Fro 1) Fo(1')) = const. x 8(1 — 1),

(4) Prove (10.137).

Hint: Put b(¢) = r, exp[ie(t)] as an approximate solution of (10.83).
Assume that ¢(t) is decomposed into individual terms ¢, so that ¢(¢)=
Y. ¢, (1) and assume that these are small and statistically independent of
each other, i.e. (¢,¢,)=0 for u # u'. Put further

explip(1)]= eXp[i 2 %(t)] =[Texplie, (D=1 (1 +ip, — 2¢}).

10.5. The behavior of the laser at its threshold. Photon statistics

In the previous sections we demonstrated that the behavior of laser light
above threshold differs dramatically from that below threshold. But our
methods did not allow us to treat the rather small, but interesting region
around threshold where this change takes place. An elegant way to answer
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this question is provided by a study of the distribution function of laser
light. This can be done in various ways. One approach is provided by the
density matrix equation of the laser, and its direct solution. Another
approach consists in using the method of ‘“quantum-classical correspon-
dence” through which we may transform the density matrix equation into
a "generalized Fokker-Planck equation'. This equation can then be con-
siderably simplified, for instance at and close to the laser threshold, and
can eventualy be solved, which yields the wanted distribution function.
We shall present this approach in chapter 11. Because this approach is
mathematically more difficult, in the present section we rather want to
continue our line of thought. It is, to some extent, based on intuition and
seemingly not so rigorous, but it will provide us with a quick access to the
essential features of photon statistics close to and at laser threshold. A
rigorous foundation for our present procedure, in which we treat b as a
c-number, will be given in the subsequent chapter.

As we have seen in the previous sections, we can interpret the quantum
mechanical Langevin equation of laser light (10.83) practically as a classical
equation. In thissection weshall adopt the attitude that thisformer equation,

b
%=(—iw +G)b—-C(b'b)b+F,, (10.145)

refers to classical quantities. In Val. 1 we have shown how to construct a
Fokker—Planck equation for the distribution function belonging to a
Langevin equation. We wish to establish a Langevin equation for real
variables. To this end we proceed in two steps. By means of the transfor-
mation

b=e B (10.146)

we split off an exponential factor which contains the atomic transition
frequency w. Because b and thus B are complex quantities we write B in
the form

B =x+1iy, (10.147)

where X and y are real time dependent variables. In analogy to (10.147)
we decompose the fluctuating force F, into its real and imaginary part by
putting

' Fo = F, +iF,, (10.148)

F, and F, are real fluctuating forces which shall be interpreted as c-number
forces. We insert (10.147) and (10.148) into (10.145) and decompose the
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thus resulting equation into two equations for the real quantities x and v,
dx

as - C(x*+y’)x+F, (10.149)
dy_ 2,
dt-Gy—C(x +y%)y +F, (10.150)

We have shown in Vol. 1 how to construct a Fokker—Planck equation which
belongs to an equation of the form (10.149). It is not difficult to generalize
this procedure to coupled equations such as (10.149) and (10.150). In such
a case we have to construct a Fokker—Planck equation for a distribution
function which depends on the two independent variables x, y, and on time
t, f(x,y;1). f(x,y;t)dx dy isthe probability to find at time t the variables
x andy intheintervalsx...x +dx,y...y tdy. Weshall present aconcrete
example on f(x,y; t) below. The Fokker-Planck equation for f acquires
the form

U2 Gx-Cx 31

at ax

(10.151)

Loy -ce i et 0,2

Q.. and Q,, are the diffusion coefficients. They are determined by means
of the correlation functions of the fluctuating forces by

(F(1) F(t")=8(1-1)Qy, ij=xy. (10.152)

Whereas in a classical treatment, which we present here, Q; is uniquely
defined by (10.152), a more subtle discussion is required if the F's stem
from quantum mechanical Langevin equations such as (10.83). In such a
case the sequence of the operator forces F*, F is important. Here we
anticipate the result of the rigorous quantum theoretical treatment to be
presented in chapter 11. Close to laser threshold one is allowed to calculate
(10.152) by means of symmetrized F's, i.e. by F replaced by 3(F'+F), or
by F's used in "normal order", i.e. (F'(t)F(t")), with practically the same
results. In particular a closer discussion reveals that

Qu=0,x=0 (10.153)
and

Qu=0,=0, (10.154)
where Q =3k (ny,*ng,); ny, and n,, wereintroduced above (10.102, 10.103).



$10.5. The behavior of the laser at its threshold 267

For afurther treatment of the Fokker—Planck equation (10.151) wetransform
the coordinates x, y into polar coordinates

X=rcose¢, y=rsne. (10.155)

In this way f is transformed into a new distribution function f which
depends on r and ¢, T > f(r, ¢), or more precisely

fdxdy=frdrde. (10.156)

Because the explicit performance of this transformation within the Fokker—
Planck equation is of no physical interest, we immediately write down the
new Fokker—Planck equation

o (L2 6o Lo of), 13f
E__(rar(crz C’)f>+o[rar(rar)+rza¢2]' (10.157)

In general the solutions of (10.157) can be obtained only by means of
computers. The stationary solution of (10.157) can be found explicitly,
however. In this case

o

(10.158)
at

We first try to visualize that in the stationary state the distribution function
f does not depend on ¢. From our preceding sectionsiit is known that laser
light undergoes a phase diffusion. Using again the picture of a particle
diffusing in a potential valley we immediately see that after a certain time
the probability of finding a specific phase becomes equal for all phases.
This means that the probability of finding the particle at any point on the
bottom of the valey is of the same size everywhere. As a consequence we
have

—=0. (10.159)

In this way eqg. (10.157) reduces to

G — Oy 1= i( _61‘)
ar[(Gr Cr )f]—Qar r= ) (10.160)
We can immediately integrate this equation and obtain
2 4 af 1
(Gr* — Cr¥f = Qra;+C. (10.161)

The constant C' can be determined as follows. Becausef is a distribution
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function it must be normalizable in the whole range 0 < r < c0. Consequently
f (and its derivative with respect to r) must vanish sufficiently strongly for
r-a. Letting r- oo in (10.161), we readily find

C'=0, (10.162)
so that (10.161) simplifies to
S 1 cp
ar—Q(Gr cr)f. (10.163)
This first order differential equation can be easily solved. Its solution reads
N
=5—-exp[rzG/(ZQ)—r4C/(4Q)]. (10.164)
aw
N is a normalization factor which is defined by
%:L exp[- - Jr dr. (10.165)

By means of the potential function V(q) of a fictitious particle, which we
introduced in (6.51),f can be written in a particularly simple form

=2ﬁexp[— V(r)/Q], (10.166)
T

where g=r.

A discussion of the function (10.164) tells us how laser light behaves
close to and at laser threshold. In fig. 10.12f is presented as a function of
r for various parameter values G. Obviously for G<0 the maximum of f
lies at r=0. This maximum is shifted to higher r values with increasing
G> 0. But we know that r? isidentical with|b|>. In aclassical interpretation
|b|* isthe intensity of light (besides a constant factor), whereas in a quantum
mechanical interpretation we may consider r” as a qualitative measure of
the number of photons. Figs. 10.13 and 10.14 represent f as a function of
r and ¢, where for G> 0 a probability crater can be observed. The potential
of thefictitious particle is represented below the distribution function. It is
evident how the potential jointly with the fluctuating forces shape the
distribution function. In the case G <0 there is only one minimum of the
potential. Correspondingly there is only one maximum of the distribution
function. For G> 0 we find a circular valley of the potential. Correspond-
ingly a circular rim of a mountain with a crater in the middle is found
representing the probability distribution.

In order to compare the theory, which we have outlined above, with
experiments, the following two points must be observed. In order to rep-
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Fig. 10.12. Thelaser distribution function (10.164) versus / = r? in reduced units (cf. (10.167),
(10.188)).

resent the various laser parameters in a unique fashion it is useful to
introduce new dimensionless quantities. Furthermore the variable r of the
distribution function (10.164) is continuous. Asjust mentioned, in aclassical
interpretation r>=|b|? correspondsto an intensity. On theother hand, within
a quantum mechanical interpretation, r’ represents some measure of the
discrete photon numbers. Thus we have to present the transformation from
continuous to discrete photon numbers. But let usfirst introduce dimension-
less quantities by means of the transformation

F=¥Ycyor, i=JCQi, #=# a=G/NQC (10.167)

(read 7: r "hat"). In this way the distribution function (10.164) can be
represented in the form
n

A2 A
W(ﬁ)=JVexp( —%Jraz). (10.168)
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Fig. 10.13. Theleft-hand side represents the potential of thefictitious particle below threshold.
On the right-hand side f(q,, g,) with r?=q3+ 43 is plotted versus the coordinates q,, q,: f
is bell shaped.

We now discuss the transformation from continuousto discrete variables.
Experimentally, discrete photon numbers n are counted within given count-
ing intervals of time duration T, by means of a photo detector mounted
outside of the mirrors of the laser resonator. The thus resulting distribution

flq,.9)

Fig. 10.14. Above threshold the potential function of fig. 10.9 applies. In the present figure
the corresponding distribution function f(q,, g-) isshown. The probability " crater’ can easily
be seen.
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function of the counted photon numbers will be denoted by p(n, T,). Asa
detailed theory reveals, p can be brought in connection with the distribution
function (10.168).* Provided T, is small compared to the relaxation times
of the nonlinear oscillators (10.145), the relation

p(n, Ty) =J' @e*s"‘ W(#) da, (10.169)

o n!

holds. The constant s, which is determined by the photo detector, is propor-
tional to T, and depends in particular on the sensitivity of the detector.
- When weinsert (10.168) in (10.169) and assume a sufficiently large average
number of photons, we obtain a practically continuous distribution function

1 1(n\’ 1 n
p(n, To)=mexp[—z(;> +5a;:|. (10.170)

In other words, we obtain the same distribution function as before, but
with a scaled photon number n/s. Fy(a) is given by

Fo(a)zj exp|:——1—+a£] di, (10.171)
0 4 2
where according to (10.167) a is proportional to the unsaturated net gain
G. Because this latter quantity is proportional to the unsaturated inversion
d, and thus proportional to the pump power, a is also called pump param-
eter.

We shall not discuss the transformation just introduced any further but
we rather wish to present some typical examples of the theoretical results
and their experimental verification. Let us consider fig. 10.12 once again.
Quite evidently the photon statistics changes close to threshold, G =0, i.e.
a=0. The nature of the photon statistics below and above threshold can
be read off already from the mean squared deviation of the photon number,

((n=(n))y=(n*)—(n)’, (10.172)

where (- - -) means quantum statistical average.

This quantity can be measured experimentally. I n thisway the continuous
transition from the distribution function below threshold to that above
threshold can be studied in detail.

In the quantum statistical average (10.172), n stands for the photon
number operator b*b. Whereas so far our simplifying procedure, in which
we treated b*, b as classical quantities, can be justified (see chapter 11),
the evaluation of (10.172) requires particular care because of the operator

*For a detailed derivation, cf. the literature given in the references.
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properties of B, b. Inserting n=Dbb in (10.172) we obtain
((b"b)*)—=(b"b)’,

or more explicitly

{(b*bb*b))—(b*b)~. (10.173)
As we know, b, b™ obey the commutation relation
bb*—b"b=1. (10.174)

By means of this relation, the product b*bb*bin (10.173) can be rewritten
asb*b bbtb"b. In this way (10.173) transforms into

(b*b*bb)—(b* b)Y’ +(b"b). (10.175)
—_—
Kz(T - 0)

As we shall prove in chapter 11, the expression K, in (10.175) can be
evaluated by means of the distribution functionf asif b-, b were classical
guantities. Equivalently, (b*b*bb) and (b™b) can be calculated by use of
the solutions of the classical Langevin equations. Therefore we may identify
K, in (10.175) with the expression K,(r=0) of section 10.4, where we
calculated it explicitly below and above threshold. In this way we obtain:

below threshold
K,(r=0)=(b"b)*; (10.176)
above threshold
—oy = Nas
KZ(T—O)—4KT. (10.177)

We can calculate the mean squared deviation (10.172) by inserting (10.176),
(10.177) in (10.175), (10.172). We thus obtain:
bdow threshold
((n=(n))*)=(b"b)y* +(b"b)
=(n)((n)*1).

This result is typical for Bose-Einstein statistics, where photons tend to
form clusters (compare fig. 10.15). On the other hand we obtain:

(10.178)

above threshold (n - o)
((n—(n))*y=(n). (10.179)
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Thisrelation is well known to hold for a Poisson distribution. 1t means that
the photons try to keep a mean distance from each other (compare fig.
10.16). We have been able to find these results by means of the solutions
of the laser equation (10.128). But we had to exclude a small range close
to and at laser threshold. This gap can now be closed by an explicit use of

T TIET 10

I

it)

IR ]

t —»

Figs. 10.15 and 10.16. These figures show the dependence of the light intensity versus time in
the corresponding upper parts of the figures. The corresponding lower parts represent incoming
individual photons in the course of time. Fig. 10.15: The case of a lamp. Photon bunching
takes place. The light intensity exhibits correspondingly strong fluctuations. Fig. 10.16: The
case of the laser. The photons maintain a mean distance between each other. Correspondingly,

a smooth light intensity appears. [E.R. Pike, in: Quantum Optics, eds. L. McKay and A.
Maitland. Academic Press, New York 1970.1
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the distribution functions (10.164) or (10.170), respectively. We remind the
reader that we shall justify the use of classical averages instead of the
guantum statistical averagesin chapter 11. In order to describe the smooth
transition from (10.178) to (10.179) we write the Lh.s. of (10.178) (or
(10.179)) in the form

(n*)—(n)>=(n)(1 + Hy(n)), (10.180)

where H, isafunction of (n) still to be determined. Quite evidently, H,=1
below and H,=0 above threshold. Solving (10.180) with respect to H, and
using the abbreviations M, =(n%), M, =(n) we obtain
M,-M? 1

H,= -—.
oMM,

(10.181)

In this way H, is directly expressed by measurable quantities, namely the
moments of n?and n. Fig. 10.17 represents a comparison between the theory
based on the distribution function (10.164) and experiments. The results
show both a good agreement between theory and experiment and revea
also a continuous transition from (10.178) to (10.179). The pump parameter
has been replaced by a normalized emission intensity. A similarly good
agreement has been found for other quantities also, which can be expressed
by higher moments, such as M, =(n°) and M,=(n".
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Fig. 10.17. H, versus normalized number of emitted photons (experimental, after results of
Arecchi et al., theoretical results after Risken, cf. references).
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Fig. 10.18. The function a(a) occurring in (10.183).[H. Risken, Z. Physik 191, 302 (1966).]

Wehaveshownindetail inVal. 1, section 2.2, that the coherence properties
of light are represented by correlation functions of field strengths, e.g. by
(EC()E(¢')). Two particularly important expressions were calculated
in the previous sections, namely

(b™(1) b(0)) and Ky(7)=(b"(0) b*(7) b(7) b(0))-{b"b)

for regions below and above threshold. In the vicinity of the threshold these
expressions can be calculated by means of the time dependent solutions of
the Fokker—Planck equation (10.157).These solutions were determined by
anumerical calculation. Out of these results we present the following which
shows how the laser line-width Aw changes at laser threshold. Aw = Aw(a)
varies continuously as a function of the pump parameter a and one finds

Aw(a) - P(a)=AwyP, - ala). (10.182)

P(a) is the emission intensity of the laser at the pump strength a. 4w, and
P, denote the line-width and the emission intensity, respectively, of the
laser above its threshold. Aw, is given by (10.135)and P, by (10.136).As

we may see, 4w, . P, isindependent of the emitted power so that (10.182)
can be written in the form

Aw(a) - P(a)=const. - a(a). (10.183)

a{a) was calculated numerically and is represented in fig. 10.18. If the
emission powers P below and above threshold were equal to each other
we should find a line-width below threshold which is twice that above
threshold.



Chapter 11

Quantum Theory of the Laser 11

A second approach via the density matrix equation and
guantum classical correspondence

11.1. The density matrix equation of the laser

In the foregoing chapter we developed the quantum theory of the laser by
means of quantum mechanical Langevin equations. These equations have
the advantage that their physical meaning can be quite easily visualized
duetotheir analogy with the semiclassical laser equations. Below and above
threshold they can be rather easily solved even in the qguantum mechanical
case by means of linearization or quasi-linearization. On the other hand
the rather small but most interesting region close to and at laser threshold
could not betreated directly by means of the quantum mechanical Langevin
equations. Not because these equations become invalid, but because no
way of their solution is known in that region. Therefore we resorted to a
Fokker—Planck equation in section 10.5. In that section we could base the
derivation of aclassical Fokker—Planck equation from quantum mechanical
Langevin equations merely on heuristic arguments. The present chapter
serves the purpose of filling that gap. We wish to derive that former
Fokker—Planck equation from first principles whereby the complicated
guantum mechanical problem is cut down stepwise by well-defined and
well justified approximations. In this section we shall make a first step
towards that goal by deriving the density matrix equation of the laser. The
reader should be familiar with some basic features of a density matrix
equation, for instance as presented in Val. 1.

Again as in the foregoing chapter we start from the total Hamiltonian
which reads

H=Hi+Hj+Hu+Hy +Hy, ¢+Hp,+Hy 4. (11.1)
———
H,
In it H, is composed of the Hamiltonian H; of the free modes, of the
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Hamiltonian H, of the laser active atoms, and of the Hamiltonian Has
describing the interaction between the field and the atoms. We shall adopt
the same model as in the foregoing chapter, namely a single mode and a
set of two-level atoms being in resonance with the field mode. The explicit
form of the Hamiltoniansis given by (10.4), (10.13), (10.21). The remaining
terms in (11.1) describe the coupling of the field mode and the atoms to
their corresponding heatbaths. A possible way of treating the problem
defined by the Hamiltonian (11.1) would be to solve the corresponding
Schrodinger equation

HY =ihV, (11.2)

which, of course, contains all bath variables. These variables are of no direct
interest to us, however, and we wish to eliminate them. To this end we
adopt the approach via the density matrix. The density matrix p.., wWhich
refers to the total system described by (11.1), obeys the equation of motion

DB 21, pi) (11.3)
On the other hand we are interested in a density matrix which containsthe
proper laser variables, i.e. the field mode and the atomic variables, but no
more the heatbath variables. To this end we introduce a new density matrix
p by averaging the original density matrix p., over the heatbath variables
which are assumed to be in their thermal equilibria at their specific tem-
peratures,

P ={prov)- (11.4)

Then our obvious goal will be to derive an effective density matrix equation
for p. Such a program has been followed up in Vol. 1 where we showed
how a field mode coupled to a heatbath or an atom coupled to a heatbath
can be treated. For the reader's convenience we briefly remind him of the
main steps.

Let us consider a field mode coupled to its heatbath. The density matrix
of this total system is denoted by

Prot (1L.5)

and obeys the equation

dp fitot _

i
dt _-,F;[Hf+HB|+HB,—f’ Prrot)- (11.6)

We have shown that we may derive an equation for the density matrix p¢
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which refers to the field mode variables b™, b alone. The equation for

Pr={Prror) (11.7)
reads

i
ﬁf: _E[hwb+ba pf] +6{[b+pf’ b] +[b+a be]}

+&{[bpr, b71+[b, peb ™1}, (11.8)

where the constants § and ¢ are connected with the damping constant «
of the field mode amplitudes and the number of thermally present photons,
Nihs by

o= KNyp, (119)
E=k(ny+1). (11.10)

After this brief reminder let usreturn to the problem of deriving a reduced
equation for the density matrix p of the total system field +atoms (11.4).
The total temporal change of p consists of three parts:

(1) The change caused by the coherent interaction between field and atoms.
This change is given as usual by

oy __1
(62)“’“_ h[HOsp] (1111)

(2) Thetwo other parts stem from the coupling of thefield toits heatbaths
and from the coupling of the atoms to their heatbaths, so that

dp i ap) (ap)
Lol 1+(28)  +(Z) . 11.12
a1 h[ Pl (at or \ot)n ( )

The change of p due to the coupling field—heatbath can be directly taken
from (11.8), because the coherent motion of py is taken care of by (11.11).
The terms still to be considered of (11.8) are given by

(%)B = 0llb7n, b1+[b", pbl + £{lbp, b7 +[b, pb7]). (11.13)

The last term in (11.12) describing the effect of the heatbaths on the atoms
can again be taken from the general results from Vol. 1. According to that
volume quite generally we have

(’aﬁ) =Y {[(araj),‘p, (a;ai)p.Aji,ij +[(ai+aj),u p(a;-ai)p]A;'l:’,ij}-
B,—-A

at Hij
(11.14)
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Here we have summed up over the individual atoms u where it is assumed
that the heatbaths of the individual atoms are statistically independent from
each other. Because we deal with two-level atoms only, the indices i and j

run over 1 and 2 only (here and in the following formulas we have corrected
some minor misprintsin Val. 1).

A are constants which we do not need to know explicitly because they
are connected with phenomenological quantities, namely:
(1) the transition rate from level j to level m under incoherent processes,

Wi = Ajmmj + Al (1L.15)

(2) the line-width connected with transitions between levels m and n,

Vin =2, Re(Ami,im +A>r|l<i,in) E%z (Wim +Win)s (11.16)

(3) frequency shifts for transitions connecting levels m and n
Awp, =—% Im(Am',in +A>r‘;li,im)~ (11.17)

Because frequency shifts can be absorbed in the original energies of the
atomic levels (*'renormalization'), we may assume that (11.17) vanishes,
and as a more detailed analysis shows, we may even assume A to be real.
In such a case and for the two-level atoms under consideration (11.15) and
(11.16) simplify to

Wy =2A1.01, (11.18)

Y=Y12=Ya =W +wy) +4, (11.19)
where the term

A=3(wii +w) (11.20)

describes phase fluctuations which are not caused by rea transitions. In
order not to overload our further analysis we shall ignore the term (11.20)
and refer the readers, who are interested in these specific details, to H.
Haken, Laser Theory.

Using our former notation a; a,=a,...we can cast (11.14) into the form

(a_p>3 —A:z l:%{[aw pa:]+[a"p’ a:]}

ot "

+%2—l{[a:, pe, ]+[elp, a“]}] . (11.21)

(11.12) jointly with (11.11), (11.13) and (11.21) representsthe desired density
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matrix equation. With respect to the degree of accuracy this density matrix
equation is entirely equivalent to that of the quantum mechanical Langevin
equations of section 10.3 (provided weinclude the terms (11.20) in (11.21)).
It should be noted that both approachesimply the same kind of approxima-
tion, namely it is assumed that the interaction between the field mode and
the atoms is not so strong that the interaction of these individual systems
with their individual heatbath is appreciably disturbed. In the case of a
very strong interaction between field and atoms new kinds of effects may
occur, for instance a quenching of the interaction between atoms and their
heatbaths.

In order to proceed further, one possibility is given by trying to solve the
density matrix equation (11.12) directly. Approximate solutions of this
density matrix equation were given in the literature. Readers interested in
those approaches are referred to the references. In the context of the present
book we rather wish to follow up the line indicated at the beginning of this
section, namely to derive a classica Fokker—Planck equation starting from
the quantum mechanical density matrix equation. To this end we have to
providealink between the quantum mechanical and theclassical description
by means of the method of quantum classical correspondence.

11.2. A short course in quantum classical correspondence. The example of
a damped fidd mode (harmonic oscillator)

11.2.1. A formal analogy between quantum statistical and classical
statistical averages

The method which we are going to describe briefly is of interest both to
laser theory and to nonlinear optics. Let us start from the quantum
mechanical Langevin equation of a damped field mode. The equation of
the annihilation operator b is given by (see also Val. 1)

b= (—iw—«)b+F(1). (11.22)
By means of the transformations

b= b exp[—iwt], (11.23)

F(t) = F(t) exp[—iwt], (11.24)

we can cast (11.22) into the simpler form

b=—«bh+F(1). (11.25)

This equation is analogousto a classical Langevin equation which we have
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met in Vol. 1, namely
g=-xq+F. (11.26)

This equation can be interpreted as that of the overdamped Brownian
motion of a particle. We wish to exploit the analogy between (11.25) and
(11.26) to deviseamethod how to cal cul ate quantum mechanical expectation
values by means of c-number procedures (*'c"" =" classica). If the quantum
mechanical oscillator is coupled to a heatbath, the proper definition of its
guantum mechanical and quantum statistical expectation value (b)is given
by

(by=Tr{bp}, (11.27)

where p is the density matrix, and Tr means "trace”. In order to evaluate
(11.27) one hasto solve, of course, the density matrix equation for p. Asa
further step towards the analogy we wish to establish, we consider how the
evaluation of an average value corresponding to (11.27) would be done in
classical physics. Here the average value of q is defined by

<q>=J qf(q, t) dg, (11.28)

where f(q, t) isthe distribution function. As we know (seeVol. 1)f (g, t) dq
gives us the probability of finding the particle at time t in the interval
g.-.q-+dg. The distribution function f obeys a Fokker-Planck equation
which according to Vol. 1, p. 291, is given by

df(q, 1) & Q¥f
“dr —aq(qu)+26q2.

(11.29)
In order to make our following procedure understandable we must briefly
remind the reader how the Fokker—Planck equation (11.29) is derived from
the equation (11.26). (Readersinterested in more details are referred to my
book Synergetics. An Introduction.)

11.2.2. A classica Fokker—Planck equationfor the damped quantum
mechanical oscillator

Let usfirst consider thespecial caseof (11.26) in which thereisno fluctuating
force F(t). Once the initial condition of q is fixed, g(t) is fixed also. In
such a case we know that the particle will be at time t with certainty in the
interval q...q%dg, provided q(t) liesin that interval, and the probability
will be 0 elsewhere. The distribution function describing this property is
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simply given by the 6-function

Jolq, 1) =38(q—q(1)). (11.30)

Now let us assume that the heatbath producing the fluctuating force F(t)
is acting on the particle coordinate g. This force causes random pushes so
that the particle will follow up different paths for different realizations of
the random events. When we now wish to know the probability of finding
the particle at time t in the interval q- - - q+dg we have to average the
distribution function (11.30) over the different paths caused by the heatbath,
i.e. we have to replace (11.30) by

f(q, 1) =(8(q —q(1)))s. (11.31)

The form (11.31) jointly with the properties of the fluctuating forces can
be used to derive the Fokker-Planck equation (11.29) which belongs to
(11.26) (cf. H. Haken, Synergetics. An Introduction). In the present context
another property of (11.31) is still more important, however. Namely let us
use the Fourier representation of the 6-function, i.e.

+00

1 .
8(q—q(1)=— I expli(q(1) —g)¢] dé (11.32)
Inserting (11.32) in (11.31) and noting that the integration over the variable
£ has nothing to do with the heatbath average we obtain

+00

(6(g—q(t)s= 5_1; J (expli(q(t) —q)€éDp dé, (11.33)

or, using the same argument again we obtain
l “+oc . )
(11.33) = Py j exp[—igéKexplig(#)&]s dé. (11.34)

The statistical average over the exponential function which occurs in
(11.34) is well known in statistical physics and is called the characteristic
function y,

(explig(1)éDn = x(§). (11.35)

After these preliminary steps we are in a position to define a distribution
function for quantum mechanical variables. We first note that according to
the basic principles of quantum theory classical observables, such as ¢(t),
are replaced by operators b in quantum mechanics. As we know (see Val.
1), in quantum mechanics we have different choices with respect to the time
dependence of h. In the Schrodinger picture the operators b, 5™ are time
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independent and al thetime dependence of the quantum mechanical system
is described by the wave function ¢ or, in a more elegant fashion, by the
time dependent density matrix. Another description is based on the Heisen-
berg picture where the operators b, b* are time dependent, but the wave
function is time independent. In the present context we shall use the
Schrodinger picture which was already used without being mentioned
explicitly in section 11.1. We now establish an analogy between the forma-
tion of a statistical average such as in (11.35) and a quantum mechanical
average such as in (11.27). First of al we define in an obvious way the
guantum mechanical and quantum statistical average over exp[ib¢] by

(exp[ib&]) = Tr{exp[ibé] p(1)}. (11.36)

But in this way we have now defined a quantum mechanical characteristic
function which occurs in analogy to (11.35). While for the real variables
q(t) the characteristic function (11.35) is sufficient to characterize all statis-
tical properties required, in the case of b we have to deal in the classical
domain with a complex variable, and in the quantum mechanical domain
with an operator b and its Hermitean conjugate. Therefore instead of the
onereal variable ¢ we have now to use a complex variable g and itscomplex
conjugate B*. Therefore in generalizing (11.36) we may define a characteris-
tic function y for the harmonic oscillator (field mode) by

x(B, B*)=Tr{exp[iBb +iB*b ] p). (11.37)

At this moment a fundamental difference between characteristic functions
of classical stochastic variables, i.e. (11.35), and characteristic functions
referring to operators, i.e. (11.37), becomes apparent. Namely because the
operators b and b do not commute, we may define characteristic func-
tions in various ways depending on the way we write down exponential
functions containing b and b*. For instance, we would split the exponential
function occurring in (11.37) into a product which leads usto the characteris-
tic function

xr(B, B*) =Tr{exp[iB*b ] exp[iBb] p}. (11.38)

But because the operators b and b* do not commute, (11.38) is a function
different from (11.37). As the reader may recall, in quantum mechanics we
read operatorsfrom the right to the left. Therefore in (11.38) the exponential
function containing the operator b must be applied prior to the exponential
function containing ™. If on the other hand we exchange the sequence
between these two exponential functions we are led to athird characteristic
function, namely

xo(B, B*)=Tr{exp[iBblexp[iB*b"1p}. (11.39)
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In this way the characteristic functions (11.37), (11.38), (11.39) will give
riseto different distribution functions which are called the ' Wigner distribu-
tion function x”’, the " Glauber- Sudarshan distribution function x,”, and
the" Q-distribution function x,”, respectively. In thefollowing analysiswe
will use (11.38) as explicit example.

Let usrecall what our goal was. Wewanted to find a distribution function
corresponding to a quantum mechanical process. Our starting point was
€g. (11.31) which defined a classical distribution function f for a classical
variable g(z). The trandlation of this distribution function into one for
guantum mechanical processes is provided by (11.34) where we have to
replace the classical characteristic function (11.35) by the quantum
mechanical characteristic function (11.38). To this end we have merely to
take the Fourier transform of the characteristic function (11.38) where we
replace the former real variable g by the complex variables u and u* and
the singleintegration over ¢ by atwo-dimensional integration d°8. Weshall
not dwell on the mathematical details how to perform the integration in
the complex plane. We rather exploit some formal properties and refer the
reader to the specificliterature for mathematical rigor. In analogy to (11.33),
(11.34) we define the Glauber—Sudarshan distribution function by

~

P(u, u*)=7" | exp[~iBu-iB*u*] xp(B, B*) d°B, (11.40)

or, making explicit use of (11.38) by

P(u, u*)=7n"7| exp[—iBu—iB*u*] Tr{exp[iB*b*]

o

xexpl[ipb] p} d°B. \ (11.41)

Wheat is known and what is unknown of the right-hand side of (11.41)? u
and u* areindependent variables, while 8 and B* are integration variables..
b* and b are operators with given properties. Therefore the only unknown
guantity is the density matrix p. Or, in other words, once we know p, we
can calculate P, at least in principle. Thus one way would be to solve the
density matrix equation for p first and then to calculate (11.41). Our god
is more ambitious, however, because we wish to derive a Fokker—Planck
equation for R To this end we shall transform the density matrix equation
for p into an equivalent equation for P. In order to achieve this goa we
need some formal tricks. First we introduce the abbreviation

O =exp[iB*b™] exp[iBb], (11.42)
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so that the characteristic function y can be written as

x(B, B*) =Tr{Op}. (11.43)

Note that for sake of simplicity we shall drop the index P of x in the
following.

Let us first derive a differential equation for the characteristic function
x- To this end we differentiate both sides of (11.43) with respect to time
and obtain

dy/dt=Tr{O(dp/d1)}. (11.44)

'For dp/dt in (11.44) we insert the r.h.s. of (11.13) where we make use of
the explicit form of & and ¢ (cf. (11.9), (11.10)). Furthermore we make use
of a theorem on the cyclic property of traces which can be expressed by
the relation

Tr{ABC} = Tr{ CAB}. (11.45)
In this way we rewrite (11.44) as
dy/dt=« Tr{[2b7Ob—0b"b—b"bO]p}
+2kny, Tr{[b*Ob—bb"O — Ob™b +bOb" ]p}. (11.46)

It will be our goal to reexpress the r.h.s. of (11.46) by x where we shall
admit that y may be differentiated with respect to B or B* or may be
multiplied by these quantities.

Let us consider to this end (11.42) more closely. When we differentiate
the r.h.s. of (11.42) with respect to iB*, we readily find

. a0
= 11.47
0=y (147
and by differentiating it with respect to i8* and i we derive
&0
b"Ob=—"7p——. (11.48)
3(iB*) a(iB)

Furthermore using the commutation relation bb™ - b*b=1 we can derive,
as was shown explicitly in Vol. 1, the relation

bO=ip*0O *+ Oh. (11.49)
Multiplying (11.49) from the left by 5™ we find
b*bO =iB*b* O+ b* Ob, (11.50)

where the right-hand side can be written again as a derivative with respect
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to iB* and iB,
. 00 30
: +— —.
a(iB*) a(ip*) a(iB)
As we may see from (11.48) and (11.51), the operator expressions of the
left-hand sides may be expressed by derivatives of O. In a similar way we
can proceed with the remaining terms of (11.46) and we leave it as an
exercise to the reader to derive the corresponding relations.

We now show how relations of the form (11.48) can be used to express
the r.h.s. of (11.46) by means of y. To this end we study

iB (11.51)

Tr{b " Obp}. (11.52)
Using (1148) we may transform it into
30 }
TY\————p¢. (11.53)
{B(IB*) aip)”

Because taking the trace does not refer to the variables g and 8*, we can
perform the differentiation in front of the trace so that we obtain

82
a(ip™) a(iB)
According to (11.43), the remaining trace isidentical with the characteristic
function y so that we obtain as fina result
62
a(ip*) a(ip)
In quite the same way we can deal with al the other terms also, and we

leave that treatment to the reader again as an exercise. Collecting all the
terms we find

dx _
dr

Tr{Op}. (11.54)

(11.52) = x(B, B*). (11.55)

—x (iﬁa(;’ﬁ) +iﬁ*a(iaﬁ*)>x + 2k, (iB)(iB)x, (11.56)

which is the wanted equation for the characteristic function. In a last step
of our analysis we wish to transform eg. (11.56), which refers to the
characteristic function, into an equation for the P-distribution function. To
this end we differentiate (11.41) on both sides with respect to time, which
on the left-hand side yields

dP(u, u*)

2 PP ) ¢
a Jd B exp[—iBu—iB*u ]dt' (11.57)
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We express dy/dt on the r.h.s. of (11.57) by the r.h.s. of (11.56). Let us
again treat a specific term of the r.h.s. of (11.56) as an example. Let us
consider the expression

9

iBa(iﬁ), (11.58)
which gives rise, if inserted in (11.57), to
5 . .. ¢
Jd B exp[—iBu—iB*u ]lﬁa(iB)' (11.59)

The multiplication of the exponential function in (11.59) by i can be
expressed by the differentiation of that exponential function with respect

to u Because the integration over 8 does not effect the differentiation of
the exponential function with respect to u we can write (11.59) in the form

.
Ju

ax
aiB)

We now perform a partial integration with respect to i8 which transforms
the integral in (11.60) into one where the exponential function is differenti-
ated with respect to iB. We shall assume that y vanishes at infinity so that
the partial integration gives rise to the following final result:

J.dzﬂ exp[—iBu —ip*u*] (11.60)

d

a—J’ d’B (—u) exp[—iBu—if*u*] x. (11.61)
u

Evidently the r.h.s. of (11.61) can be expressed by

— 2 (uP(u, u™)), (11.62)
ou

where use of the definition of P (11.40) has been made.

Let us briefly summarize what we have achieved so far. We have shown
how the first term on ther.h.s. of (11.56) givesrise to aterm in the equation
for P we arelooking for. The second term on the r.h.s. of (11.56) gives rise
to

—i*(u*P(u, u*)), (11.63)
ou

in quite an analogous fashion. Note that in both terms we have omitted the
factor k for the moment. In a still simpler way one may demonstrate that
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the last term in (11.56) (except for the constant factor) gives rise to

2

iB*)(iB)x » (11.64)

ou du*’

Collecting the terms (11.62)-(11.64) and using them on the r.h.s. of
(11.57), we arrive at the fundamental equation for the classical distribution
function P,

2

) d d
* _ *
dP(u, u )/dt—K<_auu+6u*u )P+2Kntth. (11.65)

Quite evidently we have found a Fokker—Planck equation in the classical
variables u and u* so that the problem of solving a density matrix equation
has been rigorously transformed into that of solving a completely classical
Fokker—Planck equation. I nthefollowing weshall use ashort-hand notation
for (11.65), namely

P=LP, (11.66)
where L is the differential operator which occurs on the r.h.s. of (11.65).
We leave it as an exercise to the reader to solve eg. (11.65).

11.2.3 How to calculate quantum mechanical averages by classical averages

At the beginning of this section we asked ourselves whether we can develop
a formalism by which we can evaluate a quantum mechanical average, say
of the form (11.27), by means of c-number procedures, i.e. by classical
averages. We now want to demonstrate that this goal can be achieved and
that in the specific problem (11.27) we find

Tr{bp} = J uP(u, u*) d*u. (11.67)

Toderivethisrelation we writethelh.s. of (11.67) in aspecificform, namely

Tr{bp} =[Tr{O(B, B*)bp}]s-p*=0 (11.68)
where O was defined by
O(B, B*) =exp[iB*b™] exp[iBb]. (11.69)

We now remind the reader of the properties of the &-function. Without
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searching for mathematical rigor we make use of the following properties:

J 8(B) 8(B*) f(B, B*) d°B =£(0,0) (11.70)
and

8(B) 8(B*)=— J exp[—iBu—ip*u*] d*u, (11.71)

1
k
where f is an arbitrary continuous function of 8 and B*. We now insert
for f the expression

d * — *
d(i,B)Tr{O(B’ﬁ )p}=f(B, B¥) (11.72)

in (11.70) and form

J d2,31—713 j d*u exp[—iBu —iBu*]( Tr{O(B, B*)p}). (11.73)

d
d@ip)
We perform a partial integration over iB. By a change of the sequence of
integrations we transform (11.73) into

J d*u u;l_—z J d’B exp[—iBu —iB*u*1 Tr{O(B, B*)p}. (11.74)

P(u, u*)

We note that by way of construction, (11.73) agrees with the L.h.s. of (11.67),
whereas the r.h.s. of (11.74) can be expressed by P, In this way we indeed
find

Tr(bp) =I uP(u, u*) d’u, (11.75)

which agrees with the assertion (11.67). A basic step in this derivation was
provided by (11.72) where we gxpressed the operator Ob by the derivative
of O with respect toiB. This procedure may be generalized to the nth power
of b so that

Te(b"p} =[Tr{O(B, B*)b"p}]p g0

3 \" .
- [(é(—l‘;)) Tr{O(B,B )p}]3=3*_0' (1176)
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Performing the same steps as before we then verify

Tr{b"p} =J u"P(u, u*) d’u. (11.77)
Finally we may evaluate the trace
Tr{(b*)™b"p} (11.78)
by means of derivatives, namely by means of
a m a n
11.78) = - - Tr{O(B, B* } . 11.79)
(178 [(aoﬁ*)) () o880 amstco (

In this way we find again by repeating the steps as before that the following
relation holds:

Tr{(b™)"b"p} = [ (u*)™u"P(u, u*) d?u. (11.80)

An important remark must be made, namely the nice relation between the
left- and the right-hand side of (11.80) holds only if the product of creation
and annihilation operators b and b, respectively, iswritten in normal order,
where the creation operators stand on the left-hand side of all annihilation
operators. If we define a function of b*, b in normal order we have the
translation rule

Tr{f(b", b)p} = J f(u*, u) P(u, u*) d?u. (11.81)

Thisis the final result of this section.

Let us summarize what we have learned in this section. In order to study
the stochastic process, which the operator b (or b*) undergoes, the action
of a heatbath can be formulated in several ways:

(1) by means of guantum mechanical Langevin equations;

(2) by means of the solution of the density matrix equation and jointly by
the evaluation of expectation values (quantum mechanical averages) by
means of the solution of the density matrix equation;

(3) wemay solvein an entirely equivalent fashion aclassical Fokker—Planck
equation (11.65) and calculate quantum mechanical expectation values by
means of an entirely classical integration via (11.81).

In this way it has become possible to translate a quantum mechanical
problem into a classical problem without any loss of generality. We have
described this procedure for a special representation, namely the Glauber-
Sudarshan representation (11.38). The reader may try it as an exercise to
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formulate the corresponding treatment for the two other distribution func-
tions based on (11.37) and (11.39). For the individual steps, which imply
the differentiation of exponential functions of operators, we refer the reader
to Vol. 1 where all the necessary tricks are presented.

Exercises on section 11.2

(1) Solve eq. (11.65) for the steady state, i.e. where dP/dt=0.
Hint: Try the hypothesis

P =N exp[—Cu*u],
and determine C by inserting P into (11.65).

(2) Find time dependent solutions of (11.65).
Hint: Try the hypothesis

P =N (1) exp[—h(t)(u—u(1))(u*—u*(1))],

and determine the unknown functions u(t), u*(t), ¥ (1), h(t).
11.3. Generalized Fokker-Planck equation of the laser

In the foregoing section we have shown how the density matrix equation
of adamped field mode can be transformed into a classical Fokker—Planck
equation without any loss of "information™. We may therefore ask the
guestion whether a similar procedure can be applied to the density matrix
equation of the laser (11.12) which comprises the field and the atomic (or
electron) variables. There is, however, an obstacle which consists in the
difference between Bose operators, b, b*, and Fermi operators of electrons
af, a,. Though at a first sight their corresponding commutation relations
differ only by a sign, it is well known to the experts that this causes
considerable trouble when one tries to derive operator equations similar to
those of theform (11.49). In spite of these difficulties it is possible to derive
again a Fokker-Planck-type equation, though due to the specific properties
of the Fermi operators this Fokker—Planck equation contains derivatives
up to infinitely high order so that we call the corresponding equation
"generalized Fokker—Planck equation™.

Since the detailed procedure does not give us any more physical insights
than that of the preceding section, we shall not present these details here.
We rather refer the reader to my book ** Laser Theory* in which the detailed
steps are presented. Here we rather present the main steps.
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In analogy to our considerations when deriving the quantum mechanical
Langevin equations we shall use pairs of operators a;, a, in a form well
known to us, namely

aja,=q, (11.82)
a.a,=a”, (11.83)
a;az_aral——-d. (11.84)

Because we shall deal with a set of atoms distinguished by the index u we
shall supplement the quantities on the right-hand sides of (11.82)-(11.84)
by that index,

a, @, d,. (11.85)

In order to simplify the calculation we shall adopt the model of a single
mode laser with a running wave so that the spatial dependence of the
coupling coefficients g, can be transformed away. Because the field mode
then interacts with the operator of the total dipole moment, we shall
introduce that operator and its Hermitean conjugate as new operators
Ya,=8", (11.86)

"

Yai=S* (11.87)

M
Finally we introduce the sum over d, as a new variable which we call 25,

Y d, =28, (11.88)
“

The notation (11.86)—(11.88) stems from the fact that S*, S~, and S, can
be considered as spin operators as far as their commutation relations are
concerned. We shall not use this fact here explicitly, though it plays a role
in the detailed derivation of the generalized Fokker—Planck equation we
wish to describe.

In the foregoing section we have seen that one may establish a correspon-
dence between the operators b, b™ and u, u*

bou brou*. (11.89)
In a similar fashion we introduce the correspondence
STov, STev* 25,oD. (11.90)

From the formal point of view we now perform the same steps as above in
section 11.2. We first have to define a characteristic function by means of
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an exponential function in analogy to (11.43) and (11.42). Because of the
operator properties of (11.86)-(11.88) we have several options with respect
to an arrangement of the exponential functions. In the following we shall
adopt the following choice:

O, =exp[ie*S™] exp[igS.] exp[i£ST], (11.91)

which is suggested by the analogy to the choice (11.42) we made before. It
should be noted that other choices have been followed up in the literature
as well, for instance one with an exchanged sequence of S* and S~, or one,
in which the operators S¥, S7, S, occur as a linear combination within the
same exponential function. Each of theseindividual choices has advantages
and disadvantages, especially concerning the form of the solution of the
Fokker-Planck equation and the way in which expectation values and
correlation functions are evaluated.

In order to define the characteristic function of the total system field
mode +atoms we introduce the operator

0=0,0, (11.92)
which in particular depends on the parameters &, £*, ¢, 8 and B*,

O0=0(¢§ ¢%, (, B, BY). (11.93)

It is now straightforward to formulate the distribution function of the laser
by means of

f(u, u*, v, v**D)

Z‘MJ Ce J exp[—i(v§+v*§* +{D/2+up +u*B*)]

xx(& £, ¢, B, B*) d’¢ dL d°B, (11.94)
where the characteristic function is, of course, defined by
x =Tr{O(¢ ¢*, {, B, B*) p(1)}. (11.95)

As mentioned before, the explicit derivation of thefinal generalized Fokker—
Planck equation is rather tedious so that we quote in the present context
only the final result. The equation of the distribution function reads

df/dt = Lf, (11.96)

where the linear operator L is defined by
L=Lit Lyt L. (11.97)
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Its individual parts are as follows. L; stems from the coupling of the field
mode to the heatbath. It is given by (11.65) and is repeated here for the
reader's convenience,

62

— . 11.98
ou ou™ ( )

a d
Li=x|—u +—u*] +2kn
f [au Ju* i

L A describes the coherent interaction between the field mode and the set
of atoms and is explicitly given by

L =—ig{ e‘%/mv*—a—zvnhiD u
Af aw’ dv

82 2 —2a/aD J EY
it v¥+e D+8—*D u
v

av*?

e e[l
H m—HuF fo— | - +u vy (11.99)
ou ou

Finally L, stems from the interaction of the atoms with their heatbaths.
This term is the most complicated one and has the explicit form

o 9?

ki1 +2
av? gv*? av ov*

LA=_2__{N(eza/80 _ 1) +N ez,-,/aD

d 8? d &
+—[2 *+2e‘29/”D—1]v+—*[2 - +2 e‘“/“’—l]u*
vl Jdvdv Jav Jav dv

. ot D
—28/aD 2a/0D —_—
_2[(e . _1)_6'” azuazu*]z}

Wis 20/8D d 9 * 28/aD D}
+—= N _1 +—p+— +2 — — 7. .
> { (e ) avv av*v (e 1) > (11.100)

If the phases of the atomic dipole moments are destroyed not only by red
transitions but also by virtual transitions, the following term must be added
to the r.h.s. of (11.100) (where n=24):

* 49 az za/aDB+N 62 eza/aD}_

€

Ui
S —p+— 11.100
Z{E)vu 0v*v v 9v* 2 Jv dv* ( 3)

In the following considerations we shall not take care of this term explicitly
but rather quote its effect at the last stage of our approach only.

Clearly, the Fokker—Planck equation we derived here stems only from
those parts of the original density matrix equation (11.12), which contains
the coupling of the field and the atoms to their corresponding heatbath,



§11.4. Reduction of the generalized Fokker-Planck equation 295

and from the interaction between the atoms to the field. The Hamiltonian
describing the free motions of the field and atoms is not taken care of here.
Indeed it can be shown that the free motion can be split off in atrivial way.

(11.96) together with the expressions (11.97)-(11.100) represents the
generalized Fokker-Planck equation of the laser. We note that some terms
appear in the desired form of a Fokker—Planck equation containing first
and second order derivatives only. However, also derivatives up to fourth
order with respect to v and v* occur and derivatives with respect to D up
toinfinite order viathe exponential functions. Therefore the question arises
whether we can reduce this still rather complicated generalized Fokker—
Planck equation to an ordinary Fokker—Planck equation. We shall discuss
the corresponding procedure in the next section.

11.4. Reduction of the generalized Fokker-Planck equation

I'n this section we wish to show how thegeneralized Fokker-Planck equation,
whose derivation we sketched in the previous section, can be reduced to
an ordinary Fokker—Planck equation. To do this we have to anticipate the
size of the various quantities u, v, D in the laser. Of course, in the original
equation of the general form

df/dt=Lf, (11.101)

in which L contains u, v, D and derivatives with respect to u, v, D, these
guantities can have any size. Therefore a proper answer to the question
what typical size these quantities will acquire in the laser can be given only
oncethefunctionf isknown. Thisfunction hasthe meaning of adistribution
function and just tells us what size u, v, D will have when averaged over f.
Here a difficulty quite typical for physics arises, because f is not known.
Therefore in one way or another we have to anticipate f, or at least the
order of magnitudeof u, v, D induced by f. Because we expect that eventually
a Fokker—Planck equation of the type (10.157) will result for a laser close
to threshold, in our first step we shall be guided by the solution (10.164)
of eq. (10.157). From it a certain order of magnitude for u, v, D results so
that we can make an appropriate expansion of eg. (11.96) keeping the
leading terms provided we have introduced a measure of smallness. As we
shall see, in this way we can actually derive an equation of the form (10.157)
at threshold so that our whole procedure is self-consistent.

Before we present the main steps we make a general remark. As it will
turn out, the choice of a smallness parameter depends on the region in
which the laser is operated, i.e. if it is operated close to or away from its
threshold. In the following we shall adopt an order of magnitude which is
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typical for alaser at threshold. The other case is not so interesting because
it leads us back to a treatment equivalent to linearization or quasi-lineariz-
ation of quantum mechanical Langevin equations. Close to threshold the
following relation is assumed to be valid

[ul? =~ ny,. (11.102)

Note that ny, must not be mixed up with n, because n.,, means " photon
number close to threshold™, whereas ny, refersto the photon number present
in thermal equilibrium. A relation between the size of the atomic dipole
moments proportional to v and the field mode amplitude u can be estab-
lished viathe semiclassical theory where we assumed a steady state relation
(which can be justified because close to threshold the effective relaxation
time tends to zero (critical slowing down)). In this way we obtain

o] == ul. (11.103)
g

In order to find an appropriate expansion parameter we assume that the
density of the laser atoms p, is kept fixed but that we let the dimension of
the laser go to infinity. Denoting the total number of laser atoms by N and
the laser volume by V we have, of course,

po=N/V, (11.104)
so that with N - 00 we must assume
NxV, (11.105)

The coupling constant g, which occursin (11.103) depends on the volume
so that

gx V2 N7V, (11.106)
From the behavior of the photon number close to threshold we conclude

HeneC N2, (11.107)
We further introduce the relations

V)= Wia T way, (11.108)

2y =wip+wy(+7). (11.109)

where we note that in general an additional term n occurs which is due to
phase destroying processes not connected with real transitions. In order to
simplify our procedure we shall ignore n here but we note that we insert
it again into our final result.
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Finally we know from the semiclassical theory that thethresholdinversion
is given by

Dy =—2. (11.110)

oQ

For what follows it is convenient to introduce some abbreviations, namely

2
N
k=82 (11.111)
Ky
1 _
51=-\/ Y ﬁ, (11.112)
4 Vet+ty k
5,=8,—. (11.113)
Y

We note that because of (11.106), K of (11.111) isindependent of N. On
the other hand, rewriting (11.110) by means of (11.111), we find that the
increase of

N
Dmr:EOCN (11.114)

is proportional to N.

In the next step of our analysis we introduce normalized quantities which
are of the order of unity close to threshold. Therefore we transform the
field amplitude, the dipole moment, and the inversion according to

u v

. b D
—, U = N = ——
\/nth, Uthr Dthr
Whilein the present context ny,,, v, @and Dy, merely serve as abbreviations,
it will become evident later that these quantities are just the values of the
photon number, of the total dipole moment and of the total inversion at
threshold, respectively.
Furthermore anticipating the results in a self-consistent fashion we put

Nene = 8, N2 (11.116)

Because of (11.103) we find
2
v?h,=§zn.hroc N2, (11.117)

a:

(11.115)

We now insert (11.115) into the r.h.s. of (11.101) where derivatives with
respect to aquantity g are counted as ¢ ' asconcernsthe order of magnitude.
The resulting expression can be considered as a function of N'/?, and the
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idea consists in expanding this expression into inverse powers of N2 In
order to find an equation which guarantees a bounded distribution function
we have to include terms of order N2 In this way we obtain

-~

d Jd . d . d
L= (W12—W2|)K—~+‘y<—~v +——D*> +7”ED

oD a0 oo*
K &
N S TR T Ea i (11.118)
8, ovov*
and
I e == 0 . —— |
LM=—ig{—2—.v*u\/5,62\/K+(—~Du«/8,/52—_N'/2
oD v JK
—iﬁx/az/alLN”z—cc} (11.119)
ai Jk ’

while L, retains its original form. We note that it is also possible to retain
terms which are important away from threshold but thisis not our concern
here.

If additional phase destroying processes are included, the factor w,, of
9°/9t 06* must be replaced by

wy, +3m(1 + D/ K). (11.120)

We decompose the complex classical variables u and v into their rea
and imaginary parts and write

R
u=(Re”>, v=( e”). (11.121)
Imu Imo

We further introduce the well known abbreviation

D,= N2 M12 (11.122)
Wizt Woy
Then it is an easy matter to cast the Fokker—Planck equation containing
the terms (11.118), (11.119) and (11.98) into the form
af

E+Vu{(_Ku +gv) f}+V {(—yv+gDu) f}

+={{(Dy - D) - 4gul)

2

J
=§nthVJ+£NWZIA,,f+ 7”N8—sz-. (11.123)
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In the case of additional phase destroying processes Nw,; must be replaced
by

Ny +N 0+ D7, (11.124)

2 2

This Fokker—Planck equation still refers to the field and atomic variables.
On the other hand we wish to treat a laser at threshold where, as we know
from the semiclassical approach, we can eliminate the atomic variables.
Indeed close to threshold we may elimirate the atomic variables from the
Fokker—Planck equation in asimple fashion. This can be done in two ways,
either in the Fokker-Blanck equation directly or via a Langevin equation.
Which way ischosen ispartly away of personal taste, partly oneof simplicity.
In fact, the seeming round-about via Langevin equations is simpler so that
we choose that way. Asis shown in classical statistical physics, the Fokker-

Planck equation (11.123) is entirely equivalent to the following set of
Langevin equations:

d
(E+K>u+igv=ﬂ, (11.125)
d . .
a+y v—iguD=il’, (11.126)
d s o ¥ *
E”” (D—Dy) +2ig(v*u—ovu*) =TI, (11.127)

The drift coefficients which occur in the Fokker—Planck equation (11.123)
are connected with the fluctuating force by the relations

. 1 T (T
Q= l'f?oﬁjo L (L) TFnL)d db, j=uv,D. (11.128)

According to the Fokker-Planck equation (11.123), the diffusion coefficients
read explicitly

Qu=§n,h, (11.129)
Q,=iNw,,. (11.130)

Note that (11.123) does not contain diffusion coefficients stemming from
I', because they have been neglected due to their smallness.

We now resort to the method of adiabatic elimination which we have
used at various occasions in this book. To this end we assume that

K<, (11.131)
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holds. Under this assumption we may eliminate the atomic variables v and
D adiabatically, whereby we end up with the classical Langevin equation
for the field amplitude u aone,

u=B(d—|uP)u+rI. (11.132)

In it we have used the abbreviations

42

B= - , (11.133)
yDthr

J:ZU(DO—DM). (11.134)
K

D, was defined above (11.110). Under theassumption (11.131), thefluctuat-
ing force I' is given by

F=Fu+§1"v. (11.135)

By means of (11.128) and using the fact that I, and I, are uncorrelated
we readily obtain

2
Q=Qu+—§30w (11.136)

where Q,, and Q, are given explicitly by (11.129) and (11.130).

We now observe that the classical Langevin equation (11.132) possesses a
classical Fokker—Planck equation which isidentical with (10.151) of section
10.5. But in section 10.5 we derived this classical Fokker—Planck equation
in a heuristic fashion from the quantum mechanical (Langevin) equations,
whereas here we derive it from the quantum mechanical equations via
guantum classical correspondence. To complete our derivation we wish to
cast Q into the form we used in section 10.5. Using (11.129), (11.130) we
may write Q in the form

2

K g1
Q:Enth+?ZNW21' (11.137)

By means of the relation

g«

==

Y YD

(11.138)
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Q acquires the form
K 1 Kk Nw,,
Q=—ny+-—— 22—, (11.139)
2" 47(N2,thr_N1‘thr)

We now remind the reader of the relation (11.109), i.e.

2')’: Wi+ Wy, (11.140)
and of (10.39) and (10.40) from which we obtain for N atoms
N
L N, =N (11.141)
Wip T Wy,

By means of (11.140) and (11.141) we transform (11.139) into

K
Q=5(nth+nsp), (11.142)

where ng, is the number of thermal light quanta and (cf. (10.103))

N2,s

Ny, ="
P (NZ—NI)thr

(11.143)
the number of spontaneously emitted light quanta. (11.142) represents the
Q we introduced in section 10.5.

In conclusion we mention that the general Fokker—Planck equation
(11.123) can be applied when the laser is operated well above laser threshold
(where the adibatic elimination might no more be applicable).

11.5. Concluding remarks

The Fokker—Planck equation we derived in section 11.4 can be readily
solved in the stationary state. The method of quantum classical correspon-
dence allows us to calculate expectation values of the field operators o™, b
by means of classical expectation values using the classical distribution
functionf (or Pin our former notation).

In this way we have a well defined procedure how to evaluate for instance
K, introduced in section 10.4, at least in the case = =0. In fact, the method
of quantum classical correspondence can be extended also to time dependent
correlation functions, provided they are in normal order and in a temporal
sequence. Therefore K, can be calculated for 7 # 0 also by means of classical
averages (for more details, cf. H. Haken, Laser Theory). We hope that the
reader has seen how the whole justification of our results presented in
sections 10.4 and 10.5 works, at least in principle.



Chapter 12

A Theoretical Approach to the
Two-Photon Laser

12.1. Introduction

I n this book we have been concerned with laser action produced by optical
transitions where each individual transition is accompanied with the gener-
ation (or annihilation) of asingle photon. In Vol. 1 we got acquainted with
a process in which two photons of quantum energies fiw, and hw, are
absorbed simultaneously, whereby an electron of an atom makesatransition
between two levels 1 and 2 and the relation fiw, +fiw, = W,— W, holds. In
this relation, W; is the energy of the electron in its state j. Because on the
microscopic level, quantum processes are reversible we must expect that
there is also a possibility of the simultaneous emission of two photons by
means of a single electronic transition. Provided these transitions are stimu-
lated emission processes, we are led in a natural way to the concept of a
two-photon laser. At the same time this problem provides us with a nice
example how the methods devel oped in thisbook can be applied to a variety
of optical processes. Incidentally weshall see how we may derive the various
approximations such as the semiclassical approach from the fundamental
guantum mechanical equations in a rather elegant fashion.

Inafully quantum theoretical formulation we start from a Hamiltonian.
It consists of the Hamiltonian of the field modes, that of the set of laser
atoms, and that of the interaction between these two subsystems. As we
know from Vol. 1, two-photon absorption can be caused by the virtual
absorption of asingle photon where the electron isfirst brought from state
1 to an intermediate state i and from there by a second virtual absorption
of afurther photon to the fina state 2. Instead of treating these individual
virtual transitions explicitly we may start right away from a phenomenol ogi-
cal Hamiltonian which describes the process of two-photon absorption (or
emission) jointly with the corresponding electronic transition. We shall
formulate this Hamiltonian in the subsequent section.
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We then may proceed to the Heisenberg equations of mation for suitable
creation and annihilation operators of photons. When we imagine that the
field and the atoms are coupled to reservoirs, we may introduce into the
Heisenberg equations of motion suitable damping terms and fluctuating
forces. When we take the average over the quantum fluctuations and the
guantum mechanical state of the system, we obtain semiclassical equations
for the two-photon laser, which can be considered as the straightforward
extension of the equations of the single-photon laser. It remains as a nice
exercise for the reader to translate the other methods, likethat of the density
matrix equation or of the Fokker-Planck equation, to the two-photon laser.
In the next section we shall perform thefirst steps of this program explicitly.

12.2. Effective Hamiltonian, quantum mechanical Langevin equations and
semiclassical equations

The Hamiltonian H of the field modes coupled to a set of two-level atoms
is given by
H=H:+H,+H,; (12.1)

where the individual terms are defined as follows: Hamiltonian of the field
mode

HF=§hw,\bIbA; (12.2)
Hamiltonian of the atoms

HA=§ hav,az,a,; (12.3)
interaction Hamiltonian

HAF=%§ T (8umaubibit ghavaubiby). (12.4)

Eqg. (12.4) describes the process of two-photon emission or absorption
accompanied by a corresponding electronic transition in a phenomenologi-
cal way. a,, «, arethe usua dipole moment operators. Their significance
becomes obvious in the present context when we recall that they are
connected with the creation and annihilation operators of an electron in
its individual levels by means of the relations

a, =a/,a,, and a)=a,,a,. (12.5)

For sake of simplicity we shall assume running waves so that the coupling
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coefficients can be written in the form
g“)‘,\’=exp[_i(k)‘ +k/\')x,u] 8ar- (12.6)

Asasomewhat more detailed analysis shows the coupling coefficients g are
symmetric with respect to the arguments A and A’

8uan' = ura- (12.7)

We write the Heisenberg equation of motion of an arbitrary operator {2 in
the form

de i N

7 h[H’ Q]+<at>a‘s. (12.8)
The second term on the right-hand side of (12.8) stems from the coupling
between the system and the heatbaths and gives rise tc damping constants
and fluctuating forces. It is a simple matter to evaluate the commutator on
the right-hand side of (12.8). By means of the commutation relations of the
operators b*, b, a, ... we obtain

B).:(_iwA_KA)b)\_izzgp)\A’aubI"{'_F/\(l)’ (12-9)
©m A

) . i

a, =(-1e, —y)a, +§ Y gkawbibyd, +1,(1), (12.10)
AN

i duo_du . ++

d“ =’—T‘+l Y, (gqua“bAbAr—h.c.)nLF”d. (12.11)

AN

These are the quantum mechanical Langevin equations which can be con-
sidered as a straightforward extension of the single photon case treated in
section 10.3. In order to obtain semiclassical equations we replace the
operators by their average values and replace for sake of convenience these
average values by their arguments, e.g.

(b))~ b,. (12.12)

We furthermore assume that we may factorize these averagesinto products
of averages. Finaly it is assumed that the fluctuating forces have the
following property:

(Fu(0))=(F, (1)) =(I.a(1))=0. (12.13)

In the next section we shall be concerned with the thus resulting equations
which we do not need to write down explicitly once more. In the following
we just have to interpret the quantities b, etc. as classical time dependent
variables and to omit the fluctuating forces.
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12.3. Elimination of atomic variables

For sake of completeness we shall derive the main results for the whole set
of modes A. Readers who are not interested in the rather complicated
formulas of this section can skip it and proceed directly to section 12.4, in
which we shall be concerned with the much simpler case of single mode
operation and a homogeneously broadened atomic line.

We assume that the classical field amplitudes b, are till small quantities
and that the damping constants of the cavity modes, «,, are much smaller
than y and 1/T, where 1/ T <y is assumed to hold. Under these circum-
stances we may adopt the same iteration procedure as in section 6.4. In the
first step we assume that the inversion is equal to the unsaturated inversion,
1.€.

d%=d,,. (12.14)
Furthermore we assume that coherent modes have devel oped,
b, = B, (t) exp[—i£2,1], (12.15)

where B, (t) is an amplitude whose time dependence is assumed to be much
slower than that of the accompanying exponential function. £2, isthe mode
frequency when laser action takes place. I n order to obtain the first approxi-
mation weinsert (12.14) and (12.15) into the semiclassical version of (12.10).
Under steady state conditions we obtain the solution

al’ =Y A biby, (12.16)
AN’
with
A}LA)\':_% u,Ogt/\A'(QA +‘QA,_(D;L +i'}’)_l, (12.17)
where the slowly varying amplitude approximation has been made. In the
next step of theiteration procedure weinsert (12.15) and (12.16) into (12.11).
The solution can be written in the form
d’=d, o+ Y CuoanbEbEb, by (12.18)
A
Because the coefficients C are rather complicated expressions, we do not
exhibit them here explicitly but rather leave their explicit determination as
an exercise to the reader.
We now insert (12.18) and (12.15) into the classical version of (12.10).
The solution is again straightforward and has the general form of
aif) = aLl) + Z D{‘-/\)\’All\i/\z)"zb/\b'\,b?\‘rl bﬂzi b/\zb/\'z' (12.19)
AN

ATA
Aars
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Again the explicit determination of the coefficients D is left as an exercise
to the reader. We may now insert (12.19) into (12.9) which closes the circle,
i.e. we find a self-consistency equation for the field modes b,. These
eguations have the general form

b/\ = (—iw)\ - K)\)b)\ + Z MM’,\I,\',bf'b,\lb)\',
G
i

+ Z Z . N[LA/\‘AV\‘/\Z}\,Z/\J/\Sbf,b/\'] b/\,bt’zbﬂjzbhb,\y (12~20)
o
A3Aj
For sake of completeness we have to write down the coefficients M and N
explicitly. They read as follows:

M oan Z%g#,\xgt;\.,\'.du,o(n)\l +0, -0, +iy)™, (12.21)
Ny ry = 5808 8 ir i Gunns 8 hamil 1y (12.22)
where we have used the abbreviation
[-- ~]=(1/T+i(!2A2+!2Aé—.QA3—_Q,\3)"
X(Q, +02,,— 0, —0,,+0Q, +0Q,,— &, +iy)”'

X[(2,+0Q,,—-6, -, +iy) (2, +Q,,— @, —iy)"'].
(12.23)

Quite evidently the equations (12.20) are the analogues of the equations
(6.69) of the multimode laser which were valid somewhat above laser
threshold. In the following we do not intend to present here the complete
theory takinginto account all modes but we rather wishtotreat a particularly
simple example, namely that in which only a single mode has a sufficiently
long lifetime to support laser action.

12.4. Single mode operation, homogeneously broadened line and running
wave

In this case there is only one field mode present so that A =A'=A,. In the
following we shall drop that index for simplicity so that

gu)\)\'—) gp.' (1224)

Because we are dealing with running waves we may assume the form (12.6)
and write
I?=g” (12.25)

|8,
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We furthermore assume d, ,=d, and introduce the sum over the atomic
indices, w,
Y d, o= Ndy=D,, (12.26)
P
where D, is the total unsaturated inversion. Finally we use the relation
between the photon number n and |b|’,
[b>=n. (12.27)
Under these assumptions the equations (12.20) acquirethe very simple form
b=(~iw—k)b+35D,[y—i(22—-®)] 'g°nb
—IDyg*yT[y-i202 - &)1 '[22 -&)*+v’] 'n’b. (12.28)

In order to bring out the main features we assume exact resonance, i.e. that
the mode frequency in the unloaded cavity w is related to the atomic
transition frequency of the homogeneously broadened line by

20 =@ (12.29)

Under this assumption the mode frequency {2 in the case that laser action
takes place, agrees with w,

02=o. (12.30)
By means of the hypothesis

b= B(t)exp[—iwt], (12.31)
where B is a complex quantity, (12.28) is transformed into

B=—«B+;Do(g*/v)|B’B—3Dog*(T/v*)| B’ B. (12.32)

This equation can be considered as an analogue of the laser equation (6.48).
We may write it in the form

B=-4V/3B*, (12.33)
where the potential function V is explicitly given by
V = «|BI*~5Do(g°/ v)| BI*+sDog*(T/v*)| BI'. (12.34)

The potential is plotted for various values of the unsaturated inversion D,
which serves as pump parameter (fig. 12.1). As can be seen, we are dealing
with a first order phase transition. It requires always some energy input in
order to reach the minimum of the potential V by an appropriate field
amplitude B. For this reason it is important to initiate or help laser action
by means of an injected signal which isin resonance with the modefrequency
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Fig. 12.1. The potential function V versus |B| for various values of the unsaturated inversion
D, according to eg. (12.34).

o. Insuch a case eq. (12.32) is replaced by
B=-«xB+C,|B’B~-C,|B|°B+B,, (12.35)

where B, is proportional to the amplitude of the injected signal. It is a
simple matter to cast (12.35) again into the form (12.33) where the potential
is now given by

V=«|B|*~3iDy(g*/ v)|B*+§Dog*(T/v*)| BI*— B,B*— B{B.  (12.36)

It is a nice exercise for the reader to discuss the form of the potential
function V as afunction of the parameters D, and B,.

In thisshort chapter we have presented the simplest case of thetwo-photon
laser to show some of the typical features introduced by this new photon
emission mechanism. The case we have been treating is called the degenerate
case, because the energy of the electronic transition is split into two equal
amounts ko, =ko, .

In the non-degenerate case the emission of two photons with energies
hw, and hiw, must be treated. In this case by a proper choice of the decay
constants «,; and «, these two modes may be selected. In such a case two
equations for the modes A, and A, can be derived from the general egs.
(12.20) by means of specialization. Then the task remains to solve the
remaining two equations. A detailed discussion will be beyond the scope
of this book, however, so that we refer the interested reader to the literature.



Chapter 13

The Laser — Trallblazer of
Synergetics

13.1. What is synergeticsabout?

At various occasions in this book we alluded to synergetics, and also to
anal ogies between the behavior of alaser at threshold and phase transitions.
In this chapter we wish to elaborate somewhat on these analogies and in
particular on the significance of the laser as a prototype of systems which
produce spatial or temporal structures by self-organization.

Let usfirst explain the word " synergetics'. It consists of two Greek words
and means "' cooperation', or "science of cooperation'. When scientists
wish to study the properties of their objects of research, very often they
decomposethem into individual parts. For instance, a physicist decomposes
acrystal intoitsatoms, or abiologist decomposesan organintoitsindividual
cells. In many cases it turns out that the properties of the total system
cannot be explained by a mere superposition of the properties of the
individual parts of the system. Rather the individual subsystems cooperate
in awell defined fashion which sometimes even appears purposeful. In this
way properties of thetotal system are created which even qualitatively differ
from the properties of the individual subsystems. It is a main goa of
synergetics to unearth general principles through which the individual
subsystems produce macroscopic properties of the total system. The scope
of this research program is rather broad because the individual subsystems
may be, for instance, atoms, molecules, cells, computers, or even human
individuals. The laser has played a fundamental role with respect to the
discovery of these general principles. On the other hand, in the spirit of
synergetics it has become possible to predict qualitatively new properties
of laser light, e.g. chaotic laser light (cf. chapter 8). Therefore within the
frame of this book we shall discuss some of the most important aspects of
synergetics. We shall show that the transition from light of lamps to laser
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light represents an instructive example of self-organization. Furthermore
we wish to show that the laser is a typical example of a whole new class
of phenomena, namely of nonequilibrium phase transitions.

13.2. Self-organizationand the daving principle

We have shown in chapter 10 that the statistical properties of laser light
change at laser threshold drastically. Let us consider once again fig. 10.10.
In this figure the normalized noise intensity is plotted against the pump
power. According to that figure, the statistical properties of laser light change
gualitatively at the laser threshold. Below laser threshold noise increases
more and more while above threshold it decreases again. We have seen
how to visualize this behavior. Below laser threshold, light consists of
individual wavetracks which are emitted from theindividual atomsindepen-
dently of each other. Above laser threshold, a practicaly infinitely long
wave track is produced. In order to make contact with other processes of
self-organization let us interpret the processes in a lamp or in a laser by
means of Bohr's model of the atom (fig. 13.1). A lamp produces its light
in such a way that the excited electrons of the atoms make their transitions
from the outer orbit to theinner orbit entirely independently of each other.
On the other hand, the properties of laser light can be understood only if
we assume that the transitions of the individual electrons occur in a corre-
lated fashion. Let us translate these processes into an anthropomorphic
picture. Imagine that some men stand at the border of a channel filled with

E(t) Eft)

VICIONOIOIO

Fig. 13.1. Upper part: The electric field strengths versus time in a lamp (left-hand side) and
in alaser (right-hand side). Lower part: In Bohr's model of the atom an electron circlesaround
the nucleus. When it makes its transition from the outer orbit to the inner orbit, it emits a
light wave which is plotted in the upper part of this figure. In the lamp the electrons make
their transitions to the lower orbit in an uncorrelated fashion. In the laser they make their
transitions in phase, i.e. in a correlated fashion.
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water. The men are assumed to symbolize the atoms, and the water the light
field. By pushing bars into the water the men can excite the water to some
motion. In order to describe the light produced by a lamp in a model-like
fashion we let the men push their bars independently of each other into the
water. In this way a randomly oscillating water surface appears, represent-
ing incoherent light. In order to understand the coherence of laser light,
we must assume that the men push their bars into the water in a well
correlated fashion (fig. 13.2). In our daily life the latter process can easily
be understood by assuming that there is a boss who gives the appropriate
orders to the men when they have to push their bars into the water. But -
and thisis the decisive point - in the laser there is nobody who gives such
orders to the atoms. Thus the behavior of the atoms is a typical example
of self-organization.

As it has turned out over the last one or two decades, there are many
other branches in science, such as physics, chemistry, and biology, where
similar processes involving self-organization take place. We use the laser
example to demonstrate how self-organization is made possible. To this

Fig. 13.2. Visualization of the behavior of a lamp or a laser. In both cases the atoms are
represented by men and the light field by water in a channel at the border of which the men
stand. By pushing bars into the water the men produce a water wave. In the case of a lamp
this pushing occurs irregularly and independently. In the case of the laser the bars are pushed
periodically and in phase.
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end we use the equations of a single mode laser including fluctuating forces,
but we shall assume for simplicity that the laser equations including their
fluctuating forces refer to classical quantities. We furthermore transform
the rapid oscillations with frequency « away so that the laser equations
acquire the familiar form

dB/dt=~kB-iY gA, +F, (13.1)
M

dA,/dt=—yA, +igd,B+T,, (13.2)

dd,/dt=(d,—d,)/ T +2ig(A,B*— A*B). (133)

In the last equation we have dropped the fluctuating forces because they
are not so important. In many realistic cases the damping constant « is
much smaller than the damping constant y. This gives rise to the following
idea which we have exploited at several instances in our present book, e.g.
in sections 6.3 and 6.4. Because k is small, we expect that B decreases only
slowly according to eq. (13.1). As we have seen in chapter 10, B decreases
below laser threshold with a damping constant which is even considerably
smaller than «. But also above laser threshold B relaxes very slowly when
we take the laser process into account.

According to (13.2) the temporal change of A, is caused by the field
amplitude B standing on the r.h.s. (provided we neglect for the moment
being fluctuations). According to (13.2) weshall expect that also A, changes
only slowly. This immediately leads us to the inequality

|dA,/dt|=|kA,|<|yA,|. (13.4)

Because k is much smaller than y we can put the L.h.s. of (13.2) practically
to zero. That means that we can resolve (13.2) with respect to A,

A, (t)=(ig/y)d,B(t)+T,/y. (13.5)

Thisequationtellsusthat theamplitude of thedipoles, whichis proportional
to A, is instantaneously given by the field amplitude B(t) (and by the
fluctuating force). This is probably the simplest example of a principle
which has turned out to be of fundamental importance in synergetics and
which is called the slaving principle.

In the present context it can be formulated as follows. Fast relaxing
guantities (e.g. A)) adopt their values instantaneously with respect to the
valuesof slowly varying quantities (e.g. B(7)) or, to useaterminustechnicus,
fast relaxing quantities are slaved by dowly relaxing quantities. Within syner-
getic+tt isshown that this principle can be considerably extended in various
ways (cf. for example section 7.3). But it is far beyond the scope of the
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Fig. 13.3. Visualization of the daving principle. Upper part: The electric field strength E daves
the atomic dipole moments and inversion. Lower part: First row of circles, below threshold
fluctuations dominate and the dipole moments point into random directions; second row of
circles, above threshold the dipole moments are slaved by E.

present book to give here any more details. What isimportant in the present
context is the fact that the slaving principle gives rise to an enormous
reduction of the degrees of freedom (cf. fig. 13.3). Because A,(t) is pre-
scribed by B(t), all the atomic dipole moments have to obey the field. In
a more detailed treatment of the laser case which we did in sections 6.3
and 6.4 it can be shown that the inversion d, can be expressed by B also
instantaneously. Because A, and d, can be expressed by B(t) these quan-
tities can be eliminated from egs. (13.1)-(13.3) and we obtain (for not too
big B's) the equation

B=GB-C(B*B)B+F,, (13.6)

which we obtained before in this book. It determines the total behavior of
the laser and thus the behavior of the individual dipole moments and the
inversion of the individual atoms. Below laser threshold B is small. It
transpires from (13.5) that in this case the behavior of the dipoles is
essentially described by the fluctuations f“ so that the behavior of the
dipoles is entirely uncorrelated. Above laser threshold the coherent field B
grows more and more and it can slave the degrees of freedom of the dipole
moments and of the inversion. Within synergetics it has turned out that
(13.6) isaquite typical equation describing effects of self-organization. For
instance an equation of the type (13.6) describes the onset of a convection
pattern in fluid dynamics (cf. section 8.3) or the occurrence of a macroscopic
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pattern in chemical reactions. On the other hand in synergetics it is shown
that there are also other classes of equations describing macroscopic proper-
ties. But (13.6) was the first example of such type of equation in systems
far from thermal equilibrium.

13.3. Nonequilibrium phase transitions

The laser was the first example in which the occurrence of nonequilibrium
phase transitions could be demonstrated. Before we deal with this problem
we wish to remind the reader of some important properties of phase
transitionsof systemsin thermal equilibrium. Examplesfor phasetransitions
are provided by ferromagnets or superconductors. In both cases we are
dealing with systems in thermal equilibrium. When welower the temperature
T below a critical temperature T, the macroscopic behavior of such a
system changes dramatically. In the ferromagnet suddenly a macroscopic
magnetization is produced, while in a superconductor the electrical resist-
ance disappears entirely.

In order to treat such transitions, various theories were developed. The
most well known theories are the Landau theory of phase transitions and
the more recently developed theories based on the renormalization group
by Wilson. For our purposes it will be sufficient to remind the reader of
the Landau theory. Let us consider a system in thermal equilibrium and let
us treat the ferromagnet as example. A ferromagnet can be considered as
being composed of elementary magnets each with a magnetic moment .
Let us further assume that the elementary magnets can point in only two
directions, up or down. Let us denote the number of elementary magnets
showing upwards by M, and of those pointing downwards by M,. The
total magnetization of the material is then given by

M=(M,-M,)p. (13.7)

In the following we replace the variable M by a variable g because we wish
to treat the problem somewhat more generally. In the following we shall
denote q as ""order parameter”, because it describes the degree of order of
asystem (e.g. of theferromagnet). Let us recall some basic facts of thermody-
namics. In the present case the free energy depends on two quantities,
namely temperature T and magnetization q. If g is not too big, we may
expand the free energy into a Taylor series,

1
%%D=WQN+%&TM+'+Z@WQﬂf+~- (13.8)

In many cases of practical interest the first and third derivative vanish for
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Symmetry reasons,

F'=F"=0. (13.9)
In such a case (13.8) is reduced to
F(q, T)=F(0, T) +gq2+z q° (13.10)

where we have abbreviated the constant coefficients by «/2 and B/4,
respectively.
It isshown in statistical physicsthat the probability of finding the system

at temperature T and with a specific magnetization qisgiven by the formula

f=Nexp(—F(q, T)/kgT). (13.11)
In it kg is Boltzmann's constant and & the normalization factor. The most
probable order parameter is determined by the condition % =min! Let us
investigate the position of the corresponding minimum or minimadepending
onthe coefficient a. In the Landau theory of phase transitionsthis coefficient
is assumed to be of the form

a=a(T-T.) (a>0), (13.12)
i.e. it changes its sign at the critical temperature T = T.. Therefore we shall
distinguish between the two domains T> T, and T < T. (compare table
13.1), i.e. for a,> 0 the minimum of % liesat q=g,=9. Let us consider the
entropy of the system. According to formulas of thermodynamics, Sisgiven
by
954, T)

aT
In the temperature range we thus obtain
_0F(0, T)

oT

The second derivative of % with respect to temperature gives us the specific
heat (besides a factor T)

S= (13.13)

S=8,= (13.14)

aS
c= T(ﬁ) (13.15)
Using (13.14) we thus obtain
_ (%
c—T(aT). (13.16)

Let us repeat the same steps for the case T< T, i.e. a,<0. This yields a
new equilibrium value q = +4, and a new entropy represented in table 13.1.



316 13. The laser - trailblazer of synergetics

Table 13.1
State

Disordered Ordered
Temperature T>T. T<T,
Parameter (external) a>0 a<0
Most probable order parameter g, q=90 q,=+(—a/B)"?
f(g)=max!
F = mint Broken symmetry
Entropy, S=—a%(q,, T)/aT So==aF(0,T)/aT So+(a*/(2BINT~T)

continuous at T =T,

Specific heat, ¢= T(0S/0T) T(3S,/0T) T(38,/0T)+ (a*/(2B) T

discontinuous at T =T,

As one can derive from table 13.1 the entropy S is continuous at T=T..
When we calculate the specific heat, we obtain two different expressions
below and above the critical temperature and thus a jump of the specific
heat at T=T.. This phenomenon is called a phase transition of second
order, because the second derivative of the free energy is discontinuous.
But because the entropy is continuous, this transition is also called a
continuous phase transition. In statistical physics also the temporal change
of the order parameter isstudied. Quite often in a purely phenomenological
manner it is assumed that the temporal change of the order parameter is
given by an equation of the form

oF

“iq (13.17)

q =
In our concrete example (13.10), (13.17) acquires the form

4=-aq—-Bq’, (13.18)

which coincides with (13.6) provided we assume B real and drop the
fluctuating forces.

In (13.17) and (13.18) we have omitted a constant factor on the r.h.s.
which merely fixes the time scale. (13.18) allows us to discuss some typical
phenomena of phase transitions which we came across in the ream of laser
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theory in quite a different context. When we let a, in (13.18) tend to 0, we
find a phenomenon which is denoted in phase transition theory as critical
slowing down. We came across this phenomenon in section 6.3 in quite a
different context. At the transition point a symmetry breaking instability
occurs because for T < T, the equilibrium position g, =0 becomes unstable
and is replaced by one of the two equilibrium positions q1=\/|a|/ﬂ or
4, = —+|a|/B. Finally when we add fluctuating forces to (13.18) (cf. (13.6)),
these forces are particularly efficient if a, is close to 0 and the restoring
force goes with the third power of g sothat at small values of q the restoring
force isvery small. In this case we are dealing with criticalfluctuations of q.

So far we have reminded the reader of some fundamental concepts of
phase transition theory of systemsin thermal equilibrium. When we consider
theindividual formulas of the Landau theory of phasetransitions we readily
recognize a striking analogy with the laser equations. Indeed (13.11) with
F given by (13.10) precisely corresponds to the laser distribution function
(with r= q). Wethus recognize that the potential V of the fictitious particle
weintroduced in laser theory playsthe same role as the free energy in phase
transition theory of systemsin thermal equilibrium. We further see that eq.
(13.18) has precisely the same form as the laser equation as mentioned
before. The main difference consists in the fact that q is a real variable
whereasthefield amplitude B iscomplex. But we readily see how to translate
the concepts of critical slowing down, critical fluctuations and symmetry
breaking into laser theory. From a formal point of view we observe in the
case of the laser precisely the same phenomena which occur in phase
transitions in thermal equilibrium. The decisive difference rests in the fact
that the laser is a system far from thermal equilibrium. This system is open
because energy is pumped all the time into it and is going out in form of
laser light. We must clearly state that this analogy is purely formal. The
pump power, or equivalently the unsaturated inversion, corresponds to
temperature. As can be shown, the radiated laser power corresponds to the
entropy. The specific heat is now replaced by the differential efficiency,i.e.
by the change of emitted power when the pump power is changed. In spite
of the fact that this analogy is purely formal, a discussion of laser light
phenomena in terms of phase transition theory has proven very fruitful.
This is particularly so because besides phase transitions of second order
also such of first order are known. In such transitions a hysteresis loop
occurs. Such phase transitions can be realized by specific experimental laser
set-ups.

In conclusion we wish to mention that nonequilibrium phase transitions
have been found in the meantime in many other systems also, such as fluids
and chemical reactions.
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