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Preface to the Preface 

Dear Reader, 

Before you read this book, and even its preface, the following remarks 
might be useful to you. Since this book is "Volume 2" you may be inclined 
to believe that you must know all the contents of "Volume 1" before you 
can start reading (and, of course, understanding) "Volume 2". But this is 
not the case. The present "Volume 2" again starts at a rather elementary 
level, and then proceeds step by step to more difficult matters. Only at these 
later stages some more advanced theoretical background is required which 
then can be taken from "Volume I". I have chosen this way of presentation 
to make the theory of laser light accessible to a broad audience-ranging 
from students at the beginning of their graduate studies to professors and 
scientists interested in recent developments. For details on the relations 
between the chapters of these books consult the list at the end of the 
introduction. 

H. Haken 
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This book is a text which applies to students and professors of physics. 
Because it offers a broad view on laser physics and presents most recent 
results on the dynamics of laser light, such as self-pulsing and chaos, it will 
be of interest also to scientists and engineers engaged in laser research or 
development. This text starts at a rather elementary level and will smoothly 
lead the reader into the more difficult problems of laser physics, including 
the basic features of the coherence and noise properties of laser light. 

In the introductory chapters, typical experimental set-ups and laser 
materials will be discussed, but the main part of this book will be devoted 
to a theoretical treatment of a great variety of laser processes. The laser, or 
the optical maser, as it was originally called, is one of the most important 
inventions of this century and has found a great number of important 
applications in physics, chemistry, medicine, engineering, telecommunica- 
tions, and other fields. It bears great promises for further applications, e.g. 
in computers. But also from the point of view of basic research, a study of 
the physical processes which produce the unique properties of laser light 
are equally fascinating. The laser is a beautiful example of a system far 
from thermal equilibrium which can achieve a macroscopically ordered 
state through "self-organization". It was the first example for a nonequili- 
brium phase transition, and its study eventually gave birth to synergetics, 
a new interdisciplinary field of research. 

I got involved in laser physics at a rather early stage and under most 
fortunate circumstances. In 1960 I was working as visiting scientist at the 
Bell Telephone Laboratories, Murray Hill. There I soon learned that these 
laboratories were searching for a revolutionary new light source. Two years 
earlier, in 1958, this source had been proposed by Schawlow and Townes, 
who derived in particular the laser condition and thus demonstrated the 
feasibility of this new device. At Bell Telephone Laboratories I soon got 
involved in a theoretical study of the laser processes and continued it at 
Stuttgart University. I developed a laser theory whose basic features I 
published in 1962 and which I then applied to various concrete problems, 
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jointly with my coworkers. At about the same time, in 1964, Willis Lamb 
published his theory, which he and his coworkers applied to numerous 
problems. It is by now well known that these two theories, which are called 
semiclassical and which were developed independently, are equivalent. The 
next step consisted in the development of the laser quantum theory which 
allows one to predict the coherence and noise properties of laser light (and 
that of light from lamps). This theory which I published in 1964 showed 
for the first time that the statistical properties of laser light change dramati- 
cally at laser threshold. In the following years my group in Stuttgart carried 
this work further, e.g. to predict the photon statistics close to laser threshold. 

From 1965 on, Scully and Lamb started publishing their results on the 
quantum theory of the laser, using a different approach, and Lax and 
Louise11 presented their theory. Again, all of these theories eventually turned 
out to be more or less equivalent. In those years experimental laser physics 
developed (and is still developing) at an enormous pace, but because I shall 
mainly deal with laser theory in this book, I have to cut out a representation 
of the history of that field. 

From my above personal reminiscences it may transpire that laser theory 
and, perhaps still more, laser physics in general have been highly competitive 
fields of research. But, what counts much more, laser physics has been for 
us all a fascinating field of research. When one looks around nowadays, 
one can safely say that is has lost nothing of its original fascination. Again 
and again new laser materials are found, new experimental set-ups invented 
and new effects predicted and discovered. Undoubtedly, for many years to 
come, laser physics will remain a highly attractive and important field of 
research, in which fundamental problems are intimately interwoven with 
applications of great practical importance. I hope that this book will let 
transpire the fascination of this field. 

Over the past nearly 25 years I greatly profited from the cooperation or 
discussion with numerous scientists and I use this oppprtunity to thank all 
of them. There is Wolfgang Kaiser, who was the first at BTL with whom I 
had discussions on the laser problem. Then there are the members of my 
group at Stuttgart who in the sixties, worked on laser theory and who gave 
important contributions. I wish to mention in particular R. Graham, H. 
Geffers, H. Risken, H. Sauermann, Chr. Schmid, H.D. Vollmer, and W. 
Weidlich. Most of them now have their own chairs at various universities. 
Among my coworkers who, in later years, contributed to laser theory and 
its applications are in particular J. Goll, A. Schenzle, H. Ohno, A. Wunderlin 
and J. Zorell. Over the years I enjoyed many friendly and stimulating 
discussions with F.T. Arecchi, W.R. Bennett, Jr., N. Bloembergen, 
R. Bonifacio, J.H. Eberly, C.G.B. Garret, R.J. Glauber, F. Haake, Yu. 
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Klimontovich, W. Lamb, M. Lax, W. Louisell, L. Lugiato, L. Mandel, 
L. Narducci, E.R. Pike, M. Sargent, M. Scully, S. Shimoda, S. Stenholm, 
Z.C. Wang, E. Wolf, J. Zhang, and many other scientists. 

I wish to thank my coworker, Dr. H. Ohno, for his continuous and 
valuable assistance in the preparation of the manuscript. In particular, he 
carefully checked the formulas and exercises, contributed some in addition, 
and drew the figures. My particular thanks go to my secretary, Mrs. U. 
Funke, who in spite of her heavy administrative work assisted me in many 
ways in writing the manuscript and typed various versions of it both rapidly 
and perfectly. Her indefatigable zeal constantly spurred me on to bring it 
to a finish. 

The writing of this book was greatly helped by a program of the Deutsche 
Forschungsgemeinschaft. This program was initiated by Prof. Dr. Maier- 
Leibnitz, whom I wish to thank cordially for his support for this project. 

H. Haken 
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Chapter 1 

Introduction 

1.1. The maser and laser principle 

The word "laser" is an acronym composed of the initial letters of "light 
amplification by stimulated emission of radiation". The laser principle 
emerged from the maser principle. The word "maser" is again an acronym 
standing for "microwave amplification by stimulated emission of radiation". 
The concept of stimulated emission stems from Einstein when in 1917 he 
derived Planck's law of radiation. It took nearly 40 years until it was 
recognized that this process can be used in a device producing coherent 
microwaves and - in particular - a new type of light - laser light. 

The maser was proposed by Basov and Prokhorov (1954-1955) and by 
Townes (1954), who performed also experiments on that new device. We 
owe the extension of this principle to the optical region Schawlow and 
Townes (1958). 

One of the first proposals to use stimulated emission was contained in a 
patent granted in 1951 to V.A. Fabrikant, but being published in the official 
Soviet patent organ, it became available only in 1959. 

In 1977 patents on aspects of the laser principle were granted to Gould. 
Since his work had not been published it remained unknown to the scientific 
community. 

Because the laser principle is an extension of the maser principle, first 
the word "optical maser" had been proposed by Schawlow and Townes. 
However, nowadays the word "laser" is widely used because it is shorter. 

In order to understand the laser principle it is useful to first consider the 
maser principle. The device realizing this principle, which is again called 
maser, essentially consists of two components. On the one hand a cavity, 
on the other hand molecules which are in the cavity or which are injected 
into it. A cavity is practically a metal box of certain shape and dimension. 
In it specific electromagnetic waves with discrete wave-lengths can be formed 
(figs. 1.1 and 1.2). The corresponding standing waves shall be denoted in 
the following as "modes". They possess a discrete sequence of eigen- 
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Fig. 1 . I .  Electro-magnetic field mode in a cavity. Local directions and sizes of the electric 
field strength are indicated by the corresponding arrows. 

frequencies. These modes, which can exist in the cavity in principle, are 
now to be excited. To this end energetically excited molecules, e.g. ammonia 
molecules, are injected into the cavity. In order to understand the maser 
process, for the moment being it is only important to know that a transition 
between the excited state of the NH, molecule and its ground state can 
take place which is accompanied by the emission of an electro-magnetic 
wave with quantum energy hu = Wi - WI, where u is the frequency of the 
emitted wave, whereas Wi and W,- are the energies of the initial and final 

Fig. 1.2. Standing electric wave between two ideally conducting walls. 
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mode frequencies 

Fig. 1.3. Emission intensity of a molecule versus circular frequency. In most cases, in the 
microwave region the mode frequencilps are so far apart that only one frequency comes to lie 
within the emission line. 

state of the molecule, respectively. As we know (cf. Vol. 1), excited atoms 
or molecules can be stimulated to emit light quanta if one or several quanta 
of the electro-magnetic field are already present, and the whole process is 
called stimulated emission. By means of excited molecules in the cavity, a 
specific mode can be amplified more and more by stimulated emission. In 
order to achieve an efficient energy transfer from the molecules to the 
electro-magnetic field, the frequency of the molecular transition must 
coincide with the frequency of the mode to be amplified. More precisely 
speaking, it is necessary that the mode frequency lies within the line-width 
of the molecular transition. With respect to the molecules used in the maser 
we can achieve the amplification of a specific mode by choosing the 
dimensions of the microwave cavity correspondingly. In this way only one 
frequency falls into the line-width whereas all other mode frequencies lie 
outside of it (fig. 1.3). 

Schawlow and Townes suggested to extend the maser principle to the 
optical region by using optical transitions between electronic levels of atoms. 
When one tries to realize the laser principle, fundamental new problems 
arise as compared to the maser. These problems stem from the fact that the 
light wave-length is small compared to a cavity of any reasonable dimension. 
Therefore in general the distance between different mode frequencies 
becomes very small so that very many modes come to lie within the frequency 
range of the atomic transition (fig. 1.4). Therefore a suitable mode selection 
must be made. One possibility consists in omitting the side walls of the 
resonator and to use only two mirrors mounted in parallel at two opposite 
sides. The thus resulting Fabry-Perot resonator, which was suggested by 
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t 1 (w) 

mode frequencies 

Fig. 1.4. Example for the positions of mode frequencies in the optical region. In general many 
frequencies come to lie within an emission line. 

Schawlow and Townes, and Prokhorov and Dicke, makes a mode selection 
possible in two ways. Let us consider figs. 1.5 and 1.6. Before the laser 
process starts, the excited atoms emit light spontaneously into all possible 
directions. On account of the special arrangement of the mirrors only those 
light waves can stay long enough in the resonator to cause stimulated 
emission of atoms, which are sufficiently close to the laser axis, whereas 
other modes cannot be amplified. This mechanism is particularly efficient 
because only waves of the same direction, wave-length, and polarization 
are amplified by the stimulated emission process. In this way the Fabry-Perot 
interferometer gives rise to a strong discrimination of the modes with respect 

'mirrors' 

Fig. 1.5. The excited atoms in the laser resonator can radiate light into all directions. Waves 
which do not run in parallel to the laser axis, leave the resonator quickly and do  not contribute 
to the laser process. 
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Fig. 1.6. The electric field strength of a standing axial wave in the laser resonator. 

to their lifetimes. Furthermore the mirror arrangement can support only 
those axial modes for which 

where A is the wave-length, L the distance between the mirrors, and n an 
integer. Even under these circumstances quite often still many frequencies 
may exist within an atomic line-width. The final mode selection, often the 
selection of a single mode, is achieved by the laser process itself as we shall 
demonstrate in this book. 

The first experimental verification of the laser principle in 1960 is due to 
Maiman, who used ruby, a red gem. Since then laser physics has been 
mushrooming and it is still progressing at a rapid pace. Practically each 
year new materials or laser systems are discovered and still important tasks 
are ahead of us, for instance the extension of the laser principle into the 
X-ray and y-ray region. Today a great many laser materials are known and 
we shall briefly discuss some typical of them in section 2.3. 

1.2. The problems of laser theory 

In this book we shall focus our attention on the theoretical treatment of the 
laser process. As we shall see, a wealth of highly interesting processes are 
going on in the laser and we shall treat them in detail. But what are the 
physically interesting aspects and problems of a laser theory? To this end 
we have to realize that within a laser very many laser-active atoms, say loi4 
or more, are present which interact with many laser modes. Thus we have 
to deal with a many-particle problem. Furthermore the laser is an open 
system. On the one hand the laser emits all the time light through one of 
its mirrors which has some transmissivity, and on the other hand energy 
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must be continuously pumped into the laser in order to maintain the laser 
process. Thus the system is open with respect to an energy exchange with 
its surrounding. Because the atoms are continuously excited and emit light, 
the atomic system is kept far from thermal equilibrium. Over the past years 
it has become evident that the laser represents a prototype of systems which 
are open and far from thermal equilibrium. Clearly the optical transitions 
between the atomic levels must be treated according to quantum theory. 
Indeed, the discrete structure of spectral lines is a direct consequence of 
quantum theory. Quite evidently we have to deal here with a highly compli- 
cated problem whose solution required new ways of physical thinking. This 
task has been solved in several steps. 

1.2.1. Rate equations 

The simplest description which still has the character of a model rests on 
equations for the temporal change of the numbers of photons with which 
the individual "cavity" modes are occupied. A typical equation for the 
photon number n is of the form 

dn 
- = generation rate - annihilation rate. 
d t  

These equations are quite similar to those with which Einstein derived 
Planck's formula (cf. Vol. I ) .  Such kind of description, which has been 
used by Tang and Statz and DeMars and many others for laser processes, 
is still used today when global phenomena, such as the intensity distribution 
of laser light, are studied. On the other hand such a model-like description 
based on photon numbers is insufficient for the treatment of many important 
processes in modern laser physics. This is in particular so if phase relations 
between laser light waves are important. A theory which describes most 
laser processes adequately is the semiclassical laser theory. 

1.2.2. Semiclassical theory 

This theory deals with the interaction between the electromagnetic Jield of 
the "cavity" modes and the laser active atoms in solids or gases. The field 
is treated as a classical quantity, obeying Maxwell's equations, whereas the 
motion of the electrons of the atoms is treated by means of quantum theory. 

The source terms in Maxwell's equations, which in a classical treatment 
stem from oscillating dipoles, are represented by quantum mechanical 
averages. Furthermore, pumping and decay processes of the atoms are taken 
into account. The resulting coupled equations are nonlinear and require 
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specific methods of solution. Such a theory was developed in 1962 by myself 
and was further developed by my coworkers and myself in the subsequent 
years. This theory, which we shall present in this book in detail, allows us 
to treat the multimode problem both in solid state as well as in gas lasers. 
In this way we shall understand under which conditions only a single mode 
can be selected by the laser process or, when several modes can coexist. 
Furthermore we shall find that by means of the laser process the frequencies 
of the emitted laser light are shifted with respect to the atomic and cavity 
frequencies. Under well defined approximations, in particular that there 
are no phase relations between the individual mode amplitudes, the rate 
equations can be derived from the semiclassical equations and thus given 
a sound basis. A theory equivalent to our theory was developed indepen- 
dently by Lamb and published by him in 1964, whereby Lamb treated the 
gas laser. A number of important new phenomena, such as ultrashort pulses 
occur, when phase locking between modes takes place. The semiclassical 
equations are still used by numerous scientists as a basis for the study of 
various laser phenomena and we shall present a number of explicit examples. 
In this way, the semiclassical theory will form the central part of this book, 
dealing with the dynamics of laser light. 

1.2.3. Quantum theory of the laser 

The semiclassical theory, which describes the behavior of the atoms by 
means of certain quantum mechanical averages and treats the light field as 
a classical quantity, has a strange consequence. Whereas above a critical 
pump power, by which the atoms are continuously excited, laser light is 
created in the form of a completely coherent wave, below that critical pump 
strength no light emission should take place at all. Of course, a satifactory 
laser theory must contain the emission of usual lamps as a special case also, a 
and it must be capable of explaining the difference between the light from 
lamps, i.e. from thermal sources, and laser light. As we know, light of 
conventional lamps is produced by spontaneous emission. Spontaneous 
emission of light is a typical quantum mechanical process. Quite evidently 
the semiclassical theory cannot treat this process. Thus it becomes necessary 
to develop a completely quantum mechanical theory of the laser. The 
previously known quantum mechanical theory, in particular the detailed 
theory of Weisskopf and Wigner, could explain this spontaneous emission 
of an individual atom in detail, but this theory was insufficient to describe 
the laser process. 

Thus we were confronted with the task of developing a laser theory which 
is both quantum mechanical and contains the nonlinearities known from 
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semiclassical theories. This theory, which I published in 1964, showed that 
laser light differs basically from light from conventional lamps. Whereas 
light from conventionnal lamps consists of individual incoherent wave tracks, 
laser light essentially consists of a single wave whose phase and amplitude 
are subject to small fluctuations. Subsequent measurements of the intensity 
fluctuations of laser light below and above threshold by Armstrong and 
Smith ( l965), and Freed and Haus (1 965) fully substantiated my predictions. 
My approach required the exclusion of the immediate vicinity of the laser 
threshold. This gap was closed in 1965 by Risken (and subsequently by 
Hempstead and Lax). Risken interpreted my quantum mechanical laser 
equation as a classical Langevin equation and established the corresponding 
Fokker-Planck equation. The stationary solution of the Fokker-Planck 
equation describes the photon statistics in the laser. We shall deal with the 
coherence and noise properties of laser light as well as with its photon 
statistics in chapters 10 and 11. In order to treat these questions, besides 
the Langevin and Fokker-Planck equations the density matrix equation was 
used also. Density matrix equations, which describe both the atoms and 
the light field quantum mechanically, were derived by Haake and Weidlich 
(1965), and by Scully and Lamb (1966). Solutions of laser density matrix 
equations in different kinds of representation were given by Scully and 
Lamb (1966), and by Weidlich, Risken and Haken (1967). This work was 
carried further by a number of authors, who used still other representations 
and included higher order terms. 

1.2.4. Quantum classical correspondence 

In this section we are abandoning the main stream of this book, to which 
we shall return in the next section, 1.2.5, and make some technical remarks 
of interest to theoreticians. 

An interesting question arose why a quantum mechanical process can be 
described by a classical Fokker-Planck equation. This lead to a further 
development of the principle of quantum classical correspondence which 
allows us to establish a connection between a quantum mechanical descrip- 
tion and a classical formulation without loss of quantum mechanical infor- 
mation. Such a transcription had been initiated by Wigner (1932) who 
treated quantum systems described by the position and momentum operator. 
A further important step was done by Glauber and Sudarshan (1963) who 
treated Bose-field operators. In particular, Glauber's careful study of quan- 
tum mechanical correlation functions provided a general frame for the 
description of the coherence properties of light. But, of course, being a 
general frame, it did not make any predictions on the coherence properties 
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of laser light. For that purpose, the quantum theory of the laser had to be 
developed (cf. section 1.2.3). In it the inclusion of the atomic system is 
indispensable and required a considerable extension of the principle of 
quantum classical correspondence which was done by Gordon (1967), and 
Haken, Risken and Weidlich (1967) along different though equivalent lines. 
Because the principle of quantum classical correspondence has important 
applications not only in laser physics but also in nonlinear optics, we shall 
present it in section 1 1.2. 

1.2.5. The laser - trailblazer of synergetics 

New vistas on laser theory were opened in 1968 when it was recognized 
that the transition from light from thermal sources to laser light within an 
individual laser bears a striking resemblance to phase transitions of systems 
in thermal equilibrium. Thus the laser became the first example in which 
the analogy between a phase transition of a system far from thermal 
equilibrium and one of a system in thermal equilibrium could be established 
in all details (Graham and Haken, 1968 and 1970; DeGiorgio and Scully, 
1970; Kasanzev et al. 1968). It soon turned out that there is a whole class 
of systems which can produce macroscopic ordered states when driven far 
from thermal equilibrium. This gave birth to a new branch of scientific 
study, called "synergetics". In this way deep rooted analogies between quite 
different systems in physics, chemistry, biology and even in the soft sciences 
could be established. In this new development the laser played the role of 
a trailblazer. Within the frame of synergetics it became possible to make 
further predictions on the behavior of laser light. For instance, on account 
of analogies between fluid dynamics and laser light the phenomenon of 
laser light chaos was predicted (Haken, 1975). Various routes to chaotic 
laser light could be discovered experimentally. We shall come to these 
fascinating questions in chapter 8. 

1.2.6. Optical bistability 

In this book we shall include other aspects of laser theory also, for instance 
that of optical bistability. While in conventional lasers the laser is pumped 
incoherently, devices leading to optical bistability can be viewed as lasers 
which are driven coherently by an external field. For this reason a good 
deal of the theoretical methods developed for the laser can be applied to 
optical bistability. A thorough theoretical treatment is due to Lugiato and 
others. The name "optical bistability" stems from the fact that under suitable 
conditions the transmission of light through a resonator filled with atoms 
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can acquire two different states. The "optical bistability" device bears great 
promises for the construction of an optical transistor. 

1.2.7. Two-photon laser 

The main part of this book deals with laser processes in which an optical 
atomic transition generates one photon. As we know, in optical transitions 
also two or several photons can be absorbed or emitted simultaneously. 
This has led to the idea of a two-photon laser to which substantial contribu- 
tions have been given by Walls, Wang and others. We shall include a short 
description of its theoretical treatment in chapter 12. 

1.3. The structure of laser theory and its representation in this book 

Let us finally discuss the structure of laser theory and its representation in 
this book. In a strict logical sense the structure of laser theory is as follows. 
At its beginning we have a fully quantum theoretical treatment of atoms 
and the light field as we presented it in chapter 7 of Vol. 1. The corresponding 
equations describe the interaction between atoms and light field. But in 
addition, the atoms as well as the light field are coupled to their surroundings, 
for instance the field is coupled to loss mechanisms in the mirrors, or the 
laser atoms are coupled to their host lattice (fig. 1.7). The coupling of field 
and atoms to their corresponding surroundings leads to damping and 
fluctuations which we treated in Vol. I. In this way the basic quantum 
mechanical equations for the laser result, which is treated as an open system. 
If we average these basic equations over the fluctuations of the heatbaths 
representing the surroundings and form adequate quantum mechanical 
averages, we arrive at the semiclassical laser equations. When we eliminate 
from these equations the dipole moments of the atoms and average over 
phases we obtain the rate equations. The rate equations have a much simpler 

I heatbaths I I I heatbaths I1 I 
Fig. 1.7. Scheme of the coupling between atoms, light field and heatbaths. 
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Table 1. I 

fully quantum mechanical equations 

4 
semiclassical equations 

4 
rate equations 

structure than the fully quantum mechanical equations, at least what the 
degree of difficulty of interpretation and solution is concerned. For this 
reason a conflict results with respect to the logical sequence and the pedagogi- 
cal requirement. 

In the present book 1 prefer the pedagogical aspect in order to keep my 
promise I gave in the preface, namely to present the whole field in a manner 
as simple as possible. For this reason I start with the rate equations which 
I derive heuristically. They will allow us to treat a number of important 
phenomena (compare table 1.2). After that we shall treat the semiclassical 
equations which we derive in detail but where we do not need to make use 
of the fully quantum mechanical equations. The semiclassical equations 
form the basis for the central part of this book in which we treat a variety 
of different phenomena such as single and multimode operation and in 
particular mode locking phenomena, which for instance give rise to ultra- 
short pulses. Furthermore we shall be concerned with a detailed description 
of chaotic laser light. 

Finally we shall turn to a fully quantum mechanical treatment in which 
we shall give an outline of the method of quantum mechanical Langevin 
equations which have the advantage of being tractable in close analogy to 
the semiclassical equations. We shall include in our representation the 
density matrix equation and the method of quantum classical correspon- 
dence which will allow us to derive a classical Fokker-Planck equation for 
the quantum mechanical laser process. In this way we shall give a detailed 
account of the coherence and noise properties of laser light and its photon 
statistics. The structure of the laser theory is explained in table 1.2. 

In conclusion of this introduction I should like to give the reader a hint 
how to read this book depending on his requirements. 

If a reader wants a survey over the whole field without the necessity of 
going into all the details the following reading can be suggested: 
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Table 1.2. The structure of laser theory 

1. Rate equations for photon numbers and atomic occupation numbers 
These equations allow the treatment of the following problems: laser condition, intensity 
distribution over the modes, single mode laser action, multi-mode laser action (coexistence 
and competition of modes), laser cascades, Q-switching, relaxation oscillations. 

2. Semiclassical equations 
These rest on Maxwell's equations and the Schrodinger equation of electrons taking into 
account coupling to heatbaths. 
These equations allow a treatment of the following problems (among others): frequency 
shifts, frequency locking, population pulsations, active and passive mode locking, un- 
damped oscillations, ultrashort pulses, laser light chaos and routes to it, photon echo, wave 
propagation in an "inverted" material, optical bistability, two-photon laser, and all problems 
quoted under 1. 

3. Quantum mechanical equations 
They rest on a fully quantum mechanical treatment of the light field and the atoms by 
means of the Schrodinger equation or equations equivalent to it, in particular the Heisenberg 
equations. These equations allow a treatment of the following problems (among others): 
line-widths of laser light, phase, amplitude and intensity fluctuations (noise), coherence, 
photon statistics, and all problems quoted under 1 and 2. 

List of sections for a jirst reading 

2.1-2.3 Basic properties and types of lasers 
3.1 Laser resonators 
4.2 Photon model of single mode laser 
4.4 , Q-switching 
5.1-5.6,5.8-5.9 Semiclassical equations 
6.1-6.3 Single mode laser action including transients 
6.8 Single mode gas lasers (perhaps) 

The further reading depends on the reader's interest. 
Readers interested in the quantum theoretical foundation of the basic 

equations and their applications: 

Chapter 10 Coherence, noise and photon statistics. Quantum theory of 
the laser 

and perhaps chapter 1 1. 

Readers interested in further "mac~oscopic properties", frequency lock- 
ing, ultrashort pulses, chaos, etc.: 

6.4-6.5 Multimode laser 
6.6 Frequency locking 
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6.7 Laser gyro (perhaps) 
7.1 Ultrashort pulses. Some basic mechanisms 
8.1 Laser light chaos 
8.2 (now needed 7.2) 
8.3 
9.1 Optical bistability 
9.2 

Readers can also proceed by reading the chapters individually if they 
want to get to know specific applications of the rate equations, semiclassical 
equations or the fully quantum mechanical equations. The most advisable 
way will be to get a survey along the lines indicated above and then to 
penetrate deeper by reading more sections of the corresponding chapters. 

In conclusion of this chapter I present a table showing which knowledge 
of Volume 1 is required for an understanding of the chapters of the present 
book. 

Chapters of Volume 1 needed (if not known otherwise): 

Present Vol. 2 Vol. 1 
number of chapter needed chapters 

1. What is light? 
2. The nature of light 
- 
2. The nature of light 
2 + 3. The nature of matter 
6,7.1-7.6,8.1,9.1-9.4. Quantization of field and elec- 
tron-wave field, coupling to heatbaths 
5, 6, 7.1-7.6, 8.1, 9.1-9.5 
Chapters 5 and 6 of Vol. 2 



Chapter 2 

Basic Properties and Types of Lasers 

2.1. The laser condition 

Let us consider the laser depicted in fig. 2.1 more closely, and let us discuss 
the tasks of its individual parts. The two mirrors mounted at the endfaces 
fulfil the following functions. When we treat light as a wave, between the 
two mirrors only standing waves can be formed. Their wave-lengths, A, are 
connected with the distance between the mirrors, L, by the relation n A / 2  = L 
where n is an integer. In section 3 we shall briefly discuss the influence of 
the finite size of mirrors on the formation of these standing waves. On the 
other hand, when we consider light as consisting of photons, the two mirrors 
reflect photons running in axial direction again and again. Therefore these 
photons can stay relatively long in the laser, whereas photons which run 
in other directions leave the laser quickly. Thus the mirrors serve for a 
selection of photons with respect to their lifetimes in the laser. 

FI  shtube  \ 

Fig. 2.1. The first experimental set-up of the ruby laser according to Maiman. The ruby rod 
in the middle is surrounded by a flashlamp in form of a spiral. 
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Fig. 2.2. The energy W of a two-level atom with the energy levels W, and W, of which the 
upper one is occupied. During the transition from level 2 to level 1 a photon of quantum 
energy h v  = W, - W, is emitted. 

Let us consider a single kind of photons, for instance those which run in 
axial direction and which belong to a certain wave-length A, and let us 
study how their number n changes on account of the processes within the 
laser. To this end we have to make some assumptions on the atoms participat- 
ing in laser action. We assume that each of the laser atoms has two energy 
levels between which the optical transition which leads to laser action takes 
place (fig. 2.2). The external pump light serves the purpose to bring a 
sufficiently large number of atoms into the excited states of the atoms, 
whose number we denote by N,. The rest of the atoms with number N,  
remains in the ground state (fig. 2.3). The excited atoms emit photons 
spontaneously with a rate proportional to the number of excited atoms, N2. 
Denoting the rate with which a single excited atom generates a photon per 
second by W, the total spontaneous emission rate of photons reads WN2. 
As we know, in addition photons can be generated by stimulated emission 
(cf. Vol. 1). The corresponding generation rate can be simply obtained from 
the spontaneous emission rate by a multiplication by n, i.e. for stimulated 
emission the generation rate is N2 Wn. On the other hand, atoms in their 
ground states, absorb photons with the absorption rate - N, Wn. Finally we 
must take into account that the photons may leave the laser, for instance 
by passing through one of the mirrors or by scattering by impurities in the 
laser, etc. We denote the inverse of the corresponding lifetime, t,, of the 
photons by 2 ~ .  The loss rate is then given by - 2 ~ n .  Adding up the contribu- 
tions which stem from the individual processes just mentioned we obtain 
the fundamental laser equation 
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w 1 . - = = = - = =  
number 

* N l  

of atoms 

of atoms 
(b) 

Fig. 2.3. (a) Through the pump mechanism a number of atoms are lifted from their levels 1 into 
their levels 2. Thus the number of atoms in their ground states, N,, is lowered and those of 
the atoms in their excited states increased. (b) The excited atoms can make transitions into 
their ground states by light emission. 

The explicit expression for W was derived in Vol. 1 (eq. (2.96)). Let us 
rederive that result by some plausibility arguments. The spontaneous 
emission rate of an atom with respect to all possible kinds of photons is 
connected with the lifetime T of the aton- with respect to spontaneous 
emission by W = 117. In the present context we are interested in the transi- 
tion of the atoms leading to spontaneous emission of a specific kind of 
photons only. Therefore we have to divide the transition rate per second, 
117, by the number of all kinds of photons possible. Therefore we have to 
form W = l / ( ~ p ) ,  where according to Vol. 1, eq. (2.56) the number p is 
given by 
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In it V is the volume of the laser, v the laser light frequency, Av the atomic 
line-width and c the velocity of light in the laser medium. 

By means of the formulas derived above we may immediately present 
the laser condition. Laser action sets in if n increases exponentially. This 
is guaranteed if the r.h.s. of eq. (2.1) is positive, where we have neglected 
the spontaneous emission rate WN2 which is then negligible. In a detailed 
quantum theoretical treatment of the laser in chapter 10 we shall see that 
in addition to the argument just presented the light spontaneously emitted 
(which is described by the term WN,) is incoherent whereas stimulated 
emission gives rise to coherent light. Using the abbreviations for W and K 

we immediately obtain the laser condition 

This condition tells us which laser materials we have to use and how we 
have to construct a laser. First of all we have to take care that the lifetime 
t ,  of photons within the laser is big enough. As we shall see below this can 
be reached by making the distance between the mirrors sufficiently large. 
In order to find an estimate of t1 we imagine that the photons run in axial 
direction and that they quit the laser with a certain probability each time 
they hit one of the mirrors. This probability can be expressed in a simple 
way by the reflectivity, R, of the mirrors. As one readily sees, the lifetime 
of a photon is proportional to the distance between the mirrors, inversely 
proportional to the velocity of light, and inversely proportional to 1 - R. 
We thus obtain the relation 

In order to treat a concrete example let us put 

R = goo/0, L = 30 cm. (2.5) 

We thus obtain 

Now let us discuss the left hand side of the inequality (2.3). In order to 
fulfil (2.3) we must make N, - N,,  i.e. the inversion, as big as possible. The 
volume V should be as small as p~ssible  or, if we form the ratio between 
the inversion and the volume, the inversion per volume or, in other words, 
the inversion density, must be sufficiently large. The factor u2 should be as 
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small as possible but because in each case one wants to generate light of a 
specific wave-length the size of v2 is fixed and cannot be circumvented. But 
we see that with increasing frequency it becomes increasingly more difficult 
to fulfil the laser condition which makes it so difficult to build an X-ray 
laser. Both the atomic line-width A v  and the lifetime T of an atom (with 
respect to light emission) should be chosen as small as possible. But here 
fundamental limits exist. As is known from quantum mechanics, the uncer- 
tainty relation AVT 3 1 holds. 

Inserting some typical data such as 

we obtain the inversion density which is necessary for laser action 

In section 2.3 we shall get to know a number of pump mechanisms by 
means of which we may achieve the necessary inversion. 

Exercises on section 2.1 

(1) Calculate W for the following laser data (ruby): 

v = 4.32 x 1014 Hz, 

T = 3.0 ms. 

(2) Calculate the number of modes of a closed resonator whose edges have 
the length L = 1 cm, 10 cm, 100 cm, which are present within the line-width 
A v  = 6.22 x lo9 Hz. How big is the number of modes in these cases if the 
modes are axial modes (E =sin k x )  in a Fabry-Perot interferometer? 

(3) Calculate the quality factor 2~ = l /  t ,  using formula (2.4) for the follow- 
ing cases: length of the laser resonator (=distance between the mirrors) 
L = 1 cm, 10 cm, 100 cm, reflectivity R = 9'9%,90%, 10%. How do the results 
change if the index of refraction is n = 2, n = 3? Compare the resonator 
line-width K = 1/(2tl) with the distance between the mode frequencies and 
the optical line-width of ruby (compare exercise 2). 
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(4) Calculate the critical inversion density of ruby by means of the laser 
condition where the following data may be used: 

V = 62.8 cm3, 

v = 4.32 x 1014 Hz, 

A v  = 2.49 x 1013 Hz, 

T = 3.0 ms, 

c' = 1.70 x 10' m/s (c '  = light velocity in ruby), 

R = 99% . 
Hint: Neglect the degeneracies of the levels. 

2.2. Typical properties of laser light 

The typical properties of laser light make the laser an ideal device for many 
physical and technical applications. Let us quote some of its most important 
properties. 

( I )  Laser light can have high intensities. Within laser light pulses, powers 
far greater than 10'' w can be achieved. In order to visualize this power 
just think that 10' light bulbs, each with 100 W, are needed to produce the 
same power. It is more than the power of all American power stations taken 
together. For applications in laser fusion, lasers with the power of more 
than 10" W are built or tested experimentally at present. High cw emission 
can also be achieved. It reaches an order of magnitude of about lo5 W. The 
achieved top powers are not published (for obvious reasons). 

(2) Laser light possesses a high directionality. This stems from the fact 
that the light within the laser hits the mirrors at its endfaces in form of a 
plane wave, whereby the mirrors act as a hole giving rise to diffraction (fig. 
2.4). In this way the ideal divergence of a plane wave diffracted by a slit is 
closely approached. A laser with a diameter of a few centimeters can give 
rise to a laser beam which, when directed to the moon, gives rise to a spot 
of a few hundred meters in diameter. The strict parallelism of the emerging 
light results in an excellent focusability which jointly with the high laser 
light intensity allows a production of very high light intensities in very small 
volume elements. When one calculates the electric field strength belonging 
to the corresponding light intensity, field strengths result which are far 
bigger than 10' V/cm. These are field strengths to which otherwise electrons 
in atoms are subjected. In this way ionization of atoms by means of laser 
light becomes possible. 
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Fig. 2.4. By means of the laser process a plane parallel wave is produced in the laser (a). The 
divergence of the emitted beam corresponds to that of a plane wave diffracted by a slit (b). 

(3) The spectral purity of laser light can be extremely high. The frequency 
width which is inversely proportional to the emitted power can be S v  = 1 HZ 

for 1 W emitted power in the ideal case. Experimentally 6 v  = 100 Hz has 
been realized. Taking S v  = 1, the relative frequency width for visible light 
is S v / v  = 10-l5 which is of the same order of magnitude as that of the 
Mossbauer effect. It is important to note that this frequency purity is 
achieved jointly with a high intensity of the emitted line quite in contrast 
to spectrographs where high frequency purity is achieved at the expense of 
intensity. The frequency purity of laser light is closely connected with its 
coherence (see point (4)). 

(4) Coherence. While light of usual lamps consists of individual random 
wave tracks of a few meters length, laser light wave tracks may have a 
length of 300,000 km. 

(5) Laser light can be produced in form of ultrashort pulses of 10-l2 s 
duration (picosecond) or still shorter, e.g. 30 femtoseconds (1 femto- 
second = lo-' s). 

Quite evidently the properties of laser light just mentioned make the laser 
an ideal device for many purposes which we shall explore in the present 
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(b) 

Fig. 2.5. (a) The electric field strength E ( t )  of light of a lamp consists of uncorrelated individual 
wave tracks. (b) Laser light consists of a single coherent very long wave track. 

and the subsequent volume. A most interesting question which we shall 
study later in great detail consists in the problem how the transition from 
the emission of a lamp to that of the laser takes place. If we pump the laser 
only weakly and plot its electric field strength E versus time we obtain the 
picture shown in fig. 2.5. The light field consists of entirely uncorrelated 
individual wave tracks. The whole light field looks like spaghetti. When we 
increase the pump power beyond a certain threshold, an entirely new 
behavior of laser light emerges. It becomes an extremely long wave track. 
This sudden transition which transforms light from one quality into that of 
another quality becomes apparent also when we plot the emitted power (of 
a single mode) versus pump power (fig. 2.6). While below laser threshold, 
i.e. in the range of thermal light, the emitted intensity increases only slowly, 
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threshold 

Fig. 2.6. The emitted power I versus pump power. Within the region of operation of the laser 
as a lamp the field consists of noise only and increases only slowly with increasing pump 
power. Above threshold the emitted intensity increases much more strongly with pump power. 
The intensity is taken with respect to a specific mode. 

above threshold it quickly increases. This is a hint that the internal state of 
order of the laser changes abruptly at laser threshold. This is a process 
which is strongly reminiscent of phase transitions of superconductors or 
ferromagnets. Indeed we shall show in chapter 13 that this analogy is very 
close. Among the more recently discovered properties of laser light are the 
following. Under suitable conditions, namely high pumping and bad cavity 
quality, laser light can exhibit chaotic behavior. Laser light chaos is an 
entirely new type of light which must not be mixed up with so-called "chaotic 
light from thermal sources". As we have just seen, light from thermal sources 
consists of very many individual wave tracks. Chaotic light on the other 
hand still consists of a giant wave track which, however, may show specific 
fluctuations which we shall explore later in this book. Indeed the study of 
chaotic laser light has become a new chapter in laser physics. 

2.3. Examples of laser systems (types of lasers and laser processes) 

As we have seen above, a typical laser consists of the following parts: the 
laser-active material, the pump source, and the resonator. In this section 
we wish to get to know a number of examples of laser materials. Today 
there is a great variety of materials which can produce laser action and 
new materials are still developed. The list of our examples is by no means 
complete and we wish rather to discuss some laser materials which are of 
particular importance. Readers who are interested in the basic principles 
of laser physics only can skip this section totally or may consider only our 
first example, the ruby laser. 
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Fig. 2.7. Pumping process and laser light emission of a two-level atom. 

2.3.1. Energy and pump schemes; kinds of line broadening 

Before we discuss individual laser materials it will be useful to give a survey 
on different energy schemes used between which pump and laser processes 
go on. Indeed we shall find only a few basic types. We got to know the 
simplest type already above. In this case the laser material consists of 
individual atoms each having only two levels. The optical transition which 
leads to laser action takes place between these two levels. Because sufficiently 
many atoms must be excited to obtain laser action the atoms must be 
pumped energetically from their level 1 into their level 2 from the outside 
(compare fig. 2.7). 

This model is entirely sufficient for a theoretical derivation of most 
properties of laser light. When we wish to build an actual laser, the energy 
level scheme becomes somewhat more complicated. We may distinguish 
between three basic types. The first type is represented in fig. 2.8. The 

radiationless 

pump light transition 

Fig. 2.8. Pumping process, radiationless transition, and laser transition of a three-level atom, 
where the lower transition leads to laser action. 
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radiationless 

transition 

Fig. 2.9. Pumping process, radiationless transition, and laser transition of a three-level atom, 
where the upper transition leads to laser action. 

electron of the atom in the ground state 1 is excited into a state 3. This 
excitation can be done by an irradiation of the atom by pump light with a 
frequency corresponding to the transition frequency from level 1 to level 3 
(optical pumping according to Kastler). The electron can make a radiation- 
less or radiative transition from level 3 into level 2, from where it makes 
an optical transition to level 1. This optical transition forms the basis of 
the laser process. A further pump scheme is represented in fig. 2.9. The 
ground state of the atom is denoted by 0. Out of this ground state the system 
is brought into level 2 by optical pumping. From this level 2 the optical 
transition into the level 1 can take place. The electron in level 1 can 
recombine to its ground state by a radiationless or radiative transition. The 
radiationless transitions can be caused by several mechanisms, for instance 
collisions between gas atoms among each other, or collision of gas atoms 
with the walls, interaction of atoms in lattices with lattice vibrations, etc. 
As we have seen when deriving the laser condition, a sufficiently high 
inversion N2- N, must be achieved. Because according to the scheme of 
fig. 2.8 initially practically all atoms are in their ground states, the production 
of a sufficiently high inversion requires a much higher pump power than 
that corresponding to the scheme of fig. 2.9. If the recombination from level 
1 to level 0 occurs sufficiently rapidly, level 1 will remain occupied only 
weakly and the inversion can be established by the number of excited atoms, 
N2, alone. 

Another pump scheme which is used quite often is that of fig. 2.10. Here 
the optical pumping occurs from level 0 into level 3. From there a radiation- 
less or radiative recombination of the electron into level 2 occurs. Level 2 
serves as initial level for the optical transition to level 1 thus serving as 
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radiationless 

transition 

pump light I laser transition 

radiationless 

transition 

Fig. 2.10. Four-level atom with pumping process, radiationless transitions, and laser transition, 
where the middle transition leads to laser action. 

basis of the laser process. A radiationless or radiative recombination then 
happens between level 1 to level 0. 

It is well known that not only individual electrons in atoms may possess 
discrete energy levels but that also complex quantum systems possess energy 
levels. As we shall see below, practically all laser materials can be subsumed 
under the system of transition processes indicated above. In practical cases, 
however, a more detailed consideration may be necessary. Quite often the 
pumping takes place using a whole set of different levels. The reason for 
that rests in the fact that one wishes to pump the system as strongly as 
possible. Furthermore the optically active levels 2 and 1 are broadened. 

We briefly remind the reader (cf. also Vol. 1) that we have to distinguish 
between different kinds of line broadening. On the one hand there are level 
broadenings which are common to all atoms of the system in the same way. 
This kind of broadening is called "homogeneous line broadening". A 
broadening which is always present is the "natural line broadening" (fig. 
2.1 1). It results from the finite lifetime of the electron which is leaving the 
excited state in order to make its optical transition. The linewidth A v  is 
connected with the lifetime r by the relation A v  = 117. We shall meet other 
kinds of broadening when we consider concrete cases of laser materials. 
For instance laser active atoms in solids experience different external per- 
turbations, in particular local electric fields, depending on their individual 
positions. In this way the atomic energy levels are shifted depending on 
the individual atomic position. This leads to inhomogeneous line broaden- 
ing. When we consider the ensemble of atoms, due to the individual energy 
shifts of the atoms the total line appears as a superposition of 
(homogeneously broadened) lines (fig. 2.12). Another important 
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Fig. 2.1 1 .  The Lorentzian line. 

inhomogeneous broadening is caused by the Doppler effect of moving 
atoms. This effect is well known from acoustics. When a car, which sounds 
its horn, passes, the horn seems to have a higher frequency when the car 
approaches us and to have a lower frequency when the car has passed. This 
effect occurs also in optics. When an atom moves with the velocity v towards 
an observer, the frequency of the light emitted by the atom seems enhanced 
according to the formula v' = v(1 + v/ c), where v is the transition frequency 
of the atom at rest. When an atom flies in opposite direction the opposite 
sign applies, v'= v(1- vlc). If a gas contains atoms moving with different 
velocities, for instance according to the thermal velocity distribution (Max- 
well's distribution), this velocity distribution leads to a corresponding 

Fig. 2.12. An inhomogeneously broadened line of Gaussian shape (solid line). For comparison 
the Lorentzian line of the transition with a homogeneously broadened width is indicated also 
(dashed line). 
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frequency distribution. In such a case we shall speak of a Doppler broadened 
line (fig. 2.13). 

2.3.2. Laser materials 

In this section we wish to consider a number of examples. This list is by 
no means exhaustive but may serve rather the purpose to give the reader 
an idea how varied laser materials can be. Let us first consider transitions 
of electrons in atoms. Such atoms can be built in as impurities in solids. 
This leads us to our first class of laser systems, namely: 

Solid state lasers 
(a) Ruby. Ruby was the first material in which laser action was found. 

Ruby, a well known gem, is a crystal consisting of aluminumoxide, A1a3. 

Fig. 2.13. (a) Maxwellian velocity distribution function f(v) of gas atoms which move at a 
velocity v in parallel to the laser axis. (b) The Doppler broadened emission line of gas atoms 
due to the Maxwellian velocity distribution according to fig. 2.13a. 
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Fig. 2.14. Energy level scheme of ruby: ( I )  ground state; (2) excited state from which the 
transition occurs; (3)  pump levels. [T.H. Maiman, Phys. Rev. Lett. 4, 564 (1960).] 

The lattice is doped with cr3+ ions, i.e. triply ionized chromium, typically 
with a concentration of 0.05% (in weight). The chromium ions lend ruby 
its red color. Laser action takes place between levels of c r3+ whose corre- 
sponding energy level scheme is shown in fig. 2.14. Thus basically we are 
dealing with the scheme corresponding to fig. 2.8, where the participating 
levels 2 and 3 are split. Optical pumping takes place into the levels denoted 
by 4 ~ 2  and 4 ~ ,  in fig. 2.14. From these levels the chromium ion relaxes into 
the level 2 of fig. 2.8 which in fig. 2.14 is denoted by 2 ~ .  In fact this level 
is split into two further sublevels. The lower one of these two levels, which 
is denoted by E, serves as the initial state for the optical transition, i.e. for 
the laser transition into level 1 of fig. 2.8 (which actually is fourfold 
degenerate). The optical transition denoted by R, takes place at 0.6943 pm. 
The lifetime of the upper laser level E is about 3 x s. The linewidth Av 
strongly depends on temperature. At 300 K, A v  = 2 x 10" Hz. Usually ruby 
is excited by intense flash lamps but other light sources are used also in 
order to generate cw emission. 

(b) The neodymium glass laser. In this case glass serves as the basic 
substance which is doped with laser active neodymium ions ( ~ d ~ + ) .  The 
pump scheme is that of fig. 2.10, but instead of the single level 3 of fig. 2.10 
a whole set of levels is used. It is important to note that the lower la_ser 
level 1 is separated from the ground state 0 energetically so far that even 
at room temperature the occupation number of level 1 differs from that of 
the level 0 by a factor e-'O. Thus we may assume that the level 1 is initially 
practically unoccupied. The optical transition between levels 2 and 1 takes 
place at h = 1.06 pm. 
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Fig. 2.15. Compare text. [A. Yariv, Quantum Electronics, 2nd ed. Wiley, New York 1976.1 

(c) The neodymium YAG laser. In this case the neodymium ions are 
embedded in yttrium-aluminum garnets which consist of Y3Al5OI2. The 
level scheme corresponds to that of fig. 2.15. Laser action takes place at 
A = 1.0641 ym at room temperature. 

(d) Neodymium pentoxide crystals. Neodymium can be built in at regular 
lattice sites in the crystals mentioned above and can show laser action. 

(e) As a last example of solid state lasers we mention calcium wolframate 
doped with ions of the rare earths. 

Gas laser 
In this case the laser active atoms form a gas. The first example found 

experimentally was the He-Ne laser in which a gas mixture of helium and 
neon atoms is used (fig. 2.16). The laser transitions take place in Ne especially 
at A = 0.6328 ym, A = 1.15 p,m and A = 3.39 ym. The pumping of the Ne 
atoms is particularly interesting. In the gas mixture which typically contains 
1.0 mm Hg of He and 0.1 mm Hg of Ne a dc or ac discharge takes place. 
By it electrons of sufficiently high energy are liberated which can excite the 
He atoms by collisions. The electrons of the He atoms recombine by means 
of a cascade and preferably accumulate in the long living metastable states 
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Fig. 2.16. Example of an experimental set-up of the He-Ne laser. The gas discharge tube of 
the laser is denoted by L. At the endfaces the mirrors are mounted under the Brewster angle. 
The laser is mounted in the way indicated in order to avoid vibrations. 

2 3 ~  and 2 ' s  (fig. 2.17). Because these long living levels practically coincide 
with the 2 s  and 3 s  levels of Ne, by means of collisions the excited He 
atoms can transfer their energy to the Ne atoms which are thereby brought 
into excited states. These states serve as initial states for the laser transition 
or even for a cascade of laser transitions. 

A further important class of gas lasers is represented by ion lasers. Laser 
active transitions occur in ions of the gases of He or Ar. Ionization and 
excitation is achieved by electron impact. The wave-length of the emitted 
light lies in the ultraviolet. 

Electronic transitions in molecules 
Excimer lasers 

In order to understand the concept of excimers let us consider two atoms 
or molecules with closed electronic shells, e.g. two He atoms. Being in their 
ground states they repel1 each other, therefore no He molecule can exist. 
But if an electron of one atom is excited this atom can form with the other 
atom a molecule which is called an excimer. If the excited electron recom- 
bines, the molecule decays. In this way the laser condition can be fulfilled 
in an ideal manner because the ground state of the molecule does not exist 
so that N ,  = O .  Laser action of excimer systems was first found in liquid 
xenon which was energetically pumped by an electronic beam. In the 
meantime laser action of excimers was found in gaseous Xe,, Kr,, Ar, as 
well as in gaseous compounds of nobel gases and halogenides such as XeBr, 
XeF, XeC1, KrF, ArF, and KrC1. The atoms are excited by electron beams 
of high energy or by fast discharges. These lasers can emit light in the 
ultraviolet and vacuum-ultraviolet. 

Chemical lasers 
Here the excited state of an electron in a molecule is generated by a 

chemical process. An example is provided by the reaction between fluor 
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Fig. 2.17. The energy level scheme of helium and neon. The energy of the excited helium 
atom is transferred by means of collisions to neon. [W.R. Bennett, Appl. Optics, Suppl. I ,  
Optical Masers, p. 24 (1962).] 

and hydrogen 

in which the fluor atom is excited. 

Dye lasers 
Many organic dyes can exhibit a pronounced luminescence which covers 

a large range of wave-lengths in the visible range of the spectrum. A dye 
molecule which is quite often used for lasers is Rhodamine 6G. Its molecular 
structure is shown in fig. 2.18. The optical transitions are caused by electrons. 
We have to distinguish between two kinds of excitations. In one case the 
spin of the electron in the excited level is opposite to that of the remaining 
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w 
Fig. 2.18. Molecular structure of Rhodamine 6G. 

molecule so that a total spin equal 0 results. We call these states S-states 
(singulet states). In the second case the spin of the excited electron is 
parallel to that of the remaining molecule. The total spin equals 1 and we 
are speaking of triplet states. Both kinds of states are further split due to 
molecular vibrations. The levels are represented in fig. 2.19 by heavy lines. 
Finally a still finer splitting exists. It stems from the rotation of the molecules 
which, according to quantum theory, is quantized. In usual experimental 
setups the dye molecules are in solution. The dye molecules are excited by 

singlet triplet 

Fig. 2.19. Energy level scheme of a dye. On the left-hand side the groups of the singlet states 
are plotted which are further split due to oscillations and rotations (compare text). On the 
right-hand side the triplet states are plotted. 



52.3. Examples of laser systems 33 

other lasers, e.g. the argon laser, whereby a transition from the group So 
into the group S, occurs. This excitation is followed by a fast recombination 
to the lowest level of group S,. From there the optical transition in one of 
the states of group So occurs. Besides this optical recombination a transition 
from S, to TI happens with a relatively small transition rate. Because the 
optical transition from T, into the ground state of So is forbidden, the states 
T, are long living. Unfortunately the absorption frequency of the transition 
from TI to T, coincides with the emission frequency from S1 to So. As a 
consequence the emitted laser light is strongly reabsorbed so that laser 
action is quickly suppressed. Therefore in such a case only laser light pulses 
can be emitted. However, by adding new substances to the solution a quick 
recombination of the states T, can be achieved so that reabsorption is 
suppressed. Besides Rhodamine 6G there are a number of further organic 
dyes showing laser action. By a combination of different kinds of dye 
molecules a range of wave-lengths from 430 till 800 nm can be covered. On 
account of their broad luminescence lines, organic dyes are particularly 
well tunable. Tuning can be achieved, for instance, by reflection gratings. 

Laser action caused by molecular oscillations 
The most important example is provided by the CO, gas laser. In these 

molecules the individual atoms can perform oscillations. The three funda- 
mental kinds of oscillations are shown in fig. 2.20. According to quantum 
theory the different kinds of oscillations must be quantized so that discrete 
energy levels result. The energy level diagram belonging to some low lying 
oscillation levels of CO, is represented in fig. 2.21. One of the laser 
processes rests on the optical transition between the levels which are denoted 
in fig. 2.21 by 00'1 and 10'0. The excitation of the uppermost level is usually 
achieved in a plasma discharge in which N2 and He participate in addition 
to CO,. In the plasma discharge a large fraction of the two-atomic N, 
molecules is excited to make vibrations, whereby the molecules accumulate 
in the excited state with the vibration quantum number n = 1 of the harmonic 
oscillator. Collisions with C 0 2  molecules in their ground states make a 
transfer of the energy from the excited state of N2 to an excited state of 
C 0 2  possible. The remaining small energy difference is transformed into 
kinetic energy of the molecules after their collisions. The efficiency of CO, 
lasers is very high and lies at about 30%. In order to achieve high power 
emission, lasers with a length up to several hundred meters have been built. 
According to quantum theory, besides the vibrational levels of CO, 
molecules also discrete rotational levels are possible which may also partici- 
pate in the laser process. If the gas pressure is increased above 5 Torr, due 
to the numerous collisions a line-broadening occurs which exceeds the usual 
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Fig. 2.20. Oscillatory states of the CO, molecule. 
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Fig. 2.21. Oscillatory states of CO,. [C.K.N. Patel, Phys. Rev. Lett. 12, 588 (1964).] 
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C H A M B E R  

Fig. 2.22. Typical arrangement of a gas dynamic laser. [J.D. Anderson, Jr., Gas Dynamic 
Lasers. An Introduction. Academic Press, New York 1976.1 

Doppler broadening. This gives rise to a second laser regime of the C 0 2  
laser which is of particular interest for applications. 

Particularly high emission powers can be achieved by gas dynamic lasers. 
Here a mixture of CO,, N,, H,O or He is used. This gas mixture, which is 
initially held under high pressure and is very hot, can expand through 
supersonic jets. During expansion an inversion of the gas atoms is reached 
so that a laser active medium results. The supersonic gas passes through 
an arrangement of mirrors whereby a laser light beam is generated (cf. fig. 
2.22). 

Electronic transitions in semiconductors 
Here we are dealing with a further class of solid state lasers. But the 

electronic states between which the laser transitions take place do not belong 
to individual impurity atoms but rather to the total crystalline lattice which 
forms the semiconductor. 

A semiconductor is usually a crystal in which the individual atoms form 
a periodic lattice. In such a periodic structure electrons may propagate like 
periodically modulated waves with a wave-vector k (cf. Vol. 1). To a definite 
k-vector there belongs a whole set of energies W , ( k ) ,  j = 1,2, . . . (fig. 2.23). 
When we consider Wj(k) as a function of k, the energies form continuous 
bands which are separated by gaps (compare fig. 2.24 which presents an 
example of two energy-bands with a single gap). In the electronic ground 
state of the total crystal the individual energy levels, which we can visualize 
as being discrete but very dense, are filled up from the bottom with electrons. 
More precisely speaking, each level is filled with two electrons having 
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Fig. 2.23. Scheme of the energy bands of an electron in a solid. The energy W of an electron 
in the valence band (lower part) and of an electron in the conduction band (upper part) are 
plotted versus the k-vector. a is the lattice constant. 

opposite spins. In an insulator the valence band is filled up entirely with 
electrons. The subsequent band, which is called the conduction band, is 
empty. As is shown in solid state physics, optical transitions can occur in 
a periodic lattice only under conservation of the k-vector, i.e. in the energy 
level scheme of fig. 2.25 the transitions must take place in vertical direction. 

How can we achieve laser action in such a crystal? To this end we have 
to generate an inversion, i.e. we must excite electrons from the valence band 
into the conduction band. An example is shown in fig. 2.26 schematically. 
Because of the just mentioned k-selection rule the electrons can make their 
transitions independently of each other so that a sufficiently high inversion 
can be generated if we only bring enough electrons into the upper band, 
i.e. the conduction band. Experimentally such an inversion can be achieved 
by irradiating the crystal by a beam of electrons with sufficiently high energy. 
In this way electrons of the valence band are kicked into the conduction 
band where they accumulate at its bottom. In many practical applications, 
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Fig. 2.24. When we project the energy levels onto the W-axis we clearly see that the conduction 
band and the valence band (black) are separated by a gap (white). 

other kinds of pump mechanisms are used, however. If impurity centers 
are implanted into a crystal, not only new energy levels are generated but 
also the conduction and the valence bands are shifted. If different kinds of 
impurity atoms are implanted into different regions of the crystal, as indi- 
cated in fig. 2.27, an energy scheme as indicated in that figure arises. Because 
in the energetic ground state of the crystal the electrons occupy the lowest 
electronic energy levels, an occupation scheme as shown in fig. 2.27 results. 
Because the energetically lowest state is occupied, no optical transitions 
can take place. In order to generate an inversion, according to fig. 2.26, an 
electric field is applied to the crystal. This electric field causes an increase 
of the energy of the electrons at one end of the crystal and a lowering of 
their energies at the other end. In other words, the energy scheme is tilted. 
Because the electrons again wish to occupy the energetically lowest states, 
quite evidently they must make transitions as indicated in fig. 2.28. These 
transitions are optical transitions from an occupied into an unoccupied 
energy level and form the basis for laser action. We have been describing 
the general scheme of a p-n junction, where p and n are abbreviations for 
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Fig. 2.25. The optical transition of an electron from the valence band into the conduction 
band takes place under conservation of the k-wave vector, i.e. vertically. 

"positive" and "negative" (charge). An important example of such a semi- 
conductor laser is provided by gallium arsenide (GaAs). 

The simple scheme of optical transitions must still be modified because 
the electronic transitions are strongly influenced by the impurities. In this 
way the k-selection rule is violated. 

Semiconductor lasers can be very small and may have diameters of less 
than a fraction of a millimeter. Because these light sources are nevertheless 
very intense, they can be used in medicine and also in communication 
networks. For technical reasons the simple p-n junction we just described 
has to be modified in various ways. In particular multiple p-n junctions 
are used of which fig. 2.29 shows an example. 

A further class of semiconductor lasers is formed by exciton lasers. We 
briefly remind the reader of the concept of an exciton. Let us consider an 
insulator and let us visualize it as a crystal being built-up of its individual 
atoms with their localized electrons. If we excite such an insulator, an 
electron can be removed from its mother atom and transferred to another 
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Fig. 2.26. When we excite a number of electrons optically or by electronic collisions, the 
electrons occupy states in the conduction band to which unoccupied states (holes) correspond 
in the valence band. In this way an inversion can be generated. 

atom. In this way a positively charged hole at the mother atom remains. 
The negatively charged electron senses the attractive Coulomb force of the 
remaining hole and can circle around that (cf. Vol. 1). According to quantum 
theory, the total energy of the system electron +hole is quantized. This new 
kind of electronic system, consisting of an electron and a hole with quantized 
energies is called "exciton". If semiconductors are irradiated by high light 
intensities, high densities of such excitons are generated. When the electron 
and the hole of the exciton recombine, they can emit their total energy in 
form of light. When many excitons participate in this process, we might 
expect laser action to occur. However, a typical difficulty arises with excitons, 
because the emitted light can again generate new excitons and is thus 
reabsorbed. In this way the exciton system alone can never produce laser 
action. However, a new kind of process can occur in crystals. Namely the 
energy which is liberated by the recombination of an electron and a hole 
can be split into the energy of a photon and that of a phonon, which is a 
quantum of the lattice vibrations. In this way not enough photon energy is 
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Fig. 2.27. The energy bands can be locally shifted by doping a semiconductor with various 
impurities. In this figure the energy is plotted as a function of the spatial coordinate. The 
donors are impurities in the crystalline lattice which can give their electrons to the conduction 
band. On the other hand, acceptors are impurities which can bind electrons or, in other words, 
which can generate holes in the valence band. F is the Fermi energy up to which the electronic 
levels can be filled up. W, is the lower edge of the conduction band, W, is the upper edge of 
the valence band. p and n refer to "positive" and "negative" according to the doping. 
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Fig. 2.28. When an external electric field is applied the electrons are shifted to one side (in 
our figure to the left side), whereas the oppositely charged holes are driven to the opposite 
side. In this way occupied electronic states come to stand above the unoccupied hole states 
so that electrons can make a transition as indicated by the vertical arrow and emit photons. 
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Fig. 2.29. Example for the experimental arrangement of a semiconductor laser. The cross 
section shows various layers. Laser action takes place in the recombination region. [H. Kressel, 
I. Ladany, M. Ettenberg and H. Lockwood, Physics Today, May 1976, p. 38.1 

available for reabsorption and laser light can indeed be generated by exciton 
recombination (fig. 2.30). 

As a final example of laser processes in solids we mention color center 
lasers. These are ionic crystals of sodium chloride (NaCl), potassium 
bromide (KBr), etc. The positively or negatively charged ions of sodium or 
chloride, respectively, are regularly arranged to form a lattice. In such a 
lattice defects can be formed in various ways. An important defect consists 
in the lack of a negatively charged chloride ion at a lattice site. Because 
the total crystal has been neutral it appears as if the defect possesses a 

Fig. 2.30. In the exciton laser the total energy liberated by the recombination of an exciton 
is split into the light quantum energy hv and the phonon energy hv,,o,o,. In this way not 
enough light quantum energy is available to regenerate the exciton because reabsorption 
processes cannot take place. 
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Fig. 2.3 1. The NaCl lattice. The negatively charged chlorine ions are represented by big white 
balls, the positively charged sodium ions by small black balls. 

positive charge (fig. 2.31). Such a positively charged center can capture an 
electron which circles around that center. According to quantum theory the 
energy levels of the electron are quantized. The electron can make optical 
transitions between them and can emit or absorb light. Because these centers 
lend the above mentioned crystals their color, they are called color centers. 
If sufficiently many of these centers are excited, laser action can take place. 

An entirely different class of lasers is provided by the free electron laser. 
In this case the electrons move in vacuum and pass within an electronic 

beam through a spatially modulated magnetic field (fig. 2.32). By means of 
the Lorentz force the electrons are periodically deflected. It is well known 

HELICAL MAGNET 
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Fig. 2.32. Experimental arrangement of the free electron laser. The pulsed electron beam 
enters from the right-hand side into a helical magnet. In the experiment indicated, the emitted 
light is superimposed on that of a CO, laser and the modulated radiation is registered. [D.A.G. 
Deacon, L.R. Elias, J.M.J. Madey, H.A. Schwettman and T.I. Smith, in: Laser Spectroscopy 
111, eds. J.L. Hall and J.L. Carlesten, Springer, Berlin 1977.1 
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from classical electrodynamics, that deflected, i.e. accelerated, charges give 
rise to the emission of electromagnetic waves. By means of the collective 
emission by many electrons, laser action may become possible. The advan- 
tage of this system which has been realized, for instance, at the linear 
accelerator of Stanford University, is its tunability, which cculd be reached 
by a continuous variation of the magnetic field strength. 

X-ray and y-ray lasers 
Due to the many applications of laser light it is, of course, highly desirable 

to build lasers with very short wave-lengths. With respect to the X-ray and 
y-ray region so far only proposals exist. Possible laser-active quantum 
systems could be excited atomic nuclei which can emit y-rays. With respect 
to resonators the principle of the distributed feedback laser has been 
suggested. Because of the factor u2 in the laser condition (2.3), the realization 
of such lasers seems to be very difficult, however. 



Chapter 3 

Laser Resonators 

3.1. Survey 

In principle the light field or, more generally speaking, the electro-magnetic 
wave field contains all possible wave-lengths, all directions of propagation 
and all directions of polarization. On the other hand the main goal of the 
laser device consists in the generation of light with definite properties. A 
first selection, namely with respect to frequency, is achieved by the choice 
of the laser material. By means of the energy levels W of the chosen system 
the frequency v of the emitted light is fixed according to Bohr's formula 
hv = Winitial - Wfina,. Of course, the frequencies of the optical transitions are 
not sharp but they are broadened due to various causes. Such causes may 
be the finite lifetimes of the levels due to optical transitions or collisions, 
inhomogeneous crystalline fields, etc. In order to select frequencies further, 
resonators are used. We met the simplest type of a resonator in Vol. 1 when 
we studied the modes in a cavity. In a cavity, whose walls have an infinitely 
high conductivity, standing waves with discrete frequencies can exist. These 
waves are well defined eigenmodes of the cavity. When scientists tried to 
extend the maser principle into the optical region it was an open question 
whether a laser with just two mirrors but otherwise open side walls would 
allow modes at all (fig. 3.1). Because of the diffraction and transmission 
losses due to the mirrors, no permanent field could stay in such an open 
resonator. It turned out, however, that the concept of modes can be well 
applied to open resonators. The first proof was given by computer calcula- 
tion. Fox and Li considered an arrangement of two plane parallel mirrors 
and they prescribed 'an initial field distribution on one of the mirrors. Then 
they studied the propagation of light and its reflection. After the first steps 
the initial light field got distorted and its amplitude lowered. However, after 
say 50 round trips the field mode acquired a final shape and its overall 
amplitude was decreasing by the same constant factor after each reflection. 
In this way it was clear how to generalize the concept of modes. One has 
to look for such field configurations which remain the same in the course 
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Fig. 3.1. Laser resonator with plane parallel mirrors. 

of time with the exception that their amplitudes decrease after each step 
by the same factor. In this way it becomes possible to calculate the modes 
of open resonators and we shall give two explicit examples in the second 
part of this chapter. 

In analogy to a closed resonator, in an open resonator a sequence of 
discrete modes may exist with which a series of discrete frequencies is 
connected. The emerging mode configurations can be characterized by their 
specific intensity distribution on the mirrors. Examples are shown in fig. 
3.2. By means of the finite lifetime of the modes due to diffraction and 
especially due to the transmissivity of the mirrors, the amplitude is damped 
which gives rise to a frequency width. In most lasers this frequency width 

I Square mlrrols Circular mirrors 

Fig. 3.2. Left part: Distribution of the electric field strength of the laser field over the endfaces 
of a laser with rectangular cross section. The abbreviation TEM means "transverse electric 
mode". The indices represent the number of nodes of the field in vertical or horizontal direction. 
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Fig. 3.3. Laser arrangement with a convex and a plane mirror. 

is much smaller than the original atomic line-width ("good cavity case"). 
Important dynamic effects of laser light occur if the frequency width caused 
by the cavity is bigger than the atomic line-width ("bad cavity case"). A 
misunderstanding should be avoided at any rate. By the laser process itself, 
which we shall treat in our book, the effective line-width will be lowered, 
as compared to cavity and atomic line-width, by many orders of magnitude. 

As can be easily visualized, light can sufficiently often be reflected between 
the mirrors only if these are precisely adjusted in a parallel position. If the 
laser mirrors are tilted, the light wave track will leave the laser very quickly. 
Its lifetime in the laser has dropped strongly and the laser condition can 
no more be fulfilled. For these reasons other arrangements of resonators 
have been developed where the light modes depend less sensitively on the 
adjustment of the mirrors. Such an arrangement is shown in fig. 3.3 where 
one plane mirror is replaced by a mirror with the shape of a section of a 
sphere. 

Another arrangement often used is that of confocal mirrors where the 
center of one mirror just coincides with the focus of the other mirror. Plane 
parallel mirrors are often mounted at the end surfaces of the material itself. 
But also other arrangements are used in which one or both mirrors are 
separated from the laser active material. Such arrangements may influence 
the mode selection done by the laser process and can be used correspond- 
ingly. As we shall see later in our book, laser action can simultaneously 
take place in modes which are standing waves. These modes are made 
possible by experimental setups corresponding to figs. 3.1-3.5. 

Fig. 3.4. Laser arrangement with two confocal mirrors. 
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laser material 

i 

Fig. 3.5. Laser arrangement in which one of the mirrors is mounted in a certain distance from 
the laser material. 

In order to achieve higher reflection coefficients for polarized light, a 
definite angle between the laser axis and the mirrors is used in order to 
make use of the Brewster angle. This arrangement is often used in gas lasers, 
for instance the helium-neon laser. In order to obtain a very sharp frequency, 
the selection of a single mode becomes necessary. This can be achieved, 
for instance, by the ring laser shown in fig. 3.6. In such a ring laser running 
waves are generated. By additional means, e.g. by a Faraday rotator put 
in-between two mirrors, it becomes even possible to select one direction of 
propagation. The ring laser in which two waves propagate in opposite 
direction forms the basis of the laser gyro which will be studied in more 
detail in section 6.7. The most important property of all these mirror 
arrangements consists in the fact that in this way the light is fed again and 
again into the laser (feed-back) whereby the laser wave is more and more 
amplified until a stationary state is reached. In a way the light is back- 
scattered coherently into the material. Such a coherent back scattering can 
be achieved in a quite different way by a method which is well known from 

Fig. 3.6. Mirror arrangement of a ring laser. Also four mirrors are in use. 



48 3. Laser resonators 

X-ray diffraction. When crystals are irradiated by X-rays each atom acts as 
a scattering center. If the X-rays impinge on the crystal in specific directions 
and with specific wave-lengths, the individual back-scattered wave tracks 
can interfere with the incoming light field, and thus standing waves are 
formed. These standing waves correspond to the modes we have been 
discussing before. However, the difference to the former mirror arrange- 
ments consists in the fact that the scattering centers (centers of reflection) 
are distributed all over the crystal in a regular fashion. This principle can 
be applied to the optical region. By means of a grating the back scattering 
of the wave tracks is achieved. In this way we arrive at the principle of 
distributed feed-back lasers. 

In a number of cases the laser process can be achieved without the specific 
feed-back mechanisms we just have studied. For instance in a number of 
semiconductors the difference between the index of diffraction of the 
material and that of air is so big that the internal reflection is big enough 
to achieve the same effect as a mirror. In addition to the arrangement of 
mirrors we just have mentioned, also more exotic arrangements have been 
suggested and even verified, e.g. the whispering gallery mode (fig. 3.7). 

Before we turn to a more detailed description of methods how the modes 
in an open resonator can be calculated we mention a few technical terms. 
The "quality of a resonator", Q, is defined by Q = oto where o is the mode 
frequency and to its lifetime in the unloaded cavity, i.e. a cavity not yet 
filled with laser active material. to is the time in which the mode intensity 
drops down to l /e  of its initial value. In our book we shall use the decay 
constant K = 1/(2to). In order to obtain a high Q, according to physical 
optics (theory of diffraction) the following criterium must be fulfilled. In 
the case of two mirrors with apertures 2Al and 2A,, respectively, and 
separated by a distance D, the inequality 

Fig. 3.7. Example of a whispering gallery mode. 
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where A is the wave-length, must be fulfilled. The parameter N = A ~ / A D  
obtained for A, = A, = A is called Fresnel number. It is approximately equal 
to the number of Fresnel zones seen on one mirror from the center of the 
other mirror. A resonator theory should explain the following points: 

(1) the mode pattern on the mirrors; 
and more generally 

(2) the mode distribution in the interior of the open resonator; 
(3) the losses due to diffraction, reflection, mirror misalignment, and 

aberration ; 
(4) the far field pattern. 

In sections 3.2 and 3.3 we shall give two examples how the mode patterns 
can be calculated. 

3.2. Modes in a confocal resonator* 

This resonator is formed by two spherical mirrors of equal curvature 
separated by their common radius of curvature. The focal length of a mirror 
is one half of its radius of curvature, so that the focal points of the reflectors 
coincide. 

The reflectors are assumed to be square with the edge length 2A (compare 
fig. 3.8), which is small compared to the spacing D = R where R is the 
radius. A and R are large compared to the wave-length. Because of the 
symmetry of the problem we can choose the electric field vector either in 
x or y direction. In the following we shall drop that index x or y. Actually 

Fig. 3.8. Confocal resonator with mirrors S and S'. The coordinates used in the text are 
indicated. 

*The specific form of the modes we are going to derive in this and the following section is 
not very important for most of the theoretical conclusions we shall draw in our later chapters. 
For this reason, readers who are interested mainly in laser processes can skip the reading of 
sections 3.2 and 3.3 entirely. 
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all the essential steps of the mathematical analysis can be seen when we 
deal with a scalar field using Huygens' principle. 

Let the field strength at point x' be given by E(xl). Then according to 
Huygens' principle this point is a starting point of a new spherical wave 
which produces a field strength at point x which is given by 

ik exp[-iklx - x'l] - E (x'). 
2~ I x - x ' I  

Here k is the wave number; x and x' are vectors defined by 

x = (x, Y, 4 ,  (3 -3) 

x' = (x', y ', z'). (3.4) 

The total field at point x is found by integrating over all original points x' 
on a surface. In the following we shall consider the spherical mirrors as 
such a surface and we shall choose the coordinates x and y on them. 
Corresponding to the two mirrors S and S' we write 

and 

E (x') = Es1(x1, y'). (3.6) 

The field on mirror S is given by 

ik exp[-ikp] 
ES,(x1, y') dS1, 

P 

where 

Ix-x'l = p. 

Because of 2A < R we approximate p by 

P xx' + yy' -=: I-------- 
R R~ . 

In accordance to what we have stated in section 3.1 we define a mode by 
the property that its field distribution is repeated when going from one 
mirror to the other one, besides a constant factor a ,  

E s b ,  Y) = a E s k  Y). (3.10) 

Inserting (3.7) into (3.10) we find an equation for Esf. To solve this equation 
we proceed in several simple steps. Because it will turn out in a self-consistent 
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fashion that the spot-size of the field distribution is much smaller than R 
we make the following approximation: 

But when we insert (3.1 1) into the r.h.s. of (3.7) we may factorize the integral 
into one referring to xx' and one referring to yy'. This suggests to make the 
following hypothesis in the form of a product: 

where E, is a constant. For formal reasons we decompose also u into a 
product: 

Inserting (3.12) and (3.13) into (3.1 O), where we have used (3.7) and (3.1 l) ,  
we find 

Because on each of both sides there is a product of a function of x and 
one of y this equation can be fulfilled only if the factors fulfil the following 
equation: 

A 

f (x) = const f (x') exp[i kxxf/ R]  dx' I- A 

and a corresponding equation for g(x). Eq. (3.15) is called an integral 
equation and it has been solved exactly. The solutions are given by the 
angular wave functions in prolate spherical coordinates as defined by 
Flammer. But probably hardly anybody is familiar with this kind of wave 
functions. Fortunately, for our purposes the solution of (3.15) can be written 
in a very familiar form provided the field has not too many nodes in the 
x, y plane. In such a case it is well concentrated around the axis so that 
x/ A < 1. If the field is strongly concentrated, the contributions of the integral 
in the region of x' = * A  are practically negligible and we can extend the 
limits of the integral to infinity. Therefore instead of (3.15) we now have 
to solve 

+a, 

f (x') exp[i kxx'l R]  dx'. 
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After a little bit of guessing one may quite easily find the solution of the 
equation (3.16). It is nothing but a Gaussian distribution 

f (x) = exp[- f kx2/ R]. (3.17) 

We leave it as a little exercise to the reader to check that (3.17) is indeed 
a solution of (3.16) and to determine the constant in front of the integral. 
In the following it will be convenient to have a suitable abbreviation, namely 

x = x J k / R ,  Y = ~ J ~ / R .  (3.18) 

With (3.17) and (3.18) and choosing the same solution for given y we find 
the field distribution on the mirrors. It is a Gaussian distribution 

E (x, y) = Eo exp[- f ( x 2  + y2)]. (3.19) 

We may define the spot radius, w,, by that radius where (3.19) has dropped 
to l /e ,  whieh yields 

w, =JRA/T. (3.20) 

Huygens' principle allows one also to calculate the field inside the resonator. 
Because the derivation of the result is of a more technical nature we just 
write down the corresponding formulas. We use the abbreviation 

and find 

where 

and 

As we may see, in x, y-direction the field is still Gaussian though the spot 
size varies along the laser axis. The function sin cp looks rather complicated 
but a little analysis reveals that it has the f~llowing structure: 

sin cp -- sin(kz + f (z)), (3.25) 

where sin(kz) describes the fast oscillations of the field, whereas f(z)  is a 
slowly varying function. That means that in z-direction, i.e. in the direction 
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of the laser axis, the field mode strongly resembles that of a mode in a 
closed cavity. The field outside the cavity can also be found by means of 
Huygens' principle and reads 

where c, is the transmissivity of the mirrors. The far field pattern has a spot 
size which at a distance z is given by 

The angular beam width O can be defined as the ratio w,/z for z + co which 
yields 

The results are represented in figs. 3.9 and 3.10. The field distribution (3.19) 
represents just the mode which has the lowest losses. 

A closer analysis shows that the whole sequence of modes is again of a 
form quite familiar to physicists. Namely, the general solution of (3.14) 
can be written as 

E(x, Y)  = EoHm (X)Hn ( Y) exp[-t(x2 + y2)1, (3.29) 

where Hm are the Hermitian polynomials, m = 0, 1,2, . . . and 

x = x J k / R ,  y = y J k / R ,  

at least in the case in which the Fresnel number N = ( I / ~ T ) ( A ~ ~ / R )  +a. 
For sake of completeness we represent also the field inside and outside 

the resonator in the general case. The jield outside the resonator is 

To obtain the jeld inside the resonator, the factor c, must be omitted and 
exp[-icp(X, Y)] be replaced by sin(q(X, Y)). In order to calculate the 
losses by diffraction, the finite size of the mirrors is, of course, crucial. 
The analysis shows, however, that the losses due to diffraction are in 
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pssition of mirror 

,position of mirror 

pisition of mirror 

Fig. 3.9. (a) Field distribution between two confocal mirrors, according to eq. (3.22). (a) and 
(b) show only the envelope. The rapidly oscillating function sin cp has been omitted. (b) In 
order to bring out the narrowing of the field distribution, in the middle part the field distribution 
of (a) is somewhat exaggerated. 
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$sition of mirror 

Fig. 3.10. Field distribution outside the confocal resonator, according to eq. (3.26). In this 
figure only the envelope is shown. The rapidly oscillating function exp [icp] has been omitted. 

general much smaller, typically by a factor of 100, than losses due to the 
finite transmissivity of the mirrors. Therefore we shall not be concerned 
with these kinds of losses. We mention that in z-direction only discrete 
values of k are admitted which are given by 

where m, n and 1 are integers. 

3.3. Modes in a Fabry-Perot resonator 

It is not our purpose to present resonator theory in full length. We rather 
wish to give the reader a feeling how the modes look like. In the foregoing 
section we have seen how the application of Huygens' principle allows one 
to determine the field configurations within a confocal resonator in a rather 
simple fashion. In the present section we want to briefly indicate the results 
of a model calculation which avoids the approximation on which Huygens' 
principle is based. For simplicity we consider a two-dimensional model of 
a Fabry-Perot resonator which consists of two plane strip metal mirrors. 
In the present approach we assume that the space between the mirrors is 
filled with active material being described by a complex susceptibility 
x = x'+ixt'. For a rigorous treatment Maxwell's equations must be used. 
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Due to the symmetry of the problem we may put either 

Inserting the hypothesis (3.32) or (3.33) into Maxwell's equations we readily 
verify that U must obey the wave equation 

where the wave number is given by 

within the active material and 

d u + k 2 u = 0 ,  

with 

k2 = u2/c2 

outside the active material. E is the dielectric constant. The mirrors are 
assumed to have a reflectivity r, close to one, so that the tangential com- 
ponents of E and H must satisfy a certain boundary condition, called the 
Leontovich condition. It reads 

where n is a vector normal to the mirror surface. 
The essential results can be summarized as follows. If the Fresnel numbers 

are sufficiently high, the electric field has the following spatial dependence: 
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The solution can be readily generalized to a three-dimensional resonator, 

sin (x+A,)-  sin (y+A2)- sin z+- - [ I [ ;I [( XI- 
2A, and 2A2 are the edge lengths of the rectangular end mirrors in x and 
y-direction, respectively; D is their distance. 1, m and n are integers. This 
result has been derived for axial or nearly axial modes so that n is a big 
number (An -- D )  whereas 1 and m are small integers of order unity. 

The resonance condition reads approximately 

Fig. 3.1 1 .  Amplitude (above) and phase (below) distribution of the lowest mode of even 
symmetry for the two-dimensional resonator ( N = 6.25). [H. Risken, Z. Physik 180, 150 (1964).] 
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Fig. 3.12. Amplitude (above) and phase (below) distribution for the lowest mode of odd 
symmetry for the two-dimensional resonator (N = 10). [H. Risken, Z. Physik 180, 150 (1964).] 

A more detailed analysis reveals that in higher order approximation the 
functions (3.39) and (3.40) have to be changed in two ways. The l's, m's 
and n's acquire additional small imaginary parts and the expressions (3.39) 
and (3.40) have to be supplemented by additional terms. Because the explicit 
results do not give us much physical insight we rather show the correspond- 
ing amplitude and phase distributions for the lowest modes in figs. 3.1 1 
and 3.12. In the remainder of this book we shall be satisfied with the explicit 
representation of the wave functions in the form (3.39), (3.40) when we 
deal with standing waves. 



Chapter 4 

The Intensity of Laser Light. 
Rate Equations 

4.1. Introduction 

In this chapter we shall deal with rate equations. We got to know an example 
of such equations when we derived the laser condition in section 2.1. As is 
well known (cf. Vol. I), when treating the light field quantum mechanically 
we may attribute the photon number n to each mode. In this chapter we 
shall treat n which, according to quantum theory should be an integer, as 
a continuous variable. A completely satisfactory derivation of the rate 
equations can be done only by means of a fully quantum theoretical 
treatment of the laser or in a rather good approximation by means of the 
semiclassical laser equations. We postpone this derivation to later chapters 
and start here right away with the rate equations in order to get a first 
insight into the physical processes in the laser. 

4.2. The photon model of a single mode laser 

Let us consider a single kind of photons whose number we shall denote by 
n. Because in the following we are interested in the genuine laser process 
we shall neglect the spontaneous emission rate WN, (cf. section 2.1). We 
shall see later anyway that the stimulated emission rate (N, - N,)  Wn plays 
quite a different role than the rate WN,. This becomes manifest in the 
statistical properties of laser light which we can treat only later, however. 
Therefore we start from the following equation for the temporal change of 
the photon number: 

Due to the laser process not only the photon number changes but also 
the occupation numbers of the atoms change. Let us consider for simplicity 
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Fig. 4.1. The various optical transitions in a system of two-level atoms with the occupation 
numbers N, and N,. 

a system of two-level atoms, and let us study the temporal change of the 
occupation numbers N, and N2. The number N2 increases by the excitation 
of electrons by the pumping process. The transition rate is proportional to 
the number of electrons available in the ground states of the individual 
atoms, i.e. it is proportional to N , .  The corresponding proportionality factor 
will be denoted by w,, (fig. 4.1). Here and in the following we have to note 
that we must read the indices of the w's from right to left, i.e. w,, refers to 
the transition from level 1 to level 2. This transition rate depends, of course, 
on the optical properties of the atoms or, more precisely speaking, on the 
corresponding optical transition matrix elements. Finally w2, is proportional 
to the intensity of the pump light. We shall not discuss this in detail but 
we shall rather consider w2, as a "control parameter" which we can 
manipulate from the outside. 

Atoms being in level 2 can make transitions into the ground state by 
means of radiationless transitions in which no photons are emitted. Such 
processes can be caused, for instance, by collisions in gases or by the 
interaction between atoms with lattice vibrations in solids. The rate of these 
transitions is, of course, proportional to the number of excited atoms, N2. 
The corresponding proportionality factor will be denoted by w12.  

By means of this description we also take care of radiative processes 
which do not belong to the emission of the kind of photons under considera- 
tion here. Finally the processes of stimulated emission and absorption take 
place. The number of transitions per second is given by (N2- N,) Wn. 
Collecting all the contributions just mentioned we obtain the rate equation 
for the occupation number of level 2, 
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Level 1 can be treated in a completely analogous fashion. We then obtain 

dN1 -- - w12N2- w~~ N1 +(N2- N1) Wn. 
d t  (4.3) 

Adding the eqs. (4.2) and (4.3) results in 

This means that the total occupation number of levels 1 and 2 remains 
constant. It is equal to the total number of all laser atoms 

Because eqs. (4.1) to (4.3) contain the difference of the occupation numbers 
or, in other words, the inversion N2- N,,  we introduce this quantity as a 
new variable 

On the other hand N, and N2 can be expressed by means of N and D, 

Because N is a constant we have to deal with a single variable D only. 
Therefore it suggests itself to express eqs. (4.1)-(4.3) by means of that 
variable. Subtracting (4.3) from (4.2) and using (4.7) yields 

d D  -- - N(w2, - wI2) - D ( w ~ ~  + w12) - 2 WDn. 
d t  

This equation can be brought into a form which lets transpire its physical 
meaning still more when we remember that the w's have the meaning of 
transition rates, i.e. that they are inversely proportional to certain transition 
times. Therefore we introduce a time constant T by the relation 

Furthermore we study which inversion D = Do will result if only pump and 
relaxation processes occur but no laser process. We obtain that quantity by 
putting the 1.h.s. of (4.8) = 0 and by omitting the last term in (4.8). We then 
readily obtain 

For reasons which we shall explain below, this inversion is called the 
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unsaturated inversion. Inserting Do and (4.9) in (4.8) we finally obtain 

When we neglect for the moment being the last term in (4.1 l ) ,  we can 
readily solve this differential equation and find a solution which tells us 
that D relaxes towards the value Do within the time T (compare the 
exercise). 

By use of (4.6) we can write the rate equations of the photons in the form 

dn 
-= DWn - 2 ~ n .  
d t  

Eqs. (4.1 1) and (4.12) are the fundamental laser equations which we shall 
discuss in more detail. Because the r.h.s. of these equations contain products 
of the variables D and n, these equations are nonlinear and in general 
cannot be solved in closed form. Therefore we shall proceed from the simple 
case to more complicated cases when discussing and solving these equations. 
In the most simple case n 
the stationary state. 

Stationary solution 

In this case we have 

dn d D  
- = O  and -- 
d t  d t  - 0, 

so that (4.1 1) reduces to 

(Do- D )  = 2TDWn. 

Solving this equation with 

and D are time independent, i.e. we consider 

(4.14) 

respect to the inversion D we obtain 

Eq. (4.15) teaches us that the actual inversion D decreases from the inversion 
Do, which is prescribed by pump and relaxation processes only, when the 
photon number increases. This fact is expressed in technical terms by saying 
that a saturation of the inversion occurs. This effect can most easily be 
represented when the photon number n is still small. In this case we replace 
(4.15) by the relation 

D= Do-2DoTWn. (4.16) 
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As noted above, Do is the unsaturated inversion. The term containing n is 
called saturation. Inserting (4.15) in (4.12) and using dn ld  t = 0 we obtain 
after a slight transformation 

This equation possesses the two solutions 

and 

no= ( W D O - ~ K ) / ( ~ K T W ) .  

(Because n is a stationary solution we have supplied n with the index 0.) 
no= 0 means that no photons are produced, i.e. that no laser action takes 
place. Therefore let us consider (4.19) and in particular the first factor on 
the r.h.s., ( WDo- 2 ~ ) .  

If we pump the laser only weakly, Do is small so that 

But because the photon number must not be negative, (4.19) is eliminated 
as a possible solution and only (4.18) remains. Therefore no laser action 
takes place. If we increase Do such that 

holds, the solution (4.19) with no> 0 becomes possible and we obtain laser 
action. It is a simple matter to convince oneself that (4.21) is identical with 
the laser condition (2.3) (compare exercise). The increase of no with increas- 
ing Do is represented in fig. 4.2. While below the critical value Do = 2 ~ /  W 
there is no laser action, it occurs above that value and no increases rapidly. 
These considerations do not explain why we can exclude the solution no = 0 
in the region (4.21). To this end we have to consider the time dependent 
equations. 

Our result that below laser threshold no photons are present at all stems 
from our neglect of spontaneous emission. We can take that effect into 
account only much later when we consider in chapter 10 the quantum theory 
of the laser. 

Approximate time dependent solutions 

Because the time dependent equations cannot be solved in closed form 
we shall try to solve them approximately. To this end we make two 
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Fig. 4.2. Emitted photon number no versus unsaturated inversion Do. In this model, below 
the critical inversion Do = 2 ~ /  W no laser emission takes place. Beyond that inversion the 
photon number increases linearly. 

assumptions. Let us consider the deviation of D from the unsaturated 
inversion Do, i.e. D - Do. 

Let us assume that D - Do changes only little over times T (compare 
exercises). Expressed mathematically this means that 

shall hold. Because Do is time independent, i.e. dDo/dt = 0, we may neglect 
the 1.h.s. of (4.1 l ) ,  i.e. dD/d t  compared to (Do- D ) / T  which occurs on 
the r.h.s. or, in other words, we may put dD/d t  = 0 in eq. (4.1 I). This allows 
us to solve (4.1 1) immediately by expressing D(t)  by means of the instan- 
taneous value of n(t) as we did in (4.15) above. But in contrast to that 
former result n and D now depend on time t. Inserting (4.16) in (4.12) and 
slightly rearranging the terms we obtain the laser equation 

This equation can be interpreted as follows. When the laser is pumped only 
weakly the inversion Do is small or even negative. In this case we have 
(Do W - 2 ~ )  < 0 and the total r.h.s. of (4.23) is negative, i.e. dn ld t  is negative. 
Even if at an initial time some photons are present, for instance by spon- 
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taneous emission, the photon number decreases exponentially. If we increase 
the pump strength we finally obtain (Do W - 2K) > 0. Because usually in the 
beginning of the laser process the photon number n can be assumed small 
we may first neglect the quadratic term in n in (4.23) compared to the linear 
term. In this case an exponential increase of the photon number happens 
according to (4.23). In other words we have to deal with an "instability". 
Spontaneously produced photons are multiplied by the process of stimulated 
emission like an avalanche. Of course, the photon number does not increase 
exponentially for ever because finally the term quadratic in (4.23) becomes 
influential and lets the r.h.s. of (4.23) tend to 0. This implies that dn ld t  
tends to 0 and eventually the stationary state n = no will be reached. The 
quadratic term stems from the saturation of the inversion as can be easily 
derived from (4.16). The saturation makes it possible that a stationary state 
is reached. If we start with a photon number n which is bigger than that 
of the stationary state, no, the second term in (4.23) dominates. In this case 
the r.h.s. is negative and consequently the photon number decreases and 
eventually acquires the stationary value, no. These results are represented 
in figs. 4.3a and 4.3b. The explicit time dependent solution of eq. (4.23) is 
derived in exercise 3 of this section. 

Exercises on section 4.2 

(1) Solve the equation 

What does it mean that D relaxes towards Do within the time T? 

(2) Convince yourself that the condition (4.21) is identical with the laser 
condition (2.3). 
Hint: Use the definitions of K and W as introduced in section 2.1. 

(3) This exercise deals with the time dependent solution of eq. (4.23) for 
the photon number n, 

where a = Do W - 2 ~ ,  b = ~ D , T W ~ ,  and at initial time t = to the photon 
number is given by n = no > 0. Convince yourself that the solution of (4.23) 
reads as follows: 
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Fig. 4.3. The photon number n versus time t. (a) At time t = 0 a finite number of photons was 
given, but the laser was operated below laser threshold. (b) The laser condition is assumed 
to be fulfilled. The photon number approaches, according to the initial photon number, the 
stationary value no from above or from below, respectively. 

(a) for a > 0 

where c is given by 
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(b) for a < 0 

Discuss the time dependence of n(t). 

(4) Investigate under which conditions the slowness condition (4.22) is 
fulfilled. 
Hint: Use eqs. (4.15) and (4.1 l ) ,  and the results of exercise 3 of this section. 

4.3. Relaxation oscillations 

In this section we wish to further study the time dependent processes in 
the single mode laser. But we shall no more assume that the inversion 
follows the photon number instantaneously. While this assumption is well 
justified if the photon numbers are small (compare exercise 4 of section 
4.2), this is no more the case for higher photon numbers. Instead we consider 
small deviations of n and the occupation numbers from their corresponding 
stationary values. To this end we assume that n or N, initially deviate from 
their stationary states a little. We wish to show that n and Nj perform 
damped oscillations or, in other words, relaxation oscillations. Let us 
consider as an example a 3-level laser in which the optical transition occurs 
between the two upper levels (compare fig. 4.4). The corresponding occupa- 
tion numbers are again denoted by N,  and N2. Let us assume that the lower 
transition from level 1 to level 0 takes place very rapidly (compare also the 
exercise at the end of this section). In this case the laser equations read as 
follows: 

Equation for the photons 

d n l d t  = - 2 ~ n  + DWn, 

where D =  N2-  N , .  

Fig. 4.4. Transition scheme in a system of three-level atoms in which the optical transition 
takes place from the uppermost to the middle level. 
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Equation for the occupation numbers 

N is the total number of atoms. Because of our assumption that the lower 
laser level is practically unoccupied we may replace D by N2 in the equation 
for the photons. We now assume that deviations of n  and N2 from their 
stationary states No and N:, respectively, have occurred. We study whether 
and in which way a stationary state will be reached again. To this end we 
make the hypothesis 

n = no + Sn, (4.27) 

where the stationary solutions no and N: are fixed by the conditions 

and 

Inserting (4.26) and (4.27) in (4.24) and (4.25) we obtain terms which 
contain only the stationary solution, terms proportional to 6 n  or SN2 and 
finally expressions which contain the product Sn SN2. We assume that the 
deviations from the equilibrium values are only small. This allows us to 
neglect the term Sn SN2 being of higher order. Because the stationary 
solution obeys the eqs. (4.28) and (4.29), this solution drops out and we 
only retain the equations 

and 

These are two coupled linear differential equations which we can solve as 
usual by the exponential ansatz 

and 

We insert (4.32) and (4.33) in (4.30) and (4.31), perform the differentiation 
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with respect to time, and divide the resulting equations by the exponential 
function. We then obtain the following two equations 

and 

These are homogeneous equations for the unknowns A and B. According 
to elementary theorems of algebra a non-trivial solution is possible only if 
the corresponding determinant 

vanishes. This determinant can be easily evaluated. Inserting the values for 
Nq and no according to (4.28) and (4.29) we obtain an equation for a:  

We represent the solution of this quadratic equation in the form 

where r is given by 

and w ,  by 

We have assumed that the second term in the bracket in (4.40) is bigger 
than the first term, so that w,  is a real frequency. Furthermore we have used 
the abbreviation 

The index "thr" is an abbreviation of "threshold". The most general solution 
for the photon number may be represented in the form 

where A l  and A, are fixed by the initial conditions for the photon number 
n and the occupation number N,. Obviously the system relaxes towards 
the stationary state while it performs oscillations (fig. 4.5). 
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Time 

Example of relaxation oscillations. [L.F. Johnson, in: Lasers, ed. A.K. Levine. Dekker, 
New York 1966.1 

Exercises on section 4.3 

(1) Establish the rate equations for the photon number n and the atomic 
occupation numbers for the transition scheme of fig. 4.4. Discuss the limiting 
case that w,, becomes very large. Convince yourself that in this case N1 =0. 
Under which assumptions may one replace the first term on the r.h.s. of 
(4.25), which in an exact treatment should read Now2,, by Nw,,, where No 
is the number of atoms in the ground state? Why is one allowed to keep 
for the whole set of equations only those for the photon numbers and for 
the N,? 

(2) Determine SN, which corresponds to (4.42) and determine A, and A, 
by means of the initial condition at time t = 0, 

Hint: Express B by means of A (for A,,  a = - r +io,, and for A,, cu = - r - 
iw,) using eq. (4.34). 

The rate equations of the single mode laser (section 4.1) allow us to study 
the performance of the Q-switched laser. In such a laser the reflectivity of 
one of the mirrors can be suddenly changed. This change can be achieved 
by mounting one of the mirrors in a certain distance from one end of the 
laser material and letting this mirror rotate. In practical cases a rotating 
prism is used (fig. 4.6). In order to achieve very short switching times, Kerr 
cells are used also, which are especially practical if the light of the laser 
active atoms is already polarized for instance in ruby crystals. 



mirror laser'material rotating prism 

Fig. 4.6. Scheme of an experimental arrangement to achieve Q-switching. 

The basic idea of Q-switching is as follows. If we first omit one of the 
mirrors, the photons in the laser material have a very short lifetime. Even 
if we pump very highly, the laser condition cannot be fulfilled and no laser 
action takes place. Because laser action would decrease the inversion, by 
the absence of laser action we may achieve a very high inversion if a mirror 
is lacking. If suddenly this mirror is brought into its correct position, laser 
action can start with a very high initial inversion. Since in eq. (4.12), D W - 2~ 
is very big we expect an exponential increase of the photon number n in 
an avalanche, i.e. a giant pulse to be emitted. The pulse height and width 
will be limited because according to eq. (4.1 1) a big photon number n in 
the last term of that equation will cause a decrease of the inversion. This 
in turn will decelerate the photon number production according to eq. 
(4.12), and if D becomes negative will even lead to a decrease of the number 
of photons. 

Let us consider these effects in more detail. We start from eq. (4.1 1) and 
assume that laser action takes place much more quickly than pump and 
relaxation processes within the atoms. Furthermore we neglect as usual 
spontaneous emission. Eq. (4.1 1) then reduces to 

I dD/d t  = -2 WnD. (4.43) 

According to (4.43) the inversion decreases rather slowly for small values 
of n, so that we may replace D on the right hand side of 

d n l d t  = ( W D - ~ K ) ~  (4.44) 

and of (4.43) by D,. Furthermore we assume that initially a certain number 
of photons is present due to spontaneous emission. Their number will be 
denoted by n,. The solutions of (4.44) and (4.43) read 

n = n, exp(at) (4.45) 

and 

D == Di{l +2 Wni[l - exp(at)]/ a ) ,  (4.46) 
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where 

In the initial phase of the pulse, n increases exponentially with the gain 
constant a where upon the inversion decreases on account of (4.43) or 
(4.46). The increase of n stops at latest at time t, when D(t , )  = 0. (In reality 
it ends earlier because of the loss constant 2 ~ . )  If we neglect in (4.46) "1" 
against the exponential function exp(at) it follows from eq. (4.46) that 

or equivalently 

Eq. (4.48) incidentally represents the number of photons present at time t , .  
After time t ,  we may assume D = 0. The photon number then decreases 
exponentially according to 

The equations just presented are quite useful at least for an estimate of the 
quantities t,, n,,, and n ( t ) .  To solve the equations more accurately computer 
solutions must be used. Some typical results are presented in fig. 4.7. 

4.5. The basic rate equations of the multimode laser 

In the preceding sections we have studied a laser, assuming that the atoms 
emit light only into a single mode. This is, of course, in contrast to the 
emission of atoms in conventional light sources where light is emitted, for 
instance, into all possible directions. As we mentioned above, a reason for 
mode selection is the different lifetimes of different kinds of photons. In 
this section we wish to study in more detail how mode selection in a laser 
is achieved. We shall see that simultaneous emission of photons into different 
modes can happen also. 

To this end we have to discuss the structure of the coefficient W which 
occurs in the laser equations more closely. So far we have taken this 
coefficient from Einstein's theory of absorption and emission of photons. 
As we shall show in detail in later chapters, W cannot be considered as 
constant for all kinds of photons. We wish to visualize how W looks like 
in reality and to derive its form in a heuristic fashion. (For its derivation 
from first principles cf. section 6.9.) W stems of course, from the interaction 
of the light field with the atoms. If we consider a single standing light wave, 
e.g. in the form sin kx, it is quite clear that this light wave cannot have any 
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(c) Time 

Fig. 4.7. Example of the time dependence of the emitted intensity of a Q-switching laser for 
various degrees of excitation. [W. Wagner and B.A. Lengyel, J. Appl. Phys. 34, 2040 (1963).] 

interaction with an atom at the position x = 0 or at any of the other nodes 
of the sine wave. On the other hand we may expect a maximal interaction 
between atom and light wave if the sine function has its maximum. Because 
energy is exchanged between the atom and the light field we must assume 
that W does not depend on the field amplitude but rather on the intensity, 
i.e. on the absolute square of the field amplitude. Instead of a sine wave 
also other kinds of wave forms can be generated in the laser resonator (cf. 
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chapter 3) .  Denoting the corresponding wave forms by u,(x,) and using 
the ideas just mentioned we are led to assume the transition probability in 
the form 

Because we shall deal with several wave forms we distinguish the u's by 
the index A, where A shall remind the reader of the wave-length. But in our 
present context it may also denote the various directions of propagation of 
a wave or its polarization, etc. x, denotes the space point where an atom 
is located. The individual atoms are distinguished by the index p. In this 
sense W represents a transition rate caused by the interaction of the wave 
A and the atom p (fig. 4.8). 

A further dependence of W on the light field and on the atomic quantities 
follows when we take into account the polarization of the light field and 

Fig. 4.8. The interaction function W (eq. (4.51)) versus the spatial coordinate x along the 
laser axis. L is the distance between the mirrors of the laser resonator, x, the coordinate of 
atom p. (a) x, coincides with an antinode; (b) x, coincides with a node. 
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' Fig. 4.9. This figure shows the dependence of the interaction function W on the angle ,y 
I between atomic dipole moment and field polarization. 

of the atoms. The electronic motion within the atoms can be described as 
that of oscillating dipoles. Here and in the following we shall assume for 
simplicity that the dipoles in the laser material are oscillating in the same 
direction. 

A light wave A having the direction of polarization e, can interact with 
an atomic dipole moment only to an extent in which the dipole moment of 
the atom 9 has its component in the direction of the polarization vector 
e,. Because only intensities play a role we are led to assume the dependence 
of W on the polarization in the form (fig. 4.9) 

Finally we have to discuss how the positions of the mode frequencies 
relative to the frequencies of the optical transitions within the atoms enter 
into W. From now on we shall use in this book till its end the following 
notations for the circular frequencies of atoms and fields: circular frequency 
of the atomic transition 6 ,  circular frequency of the light wave in the laser 
resonator o,. As is well known from experimental physics, the emission of 
atoms possesses a certain line shape (cf. fig. 4.10). A single atom therefore 
does not uniformly radiate light in the region of its line-width into the 
individual frequencies but rather according to an intensity distribution. In 
case of a Lorentzian line the intensity of a light wave with frequency o, 
and the central atomic transition frequency c3 is given by 

where we omitted a factor, I,. Here y is the line-width or, more precisely 
speaking, the half width at half intensity. Now let us recall that W is the 
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Fig. 4.10. An illustration of the function W according to eq. (4.53). 

rate with which an atom emits light into the mode A. Therefore we shall 
require that W is proportional to the expression (4.53) (fig. 4.10). 

In some cases we have to generalize (4.53). For instance, laser-active 
atoms in a solid may occupy different kinds of positions within the crystalline 
lattice. Due to their different positions the atoms have different central 
frequencies 6 which we will have to distinguish by the atomic index p. If 
there is a distribution of 6,'s over a certain frequency range, an 
inhomogeneous broadening is present. An inhomogeneous broadening is 
caused also in gases because of the Doppler shift due to the motion of the 
gas atoms. In the cases of homogeneous and inhomogeneous broadening 
we have to assume W in the form 

Woc 2y  
y2 + (6, - w,) 2 ' 

Because W depends on the mode A and on the laser atom p under 
consideration, we attach the indices A and p to W. 

Let us collect the individual conditions which we impose on W and let 
us anticipate the still lacking proportionality factor which we explicitly 
derive in a later chapter. WA, can then be written in the form 

where we have used the abbreviation 

g,, = iaeAuA (x, )r@Al(2h&o)1"2. 

Evidently all factors within g,, are known from our above considerations 
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except for the last one which can be derived by an exact quantum mechanical 
calculation only. 

We are now in a position to formulate the laser equations. We assume 
that there exists a certain set of modes in the laser resonator and we 
distinguish them by the index A. Each mode can be occupied with a certain 
number of photons n,. Because the lifetimes of different modes in the 
resonator can be different we introduce decay constants K A  which in general 
will differ from each other. Because the individual atoms interact with the 
laser modes in a different way we have to consider the atoms individually. 
For simplicity we again consider the 2-level scheme leaving its extension 
to a 3-level scheme as an exercise to the reader. 

We denote the occupation numbers of the atom p in the states 1 and 2 
by N,,, and N,,,, respectively. The corresponding inversion of atom p is 
described by d, = N,,, - N,, , .  Generalizing the laser equation (2.1) we 
can immediately write down the laser equation for the mode A 

Though this equation was not derived exactly here (what we shall do later) 
its form is quite plausible. The temporal change of the number of photons 
of kind A is given by: 
(1) losses (first term on the r.h.s.); 
(2) the stimulated emission and absorption processes by the individual 
atom p (first sum on the r.h.s.); 
(3) a term representing spontaneous emission (second sum on the r.h.s.). 
We shall omit this last term when we consider the laser process. 

A critical reader will quite rightly ask why no phase relations between 
the modes and the oscillating dipole moments of the electrons of the atoms 
are taken into account. In fact, (4.57) implies an approximation whose 
meaning we shall study in a later chapter. Eq. (4.57) can be obtained only 
if phase relations are neglected which is allowed in many cases but definitely 
not always. Indeed, very important effects in the laser, such as mode locking, 
are due to specific phase relations. 

The rate equations for the individual atom p must take into account 
pump and relaxation processes and, in addition, the effect of stimulated 
emission and absorption. Because not only a single kind of photons but 
various kinds of photons are emitted, all the photon numbers must be taken 
into account. On account of these ideas we obtain the rate equations for 
the atom p 
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and 

By adding (4.58) to (4.59) we obtain the conservation law for the total 
occupation number of the atom p 

and thus 

Because we are dealing with a single atom, we have put N, = 1. In a way 
analogous to the single mode laser (section 4.2), we may derive an equation 
for the inversion d, = N2,, - N , , ,  from (4.58) and (4.59), 

Eqs. (4.57) and (4.61) are the basic laser equations which we wish to discuss 
now. 

Exercise on section 4.5 

( I )  Formulate the rate equations corresponding to eqs. (4.57), (4.58) and 
(4.59) for three-level atoms with the pump scheme of fig. 2.9. 

4.6. Hole burning. Qualitative discussion 

Within the frame of rate equations it will be our goal to calculate the 
intensity distribution over the individual modes of the laser or, more 
precisely speaking, we wish to calculate the number of photons belonging 
to the individual modes A. Because the rate equations are nonlinear, this 
task is not quite simple. However, one may get some useful insight into 
some important mechanisms by a study of the inversion d, which is crucial 
for the determination of the photon numbers. To this end we start from eq. 
(4.57) where we shall ignore the last term describing spontaneous emission 
as already mentioned above. As is evident from eq. (4.57), the inversion d, 
of the individual atoms determines whether the losses described by the term 
- 2~ ,n ,  can be compensated. In the following it will be important to note 
that the inversion d, is determined in turn by the photon numbers as can 
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state by putting 

dd 
A=(). 
d t  

In analogy to the 
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of eq. (4.61).  We confine our discussion on the stationary 

(4.62) 

single mode case, in our discussion we may include also 
processes in which d,  follows the photon number instantaneously in which 
(4.62) also holds. By means of (4.62) we may resolve (4.61) with respect to 

4 

In the following we shall be interested in laser action not too far above 
threshold. In such a case we may assume that the photon numbers n, are 
small so that we may expand the r.h.s. of (4.63) into a power series with 
respect to the photon numbers. As it will turn out it is sufficient to confine 
the expansion to the first two terms 

We first consider the special case in which only one photon number is 
unequal 0. In such a case (4.64) reduces to 

d ,  - d , ( l - 2 T n  W, , ) .  (4.65) 

The mode index A has been omitted from n because we are dealing with 
one mode only. We remind the reader that the index p distinguishes between 
the different atoms. We now study how the photon number n influences 
the inversion d ,  of the individual atoms. To this end we recall the definition 
of W,, which was given in eqs. (4.55) and (4.56).  According to that 
definition, W,, essentially consists of two parts namely one referring to the 
spatial behavior of the mode and another one depending on the relative 
positions of the frequency of the mode A under consideration and of the 
central transition frequency of the atom p. We wish to study the influence 
of these two factors on the behavior of d ,  separately. We first consider the 
case in which we deal with running laser waves which may be realized, e.g. 
in a ring laser. In such a case the spatial function u,(x,)  which occurs in 
W , ,  according to (4.55) and (4.56) is given by 
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where V is the volume and k, the wave vector. Because in (4.55) only the 
absolute value of (4.66) enters, W,, becomes independent of the spatial 
coordinate. Therefore we may confine our discussion to that part of W,, 
which has the form 

After these preparatory steps we discuss hole burning in an inhomo- 
geneously broadened line. We consider an inhomogeneously broadened 
atomic line where the transition frequencies (3, depend on the atomic index 
,u. We first study the behavior of d, (4.65) when we change (3,. For sake 
of simplicity we shall omit the index p and consider fig. 4.1 1. In it the 
inversion d is plotted versus (3. If no laser action takes place, i.e. if n = 0, 
we obtain the unsaturated inversion do which is shown as the upper dashed 
line. When n is unequal zero we must subtract the Lorentzian curve (4.67) 
from do. The maximum of that curve lies at that atomic transition frequency 
6 which coincides with the frequency o, of the laser mode under consider- 
ation. The half width of this curve is given by y. Thus we obtain the solid 
curve shown in fig. 4.1 1 which exhibits an incision in the inversion. That 
means that due to laser action the inversion is reduced close to the resonance 
line (3 = o, or, in other words, that a hole is burned into a line. 

How does this hole burning affect the equations for the laser modes? The 
photons are produced by stimulated emission, i.e. by the second term on 
the r.h.s. of eq. (4.57). In this term the inversion d, occurs under a sum 

Fig. 4.1 1 .  The unsaturated inversion do and the saturated inversion d ( 6 )  versus the atomic 
transition frequency 6 ;  w, is the mode frequency. 
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over atomic indices 

Since we have, at least in general, to deal with very many atoms in a laser 
I (say 1014 or more) we may replace the sum by an integral. We first will give 

a qualitative discussion and then below we shall do the corresponding cal- 
culations explicitly. A small region of transition frequencies (3. . . ((3 +d(3) 
may contain a certain number of atoms. In general this number is biggest 
close to the central frequency and decreases with increasing frequency 

) difference. In general we have to assume that the number d Z  of atoms 
within the frequency interval d(3 depends on (3. Therefore we write 

In many cases of practical interest, for instance in solid state lasers, we 
may assume that p((3) possesses a Gaussian distribution (cf. fig. 4.12). In 
order to evaluate the sum over p in (4.68) we have to proceed from the 
individual atomic indices p to the new variable 6 , .  

We have replaced W,, by WA(6) and d, by d ( 6 )  because we wanted to 
replace the variable p by (3. In fact the sum over p does not only run over 
the distribution of atoms over the frequencies 6 but also over the spatial 
distribution of atoms. But because in the present context we treat space- 
independent W's we shall not discuss the corresponding integration over 

a0 
Fig. 4.12. The density of atoms, p, versus their transition frequency 6 ; 6, is the center frequency. 
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Fig. 4.13. The inversion density z (G)  versus the atomic transition frequency G. The hole 
burned at the position w, ( =mode frequency) can easily be seen. 

the atomic positions here. (4.70) suggests to introduce the inversion density 
d by the relation 

In order to represent d we have to multiply the curves of figs. 4.1 1 and 4.12 
with each other. We thus obtain fig. 4.13 showing the dependence of the 
inversion density on the transition frequency (3. Of course, again a hole is 
burned into the inversion density at the frequency 6 = w,. How does this 
kind of hole burning affect the gain which is proportional to (4.68)? 
Evidently in the sum (4.68) or in the corresponding integral the factor 

W,, = W(6) = const x 0 = G,, Y 2 ~ ( ~ A - 6 ) 2 '  

occurs once again (compare also (4.67)). Thus those contributions to the 
'sum (4.68) are most important which stem from the surrounding of 6 = w,. 
Because the depth of the hole is the same for all mode frequencies a,, the 
effective gain will become the biggest if the position of the hole coincides 
with the atomic central frequency Go. In the stationary state the depth of 
the hole is determined from the condition 

i.e. that the relation 
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I I 1 * a  
Wl W2 

Fig. 4.14. The unsaturated inversion do and the saturated inversion d (6) versus 6. The modes 
with frequencies w ,  and w ,  have burned two holes into the inversion. If the photon numbers 
of the two modes differ, the depths of the holes differ also. 

is fulfilled. In section 4.7 entitled "quantitative treatment" we shall evaluate 
in particular the expression (4.74) explicitly. 

But here we shall continue our qualitative discussion and consider the 
behavior of the inversion when two modes are present, i.e. when n, # 0 for 
A = 1 and A = 2. In order to discuss in which way the inversion is lowered 
we may proceed in the same way as with one mode but we have to take 
into consideration that the corresponding Lorentzian lines must be sub- 
tracted from the unsaturated inversion do at two positions at c3 = o, and 
6 = 02. Thus we obtain fig. 4.14 which corresponds to our fig. 4.1 1 above. 
Fig. 4.12 can again be used without changes so that we obtain fig. 4.15 as 

Fig. 4.15. The inversion density belonging to fig. 4.14. The curve results from that of fig. 4.14 
by a multiplication with that of fig. 4.12. The two holes are clearly exhibited. 
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, 

,/'. 

final result for the inversion density. This figure deals with the case in which 
the frequencies o, and o, of the corresponding laser modes have a distance 
from each other which is large compared to the homogeneous line-width 
y. As we have observed above when treating a single mode, the factor W,, 
which occurs once again in the sum (4.68) essentially picks out the surround- 
ing of 6 = a,. This means, of course, that when two modes are present they 
do not influence each other with respect to their gains. When we visualize 
the two laser modes 1 and 2 as two cows on a meadow it means that these 
cows are grazing on two different parts of the meadow or, in the context 
of a laser, that the modes draw their energy from two entirely different 
kinds of atoms. The situation changes drastically when the distance between 
the two mode frequencies becomes so small that they are lying within the 
line-width 2y. Then the two cows, so to speak, graze on the same part of 
the meadow and the question arises how the resulting competition will end. 
We shall discuss this question in section 4.9. 

We now turn to hole burning in gas lasers because here especially interest- 
ing effects occur. We confine our discussion to a single laser mode. For the 
case of several modes I have to refer the reader to my book Laser Theory 
(Encyclopedia of Physics). Because gas atoms move, the Doppler effect 
plays a role which becomes of special importance if laser action takes place. 
According to the Doppler effect, the transition frequency 6, of an atom 
flying away with the velocity v from the observer appears shifted according 
to 

6 = 6,( 1 - v/ c). 

Correspondingly the frequency of an atom flying towards the observer 
,appears shifted according to 

Because the individual atoms #u. have different velocities v,, an effective 
line broadening is brought about. We may take over our above discussion 
of the inhomogeneously broadened line of atoms at rest when we use the 
6,'s occurring in (4.75) and (4.76). However, an important difference with 
respect to the solid state laser occurs because (4.75) and (4.76) contain the 
velocity components, v, of the individual atoms in the direction of propaga- 
tion of the laser waves. When we deal with standing waves, the laser mode 
consists of two waves running in opposite directions. As a consequence the 
laser mode resonates with two kinds of atoms, namely those moving in 
opposite directions with a certain velocity lvl. Thus each wave burns two 
holes into the atomic inversion. 

In complete analogy to our earlier discussion we still have to take into 
account the distribution of frequencies. According to (4.75) and (4.76) this 
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Fig. 4.16. In a gas laser with a standing wave two holes in symmetric positions with respect 
to the center of the atomic emission line result. 

distribution is determined by the distribution of velocities v which according 
to the theory of gases is given by a Maxwellian distribution. In this way 
we obtain fig. 4.16 where we have assumed 

By a change of the distance between the mirrors the laser mode frequency 
may be tuned in such a way that this frequency coincides with 6,. As a 
result both holes coincide and yield a particularly deep incision. Because 
the laser mode nearly exclusively interacts with the atoms in the region of 
the incision only, and only here the inversion is strongly decreased, we 
obtain the following result. If we tune the laser line on the atomic line the 
gain will become smaller compared to the case in which (4.77) is valid at 
least for small detuning. We shall treat this effect, which plays an important 
role in Doppler-free spectroscopy, in section 6.8 quantitatively. 

4.7. Quantitative treatment of hole burning. Single mode laser action of an 
inhomogeneously broadened line 

We now return to single mode laser action in a solid state laser with an 
inhomogeneously broadened line. We start from the mode equation (4.57) 
which we write down for the special case of a single mode where we drop 
the index A of n but retain it for sake of clarity in W,,. Neglecting as usual 
spontaneous emission this equation reads 
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We insert in it the saturated inversion which according to (4.64) reads 

d, == do(l - 2Tn W,,). 

We adopt running waves (cf. (4.66)) so that W,, does no more depend on 
the space coordinate x. Using the explicit form of W,, as defined in (4.55) 
and (4.56) and replacing the index p by I we may write 

where we have used the abbreviation 

By inserting (4.79) into (4.78) we cast eq. (4.78) into the form 

We convert the sum over the atomic indices p into an integral over space 
and an integral over the frequencies 6 ,  

Because W does not depend on space the integration over the volume 
elements d3x yields the volume V of the resonator. In order to evaluate the 
integral over I we use a Gaussian distribution for the frequency distribution 
p (6 ) ,  i.e. 

Here po is the density of atoms, po = N /  V ,  where N is the total number of 
laser atoms in the resonator and V the volume of the resonator, and a is 
the halfwidth of the Gaussian distribution. 

We first treat the first term on the r.h.s. of (4.82), 

In order to evaluate this expression we insert (4.80) and (4.84) into it. 
Observing that integration over the volume in (4.83) cancels against V in 
the denominator in (4.80) we have eventually to treat 
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This integral cannot be evaluated in explicit form. However, it is rather 
simple to calculate it approximately if we assume y 4 a. In such a case we 
obtain in a good approximation 

J, 
(4.86) = dopoA - exp[- a2], (4.87) 

a 

where 6 is defined by 

In a similar fashion we can evaluate the second term in (4.82), i.e. 

which yields 
- 

Taking the corresponding terms together, we may cast (4.82) into the explicit 
form 

I- 

In the stationary state, dn /d t  = 0, this equation can be readily solved for 
n. Because n is the only free parameter in the formula for hole burning, 
(4.79), we have thus fixed the depth of that hole. We mention that the 
integrals such as (4.86) can be evaluated exactly and explicitly if the 
inhomogeneous atomic line is a Lorentzian. 

Exercise on section 4.7 

(1) Solve eq. (4.91) for n (with ri = 0) and discuss the dependence of n on 
the unsaturated inversion do and on the detuning 6. 

4.8. Spatial hole burning. Qualitative discussion 

So far we have studied the case in which W,, does not depend on space. 
Now we want to study the case in which the spatial dependence of W,, is 
caused by standing waves. For simplicity we shall assume that the atomic 
transition line is homogeneously broadened so that (3, does not depend on 
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0 L 

Fig. 4.17. Spatial hole burning. The inversion d ( x )  is lowered at the positions x where the 
antinodes of the laser modes are. L: laser length. 

p. In other words we assume that the central position of all atomic transition 
frequencies is the same. Since we are primarily interested in the spatial part 
of W,, we consider only that part. According to our equations (4.55) and 
(4.56) where u,(x,) = WV sin(k,x,), this part is given by 

W,, (sin k , ~ , ) ~ .  (4.92) 

When we plot the inversion d, as function of the spatial coordinate x = x, 
according to (4.65) we obtain the curve of fig. 4.17. Quite evidently holes 
are periodically burned into the unsaturated inversion precisely at those 
positions where the standing wave of the laser mode has its maxima. If not 
only one mode is present, but, for instance, two modes according to (4.64), 
both modes burn holes into the unsaturated inversion. 

In the next sections we shall show how hole burning has an effect on the 
coexistence or competition between different laser modes. To this end we 
shall proceed in several steps. We first discuss the special case in which 
only one mode out of many survives. We then show qualitatively how the 
coexistence of modes becomes possible and eventually we shall present a 
detailed mathematical treatment of the effect of hole burning on mode 
coexistence. 

4.9. The multimode laser. Mode competition and Darwin's survival of 
the fittest 

We consider a laser setup which allows running waves only. This may be 
achieved by a rectangular arrangement of mirrors (compare fig. 3.6) where 
besides the laser-active medium a cell is present which permits the 
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propagation of light in only one direction. The plane waves are 
represented by 

u cc exp(i kx) ,  

so that 

I u l2 = const. 

This means that all waves may participate at the atomic emission in the 
same way, at least as far as their spatial behavior is concerned. Thus the 
transition rate W,, (with 6,  = 6 )  simplifies as follows: 

We are treating a homogeneously broadened atomic line. A closer inspection 
of eqs. (4.57)-(4.61) shows that we may pull the expressions W, in front 
of the sums over p occurring in eq. (4.57). This means that the photon 
annihilation and production rate is determined by the total inversion 

C d , = D  (4.96) 
CL 

only. In order to derive an equation for this D we sum up eq. (4.61) over 
p. Therefore we need only to take into account the ensemble of atoms but 
no more their individual occupation numbers. When we confine our analysis 
to the stationary state we may put ri, = 0 and D = 0. We thus obtain instead 
of (4.57) the equations 

0 = -2KAnA + nA WAD. (4.97) 

Because we may write (4.97) also in the form 

this set of equations means that either the photon number n, or its factor 
vanish, 

Let us assume that for a set of certain modes n, # 0. For these modes which 
we may numerate A = l , 2 , .  . . , eq. (4.99) must hold. But this implies 

Because the inversion D is uniquely determined, the right hand sides must 
be equal to each other. Let us consider the following situation. All modes 
have the same lifetime but they are situated at different frequencies. For 
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different frequencies the corresponding W's differ from each other. Under 
this hypothesis the expressions 2 ~ , /  W,, A = 1, 2, . . . must be different from 
each other. Thus we have found a contradiction which stems from the fact 
that we have assumed a set of modes with nonvanishing photon numbers 
n,. This contradiction can be solved only, if at most only a single n, differs 
from 0, whereas all other n, vanish. As one can easily convince oneself that 
n, is different from 0 whose frequency lies closest to the atomic transition 
frequency. Of course, our considerations can be immediately generalized 
to the case where a discrimination of the modes is caused by their different 
lifetimes in the laser resonator. These considerations give rise to the impor- 
tant result that in a laser only one mode is selected if the frequency 
distribution of the modes and their lifetimes are taken into account. In 
other words, in the sense of biological selection only one mode can win 
mode competition and all others have to die out. This is a precise mathemati- 
cal formulation of Darwin's survival of the fittest. If we visualize the excited 
atoms as food which is continuously fed into the system and the photons 
as animals the result has the following meaning: One kind of animal has 
a better access to the food. It grows more quickly and this kind of animal 
can eat more food. The other animals cannot compete in eating and event- 
ually perish. 

As this example shows, coexistence of animals can be reached if they are 
enabled to live from separated resources of food so that the animals eating 
fastest cannot take away the food of the other animals. In biology this is 
achieved by ecological niches. In the laser, in an abstract sense, a similar 
situation can be achieved by letting different kinds of atoms generate 
different kinds of photons. This may happen, for example, in the following 
cases: 
(1) The atomic line is inhomogeneously broadened. 
Let us consider the special case in which only two kinds of atoms with 
different optical transition frequencies 6, and G2 are present whereby the 
corresponding emission lines do not overlap. In such a case the photons 
belonging to the modes with frequencies o, = 6, and o2 = (3, are separately 
supported and can coexist. The general case of continuously distributed 
central frequencies (inhomogeneously broadened line) has been discussed 
in section 4.6. 
(2) The modes are standing waves. 
We find a similar situation if the modes are standing waves and the line is 
for instance homogeneously broadened. We explain this situation by means 
of the example of two modes whose spatial distribution is presented in 
fig. 4.18. If only mode 2 is present it generates an inversion by spatial 
hole burning as presented in fig. 4.19. Evidently mode 1 experiences an 
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Fig. 4.18. In order to illustrate the possibility of coexistence of standing waves, in (a) and (b) 
the limiting cases of the two longest wave-lengths are shown. The mode amplitude is plotted 
versus the spatial coordinate x in axial direction. 

Fig. 4.19. In this figure that inversion is plotted against x which results from the presence of 
mode 2 alone. 
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unsaturated inversion there where the mode 1 itself has its maximum (fig. 
4.19). Thus mode 1 can live on that part of the unsaturated inversion. Quite 
evidently both modes are at least partly supported by two different kinds 
of atoms which are located at different positions. Thus these modes can 
coexist provided the unsaturated inversion do is big enough. On account of 
the figures it might seem as if this effect is important only for large wave- 
lengths. But one may show that this effect is independent of the mode 
wave-lengths in the resonator. In this way also several modes can coexist. 
In the next section we want to prove this rigorously. 

4.10. The coexistence of modes due to spatial hole burning. Quantitative 
treatment 

In this section we want to show how the effect of spatial hole burning can 
be treated quantitatively. To this end we start from our fundamental 
equations (4.57) for the temporal change of the photon numbers. These 
equations read 

We assume that the inversion d,  follows the laser light instantaneously as 
explained in section 4.2. This allows us to put d, = 0 in eq. (4.61) and to 
solve that equation approximately for small enough n's, which yields 

which we have derived before. By inserting (4.102) into (4.10 1 ) we obtain 
a closed set of equations for the photon numbers nA alone, 

In the following we shall focus our attention on the steady state in which 

riA = 0. (4.104) 

As a consequence, eqs. (4.103) are transformed into 

This set of equations can be solved if either nA = 0 or the term in brackets 
vanishes. Since we are interested in actually lasing modes we shall consider 
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those equations for which n, # 0. Therefore in the following we shall discuss 
the expression in the brackets in more detail. Especially it will be our task 
to evaluate the sums containing W,,. We treat a special case in which we 
have standing waves in one direction and we shall assume that the modes 
are practically constant across the cross section of the laser rod. Actually 
it is not difficult to generalize the whole treatment to the case where the 
modes vary spatially across the cross section. For the case under considera- 
tion we may write W,, in the form 

where we adopt a homogeneously broadened line, and where A was defined 
in (4.81). We mention that sometimes it is more useful to write W,, in a 
somewhat different form, namely as 

where the last factor can be written in a formal fashion as 

by which the new coupling constant g is defined. The factor 2/ V in front 
of the sin function is defined in such a way that this function is normalized 
over the volume of the laser resonator of length L and total cross section F, 

and where 

F L =  V. 

Because the laser atoms are rather closely spaced we may replace the sum 
over p by an integral over space. In our present case in which W,, does 
not depend on the spatial coordinates perpendicular to the laser axis we 
may thus perform the replacement 

where N  is the total number of atoms so that N /  V is the density of laser 
atoms. 
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We now apply this procedure to the evaluation of the sum over W,,, i.e. 

We denote this sum by wA. Its evaluation amounts to performing the 
integration in (4.1 12) over the sin-function squared, which immediately 
yields 

It is a simple matter to evaluate also that sum over p which contains the 
products of two W's again using the replacement of the sum over p by an 
integral. A brief calculation yields the following result: 

Inserting the results (4.1 13) and (4.1 14) into the brackets occurring in eq. 
(4.105) we are readily led to the following set of equations: 

After multiplying these equations by 

we obtain 

where we have used the abbreviation 

When we introduce wAnA as a new variable yA, we readily verify that the 
set of eqs. (4.1 17) has a very simple structure. This allows us to find its 
solution in a straightforward manner., 

Using the definition of ZA, (4.11 8), we obtain for (4.119) 
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In this equation, M is the total number of modes with nonvanishing n,. In 
(4.119) and (4.120) we have labeled the modes in such a way that the 
nonvanishing modes carry the indices 1 , .  . . , M. 

Because is a positive quantity and we are interested in those modes 
for which n, is positive, we study the conditions under which the term in 
square brackets in (4.120) is positive, 

Two examples for the coexistence of modes 

We now want to show under which conditions spatial hole burning, which 
we have qualitatively discussed in section 4.8, allows the coexistence of 
several modes. To this end we treat two realistic cases, namely: 
( I )  All modes have the same decay constants but the distance of their 
frequencies from the line center increases according to 

where m are positive or negative integers including 0. 
(2) The modes have practically all the same frequency but due to their 
misalignment with respect to the laser axis their decay constants KA differ 
from each other. 

( 1 )  Let us turn to the first case. We denote by A, (or m0) the index of 
the mode which is farthest away from resonance. Because we assume a 
symmetric position of the cavity modes with respect to the line center, mo 
is connected with the total number of modes by M = 2mo + 1. After inserting 
the explicit expression of W, according to (4.1 13) and (4.122) into (4.12 1) 
it is a simple matter to evaluate the sum over m occurring in (4.121). After 
some elementary algebra, and choosing m = mo in (4.122) we can cast the 
condition (4.121) explicitly into the form 

8 3 I Y smo+m~-?mo<-  - ( g 2 ~ o - ~ y ) ,  (4.123) a2 K 

where we have used the usual notation for the total atomic inversion 

Do = Ndo. (4.124) 

This formula allows us to calculate the index m0 of the mode which is 
farthest away in positive (or negative) direction from the line center. 
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If we are satisfied with a rough estimate of up to an accuracy of 10% we 
may replace (4.123) by 

which allows us to quickly determine the number of coexisting modes once 
6 (cf. (4.122)), g (cf. (4.1 O7), (4.1 O8)), Do (cf. (4.124)) and y and K are given. 

(2) We now turn to the second example in which all modes have practi- 
cally the same frequency but where the decay constants KA are different. 
We treat this case by way of a model. Our model consists in the assumption 
that the modes are space independent across the direction perpendicular 
to the laser axis. A more detailed treatment should take into account that 
variation also. For simplicity we label the modes in a new way namely by 
distinguishing them by the index m instead of A so that 

q is a quantity which measures how quickly the decay constant increases 
when the mode index m increases. We let m start from m = 1. We shall 
further assume 

Inserting this hypothesis into (4.121 ) we readily obtain 

The geometric sum over m can be easily evaluated. The result can be 
considerably simplified by making use of the assumption (4.127). After 
some trivial algebra we obtain as final result 

which allows us to determine the maximum number M of modes which 
can coexist. If q is sufficiently small, quite a number of modes can coexist 
even slightly above laser threshold which is given by 

(Compare exercise 1 .) 
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Exercises on section 4.10 

(1) Show that (4.130) is the threshold for the first mode to appear. 
Hint: Use (4.1 15). 

(2) Calculate mo from eq. (4.123) for 
y = 1ol0 s-', 
K = lo8 S-', 
8 = lo8 s-', 5 x lo8 s-', 
Do = 1 O/O , 10% above Do,, (single mode threshold). 
Do you need g2 explicitly? 

(3) Calculate M from eq. (4.129) for 
q = 0.01, 
K = lo8 S-', 
do = 1%, 10% over the single mode threshold. 
Do you need w and K explicitly? 

(4) What is the relation between do w and g 2 ~ , ?  



Chapter 5 

The Basic Equations of the 
Semiclassical Laser Theory 

5.1. Introduction 

In this section we start with the central topic of the present book namely 
semiclassical laser theory. In the preceding chapter we have described laser 
action by means of the photon picture where we could motivate the laser 
equations only heuristically. Therefore it is necessary to derive those 
equations from first principles. Furthermore we know from classical physics 
that for a complete description of the light field we not only need its intensity 
which in a way corresponds to the photon numbers but also the phase of 
the light field. Because photon numbers do not contain information on 
phases the rate equations of the preceding chapter are incomplete. These 
deficiencies can be overcome by the semiclassical laser theory. This theory 
which we are now going to develop treats the light field as a classical 
electro-magnetic field which obeys Maxwell's equations. Because laser 
action is brought about by the interaction between the light field and the 
atoms we have to treat the motion of the electrons within the atoms 
adequately. It turns out that we cannot ignore quantum theory entirely and 
indeed when treating the motions of the electrons we must start from the 
quantum mechanical treatment. In the following we shall proceed in several 
steps. First starting from Maxwell's equations we derive a wave equation 
for the electric field strength. It will turn out that the polarization of the 
medium acts as a source for the electro-magnetic oscillations. Then we shall 
study how this polarization is in turn generated by the field. Thus we arrive 
at equations describing the coupling between field and atoms. Finally we 
introduce some well founded approximations and thus obtain the funda- 
mental equations for the semiclassical laser theory which we shall treat in 
the chapters 6 to 9. 
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5.2. Derivation of the wave equation for the electric field strength 

We start from the following Maxwell equations: 

curl E = - B, (5.1) 

curl H = j+d. (5.2) 

The first equation represents the induction law. It describes how vortices 
of the electric field strength E are caused by a temporal change of magnetic 
induction B. Eq. (5.2) describes how the current density j causes a vortex 
of the magnetic field H (Oersted's law). The vortex of the magnetic field 
can be caused by a temporal change of the dielectric displacement D, too. 
As usual we need the connections between D and E as well as between B 
and H. As is shown in electrodynamics, the dielectric displacement D 
depends on the electric field strength E via the polarization P of the medium 
in which the dielectric process takes place 

where c0 is the dielectric constant of the vacuum. We briefly remind the 
reader how to visualize the meaning of the polarization P. To this end we 
assume that the material is composed of individual atoms. When we apply 
an electric field, the electrons of the individual atoms will be displaced with 
respect to the atomic nuclei. Because the centers of the charges of the 
electrons and the nucleus do no more coincide, the applied electric field 
has induced a dipole at each individual atom. The polarization P is defined 
as the total dipole moment which stems from the individual atomic dipoles 
and is taken per unit volume. Later on it will be an important task of our 
theory to calculate the dipole moments of the individual atoms. Furthermore 
we wish to express the current density j by means of the electric field 
strength E. To this end we assume that the material or parts of it possess 
an electric conductivity u and use Ohm's law. Therefore we may assume 

Finally we wish to confine our considerations to non-magnetic materials 

Furthermore we wish to treat wave phenomena and therefore we shall 
assume that the electric field is transversal which is equivalent to the 
assumption 

div E = 0. (5.6) 
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It will be our goal to derive a simple equation from the equations mentioned 
above, namely an equation for the electric field strength. If we know this 
quantity we may calculate, e.g. the magnetic induction by means of eq. 
(5.1). In our subsequent treatment we shall deal only with the electric field 
strength E because it contains all the information which we need to develop 
laser theory. In a first step we differentiate (5.2) with respect to time and 
obtain 

curl H =  j + ~ .  (5.7) 

In (5.1) we replace the magnetic induction B by poH Then we express H 
in (5.7) by curl E according to (5.1) and thus obtain for the 1.h.s. of (5.7) 

-curl curl E = AE. (5.8) 

In deriving (5.8) we have used the following equation, well known from 
the vector calculus: 

curl curl E = grad div E - AE, 

where the relation (5.6) has been taken into account. In it A is as usual the 
Laplace operator, A = d2/dx2 + d2/dy2 + d2/dz2. Finally we replace the quan- 
tities j and d on the r.h.s. of (5.7) by means of the relations (5.4) and (5.3), 
respectively, and bring all expressions containing E to the 1.h.s. of (5.7). 
We thus obtain the fundamental wave equation 

where we have put E O ~ O  = l /c2, with c the light velocity in vacuum. When 
we put P = 0, (5.9) reduces to the telegraph equation which was derived in 
the last century. In the exercises we shall discuss some solutions of the 
telegraph equation. In eq. (5.9) the polarization P may be considered as a 
source term which produces the electric field. On the other hand an electric 
field in a medium can generate a polarization. Therefore we have to deal 
with the question how to calculate the polarization P. 

Exercises on section 5.2 

Solve the telegraph equation (5.9) in one spatial dimension under the 
following conditions: 
( I )  At the points x = 0 and x = L the field strength E must vanish, or 
(2) the medium extends from x = 0 till x = a. At x = 0, E = Eo cos(oot) is 
prescribed. 
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What are the most general solutions? Discuss the kind of damping of the 
solution in the cases (1) or (2). 
Hint: In case (1) use the hypothesis E = f ( t)  sin(kx) and determine k and 
f ( t ) .  Note that a linear combination of solutions of the telegraph equation 
yields a new solution. In case (2) try the hypothesis E = exp[ioot] g(x) and 
form an adequate linear combination. 

5.3. The matter equations 

We first remind the reader of classical physics. We consider atoms which 
we distinguish by an index p and which are localized at the space points 
x,. By means of a simple model we treat the motion of an electron within 
an atom by assuming that it is elastically coupled to the atomic nucleus. 
The displacement of the electron from its equilibrium position at the nucleus 
will be denoted by 5,. With it a dipole moment 

P, = (-45, (5.10) 

is connected. In classical physics the deviation 5, of the electron with charge 
- e  and mass m obeys the equation of motion 

mi, +f5, = (-4 Eb,, t), (5.1 1) 

where f is Hook's constant. The electric field strength E is taken at the 
position x, of the atom (fig. 5.1). Assuming E in the form of an harmonic 
oscillation, 

E (x, t) = Eo(x) ei"' + c.c., (5.12) 

Fig. 5.1. The electric field strength E ( x ,  t )  (left part) hits an atomic dipole at space point x, 
and with its elongation 6, (right part). 
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we can solve (5.1 1) immediately 

where we have used the abbreviation 

Inserting this result into (5.10) we recognize that the dipole moment p, of 
the atom p is connected with the electric field strength by a constant factor 
a ,  the polarizability of the atom, 

An inspection of (5.13) reveals that the polarizability is explicitly given by 

Because the polarization of the medium is the sum over the dipole moments 
per unit-volume it follows from (5.15) that P is proportional to E. Because 
in (5.9) the second derivative of P with respect to time occurs, the net effect 
of the polarization is a change of the effective velocity of light in the medium. 
Of course, what we have presented up to now is nothing but conventional 
dispersion theory. 

This theory is not able to represent laser action adequately, however. 
Rather we have to deal with the quantum mechanical processes. To this 
end we assume that only two energy levels within an atom participate at 
the interaction between the atom and the light field. We denote the electronic 
coordinate by 5. With respect to the electron we treat the problem fully 
quantum mechanically and therefore start from the Schrodinger equation 

In it the Hamiltonian H is composed of the unperturbed operator Ho and 
the operator of the external perturbation H' 

Ho refers to the unperturbed motion of the electron in the field of its atomic 
nucleus. In the following we shall assume that the corresponding quantum 
mechanical problem 
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has been solved already, i.e. that we know the wave functions cpj and their 
energies Wj In Vol. 1 we got to know how to treat the Schrodinger equation 
(5.17). To this end we construct the wanted wave function T as a super- 
position of the unperturbed wave functions 9, and 9,. In other words, we 
shall assume in the following that the interaction between the electron and 
the electric field strength E is only of importance for the two levels under 
consideration. This may be justified by the fact that the frequency of the 
electric field strength is in or close to resonance with the frequency of the 
electronic transition between the corresponding two levels so that the electric 
field strength stimulates transitions between levels 2 and 1. In order to 
determine the coefficients c, and c, we insert as usual the hypothesis 

in (5.17) and multiply the resulting equation by cpT and (pz, respectively. 
We then integrate over the electron coordinate 5 and obtain the equations 

In order to simplify these equations we have introduced the matrix elements 
as follows: 

where om, is given by 

1 
om, = -( wm - W,). 

ti 
(5.25) 

Furthermore we have assumed that the atom does not possess a static dipole 
moment so that 

When we know the coefficients c1 and c,, which can in principle be 
obtained by solving eqs. (5.22) and (5.23), we may calculate various impor- 
tant expectation values, for instance that of the atomic dipole moment 
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In order to simplify the notation we consider only one selected atom so 
that we neglect the index p for the moment being. We have introduced that 
index above in order to distinguish the atoms. The expectation value of the 
dipole moment p replaces the classical dipole moment ( 5 . 1 5 ) .  Thus, if we 
can calculate p, we may determine the polarization P of the medium so 
that our task to calculate the source term of the wave equation will be 
solved. Inserting ?P, eq. ( 5 . 2 1 ) ,  in ( 5 . 2 7 )  and using the relations ( 5 . 2 6 )  we 
obtain 

where we have used the abbreviations 

and 

From this result it transpires that we have to know the coefficients cj in 
order to calculate the dipole moment p. It has turned out that it is not so 
useful to solve first eqs. ( 5 . 2 2 )  and ( 5 . 2 3 )  and then to determine the dipole 
moment according to ( 5 . 2 8 ) .  Rather it has turned out to be preferable to 
proceed along lines which we have presented in Vol. 1, for instance when 
deriving the Bloch equations of spins. There we have seen that we may 
obtain equations for the expectation values of the spin components directly 
and in a very simple fashion. We shall follow the same procedure here, i.e. 
we wish to derive equations for the expectation value of the dipole moment 
p. We note that the dipole moment p is known if we know the quantities 

because with their help we may write the dipole moment in the form 

For later purposes we introduce the abbreviations 

so that the dipole moment of the atoms under consideration can be represen- 
ted in the form 

We now wish to derive an equation for ( 5 . 3 1 ) .  The reader will be well 
advised if he considers a ( t )  as a measure for the dipole moment of the 
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atoms, i.e. that he connects with the letter a the meaning of a dipole moment. 
When we differentiate (5.31) with respect to time we obtain 

h = -iGa + cTC2 exp[- i~t]  + CTc2 exp[-i~t].  (5.35) 

We wish to replace the temporal derivatives of C2 and CT by means of the 
r.h.s. of eqs. (5.22) and (5.23) and their complex conjugates, respectively. 
To this end we write those equations down in a somewhat different shape 

1 
C, = r E ( t )  a12 exp[-iwt] c2, 

lti 

1 
C2 = 7 E ( t )  exp[iGt] c,. 

1 fl 

We then obtain for (5.35) 

where we have introduced the abbreviation 

d = lc2I2- Ic1I2. 

It is well known that icj12 represents the probability of finding an electron 
in state j. Equally well, lcj12 can be considered as the occupation number 
of state j. Thus (5.39) is a quantum mechanical expression for the occupation 
number difference or, in other words, for the inversion. 

In order to make understandable what follows we remind the reader once 
again of the Bloch equations of spin. The electron of the atom is not only 
subjected to the external light field but to other perturbations also. For 
instance in a gas the atom can collide with other atoms all the time. In a 
solid the electron can interact with lattice vibrations, etc. As we know from 
Vol. 1, chapter 7, such effects cause a damping of the dipole moments. We 
introduce these dampings into the theory in a phenomenological manner 
by adding the damping term - ya  to the r.h.s. of eq. (5.38). The damping 
constant y has the same meaning as the inverse of the transverse relaxation 
time T, of a spin (cf. Vol. I). Thus we find for the atom under consideration 
the equation 

Evidently we have been forced to introduce a new unknown variable 
namely the inversion (5.39). In order to complete the equations of motion 
we must derive an equation for the inversion. To this end we differentiate 
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(5.39) with respect to time 

When we replace on its r.h.s. the time derivatives of cj according to the 
relations (5.36) and (5.37) we obtain after a short transformation 

2 
d =: E ( t )  a*  - a a 1 2 ) .  (5.42)  

IF, 

This equation describes how the inversion is changed due to the interaction 
of the electron and the electric field. When we wish to treat laser processes 
we must not ignore the interaction of the atom with its surrounding, for 
instance, we have to pump the atom energetically by a pump process. On 
the other hand the electron may recombine on account of its interaction 
with its surrounding. For instance, these processes can consist of radiation- 
less transitions. But we also have to take into account transitions in which 
light is spontaneously emitted without participating at the proper laser 
process. All these processes taken together will lead to a relaxation of the 
inversion towards a stationary value do within a characteristic relaxation 
time T. This effect can be taken care of by adding the corresponding 
relaxation term to (5.42) so that we obtain 

The time constant T occurring in this equation corresponds to the longi- 
tudinal relaxation time T,  of the Bloch theory of spins. 

Now we have prepared all ingredients in order to formulate the semi- 
classical laser equations but we have to remind ourselves that we are not 
dealing with a single atom but with an ensemble of N atoms in the laser. 
For each of these atoms we have derived equations for their "dipole 
moments" a and inversions d. We remind the reader that a ( t )  is a 
dimensionless quantity which is proportional to the dipole moment, 
however. To underline the physical significance of a we shall call it a dipole 
moment here and in the following. In order to treat the ensemble of atoms 
we attach the atomic index p to the corresponding atomic quantities in the 
equations (5.40)- (5.43). Furthermore we take into account that the electric 
field strength E is a function of the atomic positions x,. Thus we obtain 
the fundamental matter equations of the laser 
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Finally we have to devise a prescription how the macroscopic polarization 
is connected with the individual dipole moments. To this end we use a 
mathematical trick by which we write the polarization in the form 

In it 6 is Dirac's &function which can be visualized as having a peak at 
point x = x, and which vanishes otherwise. The sum runs over all the atoms 
of the material. When we change the coordinate x we palpate the material 
by means of the &function and each time when an atomic position x, is 
hit the corresponding dipole moment p prevails (compare exercise 1). The 
individual dipole moments p, are connected with the quantities a, by 

which we have got to know above. Thus we have found a closed system of 
equations. They consist of the equations for the electric field strength (5.9) 
and of the matter equations (5.44) and (5.45). They are connected in 
particular by the polarization P according to (5.46) and (5.47). In the 
following we will transform these equations so that they are more suited 
for the treatment of the corresponding physical problems. 

Exercises on section 5.3 

Dirac's &function which we introduced in eq. (5.46) is defined by the 
following property: 

(i) S(x-xo)=O, for x f  xo, 

where E > 0 but arbitrary. If f (x)  is a continuous function, 

if a < x o < b ,  lab ( )  8 - x0) dx = 
otherwise. 

The &function may be defined in three dimensions also: 

(i) S(x-xo)=O, for x f  xo, 
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(ii) 6(x-,)d3x=l, 
v 

provided xo is contained in V. 

(1) Evaluate iv f(x) S(x-xo) d3x in analogy to the equation marked 
with (*). 

(2) Average (5.46) over a volume element A  V  which contains xo. Let A  V  
be so small that in it p, practically does not change. Write p, =p(xo) and 
show ~ ( x , ,  t) = pp(xo), where the bar above P means averaging. p is the 
density of the atoms, i.e. p = A N / A V  where A N  is the number of atoms 
in the volume A V.  
Hint: The average is defined by 

5.4. The semiclassical laser equations for the macroscopic quantities 
electric field strength, polarization, and inversion density 

By simple transformations, equations for the macroscopic polarization and 
the inversion density may be derived from eqs. (5.44) and (5.45). Because 
we shall not immediately make use of these equations in the subsequent 
sections, the speedy reader can skip this section. Once again we consider 
the decomposition (5.46). When we insert the further decomposition (5.47) 
in it, it suggests itself to introduce the new quantity 

~ " ' ( x ,  t) = -x 6(x - x,) a,, a,(t). 
CL 

We denote the quantity conjugate complex to P"' by P'-' 

In a way analogous to (5.48) we define the inversion density by summing 
up over the individual atoms using Dirac's 8-function 

D(x, t )  = C S(x -x,) d,. 
, 

It will be our goal to derive from eqs. (5.44) and (5.45) equations for the 
macroscopic quantities P and D. To this end we multiply (5.44) on both 
sides by 6 (x - x,) and sum up over p. The term 6(x - x,) E(x, ,  t) 
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occurring in it may be replaced by 

S(x-x,) E(x,, t) = S(x-x,) E(x, t), (5.5 1) 

(compare exercise). Thus we immediately obtain the relation 

d 1 
-P(+)(x, t) = ( - - i ~  - y )  P(+)(x, t) + - [ ~ ( x ,  t) 821]812 D(X, t). (5.52) 
d t  1 A 

We proceed in a similar way with eq. (5.45) and obtain 

where we have introduced the total inversion Do, which is produced by the 
incoherent processes, according to the relation 

C do = Ndo = Do. (5.54) 
CL 

Eqs. (5.52) and (5.53) represent the macroscopic matter equations. In order 
to derive the complete laser equations we must supplement eqs. (5.52) and 
(5.53) by the field equation (5.9) which we write down once again for sake 
of completeness 

Eqs. (5.52), (5.53) and (5.55) represent a very elegant formulation of the 
equations for the interactions between light and matter and we shall use 
them later. In these equations a great number of physically most interesting 
processes is hidden. These equations do not only allow us to describe 
processes in the laser resonator but also wave propagation phenomena. In 
the present context, however, we wish to treat the processes within the laser 
proper. To this end we must take into account the fact that the laser is 
bounded by mirrors so that we have to deal with standing electric waves. 

Exercise on section 5.4 

Prove eq. (5.5 1). 
Hint: Integrate (5.51) over a small volume on both sides and use the 
properties of the 6-function as listed in exercises on section 5.3. 



110 5. The basic equations of the semiclassical laser theory 

5.5. The laser equations in a resonator 

As we know, in general laser processes take place within a resonator. It is 
defined with respect to the laser by the mirrors mounted at the endfaces of 
the laser material or by externally mounted mirrors. First let us consider 
the electric or electro-magnetic field in vacuum and the one-dimensional 
case (compare fig. 5.2). Let us assume that the conductivity of the mirrors 
is infinite. In such a case the tangential component of the electric field 
strength must vanish on the mirrors. This boundary condition is fulfilled 
by the electric field if it has nodes on the mirrors. In this case the electric 
field strength can be represented by 

E = E, sin kx. (5.56) 

Here k is given by m ~ l L ,  where L is the distance between the mirrors; m 
is an arbitrary integer. Thus in the resonator a set of different modes can 
develop. In the following we shall free ourselves from the specific form of 
the standing wave (5.56) and we shall denote the spatial part of the wave 
function by u,(x). In the special case just considered u, has the form 

u, (x) = e,N sin kAx, (5.57) 

where e, is the unit vector in the direction of the field polarization, i.e. it 
is parallel to the electric field strength. N is a normalization factor and the 
spatial variation of u, is described by the sine-function as in (5.56). But 
now we may also assume that u, describes a three-dimensional configuration 
of the electric field, for instance waves which, so to speak, do not run 
parallel to the laser axis. The electric field strength which may be a general 
function of space and time can be represented by a superposition of such 

Fig. 5.2. The electric field strength E ( x )  between two mirrors separated by the distance L. 
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standing waves uA (x): 

In it EA(t) are time dependent amplitudes. In the following we shall assume 
that the functions uA of the individual modes obey a wave equation of the 
form 

As is shown in resonator theory, the functions uA obey an orthogonality 
relation 

J uA (x) uA .(x) d3x = 6 

Because a laser resonator has open sides, the relations (5.60) are valid only 
approximately. We shall not discuss this question in more detail here, 
however. Our goal will rather be to derive equations for the field amplitudes 
EA(t). Our starting point is again the wave equation for the electric field 
strength which we briefly recall 

We insert (5.58) into it and use the relation (5.59) so that we may replace 
the spatial derivatives by a multiplication by -o:/c2. Then we multiply the 
resulting equation by uA and integrate over the volume of the resonator. By 
means of the orthogonality relation (5.60) we obtain 

In it we have used p0c2 = and the abbreviation 

As we may recall, a is the electric conductivity of the material. If the 
material possesses a homogeneous conductivity we may pull a in front of 
the integral and may use again the orthogonality relation (5.60). If the 
conductivity varies spatially, for instance if it is concentrated in the mirrors, 
we must at least in principle be aware of the fact that also such aAA1 may 
differ from 0 for A # A 1 .  Because this question leads to rather subtle dis- 
cussions we shall not follow up this problem now but shall come back to 
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it on later occasions. Finally we have to explain PA which occurs on the 
r.h.s. of (5.62). This is given by 

If we consider the decomposition (5.58) into the u's as Fourier decomposi- 
tion, PA is nothing but a Fourier component of the polarization, P. In 
order to establish the relation of PA with the microscopic representation of 
the polarization, i.e. the individual dipole moments, we recall that the 
polarization P is related to the individual dipole moments p, by 

Inserting (5.65) in (5.64) and recalling the property of the 8-function (cf. 
exercise on section 5.3), we may immediately evaluate (5.64) and obtain 

So far we have transformed the equation for the electric field strength E 
into equations for the individual amplitudes EA(t).  We now do the same 
for the matter equations. This means only some writing because in eqs. 
(5.44) and (5.45) we have merely to replace on the r.h.s. E(x,, t )  by the 
corresponding decomposition (5.58). We immediately obtain 

Eqs. (5.62), (5.67) and (5.68) represent a good starting point for the treatment 
of laser processes. In many cases these equations can be still considerably 
simplified, however, by introducing two approximations which in general 
are well founded. These approximations will be studied in the next section. 

Exercise on section 5.5 

Derive equations which generalize (5.44) and (5.45) or (5.67) and (5.68) to 
three-level atoms with a pumping scheme of fig. 2.9. 
Hint: Start from the Schrodinger equation with three energy levels and 
derive equations for ctc,, cf c,, lcl12, lc2I2, lsI2. Add decay terms - y(cTc2) 
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and - y(cTcl), respectively, and use in the equations for d N,/dt = dlc,12/dt 
additional transition terms in analogy to the rate equations. 

5.6. Two important approximations: The rotating wave approximation and 
the slowly varying amplitude approximation 

We first treat the rotating wave approximation. To this end we decompose 
the mode amplitudes EA ( t )  into their positive and negative frequency parts 

where these parts are defined by 

We shall admit that the amplitudes A, and A: are time dependent, but that 
their time dependence is much slower than that of the exponential functions 
in (5.70). We further recall that according to its definition (5.3 l), a, contains 
a rapidly oscillating factor 

Let us now consider typical expressions occurring on the r.h.s. of (5.68), 

a,E, cc exp[i(o, - 6 )  t] and exp[-i(w, + 6 )  t]. (5.72) 

As it will turn out by means of our later calculations, for the laser process 
only such mode frequencies o, are important which lie close to the atomic 
transition frequency (3. The exponential functions occurring in (5.72) are 
quite different, because in one of them the diflerence of o, and (3 occurs, 
whereas in the other one the sum .of o, and (3 is present. When we integrate 
over a time interval which is long compared to the time of a single oscillation 
to= 27r/6 but small compared with times over which'the amplitudes A, 
and A: vary, the following happens. The exponential function occurring 
in (5.72) which contains the sum of the frequencies, o, +(3, oscillates very 
rapidly so that when integrated over a time to this contribution vanishes. 
On the other hand, during that time the exponential function in (5.72) which 
depends on the frequency difference has not changed appreciably. As a 
consequence we may ignore the second term occurring in (5.72) against the 
first term. In this way (5.68) transforms into 
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Eq. (5.67) can be transformed in a similar manner. To this end we recall 
that a, contains the rapidly oscillating factor (5.71). When we multiply the 
equation for a,, i.e. (5.67), on both sides by exp[-iwt] it hits quantities EA 
thus producing terms of the form (5.72). This allows us to apply the rotating 
wave approximation to eq. (5.67), too. We thus obtain 

Eventually we may decompose the quantities EA and PA occurring in the 
wave equation (5.62) into their positive and negative frequency parts (corn- 
pare for example (5.69)). We thus obtain the field equation 

Eqs. (5.73) to (5.75) again represent a closed set of field and matter equations. 
Our next task will be to further simplify eq. (5.75). This can be achieved 

by the slowly varying amplitude approximation. To this end we consider for 
example the positive frequency part EY) 

E Y) = AA (t) exp[-ioAt]. (5.76) 

As we shall see in later chapters, in general it will not be allowed to assume 
that the amplitudes AA are time independent. But it will turn out that AA 
will change much more slowly than its accompanying exponential function. 
This may be visualized by saying that AA performs much fewer oscillations 
per unit time than its accompanying exponential function. Therefore we 
may assume that the temporal derivative of AA is much smaller than wAAA, 
i.e. 

We use this inequality as follows. Differentiating (5.76) on both sides with 
respect to time we obtain 

But according to (5.77) we may replace (5.78) by 

In a similar way we proceed with respect to the second derivatives and 
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Fig. 5.3. The electric field strength E ( t )  consists of an envelope A ( t )  and a cosine function. 

consider the expression 

~ ; E Y '  + EY'. (5.80) 

Using the decomposition (5.76) we obtain the following expression for (5.80) 

exp[-iqt] ( w ~ A ,  - w : ~ ~  -2ioAAA +A,). (5.81) 

In analogy to (5.77) we assume that also the inequality 

I& I <  lwA& 1 (5.82) 

holds. Within this approximation the leading term of (5.81) is obtained as 
follows: 

o: EY' + E(," = -2ioAAA exp[-iwAt]. (5.83) 

In the following we are primarily interested in EA instead of A,. Therefore 
we express AA by EA whereby (5.83) is transformed into 

-2 iw , (~Y '  + iw,~(+ ' ) .  (5.84) 

In a similar way we may proceed with the polarization PA. Because there 
is no need to repeat all arguments once again we immediately write down 
the result 

py) 4 p ~ ) .  (5.85) 

For sake of simplicity we shall assume in the following that 

aAAl = SAA.uA (5.86) 

holds, i.e. only those contributions of uAA1 are assumed different from 0 for 
which A = A f .  Using the approximations (5.79), (5.84) and (5.85) we may 
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transform the original equation for the electric field strength (5.75) into 

We divide this equation by -2iwA, introduce the abbreviation 

K~ = OA I ( 2 ~ 0 )  (5.88) 

and put all terms except EY' on the r.h.s. Thus we eventually obtain the 
rather simple equation 

We have assumed in addition that we may replace o, by 6 in the last term. 
Let us summarize the results of this section. We have first introduced the 

rotating wave approximation and then the slowly varying amplitude 
approximation. The resulting equations are represented in (5.73), (5.74) 
and (5.89). These equations may serve as a starting point for the laser theory 
and they are indeed quite often used in that form. On the other hand it has 
turned out that these equations can be cast in a still simpler and more 
symmetric form. In sections 5.8 and 5.9 we shall introduce this kind of 
equations which incidentally will allow us to make close contact with our 
quantum theoretical treatment of the laser in a later chapter. In that quantum 
mechanical treatment we shall also quantize the light field. But so far we 
shall remain in the frame of a semiclassical theory. 

5.7. The semiclassical laser equations for the macroscopic quantities 
electric field strength, polarization and inversion density in the rotating 
wave- and slowly varying amplitude approximation 

The rotating wave approximation and the slowly varying amplitude approxi- 
mation cannot only be applied to the laser equations in a resonator, but 
they may also serve to simplify the laser equations we derived in section 
5.4. Since we shall need the thus resulting equations much later in this book, 
the reader may skip this section and read it only later when it will be needed. 

We start with the field equation (5.55). With respect to its 1.h.s. we have 
several options depending on the specific problem, i.e. standing or running 
waves. When we use standing waves, we are essentially dealing with the 
field in a resonator. Since this problem was treated in sections 5.5 and 5.6, 
we shall deal here with running waves. Incidentally, this allows us to treat 
the functional dependence of E on x and t in a symmetric fashion. To this 
end we consider a plane wave exp[i(kx-iot)] which is slowly modulated 
in time and space. We therefore write 

E(x, t) = E'+'(x, t)  + E'-'(x, t ) ,  (5 .90) 
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where 

~ ( " ( x ,  t)  = E ~ ) ( x ,  t) exp[ii(kx - at)], 

and 

kc = w. 

We form 

and insert (5.91) in (5.93). This yields 

exp[i(kr- ot)] [-k2Eb+' +2i(kv)Eb+' + A E ~ '  +(w2/c2)Er '  

+ ( 2 i w / c 2 ) ~ ~ "  - ( l / c 2 ) w ] .  (5.94) 

In the square brackets, the first and fourth term cancel each other, while 
the third and sixth term can be neglected due to the slowly varying amplitude 
approximation. In this way (5.93) reduces to 

exp[i(kr - ot)] [2i(kv)E'+' + (2io/ c2) ~ ' ~ ' 1 .  (5.95) 

In a similar, though simpler fashion, we reduce 

-/.b0uE(+' 

t 0 

exp[i(kr - ot)] p o u i ~ ~ c ' .  (5.97) 

In order to transform the r.h.s. of eq. (5.55) we assume ~ " ' ( x ,  t) in the 
same form as ~ " ' ( x ,  t), i.e. 

~ " ' ( x ,  t)  = P ~ ' ( x ,  t)  exp[*i(kr - wt)], (5.98) 

where PF' is a function which varies much more slowly in space and time 
than exp[ki(kx - wt)]. Applying the slowly varying amplitude approxima- 
tion to p o ~ ( * ' ( ~ ,  t), we readily obtain 

- 0 2 p o ~ r ' ( ~ ,  t) exp[*i(kr - ot)]. (5.99) 

We now split the r.h.s. and the 1.h.s. of eq. (5.55) into their positive and 
negative frequency parts, respectively, and collect the corresponding terms 
(5.95), (5.97) and (5.99). After dividing the resulting equation by exp[i(kx - 
ot)]  we obtain 

2 i ( k ~ ) ~ c ' + ( 2 i w / c ~ ) ~ c ' + ~ ~ u i o ~ b + ' =  - w ~ ~ , P ~ ' .  (5.100) 
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In the last step of our analysis, we multiply this equation by c2/(2iw), use 
the relations 

and on the r.h.s. of (5.100) the approximation o =: (3. This leaves us with 
the final result, namely thejeld equation for the slowly varying amplitude 

-'.;(ekv) E ~ ' ( x ,  t) + E ~ ' ( x ,  t) + K E ~ ) ( x ,  t)  

= ~ G / ( ~ E , ) P ~ ' ( x ,  t). 

We wish to reduce the matter equations (5.52) and (5.53) in a similar fashion. 
To this end we insert (5.90), (5.91) and (5.98) into (5.52) and apply the 
rotating wave approximation. We immediately obtain the equation for the 
slowly varying amplitude of the polarization 

Note that (3 need not coincide with o ,  but that we require only 16 - w l <  w, (3. 

We insert (5.90), (5.91) and (5.98) into (5.53). When we neglect in 

the rapidly oscillating terms cc exp[*i(w + G)t] we can transform (5.53) into 
the equation for the inversion density containing only slowly varying amplitudes 

d 
- D(x, t) = 

Do- D(x, t)  
d t  T 

-:(EF'(X, t) Pi-'(x, t)  - E~-'(x, t)  P ~ ' ( x ,  t)). (5.105) 

The equations (5.102), (5.103) and (5.105) represent our final result. 

5.8. Dimensionless quantities for the light field, and introduction of a 
coupling constant 

In this section we continue our outline of section 5.6. In the following we 
shall introduce dimensionless variables bA and bf instead of the mode 
amplitudes EY' and E i-', respectively. The quantities EA and bA differ by 
a simple factor only, namely 
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As one may show, the energy of an electric field with mode amplitude EA 
is proportional to IE,l2. On the other hand, in a quantum theoretical 
treatment AwA is just the energy of a photon. Since bA is dimensionless we 
recognize that lbAI2 must have the meaning of a photon number, may be 
except for a numerical factor. As it will turn out later, lbAI2 is precisely the 
average photon number. We shall elucidate this relation in a later chapter 
when dealing with the laser equations quantum theoretically. Let us consider 
the laser equations (5.73), (5.74) and (5.89) more closely. We then recognize 
that there always the combination 6 2 1 ~ A ( ~ p )  occurs (or the conjugate 
complex quantity). Furthermore the factor occurs. In order to 
save space it suggests itself to replace this combination by a quantity which 
we define by 

It is a rather simple but boring task to rewrite the laser equations by means 
of the new quantities just introduced. Therefore we shall write down the 
laser equations in the next section without any intermediate steps. 

5.9. The basic laser equations 

In this section we summarize the basic equations which we have derived 
in the preceding sections. In this way a reader not interested in their detailed 
derivation is enabled to start with these equations right from here. We first 
explain the quantities occurring in the laser equations. Such a quantity is 
the electric field strength of the light field in the laser. This function which 
depends on space and time is expanded into a superposition of resonator 
modes u,(x). The index h distinguishes the different modes. We assume 
that the cavity modes are normalized within the volume of the cavity and 
that they are orthogonal with respect to each other. We allow for an open 
cavity so that a cavity may consist of two mirrors mounted at the opposite 
ends of a laser rod. A one-dimensional example for such a mode is provided 
by a standing wave 

e, 
U, (x) = = sin k,x, 

J2 L 

where e, is a unit vector in the direction of the polarization of the electric 
field. kA is the wave number and o, is the corresponding light frequency 
in the cavity without laser material. Finally we assume that the light field 
connected with the mode h can stay only a finite time in the resonator. 
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More precisely speaking we assume that the light field amplitude decays 
..-A' in the course of time by means of the damping constant KA. Thus the electric 

field strength is represented in the form 

E(x, t)  =I b,(t) uA(x) NA +conj. compl. 
A 

where bA(t)  is the amplitude of the field mode A. This amplitude is made 
dimensionless by means of the factor NA, 

The specific choice of NA was made so that we can establish a direct 
connection with the quantum theory of the light field. The reader is advised 
to remember in the following that bA(t) is connected with the electric field 
strength of the mode A except for a numerical factor. While the light field 
represents one subsystem of the la.ser, the other subsystem is provided by 
matter. We assume that the laser material is built up of individual atoms 
which we distinguish by the index p. With each atom p a dipole moment 
p, is connected which we represent in the form 

-P, = 8,2a,(t) + 9 2 1 4 ( f ) .  (5.1 12) 

In it a,, is the dipole matrix element which is in quantum theory a prescribed 
and time independent quantity. Its precise definition is given in eq. (5.30). 
a,(t) are time dependent functions which determine the temporal behavior 
of the dipole moments p,. Because p, and a, differ only by the constant 
vector a12 we shall consider in the following a, ( t )  as a dimensionless dipole 
moment and shall also call it that way. When we consider a system of 
two-level atoms, the only additional atomic variable still necessary is the 
inversion d,. It is defined as difference of the occupation numbers of the 
upper and the lower level of the atom p ;  

d, = N2,, - NI,,. (5.1 13) 

So far we have discussed the subsystems, namely the modes on the one 
hand and the quantities describing matter on the other hand (dipole moment 
and inversion). These two subsystems interact with each other by means of 
the electric interaction between the electrons of the atoms and the electric 
field. This interaction is described by a coupling constant g which depends 
on the indices p and A ; 

&A = i a 2 , u A ( ~ , & i G m .  (5.1 14) 
Evidently this coupling constant contains the dipole matrix element a2, as 
well as the spatial field amplitude uA taken at the atomic position x,. This 
assumption implies the dipole approximation. As we have shown in the 
preceding sections, the following equations have been obtained for the 
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fundamental equations by means of two approximations: namely the rotat- 
ing wave approximation and the slowly varying amplitude approximation. 
The corresponding equations read: 

(1) Field equations 

The physical content of these equations can be explained as follows. The 
1.h.s. describes the temporal change of the field amplitude. The r.h.s. 
describes the causes of this change. The first two terms on the r.h.s. describe 
the oscillation and damping of the field amplitude in the resonator if there 
is no interaction between the field amplitude and the laser atoms present. 
The last term describes how the dipole moments act as a driving force on 
the oscillations of the field. The second group of equations refers to the 
atoms. 

(2) Matter equations 

In analogy to (5.1 15) the left-hand sides describe the temporal change of 
the dipole moments and the atomic inversion, respectively. We now discuss 
the right-hand sides which present the causes of the temporal changes of 
a, and d,. We discuss the first term in (5.1 16). This contains the transition 
frequency of the atom p, i.e. 6,. Because in solids, atoms may occupy sites 
which are more or less different, the transition frequencies of the individual 
atoms may differ from each other. We take this fact into account by using 
the index p. By the interaction of the atom with its surrounding the free 
oscillation of its dipole moment will be damped. The corresponding damping 
constant is denoted by y. The first term on the r.h.s. of (5.1 16) thus describes 
the oscillation and damping of the atomic dipole moment if no interaction 
with the light field takes place. The sum over A which occurs in (5.116) 

, describes the interaction of all modes A with the atom under consideration. 
The factor d,  is of special importance. On account of it the laser equations 
become nonlinear because here the product between the two quantities bA 
and d, occurs. This term describes how the electric field represented by its 
mode amplitudes bA drives the dipole moment. But because we are dealing 
here with a two-level atom, the energy flux between the atom and the field 
depends on the internal state of the atom. If its electron is in its upper state, 
energy will be transferred from the atom to the dipole moment. On the 
other hand if the atom is in its lower state, energy will be transferred from 
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the field into the atom by absorption. This change of direction is taken care 
of by the factor d, whose size depends on the actual occupancy of the two 
atomic levels. 

Let us now turn to a discussion of the r.h.s. of eq. (5.1 17). The first term 
describes the relaxation of the inversion caused by the pumping and incoher- 
ent relaxation processes. do represents the resulting equilibrium inversion 
and T is the corresponding relaxation time. The sum over A is brought 
about by the interaction between the field modes A and the atom p. As may 
be shown this term is proportional to the energy per second put into the 
atom or drawn out of it because of the coherent interaction between the 
atom and the field. 

As we shall see in the next chapters, a wealth of phenomena is described 
by the equations (5.1 15) till (5.1 17). 

For sake of completeness we now quote a formulation, which is equivalent 
to eqs. (5.1 15)-(5.117), but which stresses the continuous distribution of 
atomic frequencies, G,, in an inhomogeneously broadened atomic line. In 
such a description (compare also sections 4.6 and 4.7) the frequency (5, is 
replaced by the continuous (frequency) variable 6 ,  and correspondingly 
also the index p. It is further assumed that g,, is space independent (cf. 
also section 6.1). Therefore the equations (5.1 16) and (5.1 17) read in this 
notation 

Most important, the sum C, in (5.1 15) is transformed into an integral over 
(5, which contains the frequency distribution p((5) (cf. section 4.6), which 
may be a Gaussian or, in some model calculations, a Lorentzian. In this 
way, (5.1 15) is transformed into 

Note that a,, d w  and bA are time dependent functions. 

Exercise on section 5.9 

Specialize the eqs. (5.1 15)-(5.117) into those for a single mode laser and 
assume g,, real. Make the hypothesis b = r exp[icp], a, = P, +iQ,, where 
r, cp, P, and Q, are assumed real and derive the equations for the new real 
quantities. 



Chapter 6 

Applications of Semiclassical Theory 

6.1. The single mode laser. Investigation of stability 

As we shall see, the semiclassical laser equations are capable of describing 
a wealth of laser phenomena. A solution of these equations seems rather 
difficult, however. Indeed there may be more than 10' laser modes and 
perhaps 1018 laser atoms which interact with each other. Furthermore the 
equations are nonlinear because of the terms bAd, and b t  a,, b,a*,. In spite 
of these difficulties it will be possible to solve the laser equations in an 
excellent approximation. We shall find a variety of interesting effects. In 
order to get a first insight how the equations describe laser processes, we 
shall first consider the special case of a single laser mode. Furthermore we 
assume exact resonance, i.e. we assume that the frequency o, of the laser 
mode under consideration coincides with the atomic transition frequencies 
which are assumed independent of p (homogeneous line broadening). 
Therefore we assume o, = (3. This tuning may be achieved by an appropriate 
fixation of the distance L between the mirrors. By way of a model we shall 
assume that the coupling constants g,, are independent of the mode index 
A and of the atomic coordinate x,: g,, = g.t Furthermore we shall assume 
that g is real. Because we are dealing with one laser mode only and we 
need not distinguish between several of them, we shall omit the index A 
everywhere. Under these assumptions the laser equations (5.1 15) to (5.1 17) 
reduce to the following equations: 

b = ( - i o - ~ ) b - i g x  a,, 
CL 

1 
d, =- (do- d,) +(2ia,gb* +c.c.). 

T (6.3) 

?This model can be given a realistic foundation in a ring laser (cf. exercise). 
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We first study the case in which the pump strength do is so small that we 
cannot fulfil the laser condition. Under these circumstances we have to deal 
with a usual lamp. As one may convince oneself, the solutions of eqs. (6.1) 
to (6.3) read b = 0, a, = 0, d, = do. This result is in so far astonishing as the 
light field amplitude which is, of course, proportional to b, vanishes. In fact 
one should expect that a lamp emits light so that a nonvanishing b should 
result. This discrepancy can be resolved in a satisfactory way only in the 
frame of a quantum theoretical treatment which we shall present in chapter 
10. The cause for our present result rests in the fact that b, which occurs 
in (6.1), represents only the coherent part of the light field. Light emitted 
by a conventional lamp is, on the other hand incoherent. 

We study what happens when we increase the pump strength do. In order 
to check whether the solutions b = a, = 0 and d, = do remain stable, we 
superimpose small deviations 66, Sa, and Sd, on b, a, and d,, respectively, 
and linearize the equations (6.1)-(6.3) with respect to these small deviations, 
i.e. we neglect terms quadratic in these quantities, such as 6dp6b. While in 
this approximation the eqs. (6.3) are still fulfilled by d, = do, the eqs. (6.1) 
and (6.2) acquire the form 

Because according to eq. (6.4) the light field is generated by the sum of all 
dipole moments, it suggests itself to introduce this sum as a new variable 

Correspondingly we sum (6.5) up over p and obtain on account of 

C 1 = N =total number of atoms 
I*. 

the new equations 

sb = (-io - K ) s ~  -igss, 
and 

Do = Ndo is the unsaturated inversion of all atoms. In order to solve these 
coupled linear equations we make as usual a hypothesis in the form of 
damped oscillations 

Sb = Sb, exp[(-if2 + T )  t], (6.10a) 

SS = SSo exp[(-if2 + T )  t], (6. lob) 
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where 6b0 and 6So are time independent constants. fl is a frequency, whereas 
T is a damping constant, and both are still to be determined. Inserting 
(6.10) into (6.8) and (6.9) we obtain two homogeneous linear equations for 
Sbo and SSo. In order to find a nontrivial solution of these equations, its 
determinant must vanish. This condition yields the "secular equation" 

( i w + ~ - i f l + ~ ) ( i w + y - i f l + r ) - ~ ~ ~ , = ~ .  (6.1 1) 

When we split this equation into its real and imaginary parts, we obtain 
for the imaginary part w = 0 and two solutions T+ and T-, i.e. 

As long as T+ and T- are negative, the deviations (6.10) relax towards 0. 
The state b = 0 in which no coherent emission occurs is stable. When we 
increase the inversion Do, which occurs under the root in (6.12), T., event- 
ually becomes positive. In this case the deviation 6 grows exponentially. 
In other words, the system composed of field mode and atoms becomes 
unstable. After elementary algebra we obtain from the condition T+ > 0, 

This is a condition on the inversion Do=  Ndo of the atoms. As can easily 
be shown (cf. exercise) this condition is just the laser condition which we 
derived in earlier chapters. 

This analysis seems to indicate that the amplitude 6b of the laser mode 
increases exponentially once the condition (6.13) is fulfilled. But this 
exponential growth does not last forever. Rather a stationary state is event- 
ually reached, which is caused by an equilibrium between the energy input 
due to pumping and the energy output due to the emission of laser light. 
In the next section we shall study this stationary state more closely. 

Exercises on section 6.1 

I ( I )  Show that in the case of a ring laser with running waves, g,, = 

g exp(ik,x,). Convince yourself that in the single mode laser equations ( A  
fixed), exp(ik,x,) can be transformed away by means of the hypothesis: 

a, ( t )  = a:(?) exp(ik,x,). 

If g is complex, put g = Igl eiv and show that eiv can be transformed away. 

(2) Show that the laser condition (6.13) coincides with that of section 2.1. 
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(3)  Derive the instability condition (laser condition) for the case that g,, 
still depends on p and a homogeneously broadened line. 
Hint: Make the hypothesis b = 66, a, = Sa,, d, = do + Sd, and derive linear- 
ized equations for Sb, Sa,, Sd,. Make the further hypothesis 

6b = Sb, exp[(-if2 + T )  t], 

Sa, = exp[(-i0 + T) t], 

SbO, Sap,, time independent. 

Eliminate from the resulting equations Sap,, and convince yourself of the 
following intermediate result: 

6.2. Single mode laser action. Amplitude and frequency of laser light in the 
stationary state 

We again start from the eqs. (5.1 15) and (5.1 17) which we specialize to one 
mode. Therefore we drop the index A of o and X. In order to clearly exhibit 
the connection with the rate equations introduced earlier we keep the index 
A of the coupling constant g,,. We shall admit that the atomic transition 
frequencies may differ from each other, i.e. that the line is inhomogeneously 
broadened. Therefore the laser equations are of the following form: 

d d  do  - d, 2-- - +2i(g:,a,b* - g,,a; b). d t  T 

Because we are dealing with only one mode, the index A is kept fixed and 
there is no sum over A in the eqs. (6.1 5)-(6.16). Because we expect that the 
eqs. (6.14)-(6.16) allow a stationary oscillation of the light field we make 
the following hypothesis for the field amplitude: 

where the time independent amplitude B and the frequency f2 must still 
be determined. We expect that in the stationary state the inversion acquires 
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a constant value so that we make the hypothesis 

d, = const. 

As it transpires from eq. (6.15), the dipole moments a, are driven by the 
oscillating light field. This makes us expect that the individual atoms oscillate 
at the frequency of the light field. Therefore we make the hypothesis 

In (6.19) A, is a time independent amplitude still to be determined. Inserting 
(6.17)-(6.19) into eqs. (6.14)-(6.16) we obtain the following equations 
(after having multiplied them by exp[iOt]): 

B ( i ( o - f l ) + ~ ) = - - i x  gZA& (6.20) 
P 

A, (i(6, - fl) + y) = +ig,,d, B, (6.2 1 ) 

Eq. (6.21) can be immediately solved with respect to A, and we obtain 

Inserting this A, into (6.22) we obtain the equation 

The last terms in (6.24) are familiar to us from the rate equations. There 
we introduced terms describing the coupling between the light field and the 
atoms. The corresponding coupling constants where given by (4.55) 

Therefore we shall use in the following this abbreviation well known to us. 
Eq. (6.24) is linear in the still unknown inversion d,. Therefore we may 
immediately solve this equation for d, and thus obtain 

Here we have introduced a further abbreviation. Namely, as we shall see 
immediately the quantity 1812 is also well known to us. It just represents 
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the photon number n which we have introduced into the rate equations 

Eq. (6.26) describes how the actual inversion d, is changed with respect to 
the unsaturated inversion do when the photon number n is generated by 
the laser. d, is also known as the "saturated inversion". By means of (6.26) 
we have expressed the inversion by the photon number. When we insert 
(6.26) into (6.23) we may express the amplitudes A, of the dipole moments 
by the field amplitude B alone. The A, calculated in this way is finally 
inserted into (6.20). In this way we obtain the equation 

In the following we shall assume, of course, that the laser condition is 
fulfilled so that a laser amplitude B unequal zero results. Therefore we may 
divide eq. (6.28) by B. In order to discuss this equation further we decompose 
its left- and right-hand sides into their real and imaginary parts. We obtain 
for the real parts 

where we have used again the abbreviation (6.25). 
Precisely the same relation can be derived from the rate equations (4.57), 

(4.61) if specialized to a single mode. We leave it as an exercise to the 
reader to convince himself of this fact (cf. exercise). If the photon number 
n is sufficiently small, we may expand the ratio in (6.29) with respect to 
powers of n. Retaining the first two terms we find the relation 

This relation can be considered as an equation for the photon number n 
which may be calculated. Because the calculation does not bring us anything 
new compared to the single mode case treated by rate equations we just 
refer the reader to our former result (cf. sections 4.7 and 4.10 where we 
calculated the sums over p explicitly for an inhomogeneously broadened 
line or standing waves, respectively). 

Let us now study the equation which results from the imaginary part of 
eq. (6.28) (after we have divided it by B). We then obtain 
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Having determined the photon number n by means of eqs. (6.29) or (6.30) 
we may insert it into (6.31). This renders (6.31) an equation for the still 
unknown laser frequency R alone. Because the photon number n occurs 
in (6.31) we shall expect that the frequency R of the laser light depends 
on the photon number n. This is indeed the case if the line is 
inhomogeneously broadened. We shall present the corresponding results at 
the end of this section. 

Here we first deal with a homogeneously broadened line, where the 
transition frequencies are all equal, 6, = 6. We shall show that in this case 
the frequency is independent of the photon number. In this case we may 
pull the factor O - R in front of the sum occurring in (6.31). This sum 
becomes then identical with the one which occurs in (6.29). This leads us 
directly to the relation 

from which we may determine the frequency R by 

This formula tells us that in general the frequency R of the laser oscillation 
does not coincide with the frequency of the laser mode in the unloaded 
resonator. In an unloaded resonator the interaction between light modes 
and laser atoms is switched off or, more physically speaking, it is a resonator 
without laser atoms. The meaning of the frequency shift (6.33) can be easily 
visualized when we recall that the damping constants K and y are propor- 
tional to the inverse relaxation times of the light field, t , ,  and the atomic 
dipole moments, ta, respectively. Introducing therefore instead of K and y 
the corresponding time constants 

(6.33) can be cast into the form 

The longer the lifetime of the subsystems composed of the dipole moments 
or of the field mode are, the bigger is the weight with which we have to 
attach the atomic or field frequency when we determine R. 

Our above results show that by means of the semiclassical laser equations 
we may justify the rate equations introduced earlier (at least what the steady 
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state and the single mode case is concerned). But in addition we may now 
also determine the frequeny of laser light. The phase of laser light remains 
still undetermined. We shall come back to this problem when we shall deal 
later with the quantum theory of the laser. 

Our results lead to the question whether we may derive the rate equations 
from the semiclassical equations also in the case of multimode laser action. 
We shall come back to this question in section 6.9. 

In conclusion of this section we want to present the explicit results for 
the equations for the photon number n and frequency 0 when the sums 
over p are explicitly evaluated. We quote the important special case of an 
inhomogeneously broadened line and repeat the results for n obtained in 
section 4.6: 

Standing wave. According to (4.91), (6.30) can be cast into the form 

4; 
2~ = p O ~ d o  - e-S2(l - 3ATn/(2 y)), 

a 
(6.36) 

where we assumed y 4 a ; 
po = density of laser atoms, 
A = 601912/hso, 
S = ( 0  - GO)/ a (note the change w -, 0 !), 
a =half width of Gaussian distribution (cf. (4.84)). 

The integral occurring in (6.31) can equally well be evaluated under the 
assumptions y < a and ( 1 + 2 TW,,~)-' ;- 1 - 2 TW,,n. The result reads 

where 

Precisely speaking, (6.36) and (6.37) are two coupled equations for n and 
0. They can be solved iteratively by assuming in a first step 0 = w. 

Exercise on section 6.2 

(1) Show that (6.29) follows from the rate equations (4.57), (4.61) if d n l d t  = 
dd,/dt = 0. 
Hint: Solve (4.61) for d, and insert the result into (4.57). 

(2) Solve (6.36) for n. 
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6.3. The single mode laser: Transients 

In this section we study time dependent solutions of the single mode laser 
equations. Because the equations are nonlinear, this problem cannot be 
solved in closed form. Even a computer solution would fail because if a 
laser contains 1014 laser active atoms and only a single mode we ought to 
solve 2 x 1014+ 1 coupled nonlinear differential equations. Therefore we 
have to devise adequate approximation schemes. In the present and the 
subsequent section we devise a general approximation scheme which allows 
us to solve the problem in an excellent approximation. Our scheme requires 
that the field amplitudes 1 bA I are not too high. This means that our procedure 
works well close to laser threshold which is, of course, of particular physical 
interest. Furthermore we shall assume in the following that the cavity width 
K is much smaller than the longitudinal and transversal atomic line-widths, 
T-' ,  y. In later chapters we shall see that the laser threshold is not the only 
instability point where the qualitative behavior of light changes dramatically. 
Indeed we shall see that there is a whole hierarchy of instabilities and we 
shall represent in our later chapters methods how to cope with these 
instabilities. In the present section, however, we shall treat the case in which 
laser action sets in and we start with the single mode laser as an example. 
To elucidate the decisive steps we assume exact resonance between the 
mode frequency o, = o and the atomic transition frequencies 6,, i.e. w = 6,. 
Furthermore we assume the coupling constant g,, to be independent of p 
and A, g,, = g, where g is assumed real. In the next section we shall show 
how this procedure may be extended to the multimode case where we shall 
drop the specific assumption on resonance and on g,,. 

We start from eqs. (6.1)-(6.3). According to eq. (6.1) the dipole moments 
generate the field mode. Eq. (6.2) in turn tells us that the light mode causes 
oscillations of the dipoles. According to eq. (6.3) the cooperation of the 
dipoles and the field mode causes a temporal change of the inversion. Quite 
evidently these three quantities, field mode, atomic dipole moments and 
atomic inversion, condition each other. In a certain sense we are dealing 
here with a vicious circle. In order to escape it, we assume for the moment 
being that we already know the light field b. This then fixes the a,'s and 
d,'s because of the matter equations (6.2) and (6.3). Thus in principle we 
can express a, by b. We shall see that this is indeed possible and we shall 
obtain a, in the following form: 

where c ,  and c, are certain constant coefficients. If the fields are not too 
high we may neglect the higher powers of b which are indicated by dots. 
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If we retain only the linear term cc b in (6.38), the dipole moments of the 
atoms, a,, are proportional to the field amplitude b. Or, in other words, 
we are back to conventional dispersion theory. Inserting the dipole moments 
(6.38) in the field equation (6.1) we obtain a closed equation for b. The 
circle is now closed again but we can solve this new equation. As the reader 
may convince himself in the exercises this new equation does not allow any 
stable solution, at least in general. Indeed the stabilization of laser light 
can be properly described only if we take into account the nonlinear term 
in (6.38). It will be our goal to derive (6.38) and then to study the resulting 
nonlinear equation for b. 

Let us now turn to the nonlinear equations (6.1)-(6.3), where we apply 
the following iteration procedure. We first assume that the field is given in 
the form 

In the following we shall admit that B = B(t)  depends on time. We shall 
assume, however, that its temporal change is much slower than processes 
described by the atomic relaxation constants y and I /  T. As can be shown 
in detail, B may be assumed as constant within the individual steps of the 
iteration procedure. We shall further assume that in lowest approximation 
a constant inversion 

has been established by pump and relaxation processes. On the other hand 
according to eq. (6.2) a field generates nonvanishing dipole moments a, 
of the atoms. Because we determine these a,'s in a first step we call them 
a:'. According to eq. (6.3) dipole moments and field jointly cause a new 
inversion which we call d:'. By means of this new inversion which we 
insert in the r.h.s. of (6.2) we obtain an improved dipole moment a:'. As 
we shall see in a minute explicitly we shall succeed in expressing the dipole 
moments a, by the field amplitude b alone. When we insert the correspond- 
ing expressions into the eq. (6.1) for b we obtain a closed equation for b 
alone. This equation can be considered as a self-consistency condition. The 
atomic variables are eliminated completely and we have determined the 
reaction of the field on itself. Our procedure can be described by the 
following scheme: 

Before we perform the individual steps explicitly we remark that in the case 



96.3. The single mode laser: Transients 133 

c3 = o the frequency L? of the hypothesis (6.39) becomes L? = o .  In order 
to simplify the subsequent formulas as much as possible we shall anticipate 
this relation 0 = w. We insert b = B exp[-iwt] and d,  = do in (6 .2)  treating 
B as practically time independent so that we neglect its time-derivative. The 
solution (6.2) reads 

We now calculate an improved inversion d, by inserting b = B exp[-iot] 
and (6.42) in (6 .3) .  We assume that d, = d z '  changes only little over times 
of the order of the relaxation time T, i.e. that we can neglect d,  compared 
to ( d o  - d , ) /  T. Therefore we may put in (6.3) 

and we readily obtain 

Now we may repeat the first step namely the calculation of a ,  by means 
of eq. (6.2) where we use the improved d : )  instead of do. We thus obtain 

According to (6.45) a given field b causes the dipoles to oscillate with the 
same frequency as the field. Of course, the field of a laser is not prescribed 
but is rather generated by the laser process. This is reflected within our 
formalism by the fact that we have to insert (6.45) into (6.1).  We thus obtain 
the fundamental self-consistent laser equation 

where Do = Ndo is the unsaturated inversion. This equation describes how 
the light field of the laser interacts with itself via the atoms. In order to 
interpret the physical content of eq. (6.46) we use once again the 
decomposition 

i.e. we split off the rapidly oscillating part. We then obtain the following 



134 6. Applications of semiclassical theory 

equation for B: 

The first term in the brackets on the r.h.s. stems from the cavity losses, the 
second positive part stems from the unsaturated inversion. The last term 
describes the lowering of the effective inversion by the laser process. 

This equation tells us that the behavior of the laser system is fundamentally 
different depending on whether the laser is operated below or above its 
threshold (6.13). This can be visualized especially nicely when we identify 
B(t) with the coordinate q( t )  of a particle (in a purely formal way). By 
adding an acceleration term mq to (6.48) and abbreviating the r.h.s. of 
(6.48) by K(q)  we obtain the equation 

This equation is the equation of motion of a damped particle under the 
action of the force K. When we let m +O, we may retain the mechanical 
interpretation which allows the following conclusions. The force K (q)  may 
be derived from a potential V 

where V(q) is given by 

and G and C were defined in (6.48). This potential i s  represented in fig. 
6.1. When the laser is operated below its threshold, i.e. 

the potential is represented by the dashed curve. The only equilibrium point 
is given by q = 0, i.e. the light field amplitude B = q is equal to zero. If on 
the other hand the laser condition is fulfilled, the solid curve applies. Quite 
evidently the amplitude q = 0 is no more stable and there are two new stable 
positions instead, provided we consider q as a real quantity. If q is complex 
as it is the case with B, there are equilibrium positions with an arbitrary 
phase of B, as we shall demonstrate below. Thus above threshold, Do> 
y ~ / g 2 ,  the amplitude of the laser light is unequal zero. q can be easily 
calculated by putting q = q = 0 in (6.49) and by dividing the resulting 
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t "q' 

Fig. 6.1. The potential field V according to eq. (6.49) versus the coordinate q of the fictitious 
particle. Dashed line: below laser threshold; solid line: above laser threshold. Above laser 
threshold two stable values result of which one, q,, is indicated. 

equation by q (or B). We thus obtain 

Here the phase of Bo = I Bo( exp[i(o] remains undetermined. Indeed it can 
be chosen freely. Eq. (6.48) is valid provided the field strength does not 
deviate too much from its stationary value (6.53) and if we do not drive 
the laser too far above its threshold. Eq. (6.48), which describes the nonlinear 
relaxation of the laser field amplitude, can be solved exactly by the 

-hypothesis 

where r and @ are assumed real. Inserting this hypothesis into (6.48) we 
obtain the two equations 

& = o  (6.55) 

and 

It follows from (6.55) that the phase @ is constant but undetermined. The 
exact solution of (6.56) reads 

In it h(t)  is given by 

r; 
I 

h(t) =- exp[2G(t - to)]. 
G-  Cr; 
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r, is the field amplitude at time to.  Multiplying eq. (6.56) by r and putting 
r2 = n we obtain the rate equation 

It agrees with the rate equation of the single mode laser of section 4.1. 

Exercise on section 6.3 

Solve the single mode laser equations (o = 6, = 6 ,  g,, = g, real) in the 
linear approximation, where in (6.38) only c ,  # 0 and all other ck = 0. 

6.4. Multimode action of solid state lasers. Derivation of reduced equations 
for the mode amplitudes alone 

In chapter 4 on rate equations we showed that in a laser several modes can 
be excited simultaneously. Therefore in this section we wish to treat the 
question which effects can be expected in multimode laser action. The 
experimental and theoretical study of such effects has not yet been finished 
but is going on quite actively and indeed over and over again new types of 
effects are being discovered. In this and subsequent chapters we shall try 
to exhibit the most important and interesting effects so far found and we 
hope that our treatment will enable the reader to explore new effects. 

In this section we carry on the line of thought presented in the preceding 
section, i.e. we confine our analysis to laser modes whose amplitudes are 
still sufficiently small and to a situation in which laser action starts at the 
laser threshold introduced before. Later on we shall present further methods 
and results concerning new kinds of instabilities. Because the laser equations 
which we derived in chapter 5 are nonlinear, in general it will not be possible 
to solve them in closed form. In this chapter we shall represent two approxi- 
mation procedures which will allow us to get a first insight into multimode 
action. In the present section we shall apply the same method we used 
when treating the single mode laser and we shall eliminate the atomic 
variables, i.e. the dipole moments and the inversions. We then obtain 
equations for the field mode alone which will give rise to new effects 
especially to phase locking. Furthermore we shall look into the question 
whether the rate equations which we derived heuristically in chapter 4 can 
be derived from the original laser equations of chapter 5. As we shall see 
this is indeed possible provided one may assume that there is no phase 
locking between different modes, i.e. provided we may average over the 
phases of the individual modes. But let us start here with the derivation of 
equations for the laser modes alone. 
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We start from the fundamental equations (5.1 15)-(5.117) of section 5.9. 
We assume that several modes with certain indices, for example A,, . . . , A, 
are performing laser action. For each individual mode amplitude we make 
the hypothesis 

bA (t) = BA exp[-iOA t]. (6.60) 

The frequencies 0, are still unknown. We shall determine them later on 
self-consistently. Also the amplitudes BA are still unknown quantities. We 
shall admit that BA's are time dependent but we shall assume that their 
temporal changes take place on a much longer time scale than the oscillations 
with the frequencies OA and relaxation processes with the constants y and 
I/ T. This allows us to use the approximation of slowly varying amplitudes. 
In a first step of our method of solution we assume that due to pump and 
relaxation processes the inversion d, has acquired the value do, 

We now insert (6.61) and (6.60) into the equation for the dipole moments 
(5.1 16). Because on the r.h.s. of (5.1 16) a sum over exponential functions 
of the form (6.60) occurs we write the solution of the equations for a, also 
in the form of a superposition of exponential functions with the correspond- 
ing frequencies 

Using this hypothesis we immediately obtain the relation 

On both sides of this equation we compare the factors of the corresponding 
exponential functions exp[-iOA t]. Thus we can calculate A,,+ explicitly and 
insert it in (6.62). Then the following explicit expression for the dipole 
moments results: 

Within the frame of this first step of our approximation scheme, the dipole 
moments of the atoms oscillate at the same frequency as the laser modes 
we assumed to be present. Because the dipole moment a, is unequal zero 
and the mode amplitudes BA are also assumed unequal zero an additional 
term occurs in eq. (5.1 17) for the inversion. Thus we may calculate an 
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improved inversion d p .  In order to integrate the corresponding equation 
we make a hypothesis for d which just contains the exponential functions 
exp[(iflA - i nAl )  t]. We then obtain 

The constants DKAAt occurring in (6.65) are abbreviations for the following 
expressions: 

We now insert this improved value of the inversion (6.65) and our original 
hypothesis for the field modes (6.60) into the equations of the dipole 
moments. The integration can be done in a fashion analogous to the one 
we just have used so that we may write down the final result immediately, 

The constant coefficients M,AAIA. are explicitly given by the expressions 

This is, of course, a rather lengthy expression and we shall use it later on 
in this explicit form only at few instances. Much more interesting, however, 
is the form (6.67). The first sum is already known to us. It means that the 
dipole moments oscillate coherently with the originally present laser ampli- 
tudes bA ( t ) .  The additional term in (6.67) stems from the fact that the 
inversion has been changed by laser action. In contrast to the single mode 
laser the inversion has become a time dependent function. The inversion 
performs pulsations with frequencies corresponding to the frequency differ- 
ences of the individual laser modes. Therefore this effect is called inversion 
pulsation. By means of the explicit result (6.67) we can now do the last 
step, namely we may insert the explicit expression for the dipole moments 
(6.67) into the equations for the laser modes (5.115). We thus obtain our 
final equations 
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When we specialize these equations to that of a single mode, exact resonance, . - 
1.e. w, = w, = 0 ,  g,, = g, real, we obtain eq. (6.46) which we found in 
section 6.3. 

Eqs. (6.69) represent a result which is quite pleasant for a physicist 
because we are primarily not interested in the oscillations of the electrons 
of the laser atoms but rather in the field modes of the laser. But because 
the field equations (6.69) contain nonlinear terms it is still difficult to solve 
these equations. 

Nevertheless in a number of cases one can rather easily visualize what 
the equations mean for the b's. To this end let us consider the cubic terms. 
Let us suppose that we insert for the field amplitudes b, the hypothesis 
bA = BA exp[-iOA t ]  and let us assume for the moment being that the ampli- 
tudes BA are time independent. We then recognize the following. The cubic 
term can be considered as a driving force for bA occurring on the 1.h.s. of 
(6.69). This driving force oscillates at various frequencies depending on 
which term of the sum over A ,  A 2 A 3  is considered. There are special combina- 
tions, for instance A ,  = A,, A, = A or A ,  = A, A 2  = A,, where the cubic term 
oscillates in phase with the field mode. In such a case in the steady state 
the B's can be assumed time independent. We shall see below that in this 
case we can come back to the former rate equations. On the other hand, 
in eqs. (6.69) additional terms occur in which the frequency of the driving 
force differs from the originally assumed frequency of the laser mode A. 
This causes new phenomena in which phase relations play a crucial role. 
In the next section we shall treat relatively simple but rather instructive 
examples of effects which are produced by phase locking. We treat these 
cases because they clearly demonstrate that phase relations which have 
been entirely neglected within rate equations can be quite important for 
lasers. 

6.5. Simple examples of the multimode case 

In the preceding section we succeeded in simplifying the original problem 
considerably. Whereas our original equations referred not only to the laser 
modes but also to the numerous atomic variables we finally obtained 
equations which refer only to the modes. In spite of this fact the resulting 
equations are still rather complicated, but on the other hand they are capable 
of describing a great number of phenomena. But let us try to cut a trail 
through the jungle of these complicated nonlinear equations by focussing 
our attention on some particularly interesting special cases. These will allow 
us to get some insight into the structure of these equations and the interaction 
they describe. Furthermore we can treat a number of effects which are 
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physically particularly interesting. The simplest case is, of course, that of 
a single mode in which case we may drop the index A of bA. Furthermore 
we may drop all sums over A. But in contrast to section 6.3 we retain the 
indices p and may include the nonresonant case. The expression for the 
inversion (6.65) now reads 

When we recall the definition of WA, of eq. (4.55) we immediately recognize 
that (6.70) agrees with the expression (4.64) which we derived in the frame 
of rate equations. This expression describes, as we know, hole burning. 
Correspondingly we obtain from eqs. (6.69) an equation of the form 

where the constants Go, So,,  s, and So, are real. We have derived an 
equation of such a form already in the frame of the iteration procedure of 
section 6.3 (cf. (6.46)). The additional terms So, and So, which occur in 
the case of an incoherently broadened line are of special interest. These 
terms describe a frequency shift of the laser mode. We have found such 
terms in section 6.2. But there is a difference between our former result 
(6.31) and our present one. In section 6.2 we had to confine ourselves to 
the stationary case but could treat arbitrarily large amplitudes b. In this 
section we could find also nonstationary solutions but we had to confine 
ourselves to b's which are not too large. 

Let us consider the second simplest case, namely that of two modes. We 
obtain the following expression for the inversion: 

oc exp(i(0 - 0,) t) a exp(i(0, - 0 , )  t)  

+ [conj. complex]. (6.72) 

Though this expression is rather long, it can be easily studied. We derived 
the expression which stands in the curly bracket already in the context of 
the rate equations (cf. (4.64)). It again represents hole burning. The 
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expressions in square brackets, which no longer depend on photon 
numbers but on the amplitudes of the individual laser modes, e.g. in the 
form bfb,, are new, however. As can be shown, even in such a case the 
individual laser modes oscillate essentially harmonically, i.e. 

b, (t)  = B, exp[-iOjt]. (6.73) 

As we have demonstrated above in eq. (6.72), a time dependent modulation 
of the inversion results. This effect has been called inversion pulsation. Such 
effect could not occur in the rate equations because they did not take into 
account any phase relations. Therefore the question arises in which case 
such a pulsation can be neglected. To this end we first exhibit the explicit 
form of D,,, and D,, ,: 

where the D's were defined in (6.66). We obtain the following relation: 

provided 

It follows that the pulsations are negligible if the frequency distance of the 
laser modes is large compared to the inverse of the longitudinal relaxation 
time T of the inversion. In the opposite case these quantities can acquire 
the same order of magnitude as the terms occurring in the rate equations 
so that pulsation processes can play an important role. The equations for 
the mode amplitudes are becoming rather long. In order to get an overview 
over the individual contributions we abbreviate the corresponding factors 
of the mode amplitudes b,, h = 1,2. As an example for the resulting 
equations we quote that for the mode 1 and discuss the individual contribu- 
tions subsequently, 

+ (Hbf b2 b2 + H'b: b, b,). 
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The constants C,,, F, F f,  H, H' represent terms which can be easily deter- 
mined by a comparison with (6.69). The first row and the first term in the 
second row which contains the factor C , ,  are known to us from the single 
mode laser. 

The other contributions contain expressions which represent mode coup- 
ling. This mode coupling is brought about in various ways. First of all there 
is the term containing C,,. It corresponds to an expression which we know 
from the rate equations. It means that the inversion is not only diminished 
by mode 1 but also by mode 2 (hole burning). The underlined expressions 
are of special interest. The first kind of underlined expressions is given by 

(Fn, + F fn2)  b, cc exp[-i0, t], (6.79) 

which means that the mode with index 2 tries to modulate the mode with 
index 1 via inversion pulsation. Further modulation effects are represented 
by the further terms (underlined by a wavy line) where frequency depen- 
dencies, 

exp[-i(20, - 0 , )  t], (6.80) 

exp[-i(20, - 0,) t], (6.81) 

occur. We recognize that an interaction between the individual modes is 
brought about via the atoms whereby new frequency combinations leading 
to sidebands are made possible. As we shall see in subsequent chapters 
such coupling effects, where phase relations occur, play an important role 
in several aspects. They may bring about phase or frequency locking, and 
in the case that many modes acquire fixed phase relations ultrashort pulses 
can be generated. 

Exercise on section 6.5 

Determine the constants Go, So, and So, in the single mode case explicitly 
by means of (6.69). Compare the expression of So, +lb12 So, with that of 
eq. (6.3 1) under the assumption that 2 TW,, n < 1. 

6.6. Frequency locking of three modes 

The case we are going to discuss represents a particularly beautiful example 
of how the semiclassical laser equations may describe effects which cannot 
be treated by rate equations. We consider a laser which shows laser action 
in the modes 1,2,3. We assume (as can be verified experimentally) that 
these three modes belong to the subsequent resonator frequencies o , ,  w,, o,. 
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Fig. 6.2. Frequency locking. Scheme of mode frequencies. The abscissa represents the circular 
frequency. 6, is the atomic center frequency. w,, w,, w, are the mode frequencies in the empty 
resonator; ill, a,, ilg are the actual mode frequencies when laser action takes place but still 
without the coupling which causes frequency locking. 

In a resonator without laser material, i.e. in the unloaded resonator, these 
mode frequencies are equidistant. But we know that laser action leads to 
frequency shifts, some of which we got to know in section 6.2. The new 
shifted frequencies will be denoted as usual in our book by 0, (cf. fig. 6.2). 
When we form the difference from the frequency differences from sub- 
sequent modes we obtain the expression 

Experimentally the following results were obtained. The frequencies may 
be usually shifted by a change of the distance between the mirrors. Usually 
the three laser modes oscillate with their corresponding frequencies indepen- 
dently of each other. When one changes the distance between the mirrors 
so that the frequencies are shifted and the expression (6.82) becomes small 
(typically lo3 Hz) for gas lasers, the frequencies suddenly jump and get 
locked in a way which we are going to derive. To treat this effect we shall 
write the mode amplitudes in the form 

where r, are real amplitudes. We shall admit that the real phases cp, will 
be time dependent. Let us consider the cubic terms occurring in the eqs. 
(6.69) more closely again. When we choose A ,  = A2, h = A3, the r.h.s. oscil- 
lates at the same frequency as bA on the 1.h.s. The same is true for the choice 
A l  = A, A 2  = A3. But now we wish to consider also terms where a frequency 
combination occurs which is different from the frequency in the mode b,. 
When we consider the equation for mode 1 we obtain such frequency 
combinations by the choice 
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or vice versa. Because we shall assume that the expression (6.82) is small 
the relation 

is approximately (but not exactly) fulfilled. In order to elaborate the essen- 
tials we shall assume in the following that the real field amplitudes r, are 
time independent. Inserting the expressions (6.83) into the multimode 
equations (6.69) and dividing in each case by the exponential function 
(6.83) we obtain equations of the following form: 

The quantities G,, &,, 6, are those frequencies which stem from the original 
mode frequencies in the unloaded resonator and the various frequency 
shifts. Of course, in the general case these frequency shifts may depend on 
the intensity of the laser modes. But because we assume that the intensities 
are time independent we shall not be concerned with the dependence of 
6, on the real amplitudes, r,. Similarly we shall assume that the coefficients 
in front of the exponential functions are time independent constants 

This is justified when we neglect temporal changes of r,. 
We shall try to derive from eqs. (6.86) to (6.88) an equation for the quantity 

which occurs in the exponents on the r.h.s. of (6.86)-(6.88). To this end we 
multiply (6.88) by 2 and subtract from it the eqs. (6.86) and (6.87). We then 
obtain a single equation for P which has the following structure: 

@ = c+a sin P + P  cos P. (6.9 1 ) 

In it 6 is an abbreviation 

a and p are constants which are composed of the real and imaginary parts 
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of the C's Eq. (6.91) is a first order differential equation which can be 
solved by a separation of variables. We then obtain P as a function of t 
in the implicit form 

d P1 t=I, , + a  sin T t + p  cos 
(6.93) 

where Po is the initial value of P at time t = 0. It will be our goal to discuss 
the temporal behavior of P ( t )  more closely. The time dependence of P ( t )  
depends critically on whether 

holds. In the first case the integrand of (6.93) does not contain any singular- 
ity. We may expand the integrand into a power series of sine and cosine 
functions. We thus see that the integral behaves as const. P +pulsations. 
Neglecting these pulsations and small corrections we immediately obtain 

where 6 is given by 

This is precisely the behavior we expect for normal three-mode laser action. 
Let us consider the other case (6.95). Then the integral can diverge. This 

means that time t on the 1.h.s. of (6.93) tends to infinity while P acquires a 
finite value, namely the value 

P = -p -arc sin(((a2 +p2)-'I2), tan p = P / a  (6.97) 

In this case P does no more depend on time. As we may see by means of 
(6.90), this result is only possible if the mode frequencies obey the equation 

The frequency difference f12 - R ,  is now locked to the frequency difference 
0,-0,. The transition from the unlocked to the locked state is experi- 
mentally demonstrated by measuring the beat frequencies of 0,- 0, and 
R,-a, .  One first fixes a distance between the mirrors for which the 
frequency differences are different from each other (unlocked state). Here 
the condition (6.94) is fulfilled. When by tuning the resonator the central 
frequency is shifted closer to the atomic resonance (3, the distance 5 of the 
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frequency differences decreases. When 1 [I2 reaches the value a2 + p2 a quick 
transition into the frequency locked state occurs and instead of the two 
different frequency differences 0, - 0, and a, - 0, only a single one occurs. 

6.7. The laser gyro 

A nice example for the application of lasers is provided by the laser gyro. 
Incidentally this example shows us how technical applications are linked 
with a profound understanding of fundamental physical phenomena. By 
means of the laser gyro it is possible to detect rotations with respect to the 
inertial system of the cosmos. Thus the laser gyro can replace mechanical 
gyros. Basically the laser gyro consists of a ring laser which we show in fig. 
6.3. If the whole arrangement is rotating with respect to the inertial system 
of the universe, according to the general theory of relativity the following 
happens. Observers, in our case the photons, running in the direction of 
rotation proceed along a path whose length is different from that of observers 
(photons) going in opposite direction. According to the general theory of 
relativity, this change of length is proportional to the area A which is 
surrounded by the path and proportional to the rotation speed 0 in the 
inertial space. In the case of photons, flying with the speed of light, the 

Kinematic mount 

Quartz block/ 
Mirror (readout) 

To detectors 

Combiner prism 

Fig. 6.3. Schematic arrangement of the laser gyro. [J. Killpatrick, IEEE Spectrum, Oct. 1967, 
p. 44.1 
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change of length AL is given by 4AO/c where c is the light velocity. In 
1913 this effect was shown to exist by Sagnac. For a rotation frequency of 
2 Hz he could demonstrate changes of lengths of 100 to 200 A. In order to 
measure very small changes of lengths, as they are to be expected for small 
rotation speeds, the laser offers a possibility. In this case the fact will be 
used that the laser frequency is determined by the length of the ring 
resonator. An apparent change of length of the resonator leads to a frequency 
shift. By measuring the frequency shift it becomes possible to measure the 
rotation speed of the gyro. An experimental arrangement is shown in fig. 
6.3. Because the line-width of lasers is very small, a high sensitivity of the 
gyro can be expected. 

For small rotation speeds a difficulty occurs, however, which rests on the 
following. Because the mirrors can reflect light in the direction of the incident 
beam, a coupling between waves running in opposite directions may occur 
and we have to encounter the phenomenon of frequency coupling. This 
mode coupling is again described by an equation of the form 

?P is the relative phase of the modes running in opposite directions, a is 
essentially the rotation speed O, and b is the back scattering coefficient. As 
long as a > b no phase locking occurs. In the opposite case, however, phase 
locking happens and the rotation can no more be measured (compare fig. 
6.4). There are a number of possibilities to do away this latter effect. For 
instance one may superimpose some trembling or chaotic motion on the 
system. 

6.8. The gas laser. Single mode operation 

The essential difference between a gas laser and a solid state laser consists 
in the motion of the gas atoms. Consequently, the coordinate of a single 
atom is now given by x, + v,t, where x, is the coordinate of the atom p at 
time t = 0 and v, its velocity. (Of course, due to collisions the atoms are 
"reshuffled" within their velocity distribution, but the ensemble of atoms 
remains unaffected by these events.) We shall allow for arbitrary angles, 
O,,, between the vector of polarization of the light mode A and the dipole 
moment of the p th  atom. The interaction constant g,, between the mode 
A and the atom p thus takes the form 

g,, = -g(exp[ikAx, +ik,v,t]-c.c.) cos @,,. 
2 

The summation over p runs in the corresponding equations over the 
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I 

Laser gyro 
output rate 
of phase 
change 

Fig. 6.4. Frequency locking in the laser gyro (compare text). 

positions x,, the velocities up (for which a Maxwellian distribution is 
assumed) and over all angles O,,. 

The equations of motion can now be taken directly from those referring 
to fixed atoms, (5.1 15)-(5.117), if the coupling "constant" (6.100) is used. 
6, is simply to be identified with the center frequency 6, of an atom at 
rest. (The Doppler broadening is automatically taken care of by the explicit 
representation of the atomic motion in (6.1 OO).) 

In a region not too high above laser threshold we may eliminate the 
atomic variables basically by the same iteration procedure we described in 
section 6.4. But because of the time dependence of g,, in (6.100), one has 
to repeat it step by step. We leave the explicit performance of this procedure 
to the reader as an exercise and merely quote the results for the special 
case of single-mode operation. Readers interested in two- and multimode 
operation are referred to my book "Laser Theory". 

Making the hypothesis 
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we obtain in the same approximation as in section 6.4 

where aZ(t)  has the following structure: 

aE(t) = B* exp[iRt] {c, exp[ikx, (t)] + c- exp[-ikx, (t)]} 

+ fiB* exp[iRt] {d, exp[ikx, (t)] + d- exp[-ikx, (t)] 

+ f+ exp[3ikx, (t)] + f- exp[-3ikx, (t)] 

+ j+ exp[ikx, ( t)] + j- exp[-ikx, ( t)]}. (6.103) 

c,, d,, f,, j, are complex constants, independent of space and time, which 
are given by 

do( y * iv) COS' 0 lg12g 
j* = * 1 

2i(l/ T i2 i3 , )  [(R - G , ) ~  - (3, r i y)2][0 - 3, -i y f G,]' 

3, is the central frequency of the atomic transition, x, (t) = x, + v, t, and 
3, = kv,, where v, is the velocity component of atom p in axial direction 
and k = (k, 0,O). When we multiply (6.103) by g ;  (see (6.102)) and sum over 
the coordinates, the time dependence with exp[iG,t] and exp[i3G,t] drops 
out on account of the orthogonality properties of plane waves so that the 
r.h.s. has exactly the same time dependence as it is required by the hypothesis 
(6.101) for b*. Performing the integrals over x and the average over O 
explicitly, and assuming a symmetric velocity distribution w(G,) as well as 
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a homogeneous spatial distribution of the active atoms, we obtain: 

.(I - 
3 y TEA 3 yTfiA 

o ( o )  d o  
s [ (n  -so- ~ 3 ) ~  + Y 2 ~ - 5 [ ( ~  - G~ +o12 + y 2 ~  

p is the density of the atoms and A is defined in eq. (4.81). The terms 
containing A under the first integral arise from a static depletion of excited 
atomic states, while the second integral arises from the time dependent 
response of the atomic system. This can be seen most easily by following 
up the single steps of our iteration procedure. 

Assuming a Gaussian velocity distribution and using constants typical 
for a He-Ne laser, we can show that the last integral in (6.105) is one order 
of magnitude smaller than the first one and therefore may be neglected. 
Keeping terms up to order y l a  and splitting (6.105) into its real and 
imaginary part, we obtain an equation for the photon density and another 
one for the frequency shift ( a  is the half-width of the Gaussian). 

( I )  Equation for the photon density: 

from which we determine the photon density: 

If the photon density is plotted versus frequency it shows a dip. This dip 
is brought about by the fact that the atoms move in opposite axial directions. 
As a result, two holes are burnt into the inhomogeneously broadened line 
at two symmetric points of the line center. If we have fixed atoms instead, 
no such dip occurs. This dip which was theoretically predicted indepen- 
dently by Haken and Sauermann and Lamb, is called saturation dip or 
Lamb dip. It plays a fundamental role in (nonlinear) saturation spec- 
troscopy. 
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(2) Equation for the frequency shift: 

where A, S and @(a)  are defined in eqs. (4.81), (4.88) and (6.37), respec- 
tively. C '  is given by 

We compare this result with the expression (6.37) for $xed atoms and a 
single direction of polarization. The first term on the r.h.s. in (6.108) agrees 
with the corresponding one in (6.37) except for a factor f which stems from 
the integration over the polarization (only f of the atoms participate in the 
laser process on the average). This term represents power dependent mode 
pulling and stems from the Doppler shape of the line. 

With respect to the term proportional to ii, which comes from the time 
independent atomic inversion, we observe the following: The part of C '  
which stems from the second term in the large brackets on the r.h.s. of 
(6.109) agrees with the total expression C (6.37) except for a numerical 
factor which again stems from the integration over the polarization angles. 
This second term in C '  is in general, i.e. for not too strong detuning (8  < I), 
much smaller than the first term, which describes the frequency pushing 
being due to the existence of two holes burnt into the inversion (note, that 
a standing wave interacts with atoms whose frequencies are shifted both 
by + kv, and - kv, !). The frequency pushing becomes dominant if the mode 
is tuned to the center of the line within about a natural line-width. Inserting 
ii according to eq. (6.107) into (6.108) yields as a final result for the frequency 
shift: 

6.9. Derivation of the rate equations from the semiclassical laser equations 

In chapter 4 we derived the rate equations completely heuristically and 
promised to derive them later on from more fundamental equations. We 
shall present this derivation here, where it will become clear which assump- 
tions are to be made in order to obtain our previous rate equations. We 
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assume that the laser equations allow laser modes of the form 

where the amplitudes BA may still be slowly varying functions of time. We 
insert the expression (6.11 1) into the laser equations (5.116) for the atomic 
dipole moments and assume that the inversion d, is time independent or 
varies only slowly in time. We then obtain quite similarly as in section 6.4 
the expression 

We insert this expression immediately into the equations for the field modes 
(5.1 15) and multiply the resulting equations by b:. We now add to these 
equations their complex conjugates and introduce as usual the photon 
numbers n, by means of the relation 

The sum of the complex conjugate equations can be written in the following 
form: 

Let us consider the expressions bA, b: which occur on the r.h.s. of (6.1 14) 
more closely. If we have everywhere A ' =  A, we shall use on the r.h.s. the 
photon numbers (6.113) as in the usual rate equations. We now assume 
that the oscillations A  are not phase locked. Let us imagine that we perform 
a phase average on both sides of (6.1 14) and let us assume that the phases 
are uncorrelated. Then on the r.h.s. of (6.1 14) all expressions vanish for 
which A ' #  A. In this way the sum over A '  cancels and we may write (6.1 14) 
in the form 

Here we have introduced the quantity WA, which we may deduce from the 
comparison of (6.1 15) and (6.1 14) and which is given by 

But this is precisely the transition rate we introduced in chapter 4 in a 
heuristic manner. The only difference rests in the fact that the mode frequen- 
cies RA are the actual frequencies of the laser modes and no more the mode 
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frequencies in the unloaded cavity as we had assumed previously in chapter 
4. In order to obtain equations for the inversion we proceed in a similar 
fashion, namely we insert the expression (6.1 12) in the equations (5.117) 
of the inversion and again assume that a phase average has been performed. 
This leads us immediately to the equations 

We immediately recognize that (6.1 17) is identical with the previously 
introduced rate equations. These considerations tell us that we may derive 
our previous rate equations if we may neglect phase relations between the 
laser modes and if the changes of inversion and photon numbers are slow 
compared to the oscillations. This is an assumption which is practically 
always fulfilled because of the relatively high frequency of the atomic 
transition. These equations are valid for large photon numbers also, i.e. far 
above laser threshold. Insofar the equations we just derived go beyond those 
of sections (6.3) and (6.4) where we had to confine our considerations to a 
region not too far beyond laser threshold. On the other hand the rate 
equations rest on the assumption of vanishing phase and frequency correla- 
tions so that they do not allow us to treat a number of important phenomena. 



Chapter 7 

Ultrashort Pulses 

7.1. Some basic mechanisms. Active and passive mode locking 

In section 6.6 we saw that locking of laser modes may occur. We wish to 
study what occurs when many modes are locked together. For the beginning 
we shall ignore the detailed mechanism which leads to mode locking. Let 
us first recall how we have introduced the individual modes. When deriving 
the semiclassical laser equations we decomposed the electric field strength 
E into the amplitudes of individual standing waves. When we assume as 
usual that there is only one direction of polarization we may consider E as 
scalar. Thus the decomposition of E into modes is given by 

More precisely speaking EA is a function of space x also, 

EA (x, t), for instance EA cc sin kAx. (7.2) 

For the moment being we are not so much interested in the spatial depen- 
dence of the complex amplitude of EA but primarily in its time dependence. 
For simplicity we shall assume that all amplitudes have the same modulus, 
so that we may write 

We now consider two typical cases, namely: 
(1) The phases cp ,  are statistically distributed. As a consequence 

EAEA,=O (A # A') (7.4) 

holds (compare also the exercises). We investigate the intensity which results 
from the average over the phases 

I = I E (t)I2. (7.5) 
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We may imagine that, for instance, the phases vary statistically in the course 
of time and that we average the intensity over a certain time. 

Inserting (7.1) into (7.5) we obtain 

which according to (7.4) may be reduced to 

where we have used the abbreviation 

IA = I EA 12. (7.8) 

If the sum (7.1) comprises N modes having all the same intensity, 

I &  l 2  = IEOI~. (7.9) 

We obtain as final result 

Iunsorrelated = N I E O ~ ~ .  (7.10) 

Thus the total intensity is equal to the intensity of the individual modes 
multiplied by N. Let us now turn to our second case. 

(2) Correlated phases and frequencies. We shall assume that the frequen- 
cies of subsequent modes have the same distance from one another, so that 
we may write cp, = mAt where 

o A = o + A o l ,  A=O,&1,*2 ,... (7.1 1) 

(cf. fig. 7.1). Under the assumption that the spatial factor is constant, (7.1) 
acquires the form 

EpL( t )  =C Eo exp[i(o +Awl)t]. (7.12) 
A 

The index "PL" means "phase locked". For simplicity we consider an odd 

Fig. 7.1. Scheme of mode frequencies with the same distance. 
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N and let the sum in (7.12) run over the following indices 

The sum in (7.12) is of the geometric type and can be easily evaluated 

When we perform these studies from the very beginning for running waves 
we have to replace (7.12) by the hypothesis 

In this case the final result reads 

sin($ No l ( t  - x/ c)) 
EpL = Eo exp[io( t - x/ c)] 

sin(fw1(t - x/ c)) ' 

For the following discussion of (7.16) we choose x = 0 for simplicity. The 
ratio of the sine functions reaches its maximum at the time 

2rr 
t = m y ,  m: integer. 

0 

The maximum intensity belonging to (7.16) is 

IPL = I E O ~ ~ N ~  = N Iuncorrelatcdr 

i.e. the maximum intensity is proportional to 

; given by 

the square of the number of 
modes. In this way we have found our first important results. If mode 
coupling is possible, the emitted intensity can be multiplied by a large 
amount which is the bigger the bigger the number of modes locked to each 
other is. Fig. 7.2 represents the ratio of the sine functions in (7.16) as a 
function of t - xlc. The exponential function in front of the sine functions 
in (7.16) has been ignored because it represents the carrier wave which we 
are not interested in for the moment being but rather in its envelope. As 
we may see, the very intense pulse is followed by several very small ones. 
The width of the big pulse is given by 

which can easily be deduced from (7.16). No '  is the range of frequencies 
covering the individual mode frequencies (compare (7.1 1)-(7.13)). It thus 
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Fig. 7.2. The electric field strength E according to eq. (7.16) where the factor exp[iw( t - x/  c)] 
has been omitted. 

represents the band width d o ,  

No '  = do. (7.20) 

As may be seen from (7.19), the pulse width which can be reached is 
inversely proportional to the band width do .  Our results can be summarized 
as follows. If modes can be locked, high maximum intensities and small 
pulse widths can be reached if a sufficiently large number of modes can be 
coupled together. 

We now turn to the question how mode locking can be obtained. To this 
end we proceed in two steps. We first present some more or less qualitative 
ideas and in subsequent sections we shall present a detailed theory how to 
cope with "passive" mode locking. 

Let us now turn to a qualitative discussion. To this end we must invent 
mechanisms by which the frequency o and phase cp of a laser mode Eo can 
be coupled to the frequency o, and phase cp, of a second laser mode E. 
According to fig. 7.3 we have in particular to bridge the frequency distance 
o'. This can be reached by modulating the fundamental wave Eo by a 

% W1 

0 El 

Fig. 7.3. Coupling of a laser mode E, with another mode E,. 
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frequency o' so that side bands result, especially with the frequency o, = 

w + o'. We may expect that side bands created in this manner resonate with 
mode El  and influence in this way the field E l .  Such a modulation of Eo 
becomes possible by a modulation of the losses produced by the mirrors. 
To this end we make the following hypothesis for the loss rate: 

K = K~ + K~ sin o't. (7.21) 

As we know, in the laser equations terms of the form 

occur. When we decompose E into its individual modes and pick up Eo as 
well as the frequency dependent part of K (cf. 7.21)), we obtain the scheme 

E , ( t )  K ,  sin o't 

.1 .1 
o W '  

In this way a new field mode with the frequency o{  is generated. If there 
is a resonator mode just at this frequency o', it can be excited to a forced 
oscillation being in phase with Eo. In a similar way El can excite a further 
mode E, in phase, etc. 

Another way to produce mode coupling is provided by a saturable 
absorber (compare fig. 7.4). In this case a saturable absorber is inserted 
in-between one of the mirrors and the laser material. The action of such 
an absorber can be visualized as follows. Let us consider an ensemble of 
two-level atoms (cf. fig. 7.5). When we irradiate this system by light, two 
different cases may occur depending on whether the incident intensity is 
weak or strong. If the intensity is weak, only few atoms will be brought 
from their ground states to their excited states via absorption and they 

saturable I 
mirror laser material mirror 

absorber 

Fig. 7.4. Schematic set-up of a laser with saturable absorber for the generation of ultrashort 
pulses. 
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---- 
2nnnn/L ---- 

Fig. 7.5. Functioning of a saturable absorber. The wave coming from the left-hand side hits 
atoms each with two levels (symbolized by horizontal lines) and excites some of them. 

I 

recombine again to the ground state. In this way always many atoms are 
I present in the ground state. When this process happens continuously, the 

incident light wave tracks will always find enough atoms in the ground state 
being able to absorb the light field. 

Things are quite different in the case of a high light intensity, however. 
In this case so many atoms make transitions into the excited state that for 
the absorption process not enough atoms are available. In addition induced 
emission may set in reinforcing the incident light field. Our considerations 
show that the kind of absorption of the atomic system of the saturable 
absorber changes when we proceed from low to high light intensities. The 
precise behavior of the loss rate K ( I ) ,  I  = I E ~ ~ ,  may easily be deduced from 
the laser theory of two-level atoms. To this end we have only to study how 
the occupation number difference depends on the incident light intensity 
I. One easily finds 

Thus the curve reproduced in fig. 7.6 results, according to which the loss 

Fig. 7.6. The loss rate K versus the modulus of the field strength E, according to eq. (7.24). 
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Fig. 7.7. Visualization of the action of a saturable absorber. The tails of the pulse with too 
low an intensity are cut away. 

rate decreases beyond a critical field strength P - ' ' ~ .  Such saturable absorbers 
can be realized by organic dyes. 

We now consider what happens in the laser of fig. 7.4 due to the saturable 
absorber. We imagine that by a fluctuation of the light intensity a wave 
track with a spatially inhomogeneously high intensity has resulted. If such 
a wave track hits the saturable absorber, those parts of it whose intensity 
is not high enough will be absorbed, but the other parts having sufficiently 
high intensity will be let through. In this way the wings of the laser pulses 
are again and again cut away (fig. 7.7), and the light pulse becomes shorter 
and higher. In order to recognize how this picture can be connected with 
loss modulation we consider more closely the pulse running back and forth 
in the laser. Denoting by c' the effective speed of light in the total experi- 
mental setup and by L the distance between the mirrors we may write the 
pulse repetition time as 

The modulation frequency for cutting away the wings of the pulse is thus 
given by 

Now let us assume that we decompose the pulse into its individual stationary 
laser modes with frequencies a,. Then the interaction of the modes within 
the saturable absorber leads to new side bands which differ from the 
fundamental wave frequency o, just by a multiple of (7.26). On the other 
hand, the frequency distance of axial modes in the laser is given by (7.26) 
with (7.25) when we recall the condition that half integers of the laser 
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wave-length must fit in-between the two mirrors. Thus the sidebands resonate 
with neighboring modes so that a very efficient frequency locking becomes 
possible (this resonance is opposed, however, by the different frequency 
shifts caused by laser action, see also below). 

The third example of mode locking is known to us from the special case 
treated in section 6.6. There mode locking was caused by the nonlinear 
polarization. The individual contributions of the polarization occur as 
nonlinear terms in the equations (6.69) and have quite generally the form 

By means of an example we again want to convince ourselves how mode 
locking is achieved (cf. fig. 7.8). Let us consider the expression (7.27) as a 
force exciting a mode. Then we obtain the following relation: 

In practical cases not only three modes as in our case interact but a whole 
set of them. This leads to the possibility of self-pulsing lasers where mode 
locking results if they are pumped sufficiently highly. 

The three cases, namely external loss modulation, saturable absorber, 
and gain modulation via nonlinear polarization can be represented in a 
unique way. To this end we consider two modes with the amplitudes bo 
and b,, where the mode bo is considered as the fundamental mode to which 
mode 1 is coupled. The equations of mode 1 can be written in the form 

In it o, is the frequency of mode 1 and K ,  its loss (without loss modulation). 
GI describes the saturated gain. The additional term Z describes the mode 

*-A % *I 

Fig. 7.8. How a coupling between the modes w - , ,  w, and w ,  is brought about. 
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locking effects and depends on the mechanisms under consideration. 
According to the different mechanisms we have the following expressions: 
(a) loss modulation (active mode locking) 

Z = K sin o 'tho; (7.30) 

(b) nonlinear polarization (passive mode locking) 

(c) internal modulation (saturable absorber) (passive mode locking) 

The intensity I of all modes is taken in the form 

Exercise on section 7.1 

Prove (7.4). 
Hint:  The phase average EAE is defined by 

7.2. The basic equations of self-pulsing lasers 

In this chapter we continue the theme of the preceding section, where we 
discussed how the mechanisms of phase locking can produce ultrashort 
laser pulses. We shall focus our attention on a laser which becomes spon- 
taneously self-pulsing, i.e. without an external modulation, e.g. of its mirrors. 
Ultrashort pulses produced by a ring laser with a homogeneously broadened 
atomic line were first predicted theoretically. Self-pulsing of laser has indeed 
been found experimentally, but with an inhomogeneously broadened atomic 
line. In order to elucidate the basic mechanisms and theoretical treatment 
we shall present an analytical treatment of the onset of ultrashort laser 
pulses caused by laser atoms with a homogeneously broadened line. We 
shall then point out recent developments. 

The main results of the following analysis are presented in section 7.6 
and the reader not interested in mathematical details can directly proceed 
to that section. We base our analysis on the equations (5.102), (5.103) and 
(5.105) for the slowly varying amplitudes ~ r '  and PF' of the electric field 



97.2. The basic equations of self-pulsing lasers 163 

strength E and polarization P, respectively, describing modulated running 
waves in a ring cavity, and for the inversion density D. We assume that the 
pumping is so strong that at least the first laser threshold is reached. The 
corresponding cw-solution is denoted by EL:, ' , ,  and Dcw. For simplicity 
we assume that E, P and a,, are polarized in one direction, perpendicular 
to the direction of propagation along the x-axis. 

It has turned out that some writing within formulas can be saved if we 
use normalized quantities, i.e. 

2 = Eh+'(x, I)/ EL:,',, (7.34) 

fi = P~+'(x, t)/ PL;;, (7.35) 

fi = D l  Dcw, (7.36) 

and the new pump parameter 

Dcw is the inversion at threshold. We further put 11 T = y. A little algebra 
(cf. exercise) transforms (5.102), (5.103) and (5.105) into the following set 
of equations: 

The cw-solution reads, of course, 
A A A  

E = P = D = l .  

Because the method by which we obtain pulse solutions of these equations 
is of a more general interest also with respect to other applications in laser 
physics, we first give an outline of the general method. Then in the next 
step we shall apply this method to the concrete case of a ring laser with a 
homogeneously broadened atomic line. 

Exercise on section 7.2 

Solve eqs. (5.102), (5.103) and (5.105) with d ~ b f ' l a t  = d p r ' l a t  = dD/dt = 0. 
Transform (5.102), (5.103) and (5.105) into (7.38)-(7.40) by use of (7.34)- 
(7.37) using the explicit expressions for Ebt,',, etc. just determined. 
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7.3. A general method for calculating evolving patterns close to instability 
points 

Let us consider a system which we describe by a space- and time-dependent 
state vector U(x, t). For simplicity we treat the one-dimensional case. Since 
in the following we shall have in mind to solve the eqs. (7.38)-(7.40), an 
explicit example for such a state space vector is provided by 

For sake of simplicity and @ are treated as scalars but the method can 
easily cope with the case in which they are vectors. We shall assume that 
U obeys a set of differential equations which we write in the general form 

au 
-= G(U,a,, A ) .  
at 

G is a nonlinear function of U which may also contain derivatives of U 
with respect to space. A is a parameter which may be controlled from the 
outside, e.g. by the influx of energy. An explicit example for the set of 
differential equations (7.43) is provided by (7.38)-(7.40). We further use 
the definition 

We now consider the following situation. We assume that for a given A we 
have found a time- and space-independent solution of (7.43). We call this 
solution Uo. Again the system (7.38)-(7.40) provides us with an example 
because the corresponding solution reads 

The method we are going to present here can be extended to the case where 
Uo is space- and time-dependent and x is a three-dimensional vector. We 
have to refer the reader for that case to the book Advanced Synergetics 
(see references). As we have seen in a number of instances of the present 
book, a solution can become unstable if a control parameter A (e.g. the 
pump power) is changed. In order to check the stability we make the 
hypothesis (cf. section 6.1 for an explicit example) 

U(x, t) = Uo + q(x ,  t ) .  (7.46) 
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1 Inserting (7.46) into (7.43) we obtain an equation for q of the form 

I where we have split the resulting r.h.s. into a linear term, Kq, and a nonlinear 
term, N. If in the original equation G contains powers of U just up to 
second order, N is also just of second order. We write the individual 
components of N in the form 

NdA, 9) = C g~,&,qV. (7.48) 
P>'T 

We first wish to study the stability of U,. To this end we consider the 
linearized part of eq. (7.47). Denoting the solutions of the linearization by 
w, we then have to study equations of the form 

It may be shown quite generally that this equation can be solved by the 
hypothesis 

In the following we shall confine our analysis to a problem with periodic 
boundary conditions, so that 

must hold. Then v(x) can be chosen in the form 

V(X) = O(I /  J L )  exp[ikx], 

where k must be chosen such that 

exp[i kL] = 1. (7.53) 

The factor 1 / J L  serves for the normalization of this function over the 
periodicity length L, while 0 is a constant vector still to be determined. 
Inserting (7.50) with (7.52) into (7.49) we may readily perform the differenti- 
ations indicated by a,. Because of 

a, exp[i kx] = i k exp[i kx], (7.54) 

we obtain 

K (A, 8,) exp[i kx] = K (A, i k) exp[i kx]. (7.55) 

Dividing the equation, which results from (7.49), by the exponential 
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functions exp[Pt] and exp[ikx], we obtain a set of ordinary algebraic 
equations where K is a constant matrix and p plays the role of an eigenvalue. 
In order to find nontrivial solutions of 

P O  = K(A, ik) 0 ,  (7.56) 

the eigenvalues P must be chosen properly. The matrix K is parametrized 
by k so that the eigenvalues depend on k. A set of algebraic equations 
(7.56) possesses a set of eigenvalues Pj, j = 1, . . . , m. We therefore denote 
an eigenvalue P more precisely by bj(k). Also 0 depends on the same 
indices so that we write 

Using these indices, k and j, the solution (7.50) is written in the form 

We further shall assume that also left-hand eigenvectors of (7.56) exist, i.e. 
that 

holds. We assume that the 1.h. eigenvectors and the r.h. eigenvectors form 
an orthonormal set, i.e. that 

In order to solve the fully nonlinear equations (7.47), we expand the wanted 
solution q into a superposition of the complete set of eigenvectors in x-space 
spanned by (7.58), i.e. we write 

where the amplitudes ((t) are still unknown quantities. Inserting (7.61) into 
(7.47) we readily obtain for the 1.h.s. of (7.47) 

For the linear term on the r.h.s. of (7.47) we obtain 

which because of (7.56), (7.57) can be transformed into 
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The nonlinear terms (7.48) are transformed into 

Equating (7.62) to the sum of (7.64) and (7.65) we obtain equations for the 
unknowns tk,,(t). To cast these equations into a more convenient form we 
multiply them from the left by 

O-',(k) exp[-i kx]. (7.66) 

Then we sum up over the indices I and integrate over space from x = 0 till 
x = L, 

loL. . . dx. 

Because the exponential functions are orthonormal, i.e. 

1 for k = k', loL exp[-i kx + i k'x] dx  = Skit - 
0 for k # k', 

and we may apply (7.60), we readily obtain 

where we have used the abbreviations 

In general a transformation from one set of variables to another one does 
not solve a problem. However, in the present case a considerable simplifica- 
tion can be achieved. To this end we have to distinguish between the unstable 
and stable modes. We shall call a mode, j, k, stable if its eigenvalue pj(k) 
has a negative real part. In such a case a small perturbation will be damped 
out and the original state is reached again, for instance in the laser case 
the solution 

Thus a new state, for instance a pulsation can take place only if at least 
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one of the eigenvalues becomes positive. A mode, j, k, is called unstable if 
the real part of &(k) is positive (or vanishes). 

As we shall see below, in the case of a ring laser, pj(k) may indeed 
acquire a positive real part provided the pump is high enough. This instabil- 
ity point is reached at a specific k wave number (see below fig. 7.9). We 
shall call the wave number k, where this instability is reached first, kc. We 
label the p's in such a way that this instability occurs for j = 1. We shall 
denote the pair (k = kc, j = 1) by u indicating "unstable". When we further 
assume that all other p's have negative real parts, all the other modes are 
still stable and we shall use the following abbreviations: 

( k =  kc , j=2 ,3)+s ,  ( k f  k,,j= l , 2 , 3 , .  . . )+s .  

For our general outline we need not restrict the analysis to a single 
unstable mode but we may admit a set of them distinguishing them by the 
index u. With the new notation of u and s we may rewrite the set of equations 
(7.69) in a new self-explanatory fashion 

where ak,fkl~jjl,l~Jkk~k- is written as CUu,.,, Cuu,, or Cu,, depending on the 
index combinations kt, j', etc. Thus the unstable modes are coupled to the 
stable modes. In many practical applications the terms CuuIu2  vanish on 
account of selection rules. For sake of simplicity we shall drop the corre- 
sponding sum in (7.72). For the general case consult the references. 

The stable modes in turn obey equations of the form 

where again the C's stand for a . .  . J. .  . corresponding to the various 
combinations of indices k', j', . . . . An important aspect should be men- 
tioned here. Note that "unstable" and "stable" refer to the linear stability 
analysis. Here we deal with a nonlinear analysis, however, and we shall see 
that the "unstable" modes become stabilized because of their coupling to 
the "stable" modes which in turn are coupled to the "unstable" modes. In 
the following we shall indicate a method by which we can eliminate the 
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"stable" modes so that we arrive at equations for the "unstable" modes 
alone. In a way this procedure is similar to the one we explained in sections 
6.3 and 6.4, where we eliminated the atomic variables and were led to 
equations which contain the field modes alone. The main difference between 
the present procedure and the former one consists in the fact that in the 
former case the damping constants K, y, I /  T were directly evident, whereas 
here the damping constants are obtained as eigenvalues P of the linearized 
problem. The mode amplitudes tU will be called order parameters. As one 
may show, the order parameters may serve as a smallness parameter, if we 
are not too far above the instability point. One may convince oneself rather 
quickly that the stable mode amplitudes are of at least one order smaller 
than tU. This then suggests the following iteration procedure. We wish to 
express the 5, by 5,. In lowest approximation eqs. (7.73) reduce to 

The formal solution of (7.74) is given by 

In order to evaluate the inverse operator in brackets we decompose the 
order parameters according to 

where we anticipate that the order parameters oscillate at a frequency which 
is approximately given by 

We assume that close to the transition point, R(t)  can be considered as 
constant compared to the oscillatory exponential functions. This allows us 
to replace the operator d l d t  in (7.75) by 

In this way we may replace (7.75) by 

We shall call this procedure "adiabatic approximation". In our present 
treatment we use the "unrenormalized" frequencies o according to (7.77). 
The procedure can be extended, however, to the case in which frequency 
shifts are taken into account (cf. Advanced Synergetics, quoted in the 
references). We mention that the form (7.75) with (7.78) implies that 
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transient processes which occur on time scales shorter than l / o u  are not 
covered by this procedure. When we insert the expression (7.79) into the 
r.h.s. of (7.72), we obtain terms of third order in tU, 

In many cases of practical interest, e.g. at the first laser threshold, were 
"usual" laser action sets in, the sign of the cubic term is negative so that a 
stabilization of the total state is achieved. Because it was found that this 
need not always be the case when ultrashort pulses occur, one has to go 
two orders of magnitude further and we briefly describe the corresponding 
steps. In lowest approximation we treated eq. (7.74) whose solution is given 
in the adiabatic approximation by (7.79). 

In the next step of our approximation we insert this solution in eq. (7.73) 
which in first order then reads 

In the adiabatic approximation the solution of (7.81) is given by 

The constants r are defined by 

where we use the general abbreviation 

Inserting (7.82) into (7.72) we obtain a closed set of equations for the order 
parameters 5, alone. Because the explicit result becomes somewhat lengthy, 
we leave this step as an exercise to the reader. In the case that only one 
complex order parameter is present the (typically) resulting equation reads 

The reader may easily convince himself that the solution of this nonlinear 
equation can be discussed in terms of a potential in analogy to our discussion 
in section 6.3. We shall come back to this question explicitly when dealing 
with the laser. 
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7.4. Onset of ultrashort laser pulses: linear stability analysis 

Our starting point is the equations (7.38)-(7.40). In order to simplify these 
equations further, we introduce a new scaling of space and time: 

( x , t ) = ( U ) l r ,  ? = v , , l r ,  K / Y = ~ .  

Dropping the "hat" A everywhere, the equations to be studied read 

We remind the reader that these equations refer to normalized quantities 
and that we assume that the pump strength is at least so high that normal 
laser action can occur. The cw-solution is given by 

In the following we shall study those pulse solutions in which the phases 
of E and P are fixed so that we may use E and P as real quantities. 
According to the previous section we first have to study stability. To this 
end we make the hypothesis 

(E, D, P)  = (1 +e, 1 +d, 1 +p), (7 .90) 

where the vector d plays the role of q. The coefficients of the nonlinearity i:l 
(cf. (7.48)) then read 

Furthermore we have 

The hypothesis 

(e, d, p) - exp[Pt +ikx/c] 
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transforms the differential equation of the linearized problem into an alge- 
braic equation whose determinant must vanish, 

The characteristic equation belonging to (7.94) reads 

For fixed k this equation has in general three different solutions P which 
can be distinguished by the index j = 1,2,3. A detailed discussion of the 
solutions of (7.95) is, of course, rather boring. Therefore we present only 
the essential results. If the cavity losses are small, 

an instability occurs if the pump "power" A exceeds A,. The critical value, 
A,, is given by 

Then a range of wave number vectors k exists in which one of the three 
eigenvalues /3 acquires a positive real part. We shall define the critical point 
as that value of k for which the first eigenvalue touches the imaginary axis. 
The corresponding critical eigenvalue reads 

A plot of the different eigenvalues in the complex plane is given by fig. 7.9. 
The individual points on each curve are parametrized by the value k. Note 
that the k-values must obey the condition k = n v /  L, where n is an integer 
and L is the length of the ring cavity, so that exp[ikx] fits into the cavity. 
The branches 1 and 2 correspond to the stable modes, branch 3 shows a 
region where the modes can become unstable because P acquires a positive 
real part. k = 0 corresponds to the cross section of this branch with the real 
axis. For k + -a the eigenvalues move in the direction of positive imaginary 
parts, for k +  +a in the direction of negative imaginary parts. In order to 
reach the instability of the cw-solution, the wave vector must lie in the 
unstable region. The stable branches 1 and 2 do not show essential depen- 
dence on k, their real parts are evidently much smaller than the negative 
real parts of the unstable eigenvalues. If the fields E and P are complex 
and if their stability is studied, we obtain the branches 4 and 5 for their 
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Fig. 7.9. The eigenvalue P in the complex plane in the good cavity case ( K  < l + y in the 
notation of this section). The points along each curve correspond to different values of k which 
range from - oo to +a. The branches 1 and 2 refer to modes with damped amplitudes (stable 
modes). The branches 4 and 5 represent damped phase modes. Branch 3 contains modes which 
can become unstable when the imaginary axis is crossed. Since the individual points on each 
curve are parametrized by k, the instability occurs at a finite value of k. 

phases. While the latter is strongly damped, branch 4 passes for k = 0 
through the origin. The corresponding mode is marginal. These branches 
are independent of the pumping A. Because one may restrict the discussion 
on real fields the branches 4 and 5 can be neglected in the following. 

The eigenvalues for K > 1 + y. For sake of completeness we mention that 
for K > 1 + y the stable and unstable branches of fig. 7.9 exchange their 
roles (fig. 7.10). While branch 3 goes to the left, the previously stable 
branches 1 and 2 go to the imaginary axis and can acquire regions with 
positive real parts provided the pump is big enough. The branches 4 and 
5 show an analogous behavior but are also irrelevant for K > 1 + y. The 
instability occurs first at a value k # 0, but by a suitable choice of the 
resonator length the realization of this value can be prohibited so that an 
instability of the mode k = 0 can be forced to occur. The fields then show 
spatially homogeneous but temporally chaotic oscillations in time. We shall 
treat this phenomenon in chapter 8. 

7.5. Onset of ultrashort laser pulses: nonlinear analysis 

In the foregoing section we have shown that for a sufficiently high pump 
strength the cw-solution becomes unstable and we expect a new type of 
solution. In order to find this new solution we perform a nonlinear analysis 
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Fig. 7.10. The eigenvalue P in the complex plane in the bad cavity case ( K  > 1 + y in the 
notation of this section). The points on each curve correspond to different k-values which 
range from -a to +a. Branches 1 and 2 refer to unstable modes where the imaginary axis 
is crossed. As can be shown, the first crossing occurs at k = 0. Branches 1 and 2 contain, of 
course, also damped modes at k-values unequal 0. Branch 5 stems from the phase mode which 
can be omitted, however, in the nonlinear analysis because the phase remains constant. The 
branches 3 and 4 refer to modes with damped amplitude (stable modes). 

by means of the method we presented in section 7.3. We take as an example 
the case of a good cavity, i.e. K < 1 + y. We further assume that only the 
eigenvalues Pj(k), j = u ("unstable"), k = kkc, cross the imaginary axis (cf. 
fig. 7.9), and that just one pulse fits into the resonator. Furthermore we 
shall assume for sake of simplicity that the cavity length is chosen such 
that the instability occurs at the smallest possible value of the pump 
parameter as given by (7.97). 

We denote the order parameters (= amplitudes of unstable modes 

&&,u and 6-k,,u. 

The corresponding eigenvectors 0 are to be written as 

Ou(kc) and Ou(-kc), 

respectively. Because the fields are real, the relations 

and 

Ou(-kc) = O:(kc) 

must hold. Because of Jk,kl,klf occurring in (7.69) the amplitudes tk,, of the 
slaved modes have wave vectors k which are multiple integers of kc, k = nk,. 
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The index s runs over the stable branches (cf. fig. 7.9). With these notations 
in mind we may write the wanted solution for E, P, D, 

in the form 

where we have used the general hypothesis (7.61). The index s runs over 
all stable modes belonging to a fixed nkc. Once 0 ,  6, and 6, are determined, 
we may immediately calculate the spatio-temporal functions E, P, D. As we 
know from section 7.3 we can express & by Therefore we are interested 
in the equation for alone. We shall see that we can derive an equation 
of the form 

where [kc,u - 6. This equation will allow us to determine both the steady 
state, 6 = to, and even transients, [= [ ( t ) ,  so that we can calculate both 
steady state pulses as well as their transients. The speedy reader can from 
here on proceed to section 7.6. Readers wanting to see how eq. (7.101) is 
derived in detail can just continue reading this section. From now on we 
shall simplify the notation by making the following replacements: 

The coefficients in (7.72) and (7.73) which are defined according to (7.70) 
and (7.71) will be supplemented by indices indicating the corresponding 
wave vectors. It will be our goal to eliminate the stable modes by means 
of the iteration procedure explained in section 7.3. In lowest order of our 
approximation we need to retain only the stable modes belonging to k, = 0 
and to k, = 2k, because only these two kinds of modes are driven by the 
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order parameter, 

60,  = [ - - P ~ ( O ) I - ' ~ C ~ & & ~ :  

6 2 k , ~  [2Pu - P S ( ~ ~ ) I - '  Cy;*U5. 

Eqs. (7.704) and (7.705) have been obtained by means of the adiabatic 
elimination as explained in section 7.3. The expressions (7.104) and (7.105) 1 

can now be inserted into the equation for the order parameter 6 where they I 

give rise to nonlinearities of third order. Because under certain conditions 1 
the coefficient of 6 .  1612 is positive no stabilization is reached and we have 
to consider the next nonvanishing higher order term. Before we go over to 
that approximation we introduce a further abbreviation, namely 

We further note that 

O"(-kc) + O*. (7.1 07) 

An inspection of the formulas for 6 and tS of section 7.3 reveals that the 
eigenvectors 0 occur always in the combination 0 6, whereas in the iterated 
terms, e.g. (7.104), we always find & = 0.   his suggests to introduce 
the following abbreviation 

The first factor under the sum results from the adiabatic approximation. 
This abbreviation does not only simplify the whole formalism because we 
have less to write down, but allows us to calculate K in an easier way (see 
below). The r.h.s. of (7.108) represents a sum of projection operators 00. 
By means of the completeness of the eigenvectors 0, 0, i.e. in the notation 
of section 7.3, 

we may write for m # I 

K (m) = [m&I + K (A, mk)]-', (7.110) 

where I is the unity matrix 

K,(mk) is defined by (7.92) with the replacement a/ax + imk. Because of 
eq. (7.1 10) we need not solve the complete eigenvalue problem for each 
wave vector. Rather it is sufficient to determine the inverse (7.1 10) of a 3 x 3 
matrix. Only for m = 1 the eigenvectors and eigenvalues must be calculated 
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explicitly and the sum (7.108) over the stable modes must be performed. 
Finally we define the abbreviations 

After this little excursion we return to our original problem namely to go 
one step further in our approximation. To this end we assume that we have 
inserted the lowest approximation for the stable modes into the eqs. (7.73). 
As can be immediately seen, two further sets of modes come into play, 
namely 

= x 2 0 t ( k )  g,,[O,Gu(O) + O Z G ~ ( ~ ) I I ~ I ~ ~ ,  
"P'T 

(7.1 14) 
and 

[d/dt - pS(3k)l53k,s = 2CSkf;sk@2k,s 

The modes belonging to k, = 0 and ks = 2k remain unchanged within this 
iteration step because of the k-selection rule. The corresponding formulas 
must be inserted in the above eqs. (7.1 14) and (7.1 15) and then we must 
resolve (7.1 14) and (7.7 15) with respect to the stable modes. 

In analogy to (7.1 12) and (7.1 13) we define 

Taking into account the stable modes up to the iteration step of first order 
means that we can confine our analysis to modes up to ks = 3k. Then the 
order parameter equation reads 
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On the r.h.s. we have now to insert the expression for the stable modes 
(7.104)-(7.105) and (7.1 l4)-(7.115). We then obtain our final order param- 
eter equation 

[didt  -P.IS = ~ 1 6 1 ~ 6  + ~ 1 5 1 ~ 5 .  (7.1 19) 

The coefficients are given by the expressions 

and 

As the reader may note the whole procedure is rather simple. It requires 
only the evaluation of some sums which can easily be performed on a 
computer. 

7.6. Solution of the order parameter equation 

The behavior of the ring laser close to the second laser threshold is entirely 
described by the equation 

which we derived in the previous section. This equation has a form strongly 
reminiscent of the form of the single mode laser equation. We decompose 
the parameters p,, B, C, which occur in (7.122) into their real and imaginary 
parts, 

In (7.125) we have explicitly exhibited the negative sign of the real part 
which guarantees the stabilization of the system. We approximate the 
imaginary part of the critical eigenvalue P, by its value at the critical point 
(7.98). This means an unsignificant simplification and modifies the velocity 
of the pulse only slightly. We shall decompose the complex amplitude 5 
into its modulus and phase, 

((t) = R ( t )  exp[idt)l ,  (7.126) 

where R ( t)  and 7 ( t)  depend on time explicitly. Inserting (7.126) into (7.122) 
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and taking the real part of the resulting equation we obtain 

dR /d t  = bR + d ~ ~ - f l ' .  (7.127) 

This equation can be integrated in closed form but for our purpose it is 
sufficient to discuss the behavior of the equations qualitatively. To this end 
we interpret (7.127) as the equation of the overdamped motion of a particle 
in the potential field V(r), where 

dR /d t  = -aV(R)/dR, (7.128) 

Quite evidently the behavior of R is that of a particle which tends towards 
the closest minimal value of V(R) where it eventually acquires a stationary 
state. The phase q( t) obeys the equation 

dv /d t  = w + + R ~  + ~+!IR~. (7.130) 

Obviously the frequency contains amplitude dependent corrections. In the 
stationary state the order parameter acquires the form 

6 = R, exp[iwt], (7.131) 

if we neglect the nonlinear corrections in (7.130). 

7.6.1. The potential a t  the critical point 

In order to discuss how the shape of the potential changes when the pump 
parameter A changes we have to study the individual coefficients. As a 
detailed analysis reveals, the factor C changes but little if the pump strength 
or the critical wave number k change (the critical wave number k =  kc is 
changed if the length L is changed). However, the real part of the coefficient 
B of the cubic term in (7.122) strongly depends on kc or, in other words, 
on the resonator length. Fig. 7.1 1 shows the real part of B for the pump 
parameter A = 12 as a function of the resonator length. For more details 

I we refer the reader to the legend. We mention as an important result that 
the real part of B changes its sign. Therefore we obtain two types of potential 
curves which define two different kinds of behavior, namely an abrupt 
transition from the cw-state to the pulse state and a smooth transition I , (compare figs.7.12 and 7.13). 

7.6.2. The Jields of  the pulse solutions 

I Let us briefly summarize what we have achieved so far. We have established 
an explicit order parameter equation which can easily be solved in the 
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f R e ( M  

Fig. 7.1 1. This figure shows the behavior of the real part of P (left ordinate and solid line) 
and d = Re(B) (right coordinate and dashed line) versus resonator length. The vertical dashed 
lines indicate the region of L in which the mode becomes unstable. Because the dashed line 
crosses the 0-axis, the coefficient of the cubic term of the amplitude equation changes its sign 
within an allowed resonator length. 

stationary state but which allows us also to calculate transients. Once we 
know the order parameter we can calculate the amplitudes of the-stable 
modes. In a last step we can calculate the field, the polarization and the 
inversion, namely by (7.100) and (7.100a). The normalization factor of the 
plane waves can be taken care of by a proper normalization of the eigenvec- 

pump s t r e n g t h 4  

Fig. 7.12. The potential V(R) of eq. (7.129) as a function of the amplitude R for various 
pump strengths, for d = Re(B) > 0 (cf. fig. 7.1 1). 



57.6. Solution of the order parameter equation 181 

Fig. 7.13. Same as fig. 7.12 but with d =Re(B)<O (cf. fig. 7.11). 

tors 0 and 0 and has been omitted in (7.100a). A number of typical explicit 
results including transients are shown in figs. 7.14 and 7.15. 

Eqs. (7.86)-(7.88), which form the basis of this chapter, have also been 
solved by direct integration. A typical result is shown in fig. 7.16. In a region 
not too high above laser threshold excellent agreement between the numeri- 
cal and the analytical approach is found. The advantage of the analytic 

Fig. 7.14. For fixed time t the pulse shape of E, P and D is presented as a function of the 
coordinate along the laser axis according to eq. (7.100a) for d > 0, at the second threshold. 
Note the finite amplitude. [H.Haken and H. Ohno, Opt. Commun. 16, 205 (1976).] 
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Fig. 7.15. Same as fig. 7.14, but somewhat above the second threshold. [H. Haken and H. 
Ohno, Opt. Commun. 16, 205 (1976).] 

Fig. 7.16. Results obtained by a direct numerical integration of the laser equations (7.86)-(7.88) 
somewhat above threshold. The ordinates refer to E (left) and D (right). The field E is 
represented by the dashed line, the polarization by the dash-dotted line, the inversion by the 
solid line, and the intensity I by a solid line also. These quantities are plotted versus t - xlv,  
where t = time, x = coordinate along the axis of the ring laser, v = pulse velocity and L = length 
of the ring laser. [H. Risken and K. Nummedal, J. Appl. Physics 39, 466 (1968).] 
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approach consists in giving us a rather detailed insight into the kind of 
transition which takes place at the second laser threshold. 

7.6.3. Recent results 

To make closer contact with reality a number of more detailed calculations 
are required. For instance, in our treatment we have assumed that there is 
no spatial variation of the modes other than in the direction of propagation. 
In reality, however, the mode intensity varies over the cross section perpen- 
dicular to the direction of propagation, essentially in the form of a Gaussian 
distribution. If such a variation is taken into account, it can be shown that 
the pulse instability disappears. On the other hand a detailed analysis reveals 
that the coupling of the laser to a saturated absorber may decrease the 
threshold for laser pulses so that the negative effect of the spatial mode 
dependence can be more than compensated. Because in the bad cavity case 
the threshold for onset of pulses or chaos can be considerably lowered if 
an inhomogeneous atomic line-width is involved, we may speculate that a 
similar effect holds also for the good cavity case treated in this chapter. 

The general method we have outlined above allows a number of further 
applications, for instance to lasers with saturable absorbers as just men- 
tioned, and to optical bistability (cf. chapter 9). 

7.7. Models of lasers with saturable absorbers 

In section 7.1 we briefly described saturable absorbers and some of their 
effects on laser light emission. In this section we wish to formulate the basic 
equations of a laser with saturable absorber more precisely and indicate 
the main results which have been achieved so far. As it will transpire a 
good deal of work has still to be done to calculate the evolving laser pulses. 
On the other hand we shall see that even under simplifying assumptions 
interesting features of a laser with saturable absorber can be derived. From 
an experimental point of view two main arrangements can be considered. 
In fig. 7.17a the active laser material and the saturable absorber are situated 
at different positions in-between two mirrors. This is the more common 
experimental set-up. Another possibility is provided by a laser in which the 
laser active atoms and the atoms (or molecules) of the saturated absorber 
are more or less homogeneously distributed over the whole material. 

We shall model the laser by a set of two-level atoms (the analysis can 
easily be extended to a system of three-level atoms). The saturable absorber 
is modelled also by a set of two-level atoms. But while the laser atoms are 
incoherently pumped from the outside, the atoms of the saturable absorber 
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are in their ground states as long as they are not coupled to the laser fields. 
The formulation of the basic equations is quite simple because it is just a 
straightforward extension of the basic equations (5.1 15)-(5.117). For sim- 
plicity let us adopt the mode picture and let us consider a single mode only. 
Because the amplitude b of the single mode interacts with the set of dipole 
moments of the lasing atoms and with those of the absorber, eq. (5.1 15) 
now acquires the form 

Here and in the following the prime will indicate quantities belonging to 
the absorber. The coupling coefficients g were defined in (5.1 14). In general 
the size of the dipole moments of the laser atoms and of the saturable 
absorber atoms will be different. Depending on the models depicted in figs. 
7.17a and 7. 17b, the following conditions must be imposed on the coupling 
coefficients g and g': 

(a) g, f 0 in region L, 

= 0 outside of region L ; 

g;, # 0 in region S, 

= 0 outside of region S ; 

mirror  mater ia l  

(a) 

absorber mi r ro r  

mlrror material + absorber mlrror 

(b) 

Fig. 7.17. (a) Laser arrangement in which the saturable absorber S is separated from the 
material L (schematic). (b) Same as (a), but the material and absorber fill the same volume. 
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in total region within the cavity. 

Because of the laser atoms and the atoms of the saturable absorber we have 
now two groups of matter equations. The first group refers to the laser atoms: 

and 

. do- d, 
d, =- +2i(gEa,b - g,a: b). (7.135) 

T 

The next group refers to the atoms of the saturable absorber: 

and 

where it is assumed that the inversion dh without laser action is given by 

db=-1, (7.138) 

whereas do will be chosen positive. In general the atomic line-widths y and 
y' are different from each other and the same holds for the relaxation times 
T and T'. These equations can be easily extended to the multimode case. 
We leave it as an exercise to the interested reader to write down the 
corresponding equations, in which b, w, K, g, and g;. must be supplemented 
with an index h and the corresponding sums over h must be performed in 
eqs. (7.134)-(7.137). In the literature so far only the single mode case has 
been treated and we briefly indicate the main results. 

One first looks for the stationary solution. In this case one makes the 
hypothesis 

where B, A,, A;, d, and d ; are time independent constants. This hypothesis 
transforms the differential equations (7.132), (7.134)-(7.137) into a set of 
algebraic equations quite in analogy to those of section 6.2 where we treated 
the stationary state of the single mode laser. By means of these equations 
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we may express A,  and d, by B, and similarly the quantities A;. and dLl 
by B in an explicit fashion, so that 

Inserting these functions of B into the first equation (7.132) we find a single 
nonlinear equation for B alone, 

This allows us to determine B as a function of do. As can be shown for 
small enough but positive inversion do a stable stationary solution exists. 
The models treated use a running laser mode. For certain parameter ranges 
three constant amplitude solutions may coexist and a hysteresis cycle may 
occur. 

When the pump parameter is increased, the onset of oscillations could 
be shown. Such oscillations can be modelled only by the semiclassical 
equations (7.132), (7.134)-(7.137), but not by rate equations. 

The coexistence of two limit cycles under certain assumptions on the 
systems parameters could be demonstrated also. Under certain parameter 
conditions even the emissionless state (B  = A,  = A;! = 0) can be unstable 
against oscillations. 

The problem of a laser with a saturable absorber based on the configur- 
ation b (fig. 7.17b) has been formulated also in the multimode case based 
on space- and time-dependent electric fields, atomic polarizations, and 
inversions in a straightforward generalization of eqs. (7.38)-(7.40). This 
model exhibits a pulse instability, but so far no pulse-like solutions have 
been constructed explicitly. An exception is provided by a simplified model 
in which the action of the saturable absorber is described by an intensity 
dependent cavity loss as explained in section 7.1. As it seems, still a good 
deal of work has to be done in this field. The problem is rather difficult 
because of the many variables and especially of the many possible free 
parameters which allow one to operate the system in quite different regimes. 
In view of the results of the single mode laser without saturable absorber, 
a rich variety of phenomena can be expected and still awaits its exploration. 
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the "rationality condition" (8.2), the actual laser frequencies fl, of a free 
running laser are continuously shifted against their corresponding o,'s and 
may be expected to fulfil the "irrationality" condition. Quasiperiodicity can 
be easily verified by taking the temporal Fourier components of (8.1) which 
can be done experimentally by a spectrograph. On the other hand, when 
(8.1) is considered as a function of time, an irregular time dependence is 
observed. 

In chapter 7 we saw that qualitatively new effects may appear when phase 
and frequency locking takes place. Here ultrashort pulses which are still 
regular arise. In this chapter we want to study whether still other kinds of 
behavior can be expected or have been found. One of the most surprising 
findings is that of "chaotic laser light". The search for such a new type of 
light was motivated by certain analogies between laser light dyna.,mics and 
fluid dynamics which we shall describe below. Unfortunately, the word 
"chaos" or "chaotic light" is used with two entirely different meanings and 
we shall first discuss this basic differences in order to avoid confusion. In 
traditional optics light from thermal sources, i.e. from thermally excited 
atoms, is sometimes called chaotic. In this case no laser action takes place. 
The atoms are pumped only weakly. After each excitation of an individual 
atom it starts emitting a wave track spontaneously. Because the acts of 
spontaneous emission are completely uncorrelated, an entirely random light 
field results. Neither the rate equations nor the semiclassical equations we 
have introduced before allow us to treat spontaneous emission adequately. 
This indeed requires a fully quantum mechanical treatment and we shall 
come back to it in a later chapter. The only important thing to keep in mind 
for the moment being is the following. The randomness or chaos of light 
in this case is produced by fluctuations which are of a quantum mechanical 
origin which is the cause for spontaneous emission. 

In this chapter we will exclusively deal with a second, entirely different 
type of chaos. We start from the semiclassical laser equations which are 
obviously deterministic and do not contain any fluctuations a priori. 
Nevertheless it will turn out that the solutions mean that the emitted light 
behaves randomly. But the kind of randomness is different from that which 
we discussed with respect to thermal light, because still many atoms co- 
operate coherently in order to produce chaotic laser light. This chapter will 
be devoted to this new kind of chaotic light. We shall first give an example. 
Then we shall discuss criteria which can tell us whether light is chaotic or, 
e.g., only quasiperiodic, and then we shall discuss various simple mechan- 
isms which may cause chaotic laser light emission. Finally to conclude our 
discussion on chaos we shall show that there are various routes to chaos 
when we start from conventional single mode laser action. 
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8.2. The basic equations 

In order to make contact with what is known on chaos in fluid dynamics 
we shall choose a specific form of the basic laser equations which we derived 
in section 7.2 and which we repeat for the reader's convenience. 

where we have assumed that and 6 are real quantities. We briefly remind 
the reader of the meaning of the individual quantities. y, yl = 1/ T, K are 
the usual decay constants used everywhere in this book. It is assumed that 
the pump strength is so high that it is beyond the first threshold, at which 
cw laser action occurs. and are in our present notation the slowly 
varying amplitudes of the running waves of the field and the polarization 
and are normalized, jointlx with th: inversion density' D, with respect to 
their cw values. Therefore, E - P = D = 1 represents the cw-solution in these 
normalized quantities. A is a normalized pump parameter. In the following 
we seek a solution of eqs. (8.3)-(8.5), which is space independent (which 
can be achieved by a proper choice of the length of the ring cavity). This 
means that we seek a single mode solution. While eqs. (8.3) and (8.4) remain 
unchanged, (8.5) simplifies to 

After these preparatory steps let us turn to a specific model of fluid dynamics. 

8.3. The single mode laser equations and their equivalence with the Lorenz 
model of turbulence 

Let us first take a quick glance at a different field in physics, namely fluid 
dynamics. There, a long standing and still unsolved problem is the explana- 
tion of turbulence. The original purpose of the Lorenz equation is to provide 
a simple model for turbulence. Lorenz considered a rather typical problem 
of fluid dynamics which is called the convection instability or Binard 
instability. To achieve it, a fluid layer is heated from below (fig. 8.1). The 
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Fig. 8.1. (a) Scheme of  experiment on the BCnard instability. A fluid layer in a vessel is heated 
from below. (b) Formation of rolls by the liquid beyond a critical temperature difference 
between upper and lower surface (schematic). 

motion of the fluid is described by the Navier-Stokes equations which we 
are not going to write down here because they are not important for us. 
We only mention that they are nonlinear, partial differential equations. In 
order to cut down the complexity of the problem of solving these equations 
Lorenz introduced a Fourier decomposition. He expanded the velocity and 
temperature fields of the fluid into spatial Fourier series. The Fourier 
coefficients were still time dependent variables. From the infinite series, 
Lorenz retained only three terms altogether. In this way he derived three 
coupled differential equations for three variables. Because their physical 
meaning does not matter in the present context, we shall call these variables 
X, Y, 2. The Lorenz equations have the following form: 
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For those interested in fluid dynamics we mention that a is the Prandtl 
number, and r = RIR,, where R is the Rayleigh number and R, the critical 
Rayleigh number (for onset of convection). b = 47-r2/(r2 + k:)  where k ,  is 
a dimensionless wave number. The equations (8.7)-(8.9) are of quite a 
simple structure. They are ordinary differential equations and contain only 
two nonlinearities in the form X Z  and XY. To the great surprise of many 
physicists and mathematicians these equations can have solutions which 
are quite irregular. These solutions were found by means of computer 
calculations. Fig. 8.2 shows the temporal evolution of X ( t )  which is evidently 

, quite irregular. A plot of X, Y and Z in various planes reveals the following 
behavior (fig. 8.3). The point X(t) ,  Y(t), Z ( t )  circles in one region for a 
while, but then suddenly jumps into another region, where it moves for a 
while until it jumps, seemingly randomly, back into the first region, and so 
on. Quite evidently, deterministic equations of a rather simple form can 
give rise to an entirely irregular motion which is called "chaotic". In order 
to produce chaotic motion we need at least three variables obeying first 
order differential equations. If only two variables are present obeying 

, equations of the form x = F(X, Y) and Y = G(X, Y), one can show 
mathematically rigorously that no irregular motion can occur. 

But why are the Lorenz equations so important for laser physics? The 
answer can easily be found through the following steps. Let us first make 
the rather simple transformations 

Fig. 8.2. A typical coordinate q versus time of the Lorenz attractor (arbitrary units). 
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* - 

Fig. 8.3. (a)  Trajectories of the Lorenz attractor shown is their projection on the Z-X plane. 
(b) Same as (a)  but with the projection on the Y-X plane. (First results of this kind were 
obtained by E.N. Lorenz.) 

through which eqs. (8.7)- (8.9) acquire the new form 

(=cq-o& G ~ l 6 - q ~  L = b ( r - - 6 ) - ( q .  (8 .10)  

But these equations are identical with the laser equations (8 .3) ,  (8 .4)  and 
(8 .6 ) ,  as one may easily verify by using the following substitutions: 

K E-+a[  where a = [ b ( r - I ) ] - " * ,  r > l ,  

p-+aq, - +  y , l = ~ b / a ,  Y = K / U ,  A = r - 1 .  
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In particular the following correspondence holds: 

Be'nard problem Laser 
a :  Prandtl number a = ~ / y  

r = R/  R, (R, Rayleigh number) r = A + 1  

Eqs. (8.10) describe at least two instabilities which have been found indepen- 
dently in lasers and in fluid dynamics. For A < 0  ( r  < 1) there is no laser 
action (the fluid is at rest), for A 2 0 ( r  2 1) laser action (convective'motion) 
with stable, time independent solutions 5, q, 6 occurs. Besides this well 
known instability a new one occurs provided 

laser: 

K > Y + Y ~ I  and ~ > ( Y + Y ~ ~ + K ) ( Y + K ) / Y ( K - Y - Y ~ ~ ) ,  (8.1 1) 

fluid: 

a > b + l  and r > a ( a + b + 3 ) / ( a - 1 - b ) .  (8.12) 

This instability leads to the irregular motion, an example of which we have 
shown in fig. 8.2. When numerical values are used in the condition (8.12) 
it turns out that the Prandtl number must be so high that it cannot be 
realized by realistic fluids. 

From a historical point of view it is interesting to note that this second 
instability was found independently in laser physics and in fluid dynamics, 
but the meaning of the second laser instability was recognized rather late. 

A numerical analysis reveals that in lasers the pump power must be very 
high in order to fulfil the condition (8.1 1). Therefore, after the possibility 
of chaotic laser light had been demonstrated in principle, other mechanisms 
were searched for in order to realize chaotic laser light at lower pump 
power. The fundamental idea is to condense the laser equations (8.3)-(8.6) 
into still simpler ones by, e.g., eliminating the polarization adiabatically, 
but to introduce at the same time some modulation effect so that the number 
of variables remains (at least) three. In the theoretical literature the following 
modulation effects have been treated: 

(a) time dependent modulation of the cavity loss; 
(b) time dependent modulation of the inversion do; 
(c) injection of a modulated coherent electrical field. Before we present 

these examples we discuss in the next section criteria upon which one may 
decide whether chaos is present. 
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8.4. Criteria for the presence of chaos 

In order to decide whether or not chaos is present one might naively be 
inclined just to look at a plot of the time dependence of a variable of the 
system. If the plot looks irregular one would call the process "chaotic". 
Such a procedure leads to the following difficulty, however. Quasiperiodic 
motion as described, e.g., by (8.1) can also look irregular. Therefore a more 
detailed analysis is necessary. To this end it has been suggested to study 
the Fourier transform of (8.1), or in general, of a typical variable q( t )  of 
the physical system under consideration. Periodic and quasiperiodic motion 
(or light emission) can be characterized by a set of discrete lines, while 
broad band emission could indicate chaos. However, here again an intrinsic 
difficulty arises, because light from thermal sources would have also a broad 
frequency band. But in this case light emission stems from uncorrelated 
spontaneous emission acts and has nothing to do with the chaos we are 
studying here. Another criterion for chaos, which was suggested in the 
literature, is based on correlation functions of the type (q(t +T) q(t)). 
According to this criterion, an exponential decay of this correlation function 
should indicate chaos. But in the case of light from thermal sources the 
correlation function decays exponentially also, though we are not dealing 
here with deterministic chaos. Though both "criteria", namely a broad band 
of the Fourier spectrum and exponential decay of the correlation function, 
are rather often used in the literature on chaos, these criteria are certainly 
not sufficient. Therefore other criteria have to be developed. 

A criterion which has been coming into the focus of research over the 
past years is provided by the concept of Lyapunov exponents. As numerical 
solutions of the Lorenz equations or of similar equations reveal, the time 
evolution of the variables is very sensitive to initial conditions. Or, in other 
words, when we change the initial condition even a little bit, in the course 
of time the two trajectories will increase their distance more and more. 
More precisely speaking, their distance increases exponentially with elaps- 
ing time. 

To cast this concept into a mathematical form we consider a general set 
of nonlinear equations for a state vector q, 

Then at each time t we study how a neighboring trajectory evolves by putting 

where u is assumed to be a small quantity. Inserting (8.14) into (8.13) and 
linearizing the resulting equations with respect to u we obtain equations of 
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the form 

where L is a matrix whose coefficients are still time dependent because they 
depend on the trajectory q(t). Because of u = q' - q, 1 ul measures the distance 
between two trajectories q' and q. We expect that in the case of chaos u 
behaves as 

u = eA' v, (8.16) 

where A is positive and v is a function which changes less rapidly than an 
exponential function. As it turns out, the form (8.16) is an over-simplifica- 
tion, but it can be shown in mathematics that one may define a quantity 
which corresponds to A in the following way: 

This thus defined A is called Lyapunov exponent. If q spans an 
n-dimensional space, there exist at maximum n different Lyapunov 
exponents. If at least one of them is positive the criterion for chaos is 
fulfilled provided some "pathological" cases are excluded. For more details 
and for an entirely rigorous definition of A compare the references. 

8.5. Routes to chaos 

According to the interdisciplinary field of synergetics (cf. chapter 13), far 
reaching analogies in the behavior of quite different systems can be expected 
irrespective of the nature of the individual parts of a system. These analogies 
become apparent especially in situations where the qualitative macroscopic 
behavior of a system changes. Within laser physics, examples for such 
qualitative changes are provided by the onset of laser action with increasing 
pump parameter, or by the onset of deterministic chaos. Within fluid 
dynamics not only the transition to turbulence as described by the Lorenz 
model is known, but both theoretical and experimental studies show that 
there may be a hierarchy of different instabilities before the chaotic state 
is reached. 

Among the routes explored are the following: 
(1) With the increase of a typical "control parameter" (e.g. the pump 

power of a laser), more and more oscillations at frequencies a , ,  a,, . . . set 
in. In fluid dynamics this specific route is called the Landau-Hopf picture. 
It can be observed in lasers where more and more free running modes start 
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laser action and no frequency locking occurs. According to the original 
Landau-Hopf picture, in fluid dynamics the turbulent state can be character- 
ized by an infinite number of oscillations at frequencies irrational with 
respect to each other. This idea has been abandoned due to the experimental 
results according to which after the occurrence of oscillations at two or 
three frequencies chaos has been observed in fluid dynamics. In laser physics 
still more free running modes have been observed, however. A technical 
term should be mentioned in this context. 

Provided the dimension of a vector 

is bigger than the number of basic frequencies w,, w2, . . . , the endpoints 
of the vector q( t )  can be represented as trajectory lying on a torus. 
Therefore the Landau-Hopf picture consists in the idea that with increasing 
control parameter, tori of higher and higher dimensions are formed. 

(2) Another picture based on mathematical arguments on "generic 
properties" was produced by Newhouse, Ruelle and Takens. According to 
this picture, after a system has reached an oscillatory state at two basic 
frequencies, chaos should set in. Such a route is observed in various cases 
in fluid dynamics ("motion on a two-dimensional torus") though also 
motion on three-dimensional tori was found. We do not want to bore the 
reader with mathematical subtleties and therefore interpret the above men- 
tioned term "generic" simply as "typical". The reader should be warned, 
however, that there are some doubts whether such term, which stems from 
certain mathematical properties of systems, can be immediately applied to 
concrete physical situations. Clearly a laser freely running at 4 modes with 
irrational frequencies contradicts that theorem. 

(3)  A third route to chaos, which has become rather "popular" now, 
consists of a sequence of period doublings (fig. 8.4). According to this 
picture, with increasing control parameter the period of oscillations under- 
goes a doubling at specific values of that parameter. In a large class of 
systems the values of the control parameter a, at which such doublings 
occur obeys the law 

lim ~ I + I  - a1 
= 6 = 4.66920 16, 

1-as Q1+2 - a1+1 

where 6 is called the Feigenbaum number. In particular cases the sequence 
of period doublings could be followed up to n = 5 or 6 and then chaos is 
observed. The observation of higher numbers n is i m ~ e d e d  bv the noise 
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t q 2  

Fig. 8.4. This figure shows trajectories calculated for the Duffing equation which represents 
a harmonically driven nonlinear oscillator with linear and cubic restoring forces. The trajec- 
tories are presented in the plane q,, q, = 9,. The driven amplitude is increased in the order: 
upper left figure, upper right figure, lower left and lower right figure. At critical values of the 
driver amplitude, the trajectories split and it takes double as long for a point on the trajectory 
to return to its original position. 

level. Though it seems that period doubling sequences are a widespread 
phenomenon when nonlinear oscillations are involved, other sequences can 
be also observed, for instance period triplings and also mixed sequences 
between doublings and triplings. More generally, other types of subharmonic 
generation are also found. Therefore a warning should be added namely 
that in spite of the great enthusiasm among physicists on the universality 
of the period doubling sequence quite other kinds of subharmonic gener- 
ation must also be expected and experimentalists would be misled in just 
finding what they are prepared to see, namely merely period doubling. 

(4) Finally we mention the phenomenon of intermittency as a possible 
route to chaos. Here a typical physical quantity, e.g. the velocity field of a 
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fluid, remains quiescent for a while, then a chaotic outburst occurs, then a 
quiescent state reappears, etc. 

(5) Finally it may be worthwhile that for instance in chemical reactions 
alternating sequences between periodic and chaotic oscillations were found 
when a typical control parameter is continuously increased. 

Some of the routes to chaos just mentioned could be verified in the 
meantime experimentally in laser physics and the study of further routes 
to chaos in laser physics offers a wide field of future research. In the 
subsequent sections we shall discuss some situations where laser light chaos 
can be expected or has been observed. It is beyond the scope of this present 
book, however, to discuss the mathematical details of these various routes 
to chaos and I refer the interested reader to my books Synergetics and 
Advanced Synergetics where these problems are treated. 

8.6. How to produce laser light chaos. Some theoretical models 

Using the analogy between the single mode laser equations and that of the 
Lorenz model of turbulence we were able to reveal a possibility of creating 
chaotic laser light. As we have seen (compare (8.1 l)),  the cavity losses must 
be particularly high. Therefore this case is referred to as the "bad cavity 
case". We now wish to study other means of generating chaotic laser light. 

We start from the single mode laser equations (6.1)-(6.3) making the 
same simplifications as in section 6.1. For the reader's convenience we 
repeat these equations, 

b = ( - i w - ~ ) b - i g x  a,, 

1 
d, = - (do - d,) +2ig(a,b* - a: b). 

T 

To remove the terms containing i o  we make the substitutions 

b = exp[- iot] 8 ( t )  (8.23) 

and 

a, = exp[- iot] G,(t). (8.24) 

Because a sum over p occurs on the r.h.s. of (8.20) it suggests itself to 
introduce the whole sum as a new variable 
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Fig. 8.5. (a)-(e) Period doubling approach to chaos observed in a cw-He-Ne laser. The 
sequence is caused by tilting of one resonator mirror away from the perfect alignment condition. 
[C.O. Weiss, A. Godone and A. Olafsson, Phys. Rev. 28, 892 (1983).] 
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Fig. 8.6. (a)-(c) Observation of the Ruelle-Takens sequence in a cw-He-Ne laser caused by 
tilting one of the resonator mirrors. An oscillation w, (a) at frequency w, is followed by two 
periodic states at frequency w,, w, (b), followed by chaos (c). [C.O. Weiss, A. Godone and 
A. Olafsson, Phys. Rev. 28, 892 (1983).] 
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Fig. 8.7. Time dependence of laser output as a control parameter; mirror tilting angle is varied 
from stable or oscillatory state (a) to chaotic state (e). Spectra corresponding to (a) and (e) 
are also shown, observed -9 MHz from the main line center. Experimental set-up is in principle 
the same as in fig. 8.6. The time sequence shows in the cases (b)-(d) clearly the phenomenon 
of intermittency. [C.O. Weiss, A. Godone and A. Olafsson, Phys. Rev. 28, 892 (1983).] 

To obtain an equation for this new variable we have to sum up (8.21) over 
the atomic index p. This leads us to introduce 

as a new variable. The equation for 9 can be found by summing up (8.22) 
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over p. This leads us to introduce the total. unsaturated inversion via 

The thus resulting equations refer to %, P and 9. In the following in a 
number of cases we shall assume that an external field is applied to the 
laser. Supplementing the equations, whose derivation we have just 
described, by the corresponding additional term K%,,,, we obtain the follow- 
ing equations: 

(We leave it as an exercise to the reader to establish a connection with eqs. 
(8.3)-(8.5) by a choice of rescaled variables.) In the following we wish to 
perform a "minimal program" to find chaos. Because a time dependent %,,, 
introduces a new variable, we shall try to simplify eqs. (8.28)-(8.30) further. 
Depending on the quantity we eliminate we are led into several models 
which we are now going to discuss: 

( 1 ) Laser chaos produced by a modulated external jield 
Assuming that 

we eliminate P adiabatically, i.e. we put d P / d t  = 0. From (8.29) we then 
obtain 

Making the corresponding approximation for 9 in (8.30) and using (8.32) 
in it we readily obtain 

Inserting (8.33) in (8.32) we finally express P by 8 alone 

Inserting this 9 into (8.28) we find a closed equation for %. Our procedure 
we just made is related to the one we described in section 6.3 but somewhat 
more rigorous because we do not rely on an expansion of P in powers of 
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8. The reader is advised to study the relation between 

and (6.46). As one may convince oneself by use of a potential V in analogy 
to (6.49)-(6.51) for %Ye,,= 0, the solution of eq. (8.35) relaxes to a time 
independent constant, %'= go. Therefore, in order to produce chaos the 
external field is important. Calling the frequency of the external field we,, 
we introduce the quantity 

which measures the detuning in units of K. To perform numerical calcula- 
tions it is advisable to introduce a dimensionless time T by 

t = T/K, (8.37) 

and to rescale the variables according to 

Using furthermore the abbreviation 

we arrive at our basic equation 

Let us first consider the effect of an external field with constant amplitude 
A(T) = a. By putting the left-ha?d side equal to zero, we can readily deter- 
mine the steady state solution %', by solving the equation 

-in$?,+(z,- 1)%',+a=0, (8.42) 

where we have used the abbreviations 

Then we may perform a linear stability analysis with which the reader is 
by now quite familiar. This analysis reveals that the steady state becomes 
always unstable provided R is sufficiently large. A slightly more detailed 
analysis, which we shall not enter here, reveals that this instability causes 
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an oscillation of gS but no chaos. As can be shown, in this region the electric 
field is modulated, although the incident electric field has a constant ampli- 
tude. In order to obtain chaos we consider a modulated external field in 
the form 

A numerical solution of eq. (8.41) indeed reveals chaos for a sufficiently 
high amplitude a'. When a ' =  0, the system shows a limit cycle* behavior 
with the angular velocity 0, = 0.27 14. When a '  increases, the system acquires 
a quasiperiodic motion with two characteristic frequencies o' and w,. By 
increasing a '  further the limit cycle is entrained by the external force A(T). 
As 0,/0' - 0.603 1 - 5, the entrainment occurs at a rational frequency of 0 ,  
i.e. $2'. Therefore, when we observe the time evolution at time intervals 
2.rr/O1, the quintuple cycle (we will use this terminology hereafter) is seen 
to be realized. This periodic state loses its stability at a ' =  0.0339 to lead to 
a chaotic state. The power spectra of the periodic and the chaotic states 
are shown in fig. 8.8. A broad peak is clearly seen in the chaotic state. To 
prove the chaotic behavior we plot the separation distance of two initially 
adjacent points. The method is the following: After a large number of steps 
when the phase point can be considered to be trapped in the attractor we 
take this phase point and choose another point which is separated from 
this point by a small distance. In the present case the real part of $? is 
chosen separated by the distance 0.00001. Then the distance, D(T), between 
these two points is plotted in fig. 8.9 versus the time T. In the quasiperiodic 
state ( a f =  0.01) it can be seen that the two phase points remain close to 
each other. In the periodic state (a '  = 0.03) the phase points approach one 
another as the system evolves. The reason is that the periodic state appears 
due to the entrainment of the phase point by the external field, and the 
relative phase of the phase point to the external force A(T) becomes fixed 
on the attractor. Therefore, the two phase points coincide with each other 
as r +  a. On the other hand in the chaotic state the two phase points get 
more separated as time goes on. The saturation behavior appears after 
r -400. This is due to the fact that the size of the strange attractor (in the 
present case it is of the order one) is finite. This behavior of D ( r )  is quite 
in line with the other examples of chaos. 

At sufficiently large a '  ( a 0.15), the time evolution of the system is periodic 
with the frequency 0 ' .  Between this completely entrained state and the 
chaos mentioned above there appear various states. The bifurcation scheme 

*Readers not familiar with the nomenclature such as "limit cycles", "strange attractors", etc. 
are referred to my book: Advanced Synergetics. 
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Fig. 8.8. The power spectrum of the periodic ( a 1 =  0.03, left part of figure) and the chaotic 
(a1=0.036, right part of figure) states. The sharp peaks at the frequency w =0.45 in both 
figures correspond to the frequency of the external modulated amplitude. The average is taken 
over the sequence over the spectrum 50 times. [T. Yamada and R. Graham, Phys. Rev. Lett. 
45, 1322 (1980).] 

shows a window structure. For example, the system has an octuple periodic 
state at a' = 0.05 and a chaotic state at a' = 0.07. The detailed bifurcation 
scheme with the variation of a '  as well as with that of R '  is interesting, but 
is beyond the scope of this book. 

If the set of parameters, R, a and R, is chosen such that the system is 
deep inside the limit cycle region, it becomes harder to find chaos. The 
reason may be that near the transition region between the steady state and 
the limit cycle state the orbit of limit cycle is easily affected by the external 
force, while deep inside the limit cycle region a strong modulation of A ( T )  
is necessary to change the limit cycle orbit and it may violate the inequality 
a > a'. 
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Fig. 8.9. The separation distance D ( T )  of two initial adjacent points against time T. The 
logarithmic value of D ( T )  is plotted. The three curves correspond to the quasiperiodic 
( a 1=  0.01), the periodic ( a r =  0.03), and the chaotic (a 1=0 .036)  states. [T. Yamada and R. 
Graham, Phys. Rev. Lett. 45, 1322 (1980).] 

The existence of chaos studied here seems not to depend critically on the 
particular approximation (the adiabatic approximation) made at the begin- 
ning. Sufficiently close to the transition region between the steady state and 
the limit-cycle states we can always expect to get a bifurcation scheme 
leading to chaos if only we choose appropriate values of the parameters to 
reach the chaotic state. Let us now consider a second approach to laser chaos. 

( 2 )  Laser chaos produced by an external oscillating jield with constant 
amplitude, and a modulated inversion 
Because the inversion 9, enters eq. (8.41) via R (compare (8.40)) we put 

Thus the model equation is provided by 

It has been solved numerically for specific parameter values. 
In order to have a three-dimensional phase space of the system, it is 

necessary that both a' and A, in eq. (8.46) are different from zero. For 
0' = 0 or A, = 0, eq. (8.46) may be reduced tp two equations of first order. 
For R' = 0, eq. (8.46) has a stationary state gS. A limit cycle appears when 
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Fig. 8.10. Bifurcation scheme (compare text) with R' as control parameter; Q.P.= 
quasiperiodic, 3-P = three-periodic, 2"-BIF = periodic doubling process. [H.J.- Scholz, T. 
Yamada, H. Brand and R. Graham, Phys. Letters 82, 321 (1981).] 

this stationary state becomes unstable for sufficiently large R,. Choosing 
R, = 2, o = 0.5, A, = 0.4, 0' = 0.4 and varying R' ,  one finds the bifurcation 
scheme depicted in fig. 8.10. Slightly above R' = 0.16, the transition from 
the-three-periodic state into the chaotic one takes place via an intermittent 
mechanism (see fig. 8.1 1 ) .  At R' = 0.1610 one observes only a few chaotic 
bursts interrupting the periodic motion. The number of chaotic bursts 
increases as the parameter R' becomes greater. The chaotic regime ranges 
at least up to R1=0.22 where a complicated subharmonic bifurcation 
behavior is observed. With increasing R' the intermittent region is followed 
by a fully chaotic one. This regime has been investigated by various methods 
for R1=0.18. The power spectrum of the real part of the electric field 
amplitude shows broad peaks. While these calculations have been confined 
to the single mode case, the results indicate that chaos may be common in 

Fig. 8.1 1. Time evolution of the real part of the electric field for (a) R' = 0.1610, (b) R' = 0.1615, 
(c) R'= 0.1620. The intermittency is clearly visible. 
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multimode lasers without external modulation. Indeed, in multimode lasers 
the atomic inversion felt by each mode is internally modulated at the 
difference frequency between different modes and the amplitudes of modes 
provide a driving field for other modes (cf. sections 6.4 and 7.1). 

8.7. Single mode laser with injected signal. Chaos, breathing, spiking 

In the foregoing section we studied the effect of an injected coherent light 
field. We treated cases where we could eliminate the atomic inversion and 
polarization so that the laser equations could be reduced to a rather simple 
equation for b (or %') alone. In this section we will drop this adiabatic 
approximation and treat the full set of laser equations. The basic equations 
are well known to us and read 

We start from the full set of equations (8.47), where we assume 8,,, in the 
form 8,,, = A exp[-io,t]. In order to remove exp[-hot]  from eqs. (8.47) 
we put 

In this way we obtain 

In order to reduce the number of parameters which can be freely chosen 
and also to make the system (8.50)-(8.52) more apt for a computer calcula- 
tion, suitably scaled quantities must be introduced. They are defined as 
follows: 

where a is the unsaturated absorption coefficient per unit length, L the 
length of the sample, and T the intensity transmissioi~ coefficient of the 
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mirrors, 

7 = yt, 

K" = K /  y = CT/2y,  

where 2 is the total length of the ring cavity, 

? = Y I I ~  Y, 

A = (6 - oo)/ Y, 

0 = (0-w0)/7. 

The control parameters are C, A, O and ?, and y to be defined below. 
We first note that the steady state solution of (8.50)-(8.52) can be found 

analytically. We scale the incident field amplitude A to the square root of 
the saturation intensity and call this new quantity y. Using the same scaling 
for the laser field amplitude 8 we denote the corresponding quantity by x. 
The relation between the input and output is then given by 

A plot of this relation for specific parameter values is given in fig. 8.12. To 

Fig. 8.12. 1x1 versus y according to eq. (8.59). For C = 500, A = O = 5 ,  G = 1, the segment A, 
B is unstable. [L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 
46, 64 (1983).] 
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Fig. 8.13. Time evolution of the normalized emitted field 1x1 for C = 500, A = O = 5 ,  K = j = 1. 
The abscissa is measured in T units. The curve shows erratic behavior. Driver amplitude 
y = 117. [L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 46, 64 
( 1 NU).] 

describe the time dependent behavior of the system computer calculations 
are necessary. In these calculations yll = y was chosen. In the following we 
shall assume resonance between the cavity mode (with frequency o )  and 
the frequency 6 of the atomic line center, o = G. When the external field 
is switched on, the output intensity begins to oscillate immediately in a 
regular way with a frequency 6 - oo where wo is the frequency of the incident 
light. The average output intensity varies in a continuous way so that the 
behavior of the system is a direct continuation of the stable lasing state in 
the absence of the injected signal. With further increased A the system 
begins to display an irregular self-pulsing behavior (fig. 8.13). For still 
higher A the chaotic pattern is well developed (fig. 8.14). The laser field 
shows outbursts in which each burst is followed by a number of rapid noisy 
oscillations. A further increase of A brings the system out of the chaotic 
domain through a system of period doubling bifurcations. An inverse order 
on irregular self-pulsing sets in (figs. 8.15). At this point the system enters 
a new regime. First the amplitude of the simple oscillation decreases con- 
tinuously, upon increasing y, while, at the same time a gradual lengthening 
of the time scale heralds the appearance of a "breathing" behavior, i.e. a 
stable modulation of the self-pulsing envelope, over a narrow range of 
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Fig. 8.14. The same as fig. 8.13 but for a driver amplitude y = 250. The field shows bursting. 
[L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 46, 64 (1983).] 

Fig. 8.15. The same as figs. 8.13 and 8.14 but driver amplitude y=279. The field exhibits a 
period 4 behavior. [L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 
46, 64 (1983).] 
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Fig. 8.16. Time evolution of the normalized emitted field 1x1 with the same parameters as in 
fig. 8.13. For y =310.3 the system displays a marked modulation of the self-pulsing envelop. 
[L.A. Lugiato, L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 46, 64 (1983).] 

values of y. The time scale of the breathing pattern is about 50 times longer 
than that of simple oscillations. Larger values of the injected field bring 
about a dramatic increase of the breathing pattern ("heavy breathing", fig. 
8.16) and eventually lead to a "spiking" regime (fig. 8.17) in which very 
narrow spikes are followed by long periods of lethargy. Normally, the spikes 
have varying peak heights and their temporal separation grows as y 
approaches the turning point of the state equation (8.59). Finally, when y is 
made larger than ythr, the system quickly approaches a steady state (injection 
locking) in the upper branch 

If the parameters are chosen in such a way that the injection locking 
threshold lies beyond the turning point, breathing and spiking have not 
been seen. One sees instead a gradual reduction of the self-pulsing amplitude 
which, eventually, vanishes at the injection threshold. (The period of self- 
pulsing is about 0.3 unit of T in this case.) 
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Fig. 8.17. The same as fig. 8.16 but with y = 31 1 .  The field exhibits spiking action [L.A.Lugiato, 
L.M. Narducci, D.K. Bandy and C.A. Pennise, Opt. Commun. 46, 64 (1983).] 

As we have outlined in section 8.4, a criterion for the existence of a 
strange attractor is given by the exponential divergence of irregular trajec- 
tories whose starting points in phase space are arbitrarily close to each 
other. Such an exponential divergence is indeed found in the chaotic laser 
regimes. 

The chaotic behavior is independent of the Lorenz model, because for 
y = 0, the stationary state of the laser is stable for our chosen parameters. 
On the other hand, one may select control parameters that lie within the 
Lorenz instability domain (this is defined by the condition (1 +i + T )  
( i  + 2 C) < 2 i ( 2  C - 1 )). In this case, one observes large amplitude self- 
pulsing with evidence of irregular behavior even for small values of the 
injected field amplitude. Furthermore, unlike the previous case, there 
appears to be no period doubling cascade upon emerging from the chaotic 
domain; one finds instead an intermittent behavior of the type shown in 
fig. 8.14. If y is increased further, one arrives at simple oscillations followed 
by nearly the same sequence discussed in the previous case (i.e. breathing 
and spiking). 

The value C = 500 is not very interesting from a practical viewpoint, 
but it is considered here because it presents a rich phenomenology. However, 
one finds nearly the same sequence of solutions as shown in figs. 8.13-8.15 
for values of C as small as 20, which are, in fact, accessible to high gain 
lasers. (Breathing, on the other hand, seems to be absent in resonance 
(o, = o,), or hard to find.) 
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In general, in order to obtain chaotic behavior from the present model, 
the rates K and y must be kept of the same order of magnitude; this is 
unlike the Lorenz model (y =0) where one must insist on K > y +  yl,. In 
addition, chaotic patterns are seen to persist even if y and yl are quite 
different from one another. 



Chapter 9 

Optical Bistability 

9.1. Survey 

The phenomenon of optical bistability can be used in various ways in 
promising optical devices. Therefore we shall explain this phenomenon and 
its theoretical treatment in some detail. Let us consider the experimental 
set-up described in fig. 9.1. An incident coherent light field produced by a 
laser impinges on a mirror where it is partly reflected and partly transmitted. 
Then it may propagate in the form of a wave E ,  further within a medium 
until it hits a second mirror. There it is partly reflected ( E , )  and partly 
transmitted. We are interested in the way the transmitted light field ET 
depends on the incident light field E,. In the following we shall assume that 
the Fabry-Perot resonator of fig. 9.1 is tuned or nearly tuned to the incident 
light. When the cavity is empty, the transmitted power I, is proportional 
to the incident power Ii and the proportionality constant depends on the 
detuning and finesse of the cavity. Qualitatively new phenomena may occur 
when the cavity is filled with material resonant or nearly resonant with the 
incident field. In contrast to the usual laser case where the material in the 
cavity is incoherently pumped from the outside, we are considering here a 
material which is in its ground state if no coherent field Ei is present. 

Fig. 9.1. Scheme of experimental set-up (compare text). 
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Therefore the material will absorb the impinging light. However, this absorp- 
tion may depend in a nonlinear fashion on the incident light field because 
saturation effects occur. Therefore ET becomes a nonlinear function of Ei. 
As we shall see below, the behavior of the system is determined by the ratio 
of the absorption parameter aL  and the mirror transmissivity T, where a 
is the unsaturated absorption coefficient per unit length on resonance and 
L the length of the sample. 

Let us discuss what happens when we increase the ratio aL/ T (compare 
fig. 9.2), where we plot the transmitted intensity versus the incident intensity. 
As one recognizes, the slope may become greater than unity or, in other 
words, the differential gain dIT/dIi becomes larger than unity. If under this 
condition one slowly modulates the incident intensity, the modulation is 
transferred to the transmitted field via the nonlinear relation IT = IT(Ii) and 
turns out to be amplified. Thus the system works as an optical transistor. 
If one further increases the ratio aL/ T, the steady state curve IT= IT(Ii) 
becomes S-shaped. While the segments with positive slope are stable, the 
segment with negative slope is unstable. Hence there is a certain range of 
values of Ii where the system is bistable. If we slowly sweep the incident 
power from 0 to a value beyond the bistable region and then sweep it back, 
we obtain a hysteresis cycle with a low and a high transmission branch. 
This bistable behavior arises from the interplay of the nonlinearities of the 
atom-field interaction with the feed-back of the mirrors and will be the 
main subject of our further study. The threshold value of aL/ T for which 
one yields bistability depends on several parameters as the cavity mistuning, 

Fig. 9.2. Transmitted intensity I ,  versus input intensity Ii for various parameter values of a L /  T. 
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the atomic detuning, the inhomogeneous line-width, etc. When the incident 
field is in perfect resonance with the atomic line, dispersion does not play 
any role so that one speaks of purely absorptive bistability. In the general 
case we have to deal with absorptive and dispersive bistability. When the 
atomic detuning is so large that absorption becomes negligible one speaks 
of purely dispersive bistability. Besides the just described all-optical (or 
intrinsic) bistable systems also hybrid electro-optical systems have been 
devised in many variants. A typical device of this type is obtained by 
replacing the absorber by an electro-optical crystal which is monitored by 
the output field and produces changes in refractive index proportional to 
the output power. From these remarks it transpires that these systems have 
a great potential as devices. They can work as optical transistors, memory 
elements, pulse shapers which eliminate the noisy part of the input light, 
clippers, discriminators, liminators. In addition to what we shall show 
below, this system can work as converter of cw-light into pulses in close 
analogy to the pulses we studied in sections 7.4-7.6. Chaotic states were 
also found. 

9.2. A specific model 

In order to make our presentation as transparent as possible we shall focus 
our attention on a specific model though occasionally we shall deal with 
some more general cases. In the first step of our analysis we replace the 
arrangement of fig. 9.1 by one which is seemingly more complicated but 
which allows a simpler theoretical description. Because the response of the 
medium in the cavity is nonlinear, the interference between the field E,  
running in the right direction and of field E, running in the left direction 
produces nonlinear interference effects which we want to avoid in the 
theoretical treatment. To this end we consider a device which deals with 
waves running in one direction only (for details consult fig. 9.3). We adopt 
a specific model to treat the response of the nonlinear medium. To this end 
we consider two-level atoms with homogeneous broadening. Furthermore 
we shall assume that the waves can be described as plane waves. 

We adopt the slowly varying amplitude approximation and the rotating 
wave approximation. The field propagating in the medium is decomposed 
as usual into its positive and negative frequency parts E'+' and E'-'. The 
equations for the slowly varying amplitudes Eb+' and PC' of the field E'+' 
and polarization P'+', respectively, were derived in section 5.7: (5.102), 
(5.103), (5.105). We start from these equations, which we write down again 
for the reader's convenience. To simplify the notation, we drop the index 
"0" so that E and P are now the slowly varying amplitudes alone. 
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Fig. 9.3. Experimental set-up assumed in the model calculations; 1 and 2 are semi-transparent 
mirrors, 3 and 4 fully reflecting mirrors; V denotes the medium. [L.A. Lugiato, Theory of 
Optical Bistability, in: Progress in Optics, Vol. XXI, ed. E. Wolf, p. 71. North-Holland, 
Amsterdam 1984.1 

We further assume that all vectors are pointing in the same direction and 
are lz. The field equations read: 

The response of the medium to the field is described by the matter equations 

and 

We include a detuning between the frequency of the atomic transition, 6 ,  
and the frequency of the incident light, w0 (= o in our previous notation). 
Due to the boundary conditions at mirror 1 this frequency will then be 
taken over by the oscillation of the field and polarization within the medium. 
In contrast to the laser case where Do was positive we assume here no 
pumping so that 

Do = - N /  V ( N  total number of atoms). (9.4) 

We remind the reader that D is the inversion density 
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In order to fix the problem entirely we have to add boundary conditions. 
Assuming that the distance between the end of the cavity and mirror 2 can 
be neglected the boundary condition reads 

T is the transmissivity of the mirror. The corresponding boundary condition 
at mirror 1 reads (where the reflectivity R = T - 1) 

Here we take into account that the field E(L, t )  is reinjected into the cavity. 
Relations (9.6) and (9.7) can be easily transformed into identical ones for 
E '+' 

Evidently the second term supplies a feed-back. In it R is the reflectivity 
of the mirror, 6, a phase shift given by 

and At the time lag given by the time of flight of the 
2 and 1 via mirrors 3 and 4 so that 

field and 

2 = 2(L + I). 

(9.8) 

light between mirrors 

(9.9) 

w, is a frequency of the cavity mode closest to resonance with the incident 

(9.10) 

9.3. Steady state behavior of the model of section 9.2 

The steady state is characterized by 

One canimmediately convince oneself that P'+' and D can then be chosen 
also time independent. Quite in analogy to our procedure in the case of a 
single mode laser we may express the polarization and the inversion density 
by E'+' and E'-' (cf. section 6.2). Inserting this result as well as (9.1 1) into 
(9.1) we readily find an equation of the general form 
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where x is explicitly given by 

From electrodynamics we know the significance of X. It is nothing but the 
complex dielectric susceptibility 

x = Xa+ i~ci ,  (9.14) 

where xa and xd are the absorptive and dispersive components, respectively. 
The quantities in (9.13) are defined as follows. A represents the detuning 
between the incident light with frequency o0 (= o )  and the atomic transition 
frequency (3 measured in units of y, 

A = ((3 - oo)/ y. (9.1 5) 

I, is the saturation intensity defined by 

When we specialize (9.13) taking A = 0 and E"' very small we find 

x = aE'+'. (9.17) 

From this jointly with (9.14) it transpires that a has the meaning of the 
absorption constant. Within our specific model (9.1)-(9.3) it can be explicitly 
calculated and reads 

In order to explore the physical meaning of our results we specialize them 
to the case of perfect resonance between incident light, atoms, and the 
cavity. We further introduce the normalized dimensionless electric field F 
by putting 

Then (9.12) acquires the explicit form 

where we have assumed that the field is real. We normalize the incident 
and transmitted amplitudes in a fashion analogous to (9.19) so that we 
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introduce the corresponding quantities y, x by 

In this way our original equations for the boundary conditions (9.6) and 
(9.7) acquire the form 

F(0)  = Ty + Rx. (9.24) 

It is a simple matter to solve the first order differential equation (9.20) and 
to express F as a function of z. We readily obtain 

When we combine (9.23), (9.24) and (9.25) we find an exact relation between 
the transmitted field x and the incident field y, 

As can be seen, this equation depends on two parameters, a L  and T. The 
meaning of eq. (9.26) can be understood by a graphical representation as 
is shown in fig. 9.4. The steady state values of x are the intersections of the 
straight line (9.24) with the curve (9.25). The first one is the boundary 
condition of the cavity. The second is the transfer function of the medium 
which expresses the field at z = 0 as a function of the field at z = L and vice 
versa. It has neither maxima nor minima but it has an inflection point. The 
angular coefficient R, of the tangent at the inflection point is such that 
0 < R, < I .  R,  depends only on aL. For R < R, there is only one intersection 
point for all values of y. For R > R, there is a range of values of y in 
correspondence of which one finds three intersection points x, < xb < x,. 
Points x, and x, turn out to be stable while point x, is unstable. Thus we 
are dealing here with the bistable situation. If we plot the steady state 
solutions x as a function of the incident field y we obtain an S-shaped 
curve (fig. 9.5) which gives rise to a hysteresis cycle. From this analysis it 
transpires that bistability arises from the combined action of the nonlinear 
transfer of the medium (eq. (9.25)) and of the feed-back from the mirrors 
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xa X b  x c 

Fig. 9.4. Qualitative graph of the normalized field F(0)  at z = 0 as a function of the field 
F(L) = x at z = L (transfer function of the atomic medium at steady state). For R = 0 one has 
F(0) = y. x and y are proportional to the transmitted and incident fields ET and E,, respectively. 
For a generic R, the function x = x( y )  is obtained by intersecting the curve with the straight 
line F(0) = R F ( L ) +  Ty. [L.A. Lugiato, Theory of Optical Bistability, in: Progress in Optics, 
Vol. XXI, ed. E. Wolf, p. 71. North-Holland, Amsterdam 1984.1 

Fig. 9.5. Plot of transmitted light versus incident light at steady state for C = crLI2T fixed 
equal to 10 and different values of crL and T For a L +  0 one approaches the behavior predicted 
by the mean field theory. (a) crL = 20, T = 1 ; (b) crL = 10, T = 0,5;  (c) a L  = 2, T = 0, 1 ; (d) 
mean field, C = 10. [L.A. Lugiato, Theory of Optical Bistability, in: Progress in Optics, Vol. 
XXI, ed. E. Wolf, p. 71. North-Holland, Amsterdam 1984. 
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(eq. (9.24)). This feed-back action is essential because as one sees from figs. 
9.4 and 9.5 there is no bistability for R = 0. 

9.4. The general case of an arbitrary susceptibility 

We now wish to derive a general equation for the transmissivity of the 
cavity. This quantity is defined as the ratio of the transmitted intensity and 
the incident intensity, i.e. 

y = IT/ II. (9.27) 

We define these intensities by 

I ,  = I E !+'I2, 

IT= IEV'~~.  
We consider the general case also with respect to the field. Because we now 
admit that it is complex we write 

E'+'(t) = p(z) exp [icp(z)] (9.30) 

and obtain by inserting it into (9.12) 

By use of (9.6) and (9.7) we readily obtain for the transmissivity (9.27) 

where we have used the abbreviation 

where 

9 2 1 .  

Let us now consider some special cases. If the cavity is empty so that 
Xa = ,yd = 0, we have 77 = 1 and p(L) = p(0). (9.33) reduces to 
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which represents the usual expression of the transmissivity as a function of 
the cavity detuning 6,. 

In the special case of two-level atoms which we have been considering 
in the model treated above, (9.33) can be cast into a slightly more explicit 
form. To this end we introduce normalized incident and transmitted 
intensities by 

and 

respectively, where I, was defined above (9.16). From eqs. (9.31) and (9.32) 
with (9.6), (9.7), (9.13), (9.14) and (9.19) we obtain 

and 

By solving eq. (9.39) with respect to r]  one obtains the function r]  = r](X). 
Hence by inserting (9.39) into (9.33) one finds the expression of the trans- 
missivity as a function of the normalized transmitted intensity: 

X y=--= T 
(9.4 1 ) 

Y [ r ]  ( X )  - R12 + 4Rr] (x) sin2[+ (A In r ]  (X)  - a,)] ' 
Therefore in this case the shape of the function Y ( X )  is governed by the 
dependence of r]  on X. In particular, for large X, r]  approaches unity so 
that the transmissivity becomes constant and equal to the empty cavity value 
(9.36). When dispersion is dominant, under suitable conditions one or few 
resonances survive. The possibility of multistability (fig. 9.6) depends on 
the number of oscillations that the function 

sin [;(A In r]  ( X )  - a,)] 

undergoes. As one sees from eq. (9.39), r ]  is a monotonically decreasing 
function of X which varies from 1 to exp [cuL/(l + A ~ ) ] .  Hence the quantity 
A In r ]  - 6, varies from -6, to aLA/ ( 1 + A 2, - 6,. Therefore the number of 
oscillations of the sine function is determined by the parameter aLA/(l  + 
A ~ ) .  
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- 
Fig. 9.6. Optical multistability, x = \ / x  is the normalized transmitted field. In all curves 
C =900, A = 5 ,  O =0,05.  Curve a corresponds to the case of homogeneous broadening 
( T; = a); curve b, yTf = l ; curve c, yT; = 0.5. Clearly, multistability disappears with 
increased inhomogeneous broadening. 

Eq. (9.41) can be rephrased as follows 

Eqs. (9.39) and (9.42) together give a parametric representation X = X ( q ) ,  
Y = Y ( 7 )  of the function X (  Y) of transmitted versus incident intensity. 

The stationary solution in the "mean jield limit" 
From now on, we consider exclusively the case of a two-level atomic system. 
In general, the susceptibility has the structure 

xilEI2) = ff m 2 ) ,  (9.43) 

where a and F are defined in (9.18) and (9.19), respectively. Therefore the 
steady state solution becomes particularly simple in the case a L  < 1, because 
as one sees from eqs. (9.3 1) and (9.32) the field becomes practically uniform 
in space. More precisely, we shall perform the multiple limit 

with 

C = aLI(2  T), constant, 

6 0  @,--w, @=-=- constant. 
T c T / 2 '  
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It is easy to derive the steady state solution in the limit (9.44). In fact, from 
(9.31), (9.32) and (9.35), (9.44) we have to first order in crL 

By inserting (9.45) into (9.33) we obtain in the limit (9.44) 

and because F = X /  Y we have 

The limit (9.44) is called "mean field limit" in the literature on optical 
bistability. For a homogeneously broadened system, from (9.13) we have 

In the particular case A = O = 0, (9.48) can be written in terms of amplitudes 
instead of intensities as follows: 

Eqs. (9.48) and (9.49) can also be recovered directly from the exact solutions 
(9.39), (9.42) and (9.26), respectively, by performing the limit (9.44). Let 
us briefly comment on the physical meaning of the limit (9.44). First, a L +  0 
(i.e. cr -+ 0) is the weak coupling limit in the interaction between the electric 
field and the atoms. However, if we only let aL+O but keep T finite, C 
vanishes and therefore we obtain the empty cavity solution Y = X ( l  + 02).  
On the contrary, if we also let T +  0, the parameter C is arbitrary and we 
obtain the nonlinear terms in eq. (9.47), which produce all the interesting 
phenomena. The physical meaning of the limit T + 0 is that the mean lifetiine 
aLf/cT of the photons in the cavity becomes infinite so that the photons 
can experience the interaction with the atoms even when this becomes 
vanishingly small. Finally the limit 

‘"c - '"0 0 - 0  So = - +o,  @=' 
c/ 3 

cT/2 , finite 

means that the cavity detuning must be smaller than the free spectral range, 
but on the same order of magnitude of the cavity line-width k, given by 
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Fig. 9.7. Plot of the transmitted amplitude x = J X  as a function of the incident amplitude y 
in the homogeneously broadened case. In both figs. (a)  and (b) curves a, b, c, d show the 
exact stationary solution (eqs. (9.39) and (9.42)), curve e is the mean field result. (a)  C = 50, 
A = O = 0;  (b)  C = 50, A = 10, O = 2.25. For curves a, a L  = 100, T = 1; for curves b, a L  = 50, 
T = 0,5 ;  for curves c, a L  = 20, T = 0,2 ;  for curves d, n L  = 10, T = 0, 1. [L.A. Lugiato, Theory 
of Optical Bistability, in: Progress in Optics, Vol. XXI, ed. E. Wolf, p. 71. North-Holland, 
Amsterdam 1984.1 

Fig. 9.7 shows how the curve (9.48) is approached in the limit (9.44). The 
part of the curves with negative slope is unstable so that one finds a hysteresis 
cycle. Curve e in fig. 9.7a is obtained from (9.48) for C = 50, A = O = 0 
(purely absorptive case); curve e in fig. 9.7b comes from (9.48) for C = 50, 
A = 10, O = 2.25 (dispersive case). In both figures 9.7a and 9.7b the curves 
a, b, c, d show the exact solution (9.39) and (9.42) for different values 
of crL and of the transmissivity, chosen in such a way that C = aL/ ( 2  T) is 
constant equal to 50. For large \.slues of a L  and T, as in curve a, there is 
no bistability, whereas the bistable behavior increases by decreasing crL 
and T. In this way one approaches the mean field result (9.48) which is 
already a good approximation for aL-  1. For C and T fixed, the mean 
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field curve is a better approximation in the dispersive case (fig. 9.7b) than 
in the absorptive one (fig. 9.7a). This is due to the fact that absorption is 
reduced in the dispersive case so that the variation of the field in space is 
not strong even for a L  large. 

In the following two subsections we shall analyze the mean field state 
equation (9.48), which expresses the incident intensity as a function of the 
transmitted intensity. It depends on three parameters, the cooperativity 
parameter C, the atomic detuning A and the cavity mistuning O. In compar- 
ing (9.48) with experimental data, the definition (9.44) of C must be changed 
into 

where J is the effective finesse of the cavity. A general property of eq. (9.48) 
is that, contrary to (9.39) and (9.42), it can never produce multistability, 
but at most it can lead to bistability. 

Bistability condition in the resonant case (mean jield limit) 
The field internal to the cavity is in general quite different from the incident 
field, because there is a reaction field, co-operatively produced by the atoms, 
which counteracts the incident one. 

In the purely absorptive, resonant case A = O = 0, the steady state behavior 
is described by (9.49). The nonlinear term 2Cx/(l  +x2)  arises from the 
reaction field and hence from atomic co-operation, which is measured by 
the parameter C. For very large x, (9.49) reduces to the empty cavity solution 
x = y (i.e. E T =  E,). The atomic system is saturated so that the medium is 
bleached. In this situation each atom interacts with the incident field as if 
the other atoms were not there; this is the nonco-operative situation, and 
in fact the quantum statistical treatment shows that atom-atom correlations 
are negligible. On the other hand, for small x, (9.49) reduces to y = (2C + 1)x. 
Here the linearity arises simply from the fact that for small external field 
the response of the system is linear. In this situation the atomic system-is 
unsaturated, for large C the atomic cooperation is dominant and one has 
strong atom-atom correlations. The curves y(x)  obtained by varying C are 
analogous to the Van der Waals curves for the liquid-vapor phase transition, 
with y, x and C playing the role of pressure, volume and temperature, 
respectively. For C < 4, y is a monotonic function of x so that one has no 
bistability (fig. 9.8). However, in part of the curve the differential gain dx ldy  
is larger than unity so that in this situation one has the possibility of transistor 
operation. In fact, if the incident intensity is adiabatically modulated around 
a value of I, such that d I,/d I, = ( x l  y )  dx ldy  > 1, the modulation is 
amplified in the transmitted light. 
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Fig. 9.8. Plot of the mean field state equation (9.49) for purely absorptive bistability with 
O = 0, for different values of the bistability parameter C. [L.A. Lugiato, Theory of Optical 
Bistability, in: Progress in Optics, Vol. XXI,  ed. E. Wolf, p. 71. North-Holland, Amsterdam 
1984.1 

For C = 4 (critical curve) the graph has an inflection point with horizontal 
tangent. Finally for C > 4 the curve develops a maximum and a minimum, 
which for C > 1 correspond to 

( x M - l , y M = C )  and ( x m = J ~ , y m = J 8 C ) .  

Hence for y, < y < y, one finds three stationary solutions x, < x, < x,. As 
a more detailed analysis reveals, solutions x, on the part of the curve with 
negative slope are unstable. Therefore we have a bistable situation and by 
exchanging the axes x and y we immediately obtain the hysteresis cycle of 
transmitted versus incident light. Since atomic co-operation is dominant in 
the states x, and negligible in the states x, we shall call x, "co-operative 
stationary state" and x, "one-atom stationary state", according to the 
literature. 

Bistability conditions in the general case (mean jield limit) 
Let us now consider eq. (9.48) for general values of A and 0. We assume 
that A 0  > 0 because for A 0  < 0 it is more difficult to obtain bistability. For 
definiteness, we take A, 0 2 0; however, the situation is symmetrical with 
respect to a simultaneous sign change in A and 0. The function Y ( X )  
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defined by (9.48) has always a single inflection point at 

In order to have bistability the conditions are 

The first condition guarantees that the inflection point is within the physical 
region X > 0, while the second one identifies the values of the parameters 
for which the curve Y ( X )  has a maximum and a minimum. For A @ >  0 
the first of conditions (9.53) reads 

The second condition gives 

The analysis of (9.55) and (9.54) leads to conclude that: 
( I )  Bistability is impossible for C < 4. 
(2) For a fixed value of C > 4, the largest hysteresis cycle is obtained for 
A = O = 0 and bistability exists only in a finite domain of the plane {A, 0)  
around the origin. 
(3) If we keep C and A fixed and C satisfies condition (9.55) for O = 0, 
by increasing O the size of the hysteresis cycle increases until it reaches a 
maximum and then decreases. Finally the cycle vanishes in correspondence 
to a value of O smaller than (2C + 1)/ A (see (9.54)). 
(4) If we keep C > 4 fixed and increase A and O simultaneously from zero 
with the ratio A /  O kept fixed, the hysteresis cycle of the curve X (  Y) shifts 
to the left and decreases in size, until it disappears. 

Therefore in homogeneously broadened, two-level systems when absorp- 
tive bistability for O = 0 is not possible also dispersive bistability for general 
values of A and O is impossible. This is no longer true in the case of 
inhomogeneously broadened systems (T;<w). For fixed A, O and 
inhomogeneous relaxation time T; one obtains bistability provided C is 
larger than a suitable value Cmin which depends on A, O and T z .  Cmin 
increases rapidly with ( T ; ) - ' .  The important point is that for (./T;)-' << 1 
one finds values of C such that the system is not bistable for A = O = 0 but 
becomes bistable for A and O large enough. In other words, for these values 
of T z  and C one does not find absorptive bistability, but only dispersive 
bistability. 
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So far we have only considered hysteresis cycles obtained by varying the 
incident field intensity and keeping the parameters C, A and O fixed. Of 
course, one can also consider cycles obtained by keeping Y fixed and 
varying C, or A, or O, or some of these parameters simultaneously. E.g., 
one can perform an experiment in which one adiabatically sweeps the 
incident field frequency, thereby varying A and O together. 

Absorptive versus dispersive bistability 
As we said, we have purely absorptive optical bistability when the atomic 
detuning A vanishes. Qn the other hand, we have purely dispersive optical 
bistability when A is so large that the absorptive part of the nonlinear 
susceptibility is negligible, hence the state equation (9.47) reduces to 

In the case of a homogeneously broadened, two-level system (9.56) is a 
good approximation of (9.47) when 

Moreover if also the condition 

is satisfied, (9.56) reduces in turn to the relation 

Eq. (9.59) is a particular example of the "cubic model" of purely dispersive 
optical bistability 

Y = X[l + (B  - AX)*], (9.60) 

which gives bistability for B > 43. Eq. (9.60) describes optical bistability in 
several materials, e.g. in a Kerr medium in a certain limit. 

Let us now describe the physical mechanisms that give rise to hysteresis 
in absorptive and dispersive optical bistability. In the absorptive case, let 
us consider for simplicity the resonant situation O = 0. In the cooperative 
(i.e. lower transmission) branch the transmission is small because the 
presence of the saturable absorber drastically decreases the quality factor 
Q of the cavity. Most of the incident light is reflected from the cavity. 
Increasing the incident field, the absorber begins to saturate, which allows 
Q to increase. This in turn increases the internal field which again increases 
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the saturation and so on, until the absorber is bleached so that IT2: I,. On 
the other hand, when the system is in the one-atom (i.e. higher transmission) 
branch and the incident intensity is decreased, the field internal to the cavity 
is already strong enough to maintain the absorber saturated and therefore 
the transmitted light switches "off" at an incident power lower than that 
necessary to switch "on", thereby producing hysteresis. 

In the case of purely dispersive optical bistability the mechanism is quite 
different. In the empty cavity, the transmission is low because the empty 
cavity frequency w ,  is detuned from the incident frequency w,. If the atomic 
and cavity detuning have the same sign, by increasing the incident field the 
nonlinear refractive index changes the effective optical length of the cavity 
towards resonance. This in turn increases the internal field which further 
drives the effective cavity frequency w :  = w ,  - K X ~ ( X )  towards the incident 
field frequency and so on, until resonance is reached so that I , -  I,. On 
the other hand, when the system is in the higher transmission branch and 
the incident intensity is decreased, the internal field is already strong enough 
to maintain resonance, which again produces hysteresis. 

In order to complete the discussion of the steady state behavior, let us 
illustrate the relative advantage of absorptive and dispersive optical bistabil- 
ity. First of all, it is clear that dispersive optical bistability is "easier" mainly 
for two reasons: 
(a) it does not require saturation of the medium as it appears from the 
cubic model (9.60) ; 
(b) in absorptive optical bistability the resonance condition between the 
incident field and the atoms cannot be easily maintained for a time long 
enough to allow the system to reach steady state, due to the jitter of the 
laser frequency. 

As we have seen in the previous section, in the case of homogeneous 
broadening absorptive optical bistability has the advantage of exhibiting 
the largest hysteresis cycle for fixed C, when A = O = 0. However, this is 
no longer true in the case of inhomogeneous broadening. Furthermore, even 
in the case of homogeneous broadening the switching from the low trans- 
mission to the high transmission branch occurs for lower values of the input 
field when A and O are different from zero. This is an important advantage, 
also because the presence of a field too intense in the absorber might produce 
undesirable effects, e.g. excessive heating of the medium. 

On the other hand, from the viewpoint of theory and hence of the 
comparison between experiment and theory, absorptive optical bistability 
with O = 0 is certainly much easier to deal with, because in eqs. (9.1)-(9.3) 
all the fields can be assumed real. This is the reason why most theoretical 
papers treat the absorptive case. 
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9.5. Concluding remarks on chapter 9 

In this section I have tried to give a short outline of some basic ideas on 
optical bistability, closely following the first part of an article by Lugiato. 
Especially in the limit (9.44) a number of further phenomena could be 
studied in the literature. Using the decomposition of the field E into cavity 
modes, equations strongly reminiscent of the multimode laser equations 
of the semiclassical theory have been established. Their exact or approximate 
solution allows one to study relaxation phenomena. In particular, qualita- 
tively new phenomena could be found such as the onset of pulses and chaos 
under constant incident intensity. Also a detailed quantum theoretical 
treatment of these phenomena is available. But an inclusion of these 
phenomena is beyond the scope of our book. It may be worthwhile, however, 
pointing out that the methods used in these treatments are either identical 
with the methods we have presented here with respect to the laser or can 
be considered as certain useful extensions, such as the "dressed mode" 
approach of Lugiato and Benza. For further details of the above mentioned 
results. we refer the reader to the references. in particular to Lugiato's article. 



Chapter 10 

Quantum Theory of the Laser I 

A first approach via quantum mechanical Langevin equations. 
Coherence, noise, photon statistics 

10.1. Why quantum theory of the laser? 

The semiclassical theory of the laser which we presented in the preceding 
chapters enabled us to explain or even to predict many properties of laser 
light. According to these studies, laser action sets in above a certain threshold 
of the pump, whereas below that threshold no emission occurs at all. But 
this latter finding is highly unsatisfactory, because even below laser threshold 
light emission happens - namely the light emission by usual lamps. An 
adequate laser theory must be able to describe the transition from the light 
of usual lamps to laser light and it should contain light emission by usual 
lamps as a special case. Thus quite evidently, we must have left out an 
important aspect of laser theory. In order to elucidate the problem we 
consider the emission of light from usual light sources more closely. 

As we know (cf. for example Vol. 1) light is spontaneously emitted by 
excited atoms. This spontaneous emission cannot be dealt with in the frame 
of a theory which treats the light field classically. We have met this fact 
already in the first volume when we calculated the Einstein coefficients of 
absorption and emission. There we could derive the corresponding 
coefficients of absorption and stimulated emission but not those of spon- 
taneous emission. As we have shown in Vol. 1, spontaneous emission can 
be treated adequately only when we quantize the light field. In that volume 
we have also seen that the damping of a classical or quantum mechanical 
quantity is always accompanied by a corresponding fluctuation. For 
example, the light field in the resonator is damped due to the transmissivity 
of the mirrors. According to our studies in Vol. 1 we have to expect 
fluctuations of the light field amplitude. Both the fluctuations produced by 
spontaneous emission as well as those accompanying cavity losses are not 
contained in the semiclassical laser equations. We shall see that a fully 
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quantum mechanical description of a laser becomes necessary when we 
wish to understand the difference between a laser and a conventional lamp. 
As we shall see, laser light fluctuations cannot be neglected but decisively 
determine the detailed coherence properties of laser light. When we consider 
the properties of laser light not so much from the point of view of optics 
but rather from that of electronics we will speak of noise properties rather 
than of coherence properties. 

Finally, when we consider laser light as composed of photons we are led 
to study photon statistics. A fully quantum theoretical treatment of the laser 
is not only important with respect to the properties of laser light, its 
coherence, noise, and photon statistics but it is also of a fundamental 
importance for laser theory. Namely such a treatment will allow us to derive 
the laser equations from first principles. 

Since the rigorous quantum theory of laser light is rather involved we 
shall proceed in two steps. In this chapter we shall deal with quantum 
mechanical Langevin equations. This will allow us to present the most 
interesting and important properties of laser light, namely its coherence, 
noise and photon statistics in a way which can fairly easily be understood 
and which immediately allows a comparison with experimental results. 
Then in chapter 11 we shall develop a second approach to the quantum 
theory of laser light, this time based on the density matrix equation. The 
density matrix equation will be transformed into a generalized Fokker- 
Planck equation which then will be reduced, under suitable conditions, to 
the one we shall use directly in section 10.5. Readers, who are not so much 
interested in the details of these quantum mechanical derivation, can skip 
chapter 11. For readers, who are not so familiar with quantum theory, 
especially that dealing with quantized fields, we give an important hint. As 
the reader will soon find out when reading the following sections, the basic 
quantum mechanical laser equations are strongly reminiscent of the semi- 
classical laser equations. Indeed, the quantum mechanical laser equations 
look the same as the semiclassical laser equations with the exception of an 
additional term which represents fluctuating forces. Though the correspond- 
ing equations are "operator equations" their physical meaning can still be 
grasped at a classical level. 

10.2. The laser Hamiltonian 

In this section we shall derive the quantum mechanical laser equations from 
first principles. To this end we consider the laser system more closely. First 
of all the laser consists of a material containing the laser active atoms (or 
other quantum systems). We know that there may be a field in the cavity. 
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Furthermore we know that the atoms and the field interact with each other. 
In a quantum mechanical formulation one usually starts with writing down 
a Hamiltonian which in a classical interpretation has the meaning of an 
energy. In a quantum mechanical treatment the Hamiltonian becomes the 
Hamilton operator. We shall write down the explicit form of the Hamilton 
operators below but first we introduce the following abbreviations. The 
Hamiltonian operator of the field will be denoted by Hf, that of the atoms 
by HA, and that describing the interaction field-atoms by HAP A treatment 
of the laser with these Hamiltonians is, however, quite insufficient. Namely, 
the field is coupled to the mirrors which will cause damping and fluctuations 
of the field. We shall describe the mirrors or other systems to which the 
field (with the exception of the laser atoms) is coupled by a heatbath (or 
"reservoir"). 

Similarly the atoms are coupled to heatbaths. They are pumped from 
the outside and the excited atoms may decay in various ways. They may 
decay, for instance, by radiationless transitions, or they may decay by 
radiative emission into the nonlasing modes of the light field. The motion 
of electrons in the atoms may be perturbed by their interactions with lattice 
vibrations or by atom-atom collision. All these effects are taken care of by 
an appropriate coupling of the atoms to heatbaths. 

It will be important for our following discussion that the detailed 
physical nature of these heatbaths need not be known. Rather for our 
analysis it will be sufficient to know only a few features which we shall 
discuss below. 

We denote the Hamiltonians of the heatbaths 1 and 2 by HB, and H,,, 
respectively. Similarly the Hamiltonian of the interaction between heatbaths 
1 and the field is denoted by Hb-,, that of the interaction between heatbaths 
2 and the atoms by HB,-,. 

According to the fundamental rules of quantum mechanics the Hamil- 
tonian of the total system is obtained by a sum over the individual contribu- 
tions so that the total Hamiltonian reads 

Here and in the following we shall speak of Harniltonians, though, more 
precisely, we should speak of Hamiltonian operators. 

We now have to consider the explicit form of these Hamiltonians. To 
this end we use the results we derived in Vol. 1, chapters 5 to 7. But the 
reader will note that a good deal of the results to be presented here can be 
understood directly without a detailed knowledge of their previous deriva- 
tion. Because the single mode case shows all the important features we will 
treat only that case. We decompose the electric field strength in the resonator 



as follows 

E, = i(b - b + ) J h w / ~ , ( l / J L )  sin kx. 
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In a classical treatment, b+ and b are time dependent amplitudes. In our 
present treatment they are operators which obey the commutation relation 
(cf. Vol. 1) 

With their help the quantized field energy can be written in the form 

so that we have found the explicit form of the field Hamiltonian. The 
operators b' and b describe the creation or annihilation, respectively, of a 
photon of the field mode under consideration. As we have seen in Vol. 1, 
we cannot only describe the creation and annihilation of photons, but also 
the corresponding processes with respect to electrons. Let us consider a 
single atom with two levels 1 and 2. The creation of an electron in level 1 
is described by the creation operator a: and in level 2 by a:. Correspond- 
ingly the annihilation of an electron in levels 1 or 2 is described by 
annihilation operators a,  or a,, respectively. For sake of completeness we 
mention that these operators obey commutation relations which are as 
follows: 

afa:+a:af =0 ,  ( 10.5) 

where j and k can acquire the values 1 or 2. With help of these operators, 
according to Vol. 1, the Hamiltonian of a single atom, which we denote by 
Ha, acquires the form 

U/;. is the energy of the electron in its level j = 1, 2. Because we can choose 
the zero of energy arbitrarily we shall choose 

We relate the transition energy to the atomic transition frequency c3 by 

Therefore in the following (10.8) will be used in the form 
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Because there are many laser active atoms in the cavity we shall distinguish 
them as previously by the index p so that we have to attach this second 
index to the operators a, 

aj+ -+ a:, , 

a j  + a,,,. 

The energy of the atomic system is a sum over the individual energies, 

Again for sake of completeness we quote the corresponding commutation 
relations for the atomic operators 

Finally we have to deal with the explicit form of the Hamiltonian which 
describes the interaction between the field mode under consideration and 
an atom. This form has been derived in Vol. 1 and reads* 

The meaning of this interaction Hamiltonian can be easily visualized when 
we recall that a', a and b', b are creation or annihilation operators. For 
instance the term a :a2b' describes the creation of a photon while an electron 
is annihilated in state 2 and created again in state 1 (remember that the 
sequence of operators is read from the right to the left). A complete survey 
of the processes described by ( 10.17) is presented in fig. 10.1. g is a coupling 
coefficient which is proportional to the optical dipole matrix element 

2~ 2 1  2T-LT 

w m  

1- 1- I- 1- 
Fig. 10.1 Schematic representation of the processes described by eq. (10.17). 

"Here and in the following we shall assume g real which can always be achieved by the proper 
choice of a phase factor of aTa,. 
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(This form can be deduced from Vol. 1, eq. (7.38) by help of the relation 
(7.103) of that volume.) u, is the field mode which in the present case is 
assumed to be polarized in z-direction and to be given by 

ez u(xo) = -= sin kx,. 
J L  

x, = (x,, yo, z,) is the position of the atom. In the following we shall adopt 
the rotating wave approximation which we got to know in section 5.6 and 
which we can reformulate in a different manner. Namely, it amounts to 
confining our analysis to real transitions in which a photon is emitted while 
the atom goes from its upper state to its ground state, or a photon is absorbed 
while the atom goes from its ground state to its upper state. Under this 
assumption we may reduce the Hamiltonian (10.17) to the form 

When the field mode interacts with a set of atoms distinguished by an index 
p, we find the total interaction Hamiltonian by summing up over the 
individual contributions (1 0.20) provided we distinguish the atomic 
operators by an additional index p as before. We thus obtain 

where we had to supply g by the index p because according to (10.18) g 
depends on the atomic coordinate x,,,. For sake of simplicity we shall drop 
the index p of g,, because at least for running waves the dependence of 
g, on x,,, can be removed by a suitable transformation of a,, a: (cf. 
exercises on page 125). 

When we take the sum over Hamiltonians (10.4), (10.13) and (10.21) we 
find a Hamiltonian which describes the interaction of the field with the set 
of atoms. But this resulting Hamiltonian is not enough to describe a laser 
because the field and the atoms are coupled to their corresponding heatbaths 
(reservoirs). The effect of the heatbaths on the field operators and on the 
atomic operators can be taken care of by the additional operators H,,, 
HB,-,, H,,, H R 2 - A  in the total Hamiltonian (10.1). In contrast to Hf, HA 
and HAf we need not know these additional Hamiltonians explicitly. Indeed 
it was shown in Vol. 1 that only few general properties of these Hamiltonians 
must be known. The basic idea of the next step consists in eliminating the 
heatbath variables implicitly contained in H,, ,  . . . , HBZ-A. According to 
Vol. 1, this may be done in two ways, either in the frame of quantum 
mechanical Langevin equations or in that of the density matrix equation. 
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In sections 10.3 and 10.4 we shall follow up the first approach, while section 
11.1 will be devoted to the second. 

10.3. Quantum mechanical I ,angevin equations 

10.3.1. A jield mode coupled to a heatbath 

To derive quantum mechanical Langevin equations we use the Heisenberg 
picture. In this picture the operators are treated as time dependent quantities 
whereas the wave functions are time independent. The time dependence of 
the operators is determined by the Heisenberg equations of motion which 
can be obtained as follows. Let R be an operator whose time dependence 
we wish to study. Then its time derivative is given by the equation 

i.e. the time derivative of C2 is given by the commutator between the 
Hamiltonian H and the operator R. Let us briefly remind the reader how 
this formalism works by means of a simple example. 

Let us consider the field operator b and its corresponding Hamiltonian 
Hf alone so that we consider a freely oscillating field without any couplings 
to atoms or reservoirs. Using R = b and inserting Hf (eq. (10.4)) instead of 
H into (10.22) we obtain 

Because of the commutation relation (10.3) the r.h.s. can be transformed into 

b =  -iwb. ( 10.24) 

We leave the performance of this transformation as an exercise to the reader. 
Now let us consider the interaction between the field and the heatbath 

1 .  The time derivative of b is then given by the equation 

1 
b =- [(Hf + H,, + H,,-,), b]. 

ii 
(10.25) 

Because the Hamiltonian of the heatbath and the interaction Hamiltonian 
contain the variables of the heatbath, corresponding Heisenberg equations 
must be established for the heatbath variables. As has been shown in Vol. 
1, the heatbath variables can be eliminated from these equations and one 
finds a closed eauation for the field o p e r a t o r  b alone. The thus resulting 
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equation reads 

where K describes the damping of the field mode. K is identical with the 
quantity we introduced in the semiclassical laser equations in a phenomeno- 
logical way in section 5.5. As shown in Vol. 1, in the present case K can be 
derived from first principles. F is a fluctuating force which is an operator. 
The properties of F ( t )  and its Hermitian conjugate were derived in Vol. 1 
(formulas (9.83)-(9.86)). When we denote the quantum mechanical average 
over the reservoir variables, which are still implicit in F, according to Vol. 
1 the following relations hold: 

(F+( t )  F( t l ) )  = i i ( T ) 2 ~ 6 ( t  - t'), 

(F ( t )  F+(t l ) )  = (ii(T) + 1 ) 2 ~ 8 ( t  - t'). 

ii(T) is the mean photon number of the field mode at temperature T. This 
is the temperature of the reservoir to which the field mode is coupled. In 
the optical case, at room temperature ii is much smaller than unity so it 
can be neglected in practically all cases. For sake of completeness, however, 
we shall carry f i  on in our following analysis. 

10.3.2. Electrons (of atoms) coupled to heatbaths 

Now let us turn to the Heisenberg equation of the electron of an individual 
atom. We start with a free atom which does not interact with any other 
system. In the following we shall make contact as close as possible with 
our semiclassical treatment. There we have used the inversion (or, in other 
words, the population difference) as a variable. Because a;a, and a l a ,  are 
the operators which measure the occupation of the atomic levels 1 and 2, 
respectively, we introduce the operator d via 

The Heisenberg equation for d reads, of course, 

with Ha given by ( 10.1 1 ). On account of the commutation relations ( 10.5)- 
(10.7) one readily derives (compare the exercises) that the r.h.s. of (10.32) 
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vanishes, 

d =o.  

Furthermore we introduce the operators 

A little algebra with help of the commutation relations just mentioned leads 
us to the following Heisenberg equations of motion: 

(compare the exercises). 
We now turn to a derivation of the Heisenberg equation of motion of 

the electron (atom) when it is coupled to heatbaths. To this end we again 
remind the reader of the main results of Vol. 1, chapter 9. 

Let us introduce the mean values of the occupation numbers of the 
electronic levels j = 1, 2 by means of 

n, = ( a a ) ,  j = 1,2. (10.38) 

Because of pump and decay processes these occupation numbers may 
change, the temporal change being described by the well known rate 
equations 

w,, and w12 are the transition rates caused by pump and incoherent decay 
processes, respectively (cf. fig. 10.2). These pump and decay processes are 

Fig. 10.2. Scheme of radiationless transitions or nonlasing optical transitions (left-hand side) 
and pump transitions (right-hand side) with the corresponding transition rate constants. 
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caused by the interaction of the electron with heatbath 2. As was shown in 
Vol. 1 the effect of heatbaths in the fully quantum mechanical equations 
for the operators can be taken care of by the following equations: 

Because in this section we have introduced the inversion d (10.3 1) as a new 
variable, we derive an equation for that quantity by simply subtracting 
(10.42) from (10.41). This yields 

Because the electron must be in any of the two states 1 or 2, the relation 

holds. Writing down the eq. (10.31) again we have 

By means of (10.44) and (10.45) we can express a:a2, a :al by d, 

a l a 2  = i ( l  + d) ,  ( 10.46) 

a:al = i ( l  - d). ( 10.47) 

Introducing ( 10.46) or (1 0.47) and using the abbreviations 

Yl( = W12 + W21, ( 10.48) 

eq. (10.43) acquires the form 

A comparison between this equation and that of the corresponding equation 
(4.11) or (5.43) of the semiclassical theory reveals that do is the unsaturated 
inversion whereas yll = 11 T is the damping constant of the inversion whGh 
is the inverse of the longitudinal relaxation time T. The equations for (1 0.34) 
and (10.35) can be immediately taken from the results of Vol. 1, (9.97) and 
(9.98), so that 
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where 

For later purposes we need the correlation functions between the fluctuating 
operator forces r. When the quantum mechanical average over the variables 
of the reservoirs 2 is taken we find relations of the form 

or more generally 

The G's have been derived in Vol. 1, formulas (9.104)-(9.109), and are 
repeated here 

Because in the case of the laser we have to consider many atoms being 
distinguished by the index p we must say a word how the correlation 
functions must be generalized to that case. We shall assume as usual that 
each atom is coupled to its own heatbaths, so that the heatbath variables 
are independent of each other. In such a case it turns out that quite generally 

( rp, j /c( t )  rp , , / rn ( t f ) )a  Sppl- ( 10.63) 

It is not difficult to transform the correlation functions for rjk to those 
referring to the fluctuating forces of (10.50)-(10.54). A little analysis pro- 
duces the following relations: 
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10.3.3. Field and atoms coupled to heatbaths. The quantum mechanical 
Langevin equations of the laser 

So far we have derived the Heisenberg equations for the field coupled to 
its heatbath and for the atoms coupled to their heatbaths. Now we wish to 
consider the full system in which the field and the atoms interact with each 
other and each of these subsystems is coupled to its corresponding heatbaths. 
The field operator b then obeys the Heisenberg equation 

1 
b = - [H,  b], ( 10.70) 

A 

where H is now given by (10.1). Because b commutes with all Hamiltonians 
which do not contain the field operator b', we need to consider on the 
r.h.s. of (10.70) only those terms of H which contain bf. Since we have 
treated the interaction between the field and its heatbath 1 above, the only 
part of the Hamiltonian, H, which has not been considered yet, is stemming 
from the atom-field interaction. Therefore, in the case of the interaction 
with the single atom we have to study 

1 
= - [(Agab+ +Aga+b), b], 

where we made use of (10.20). Because b commutes with the atomic 
operators we may immediately apply the commutation relation (10.3) so 
that we obtain 

- - iga. 

This result can be immediately generalized to the case of many atoms where 
we find 

After all these intermediate steps we are now in a position to write down 
the final equation for b when it interacts with the atoms and the heatbaths. 
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Taking the terms (10.26) and (10.73) together we find 

For what follows it is important to note that the correlation functions of F 
and F' (cf. (10.27)-(10.30)) are unaffected by the interaction between the 
field mode and the atoms. 

In a similar fashion we have to derive the Heisenberg equation of motion 
for the atomic operators if the interaction between the field and the atom 
is taken into account. The evaluation of the corresponding equation 

requires some elementary algebra using the commutation relations. We 
leave this algebra as an exercise to the reader and immediately write down 
the final result 

= igbd. 

It shows that in order to determine the time dependence of a we need not 
only to know that of the operator b but also that of the inversion operator 
d defined in (10.3 1). Therefore we have to derive an equation for d also. 
Before we turn to this question we write down the equation for a if the 
full Hamiltonian H (10.1) is taken into account. According to the terms 
stemming from the "free" motion of a ,  from its coupling to heatbaths and 
from its coupling to the field we obtain the equation 

The generalization to atoms with index p is straightforward. We just have 
to supplement the atomic variables a and d by the corresponding index p, 

The equation for the Hermitian conjugate reads, of course, 

Finally we have to derive an equation for d. Because the construction of 
this equation is quite obvious we write it down immediately 

The first two terms on the r.h.s. stem from the action of the heatbaths on 
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the electron. The bracket stems from the interaction between the electron 
and the field, and the last term represents the fluctuating force. The eqs. 
(10.78)-( 10.80) jointly with (10.74) represent the fundamental laser 
equations. For sake of completeness we mention that the atomic fluctuating 
forces and the fluctuating forces of the field are uncorrelated so that 

We note that according to Vol. 1 the correlation functions between the T's 
and between the T's and F's are not affected by the coherent interaction 
term HA,, so that we may apply the relations (10.27)-(10.30)' (10.64)- 
(10.69), (10.81) and (10.82). We note however, that in the relations (10.64)- 
(10.69) the average values on the r.h.s. must be evaluated taking into account 
the total laser equations including the atom-field interaction. The final laser 
equations ( 10.78)-( 10.80) and ( 10.74) exhibit a pronounced analogy to the 
equations of the single mode laser in the semiclassical theory (6.1)-(6.3). 
There are two differences, however. The obvious one consists in the occur- 
rence of the additional fluctuating forces acting on field and atomic 
operators. The other difference consists in the fact that the quantities b, b+, 
a ,  a +  and d are now quantum mechanical operators obeying specific 
commutation relations. But as we shall see, the form of the equations will 
allow us to proceed in close analogy to the case of the semiclassical 
equations. 

In conclusion we indicate how to proceed from the quantum mechanical 
laser equations to the semiclassical equations. To this end we take the 
quantum mechanical average (. . a )  on both sides of ( 10.74), ( 10.78)-( 10.80). 
As we shall demonstrate later in this book, above laser threshold the 
quantities (bd,), (a,b +) and ( a l b )  can be factorized in a good approxima- 
tion, i.e. 

Because the averages over the fluctuating forces vanish and (b), etc. are 
classical quantities, we thus arrive precisely at the semiclassical equations 
which in this way have been derived from first principles. 

Exercises on section 10.3 

(1) Derive (10.24) by means of (10.22) and (10.3). 
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(2) Prove (10.33) by means of (10.32), (10.1 1). 
Hint: use (1 0.5)-(10.7). 
What does this result mean physically? 

(3) Derive (10.36), (10.37). 

10.4. Coherence and noise 

It will be our task to solve the basic equations (10.74), (10.78) to (10.80). 
The striking similarity of the quantum mechanical equations to those of the 
semiclassical laser theory suggests to formally proceed as with these latter 
equations. This is in fact possible provided we take care of the sequence 
of the operators in the nonlinear terms, and by taking into account the 
fluctuating forces F and T. The first step consists in an elimination of the 
atomic "variables" a,, a: and d, in analogy to our procedure of section 
6.3. Because that procedure was outlined there explicitly we do not repeat 
it but write down the final result 

Do is given by 

Do = Ndo, 

and C is defined by 

Ftot is defined by 

With respect to the terms which do not contain fluctuations, eq. (10.83) 
possesses the same degree of accuracy as our former semiclassical equation 
(6.46). With respect to the additional terms, i.e. to the fluctuations, it must 
be noted that one term, which stems from the fluctuations of the inversion, 
has been neglected, because, in general, this causes only small effects. For 
what follows it is important to know the properties of the fluctuating force 
Ftot. Using the definition (10.86) and the correlation functions (10.27)- 
(10.30), (10.64)-(10.69) and (10.8 l) ,  (10.82) of the fluctuating forces we 
may easily derive the following relations: 
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When proceeding from (10.89) to (10.90) we have assumed that steady state 
laser action occurs and that we may put within a surrounding of the laser 
threshold do - (d,) = 0 in a good approximation. Finally, N l , ,  + N2,, .= 1 
jointly with the threshold condition = ( N ,  - NI) thr  = K y lg2  yields the 
final form (10.90). N2,, is the saturated occupation number of level 2 of the 
atoms, and nth the number of photons in thermal equilibrium. 

Before we start solving eq. (10.83) let us visualize its meaning by interpret- 
ing b as a classical variable. Our subsequent discussions will show that such 
a meaning can indeed be attached to that operator. To this end we use the 
potential model which we introduced in section 6.3. Let us interpret b as 
the coordinate q of a particle. Then eq. (10.83) can be considered as an 
equation for the overdamped motion of a particle. Thus this equation has 
the structure 

where the acceleration term 
r.h.s. (1 0.9 1 )  is represented as 

mq is assumed very small. The force on the 
a sum stemming from K ( q )  which corresponds 

to the semiclassical result and F( t )  which represents the additional fluctuat- 
ing force. As we have seen in section 6.3, there are two different solutions 
to eq. (10.83) depending on whether the laser is operated below or above 
its threshold. For this reason we shall perform the discussion of these two 
cases separately. 

10.4.1. Operation below threshold 

In this case G < 0,  where 

is the unsaturated net gain. 
The potential V is represented by the dashed curve of fig. 10.3. In this 

case the fictitious particle has a coordinate q which remains close to q = 0,  
i.e. we expect that q is a small quantity. Consequently we shall expect that 
in eq. (10.83) the nonlinear term b'bb, if any suitable expectation value is 
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I "'" 

Fig. 10.3. The potential of a fictitious particle versus coordinate q. Dashed line: below laser 
threshold. After each excitation act due to the fluctuating force, the particle relaxes towards 
its equilibrium position. Solid line: potential above laser threshold. 

taken, is much smaller than the other linear terms and may be neglected. 
(This conclusion can be justified also rigorously.) In this way (1 0.83) reduces 
to 

Its solution can be directly read off from our previous treatment of such 
an equation done in Vol. 1, section 9.1. Because ( 10.93) is linear, commuta- 
tion relations do not play any role and we can treat at least in a formal 
fashion b as a classical variable. Identifying, in a formal way, the velocity 
v(t), introduced in section 9.1 of Vol. 1, with b(t), we obtain 

b(t) = exp[( - iw - I Gl)(t - t')] FtOt(t1) dt '  + b(0) exp[- (iw - I Gl)t]. I: 
( 10.94) 

In order to visualize the effect of F,,, we represent it by way of a model 
in the form 

Fto, = 1 f,S(t - t,) with f, = f exp[icp,]. ( 10.95) 

Indeed we have seen in Vol. 1, eq. (9.3), that the meaning of the fluctuating 
forces F can be visualized best when we consider them as a sequence of 
individual pushes occurring randomly at times t,. Then our fictitious particle 
with coordinate q behaves like a ball in-between two hills, but being kicked 
by soccer players in a statistical sequence. The term - I G ( b  of eq. (10.93) 
which represents the damping force can be easily visualized as the friction 



§ 10.4. Coherence and noise 25 1 

Fig. 10.4. This figure shows the time dependence of the amplitude b, which is interpreted as 
real quantity, and of which we have omitted the factor exp[-iwt]. 

force with which the grass acts on the soccer. Let us interpret F as a real 
quantity and let us consider b, after omitting the factor exp[- iot], as a real 
quantity also. Then b(t) will exhibit a temporal behavior as indicated by 
fig. 10.4. When we take the oscillations exp[- iot] into account, we find fig. 
10.5 instead. We recognize that the light field amplitude b consists of a 
sequence of decaying wave tracks. Because the individual kicks are uncorre- 
lated with respect to their phases the individual wave tracks of fig. 10.5 
possess uncorrelated phases also. When we let the inversion Do increase 
by enhanced pumping, the absolute value of G decreases. As (10.94) tells 
us, in this case the individual wave tracks decay more slowly. As we shall 
see below, a slower decay of the individual wave tracks means that the 
atomic emission line becomes smaller. Therefore a line narrowing with 
increasing pumping is expected. Such effects have been found in lasers 
indeed and scientists have thought for a while that the differences between 

Fig. 10.5. The same as in fig. 10.4 but taking into account the factor exp[-iwt]. 



252 10. Quantum theory of the laser I 

light from ordinary lamps and from lasers consists only in such a line 
narrowing. But we shall see that this is not the only and essential difference. 
In fact laser light behaves above laser threshold in a qualitatively entirely 
different manner than below threshold. 

But let us still discuss the situation below laser threshold and let us study 
the coherence properties of light as described by (10.94). Because the kicks 
occur with equal probability in both directions the mean value of (10.94) 
vanishes, i.e. 

Therefore in a next step we investigate the coherence function of second 
order which we derived in Vol. 1, sections 2.2 and 8.1. There we derived 
the coherence functions by means of the field amplitude E where we 
decomposed the field amplitude into its positive and negative frequency 
parts. While the positive frequency part oscillates with exp [-iwt], the 
negative frequency part oscillates with exp[iot]. Eq. (10.24) tells us that the 
positive frequency part corresponds to the operator 6, whereas the negative 
frequency part corresponds to bt. Thus we may use the following replace- 
ment (cf. (5.106), (5.107) or Vol. 1): 

Because the factors of b and 6' are fixed quantities which do not fluctuate, 
we can extract these factors from the averaging procedure. 

Our former classical average of section 2.2 of Vol. 1 can be translated 
into quantum statistical averages as we have shown in section 8.1 of that 
volume. We shall denote the averaging by brackets. Our present discussion 
shows that the coherence properties of laser light are represented by 
expressions of the form 

We have met expressions of the form (10.98) with (10.94) in Vol. 1. Therefore 
we can immediately use the corresponding result and obtain 

(bt( t )  b(tl)) = exp[iw(t - t') - 1 GI 1 t - t'l](bt(t'> b(t1)). ( 10.99) 

In this formula transients have been neglected, i.e. we study the steady state 
emission where time t is large but t - t' finite. Because we study the steady 
state, at least in the case of sufficiently large times t' we may use the relation 
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where A is time independent. Because b'b is the operator of the photon 
number (cf. Vol. I),  ti has the meaning of an average photon number. It 
can be directly calculated by means of (10.94). To this end we insert (10.94) 
in (10.100) and obtain for sufficiently large times 

The double integral can be immediately evaluated by means of (10.90) 
(compare exercises), and we obtain 

where we have used the abbreviation 

The individual expressions in (10.102) have the following meaning: nth 
(E nthermal) stems from the correlation function of F+ and F and represents 
the number of photons belonging to the mode frequency o which are present 
in thermal equilibrium. In the optical range of the laser this number is 
negligibly small, whereas it plays the dominant role in the microwave region 
(maser). n,, ( =  nspont,n,,,s) is the number of spontaneously emitted light 
quanta. n,, stems from the correlation function of 

The relation (10.103) is valid for the system of two-level atoms considered 
here. N2,, is the saturated occupation number of the upper atomic level. 
Thus it represents the number which is realized in the laser process. (N2- 
N,)thr is the inversion of the atoms at laser threshold. The factor K/(GI 
occurring in (10.102), which causes a multiplication of the photon number 
(nth + n,,), is of particular interest as we may see as follows. According to 
(10.92), G is the unsaturated net gain which is given below laser threshold 
by 

I G I = K - ~ ~ D ~ / ~ .  
If the inversion Do = 0, i.e. if equally many atoms are in the excited and 

in the ground state, the effects of stimulated emission and absorption 
compensate each other. In this case (GJ = K and the number of photons 
actually present is given by A = nth + n,,. When we increase Do, stimulated 
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emission becomes bigger than absorption, and thus /GI becomes smaller 
than K, i.e. K/IGI > 1. We then obtain an enhanced number of photons 
ii > nth +n,,. The laser system is still operating below laser threshold but 
within a region of amplijication. When Do approaches its value at laser 
threshold Do,,,, = K y /g2 ,  I GI tends to zero. 

As a consequence, the amplification factor K / ( G (  tends to infinity. It 
should be noted that this divergence is an artefact caused by our approxima- 
tion which neglects the nonlinear terms - b'bb. A rigorous calculation 
without linearization will show that the photon number remains finite at 
laser threshold, as we shall demonstrate in section 10.5. By means of (10.99) 
we can immediately calculate the complex degree of coherence. According 
to the corresponding relation of Vol. 1 it can be represented in the present 
case by 

As we may see, this degree of coherence decreases exponentially which is, 
of course, caused by the finite duration of the individual wave tracks. The 
correlation function ( 10.104) can be measured experimentally either directly 
by Young's double slit experiment (cf. Vol. 1) or an arrangement described 
in fig. 10.6. Another possibility is provided by measuring the line-width 
occurring in the spectral decomposition of light in a spectrometer. 

The foundation of this possibility is provided by a theorem due to 
Wiener-Chintschin which we do not derive here mathematically exactly, 
but which we can interpret in a rather simple fashion. Let us imagine an 
ideal spectrometer which decomposes the field amplitude b( t )  into its 

Fig. 10.6. Scheme of an experimental arrangement for the measurement of ((b'(t) + b'(tl)) x 
(b ( t )  + b ( t l ) ) ) .  The first mirror (upper left) which is semi-transparent splits the incoming beam 
into two beams. The second mirror (lower left) and the third mirror (lower right) take care 
of the deflection of the beam which by the mirror upper right is reunited with the original 
beam. In this way on the original wave an identical but delayed wave is superimposed. 
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Fourier components 

Because b(t) and bt(t) are composed of fluctuating quantities according 
to (10.94), the Fourier coefficients d(w) are also fluctuating, i.e. random 
quantities. As a detailed discussion shows, the properties ( 10.88) and (1 0.90) 
of the fluctuating forces lead to the following relation 

(d'(w) d (a ' ) )  = 6(w - wl)(d '(w) d (w)). (10.106) 

When we form the correlation function (10.98) by means of the decomposi- 
tion ( 10.105) the resulting double integral over w reduces to a single integral 
because of (10.106) and we obtain 

'00 

(b+(t) b(tl)) = I-. (d +(w) d (w)) exp[iw ( t  - tl)] dw. (10.107) 

But the quantity 

represents just the intensity of the spectral line at the frequency w. The 
relation ( 10.107) represents the Wiener-Chintschin theorem. The correlation 
function on the 1.h.s. can be represented as the Fourier transform of the 
spectrum. The spectral distribution can be calculated explicitly in the present 
case. To this end we study the steady state where we put tl=O. Due to 
(10.99) we may write the 1.h.s. of (10.107) in the form 

(b'(t) b(0)) = exp[iGt - (GI I tl] fi. (10.109) 

Because of (1 0.1 O7), ( 10.108) and ( 10.109) we obtain the relation 

According to Fourier's theorem we can calculate the spectral distribution 
(10.110) by 

+a2 

Y(.) =& 1 exp[-iwt] exp[iwt -1G It\] dt. 
27r -, 

(10.1 11) 

Th.e integral can be evaluated without any difficulty. We obtain 
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We see that the correlation function which is given by (10.109) belongs to 
a Lorentzian line with half-width I GI. If the decay time 111 GI becomes 
longer, a line-width becoming smaller is observed. This result has been 
anticipated intuitively above. 

As we shall see below the fundamental difference between the statistical 
properties of light from conventional lamps and those of light from lasers 
appears only through correlation functions of fourth order (and higher). 
In fig. 10.7 we remind the reader of how a correlation function of fourth 
order can be measured. Let us consider the correlation function 

Our subsequent calculations are somewhat clumsy. For this reason the 
speedy reader can skip them and immediately proceed to the final result 
presented in eqs. (1 0.124) and (10.125). In order to make our calculation 
as transparent as possible we assume that b has been calculated according 
to (10.94), where we represent the fluctuating forces by means of individual 
pushes according to (10.95). Strictly speaking we are dealing here with 
fluctuating operator forces but a detailed analysis shows that all what we 
are doing below can be done in a strict sense with operators also. But in 
our present context we rather wish to give the reader a feeling how the final 
result can be obtained rather than trying here to give a formal but rigorous 
derivation. We focus our attention on the stationary state so that we can 
neglect transients. This means that we may drop the term containing b(0) 
in (10.94). According to the individual contributions we represent b(t) ,  
b'(t) in the form 

We shall assume that the contributions which stem from different pushes 
are uncorrelated so that we may use the relation 

Because the evaluation of ( 10.1 13) by means of ( 10.1 14) is somewhat lengthy, 
we first treat the case of a simpler correlation function, namely (10.98), as 
an exercise. Inserting ( 10.1 14) and the Hermitian conjugate expression in 
it we obtain 

On account of the Kronecker symbol 6,,, in (1 0.1 15) the double sum over 
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p, p' reduces to a single sum over p. In this way (10.116) is transformed into 

In order to evaluate ( 10.1 13) by means of (10.1 14) we have to consider 
averages over products of four P's, namely 

Again we shall assume that the p's with different indices p are uncorrelated 
and that also terms of the form P;,P:, or Pr,PP2 with the same indices 

= p2 = p yield 0. In this case the expression (10.1 18) can give rise to 
nonvanishing expressions in the following two cases only: 
(1) pl = p, and simultaneously p3 = p2,  
(2) p, = p3 and simultaneously p2 = p,. 
Inserting (10.1 14) in (1 0.1 13) we obtain 

It contains only two types of contributions which do not vanish, namely 

and 

p = p", p' = p"'. (10.121) 

Correspondingly we can split (10.1 19) into two parts and reduce the four- 
fold sums into double sums 

Using the intermediate result (10.1 16) we arrive at the following final 
formula: 

(b'(t) b+(tl) b(tl) b(t)) = ((bt(t) b(t)))2 +I(bt(t) b(t'))I2, (10.123) 

where (bt(t') b(tt)) = (b+(t) b(t)). Both for theoretical studies and for 
measurements it is often useful to subtract the photon number from ( 10.123) 
so that we introduce as a new quantity 

K2(t, t') = (bt (t) b'(tt) b(tl) b(t)) - ((b'(t) b(t)))2. (10.124) 
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By means of (10.123) we finally obtain 

K2(t, t l )  = l(b+(t) b(t'))12. (10.125) 

In our derivation of this result we have not been very careful with the 
sequence of the p's because in our model-like fashion we have treated them 
as classical quantities. In reality they are operators which in general do not 
commute with each other. A careful analysis reveals, however, that result 
(10.125) holds also in the case of operators. The essential result of (10.125) 
means that the fourth order correlation function can be expressed by a 
correlation function of lower order. By means of the result (1 0.99), (1  0.100) 
we can express K2 explicitly 

K2=ti2exp[-2ye,lt-tf(], yefi=lGl. (10.126) 

The correlation functions can be measured in the Hanbury-Brown-Twiss 
experiment which is explained in figs. 10.7 and 10.8. As can be shown quite 
generally, also all higher correlation functions can be expressed by correla- 
tion functions of first and second order, i.e. by (10.96), (10.98), provided b 
consists of many statistically independent contributions, or, in other words, 
if b is Gaussian distributed. Because the field strength E is directly connected 
with b and b', we thus have found that the fluctuating field strength of 

Pinhole 1 1 1 
Oischarge ' 

tube 

nsplitter Detector 1 

-3 
Timedelay 
(vorioble) 

Coincidence 
counter 

Fig. 10.7. Experimental arrangement for the measurement of a correlation function of fourth 
order by which the correlation between photon numbers is measured. In experiments made 
before the discovery of a laser, a gas discharge tube was used as light source. In experiments 
with laser light it is replaced by the laser and the pinhole is no more necessary. The beam is 
split by a semi-transparent mirror (beam splitter). In receivers 1 and 2 the incoming photons 
are registered. The photon numbers registered by the receiver 2 are transmitted with a certain 
time delay to the coincidence counter where they are processed jointly with the photon numbers 
measured by the receiver I. 
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(Coincidence rate 

I Time delay 

Fig. 10.8. The results of the experiment by Hanbury-Brown-Twiss according to the experi- 
mental arrangement of fig. 10.7. The figure shows the results for light from lamps. In the figure 
the coincidence rate is plotted versus time delay. The curve refers to a gas discharge lamp. 

usual lamps obeys a Gaussian distribution. We shall come back to this point 
in section 10.5. 

10.4.2. Behavior above threshold 

We now study the properties of laser light above laser threshold. When we 
interpret b again as a classical variable we can immediately read off the 
behavior of b from fig. 10.3, where the solid curve applies. It is important 
to note that b is a complex quantity. In such a case we have to extend eq. 
(10.91) to equations for the real and imaginary parts of b. It then transpires 
that the behavior of b can be represented by means of the motion of a 
fictitious particle in two dimensions, x and y, where b = x +iy. The force 
occurring in the equation of motion can again be derived from the potential 
which we represent in fig. 10.9. Without fluctuating forces the particle will 
acquire a resting position with the distance r, from the origin, and an 
arbitrary but fixed phase angle. The fluctuating forces, which we interpret 
as kicks, have two kinds of effects. In radial direction they try to push the 
particle up-hill, whereby the distance of the particle coordinate from the 
bottom of the valley is increased. We shall denote these fluctuating deviations 
by p(t).  Because the particle, which is pushed up-hill, will try to relax to 
its equilibrium position we can assume that p( t )  remains a small quantity. 
Furthermore we have to consider the kicks in tangential direction. Because 
no restoring force acts in this direction, the particle will perform some kind 
of diffusion process in that direction. As a consequence the phase cp(t) will 
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Fig. 10.9. The potential for the motion of the fictitious particle in two dimensions. It represents 
the behavior of the complex laser amplitude above laser threshold. 

fluctuate. Finally taking into account that b oscillates with the carrier 
frequency o ,  our discussion leads us to the following hypothesis for b: 

A detailed discussion reveals that our procedure remains valid if b is an 
operator. As it turns out in this case, ro remains a classical number whereas 
p and cp become operators. We shall not discuss the details which result 
from the properties of p and cp being operators. As can be shown the laser 
can be described in a very good approximation by treating p and cp as if 
they are classical quantities. In order to determine p and cp we insert (10.127) 
into (10.83), which we repeat for the reader's convenience 

b = ( - i o - K  + g 2 ~ o / Y ) b - ~ b + b b + ~ t , , .  J (10.128) 
V 

G 

Inserting the explicit form ( 10.127) in ( 10.128), performing the diff erenti- 
ation with respect to time, and dividing the resulting equation by the 
exponential functions occurring in ( 10.127) we obtain 

We determine ro by means of the condition that eq. (10.129) is fulfilled 



4 10.4. Coherence and noise 261 

identically without fluctuations, i.e. for cp = p = F,,, = 0. We thus find 

By splitting eq. (10.129) into its real and imaginary part we obtain 

where we have used the abbreviation 

(10.131) can be immediately integrated. We leave it to the reader as an 
exercise to convince himself that cp possesses the following correlation 
function: 

( ( d l )  - = 2 ~ d .  (10.134) 

Under the assumption K < y  the effective line-width y, is given by 

where 

As we shall see Aw represents the spectroscopic line-width of laser light. 
We remind the reader of the meaning of the quantities occurring in (10.135). 
w is the laser light frequency (=central frequency of the atomic optical 
transition because we have assumed exact resonance). 2~ is the inverse 
lifetime of a mode in the resonator without laser action. n,, and nth are the 
spontaneously emitted and thermally activated photons, respectively (cf. 
(10.103)). P is the emission power of the laser, where ii is the mean photon 
number present in the laser. We can easily determine the correlation function 
between b+ at time t and b(0). As we shall see, somewhat above threshold 
p(t) < ro. Therefore, in a good approximation, we can neglect the term p 
when we calculate the correlation function between b' and b. The calcula- 
tion, which we shall discuss more closely in the exercises, shows that the 
correlation function is given by 

Evidently a Lorentzian line occurs whose width decreases with increasing 
laser light power P. 
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But now we wish to show that the statistical properties of laser light differ 
from those of light from usual lamps fundamentally. To this end we consider 
the correlation function K2 which we introduced in (10.124) and insert 
(10.127) in it. Anticipating that p is a small quantity we calculate this 
correlation function only up to its leading terms in p. As it turns out, these 
are terms quadratic in p so that we obtain 

The quantity p, obeys eq. (10.132). This equation has a mathematical 
structure which corresponds entirely to that of eq. (10.93), if we put there 
o = 0 and replace IGI by ya and F,,, by Re(F,,,). Therefore the solution of 
eq. (10.132) is readily found. In particular we obtain 

In this way (10.138) reduces to 

By means of the solution of (10.132) we can determine the correlation 
function between p, and p,, in analogy to the calculation of (10.99). We 
then obtain our final result 

where n,, is the number of spontaneously emitted photons as before and 
is given by 

nth is the number of thermally activated photons which in the case of the 
laser is negligibly small (note, however, that in the case of the maser nth 
dominates over n,,). We have further used that 

and the abbreviation 

( T  is the relaxation time of the inversion). 
In order to compare the behavior of K2 below and above threshold it is 

useful to divide K ,  by the photon number ri and to plot it against the 
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threshold 

Fig. 10.10. The correlation function K = K , / n  versus pump power 

emitted power. For r = 0 we obtain the curve of fig. 10.10. As we may see 
the quantity K , / n  increases linearly below laser threshold according to eq. 
(10.126), whereas it decreases above laser threshold in a way proportional 
I /  ii. In this way the decisive difference between the behavior of laser light 
and that of light of usual lamps is revealed. The corresponding experimental 
results are shown in fig. 10.1 1 and they substantiate the predictions in detail. 
It should be noted that because of the mathematical methods (linearization 
below and above threshold) we have to exclude a small region around laser 
threshold. We shall discuss this region in the next section. Let us summarize 
our results. 

Fig. 10.1 1. The first experiment by which K was measured. K of the strongest mode of a 
semiconductor laser is plotted versus the injection current j which corresponds to the pump 
parameter. The experimental points show error bars indicating the standard deviation of the 
counting fluctuations. Incidentally the curve A of the emitted intensity of the mode is shown 
in arbitrary units. [J.A. Armstrong and A.W. Smith, Phys. Rev. Letters 14, 68 (1965).] 
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We have found that the physical nature of light is fundamentally different 
depending on whether the laser is operated below or above threshold. Below 
threshold light consists of exponentially damped wave tracks whose phases 
are entirely uncorrelated. Because the decay time of the wave tracks increases 
with increasing pump intensity, an emission line becoming smaller and 
smaller results. Above laser threshold, light acquires quite different proper- 
ties. It consists of an amplitude stabilized wave which can perform small 
fluctuations around its stable amplitude. On this wave amplitude a phase 
diffusion is superimposed which also gives rise to a finite line-width of laser 
light. This finite line-width decreases more and more with increasing 
emission intensity. 

Exercises on section 10.4 

(1) Prove (10.87) and (10.90). 
Hint: Use (1 0.27)-(lO.30), (10.64)-(10.69) and (10.8 1 ), (1 0.82). 

(2) Calculate n which occurs in (10.100). 
Hint: Use (10.94) and (10.90). 

(3) Show that (p(t)p(O)) = Y&). 
Hint: Integrate (10.132) and use the fact that j tot( t )  and F&(tt)  are 
&correlated, i.e. that 

(4) Prove (10.137). 
Hint: Put b(t) =: r, exp[icp(t)] as an approximate solution of (10.83). 
Assume that cp(t) is decomposed into individual terms cp, so that cp(t) = 

C, cp,(t) and assume that these are small and statistically independent of 
each other, i.e. (cp,cp,.) = 0 for p # p'. Put further 

10.5. The behavior of the laser at its threshold. Photon statistics 

In the previous sections we demonstrated that the behavior of laser light 
above threshold differs dramatically from that below threshold. But our 
methods did not allow us to treat the rather small, but interesting region 
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this question is provided by a study of the distribution function of laser 
light. This can be done in various ways. One approach is provided by the 
density matrix equation of the laser, and its direct solution. Another 
approach consists in using the method of "quantum-classical correspon- 
dence" through which we may transform the density matrix equation into 
a "generalized Fokker-Planck equation". This equation can then be con- 
siderably simplified, for instance at and close to the laser threshold, and 
can eventually be solved, which yields the wanted distribution function. 
We shall present this approach in chapter 11. Because this approach is 
mathematically more difficult, in the present section we rather want to 
continue our line of thought. It is, to some extent, based on intuition and 
seemingly not so rigorous, but it will provide us with a quick access to the 
essential features of photon statistics close to and at laser threshold. A 
rigorous foundation for our present procedure, in which we treat b as a 
c-number, will be given in the subsequent chapter. 

As we have seen in the previous sections, we can interpret the quantum 
mechanical Langevin equation of laser light (10.83) practically as a classical 
equation. In this section we shall adopt the attitude that this former equation, 

refers to classical quantities. In Vol. 1 we have shown how to construct a 
Fokker-Planck equation for the distribution function belonging to a 
Langevin equation. We wish to establish a Langevin equation for real 
variables. To this end we proceed in two steps. By means of the transfor- 
mation 

we split off an exponential factor which contains the atomic transition 
frequency w. Because b and thus B are complex quantities we write B in 
the form 

where x and y are real time dependent variables. In analogy to (10.147) 
we decompose the fluctuating force Ftot into its real and imaginary part by 
putting 

F, and F, are real fluctuating forces which shall be interpreted as c-number 
forces. We insert ( 10.147) and ( 10.148) into ( 10.145) and decompose the 
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thus resulting equation into two equations for the real quantities x and y, 

We have shown in Vol. 1 how to construct a Fokker-Planck equation which 
belongs to an equation of the form ( 10.149). It is not difficult to generalize 
this procedure to coupled equations such as (10.149) and (1 0.150). In such 
a case we have to construct a Fokker-Planck equation for a distribution 
function which depends on the two independent variables x, y, and on time 
t , i (x ,  y ;  t). i ( x ,  y ;  t) dx  dy is the probability to find at time t the variables 
x and y in the intervals x . . . x + dx, y . . . y + dy. We shall present a concrete 
example on j (x ,  y ;  t) below. The Fokker-Planck equation for f acquires 
the form - 

Qxx and Q,, are the diffusion coefficients. They are determined by means 
of the correlation functions of the fluctuating forces by 

Whereas in a classical treatment, which we present here, Q,, is uniquely 
defined by (10.152), a more subtle discussion is required if the F's stem 
from quantum mechanical Langevin equations such as (10.83). In such a 
case the sequence of the operator forces F t ,  F is important. Here we 
anticipate the result of the rigorous quantum theoretical treatment to be 
presented in chapter 11. Close to laser threshold one is allowed to calculate 
(lo.  152) by means of symmetrized F's, i.e. by F replaced by ;(F' + F ) ,  or 
by F's used in "normal order", i.e. (F'(t)F(tl)) ,  with practically the same 
results. In particular a closer discussion reveals that 

and 

where Q = f ~ ( n t ~  + nsp) ; nth and n,, were introduced above (10.102, 10.103). 
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For a further treatment of the Fokker-Planck equation (10.15 1) we transform 
the coordinates x, y into polar coordinates 

x = r cos cp, y = r sin cp. (10.155) 

In this way 7 is tran2formed into a new distribution function f which 
depends on r and cp, f + f(r, cp), or more precisely 

f dx dy = fr d r  dp. (10.156) 

Because the explicit performance of this transformation within the Fokker- 
Planck equation is of no physical interest, we immediately 
new Fokker-Planck equation 

write down the 

(10.157) 

In general the solutions of (10.157) can be obtained only by means of 
computers. The stationary solution of (1 0.157) can be found explicitly, 
however. In this case 

We first try to visualize that in the stationary state the distribution function 
f does not depend on cp. From our preceding sections it is known that laser 
light undergoes a phase diffusion. Using again the picture of a particle 
diffusing in a potential valley we immediately see that after a certain time 
the probability of finding a specific phase becomes equal for all phases. 
This means that the probability of finding the particle at any point on the 
bottom of the valley is of the same size everywhere. As a consequence we 
have 

In this way eq. (10.157) reduces to 

We can immediately integrate this equation and obtain 

a f  (Gr2 - c r4 )  f = Qr - + C'. (10.161) a r 
The constant C' can be determined as follows. Because f is a distribution 
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function it must be normalizable in the whole range 0 r a. Consequently 
f (and its derivative with respect to r) must vanish sufficiently strongly for 
r + a. Letting r + a in ( 10.16 1 ), we readily find 

C1=0 ,  (10.162) 

so that (1 0.16 1) simplifies to 

This first order differential equation can be easily solved. Its solution reads 

N is a normalization factor which is defined by 

1 
-= I: exPL ] r  dr. 
N 

By means of the potential function V(q) of a fictitious particle, which we 
introduced in (6.51), f can be written in a particularly simple form 

where q = r. 
A discussion of the function (10.164) tells us how laser light behaves 

close to and at laser threshold. In fig. 10.12 f is presented as a function of 
r for various parameter values G. Obviously for G < 0 the maximum off  
lies at r = 0. This maximum is shifted to higher r values with increasing 
G > 0. But we know that r2 is identical with 1 bI2. In a classical interpretation 
1 bI2 is the intensity of light (besides a constant factor), whereas in a quantum 
mechanical interpretation we may consider r2 as a qualitative measure of 
the number of photons. Figs. 10.13 and 10.14 represent f as a function of 
r and cp, where for G > 0 a probability crater can be observed. The potential 
of the fictitious particle is represented below the distribution function. It is 
evident how the potential jointly with the fluctuating forces shape the 
distribution function. In the case G < 0 there is only one minimum of the 
potential. Correspondingly there is only one maximum of the distribution 
function. For G > 0 we find a circular valley of the potential. Correspond- 
ingly a circular rim of a mountain with a crater in the middle is found 
representing the probability distribution. 

In order to compare the theory, which we have outlined above, with 
experiments, the following two points must be observed. In order to rep- 
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Fig. 10.12. The laser distribution function (10.164) versus f i  = r2 in reduced units (cf. (10.167), 
(10.188)). 

resent the various laser parameters in a unique fashion it is useful to 
introduce new dimensionless quantities. Furthermore the variable r of the 
distribution function (1 0.164) is continuous. As just mentioned, in a classical 
interpretation r2 

= 1 bI2 corresponds to an intensity. On the other hand, within 
a quantum mechanical interpretation, r2 represents some measure of the 
discrete photon numbers. Thus we have to present the transformation from 
continuous to discrete photon numbers. But let us first introduce dimension- 
less quantities by means of the transformation 

P = ~ C / Q ~ ,  i = J Z t ,  f i= i2 ,  a = ~ / J z  (10.167) 

(read i: r "hat"). In this way the distribution function (10.164) can be 
represented in the form 
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Fig. 10.13. The left-hand side represents the potential of the fictitious particle below threshold. 
On the right-hand side f ( q , ,  q , )  with r2 = q:+ qi is plotted versus the coordinates q , ,  q , :  f 
is bell shaped. 

We now discuss the transformation from continuous to discrete variables. 
Experimentally, discrete photon numbers n are counted within count- 
ing intervals of time duration To by means of a photo detector mounted 
outside of the mirrors of the laser resonator. The thus resulting distribution 

Fig. 10.14. Above threshold the potential function of fig. 10.9 applies. In the present figure 
the corresponding distribution function f ( q , ,  q,) is shown. The probability "crater" can easily 
be seen. 
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function of the counted photon numbers will be denoted by p(n, To). As a 
detailed theory reveals, p can be brought in connection with the distribution 
function (lO.l68).* Provided To is small compared to the relaxation times 
of the nonlinear oscillators (1 0.145), the relation 

holds. The constant s, which is determined by the photo detector, is propor- 
tional to To and depends in particular on the sensitivity of the detector. 

When we insert ( 10.168) in ( 10.169) and assume a sufficiently large average 
number of photons, we obtain a practically continuous distribution function 

In other words, we obtain the same distribution function as before, but 
with a scaled photon number n/s. Fo(a) is given by 

where according to (10.167) a is proportional to the unsaturated net gain 
G. Because this latter quantity is proportional to the unsaturated inversion 
do and thus proportional to the pump power, a is also called pump param- 
eter. 

We shall not discuss the transformation just introduced any further but 
we rather wish to present some typical examples of the theoretical results 
and their experimental verification. Let us consider fig. 10.12 once again. 
Quite evidently the photon statistics changes close to threshold, G = 0, i.e. 
a = 0. The nature of the photon statistics below and above threshold can 
be read off already from the mean squared deviation of the photon number, 

where ( a  .) means quantum statistical average. 
This quantity can be measured experimentally. In this way the continuous 

transition from the distribution function below threshold to that above 
threshold can be studied in detail. 

In the quantum statistical average (10.172), n stands for the photon 
number operator btb. Whereas so far our simplifying procedure, in which 
we treated b', b as classical quantities, can be justified (see chapter 1 I), 
the evaluation of (10.172) requires particular care because of the operator 

*For a detailed derivation, cf. the literature given in the references. 
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properties of b', 6. Inserting n = b'b in (10.172) we obtain 

or more explicitly 

As we know, b, b' obey the commutation relation 

By means of this relation, the product b'bb + b in ( 10.173) can be rewritten 
as b+b'bb + 6'6. In this way (10.173) transforms into 

As we shall prove in chapter 11, the expression K2 in (10.175) can be 
evaluated by means of the distribution function f as if bf ,  b were classical 
quantities. Equivalently, (b+b'bb) and (6'6) can be calculated by use of 
the solutions of the classical Langevin equations. Therefore we may identify 
K2 in (10.175) with the expression K2(7 = 0) of section 10.4, where we 
calculated it explicitly below and above threshold. In this way we obtain: 

below threshold 

K2(7 = 0) = (b'b)2; 

above threshold 

We can calculate the mean squared deviation ( 10.172) by inserting ( 10.176), 
(10.177) in (10.175), (10.172). We thus obtain: 

below threshold 

((n - (n))2) = (b'b)2 +(b'b) 

= (n)((n) + 1). 

This result is typical for Bose-Einstein statistics, where photons tend to 
form clusters (compare fig. 10.15). On the other hand we obtain: 

above threshold (n + a) 
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This relation is well known to hold for a Poisson distribution. It means that 
the photons try to keep a mean distance from each other (compare fig. 
10.16). We have been able to find these results by means of the solutions 
of the laser equation (10.128). But we had to exclude a small range close 
to and at laser threshold. This gap can now be closed by an explicit use of 

Figs. 10.15 and 10.16. These figures show the dependence of the light intensity versus time in 
the corresponding upper parts of the figures. The corresponding lower parts represent incoming 
individual photons in the course of time. Fig. 10.15: The case of a lamp. Photon bunching 
takes place. The light intensity exhibits correspondingly strong fluctuations. Fig. 10.16: The 
case of the laser. The photons maintain a mean distance between each other. Correspondingly, 
a smooth light intensity appears. [E.R. Pike, in: Quantum Optics, eds. L. McKay and A. 
Maitland. Academic Press, New York 1970.1 
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the distribution functions ( 10.164) or ( 10.170), respectively. We remind the 
reader that we shall justify the use of classical averages instead of the 
quantum statistical averages in chapter 11. In order to describe the smooth 
transition from (10.178) to (10.179) we write the 1.h.s. of (10.178) (or 
(10.179)) in the form 

where H2 is a function of (n) still to be determined. Quite evidently, H2 = 1 
below and H2 = 0 above threshold. Solving ( 10.180) with respect to H2 and 
using the abbreviations M2 = (n2), M, = (n) we obtain 

In this way H2 is directly expressed by measurable quantities, namely the 
moments of n2 and n. Fig. 10.17 represents a comparison between the theory 
based on the distribution function (10.164) and experiments. The results 
show both a good agreement between theory and experiment and reveal 
also a continuous transition from (10.178) to (10.179). The pump parameter 
has been replaced by a normalized emission intensity. A similarly good 
agreement has been found for other quantities also, which can be expressed 
by higher moments, such as M, = (n3) and M, = (n4). 

Fig. 10.17. H,  versus normalized number of emitted photons (experimental, after results of 
Arecchi et al., theoretical results after Risken, cf. references). 



$10.5. The behavior of the laser at its threshold 275 

Fig. 10.18. The function & ( a )  occurring in (10.183). [H. Risken, Z. Physik 191, 302 (1966).] 

We have shown in detail in Vol. 1 ,  section 2.2, that the coherence properties 
of light are represented by correlation functions of field strengths, e.g. by 
( E ' - ' ( t ) ~ " ' ( t ' ) ) .  Two particularly important expressions were calculated 
in the previous sections, namely 

(b ' ( t )  h ( 0 ) )  and K , ( r )  = (b'(0) b + ( r )  b ( r )  b ( 0 ) )  - (b'b)2 

for regions below and above threshold. In the vicinity of the threshold these 
expressions can be calculated by means of the time dependent solutions of 
the Fokker-Planck equation (10.157). These solutions were determined by 
a numerical calculation. Out of these results we present the following which 
shows how the laser line-width Aw changes at laser threshold. Aw = A w ( a )  
varies continuously as a function of the pump parameter a  and one finds 

P ( a )  is the emission intensity of the laser at the pump strength a. Aw, and 
Po denote the line-width and the emission intensity, respectively, of the 
laser above its threshold. Aw, is given by (10.135) and Po by (10.136). As 
we may see, d o ,  . Po is independent of the emitted power so that (10.182) 
can be written in the form 

A w ( a )  P ( a )  = const. a ( a ) .  (10.183) 

a ( a )  was calculated numerically and is represented in fig. 10.18. If the 
emission powers P  below and above threshold were equal to each other 
we should find a line-width below threshold which is twice that above 
threshold. 



Chapter 1 I 

Quantum Theory of the Laser I1 

A second approach via the density matrix equation and 
quantum classical correspondence 

11.1. The density matrix equation of the laser 

In the foregoing chapter we developed the quantum theory of the laser by 
means of quantum mechanical Langevin equations. These equations have 
the advantage that their physical meaning can be quite easily visualized 
due to their analogy with the semiclassical laser equations. Below and above 
threshold they can be rather easily solved even in the quantum mechanical 
case by means of linearization or quasi-linearization. On the other hand 
the rather small but most interesting region close to and at laser threshold 
could not be treated directly by means of the quantum mechanical Langevin 
equations. Not because these equations become invalid, but because no 
way of their solution is known in that region. Therefore we resorted to a 
Fokker-Planck equation in section 10.5. In that section we could base the 
derivation of a classical Fokker-Planck equation from quantum mechanical 
Langevin equations merely on heuristic arguments. The present chapter 
serves the purpose of filling that gap. We wish to derive that former 
Fokker-Planck equation from first principles whereby the complicated 
quantum mechanical problem is cut down stepwise by well-defined and 
well justified approximations. In this section we shall make a first step 
towards that goal by deriving the density matrix equation of the laser. The 
reader should be familiar with some basic features of a density matrix 
equation, for instance as presented in Vol. 1. 

Again as in the foregoing chapter we start from the total Hamiltonian 
which reads 

H =  H f + H A + H A f + H B ,  + H B , - f + H B 2 + H B , - A .  - (1 1.1) 

Ho 
In it H, is composed of the Hamiltonian Hf  of the free modes, of the 
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Hamiltonian HA of the laser active atoms, and of the Hamiltonian HAf 
describing the interaction between the field and the atoms. We shall adopt 
the same model as in the foregoing chapter, namely a single mode and a 
set of two-level atoms being in resonance with the field mode. The explicit 
form of the Hamiltonians is given by (10.4), (10.13), ( 10.21 ). The remaining 
terms in (1 1.1) describe the coupling of the field mode and the atoms to 
their corresponding heatbaths. A possible way of treating the problem 
defined by the Hamiltonian (1 1.1) would be to solve the corresponding 
Schrodinger equation 

which, of course, contains all bath variables. These variables are of no direct 
interest to us, however, and we wish to eliminate them. To this end we 
adopt the approach via the density matrix. The density matrix ptot, which 
refers to the total system described by (1 1.1), obeys the equation of motion 

On the other hand we are interested in a density matrix which contains the 
proper laser variables, i.e. the field mode and the atomic variables, but no 
more the heatbath variables. To this end we introduce a new density matrix 
p by averaging the original density matrix ptot over the heatbath variables 
which are assumed to be in their thermal equilibria at their specific tem- 
peratures, 

Then our obvious goal will be to derive an effective density matrix equation 
for p. Such a program has been followed up in Vol. 1 where we showed 
how a field mode coupled to a heatbath or an atom coupled to a heatbath 
can be treated. For the reader's convenience we briefly remind him of the 
main steps. 

Let us consider a field mode coupled to its heatbath. The density matrix 
of this total system is denoted by 

and obeys the equation 

We have shown that we may derive an equation for the density matrix pf 
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which refers to the field mode variables b', b alone. The equation for 

reads 
i 

P f  = --Pob+b, Pfl + S{[b+Pf, bl + P + ,  Pfbll k 

where the constants S and 6 are connected with the damping constant K 

of the field mode amplitudes and the number of thermally present photons, 
nth, 

6 = Knth, (1 1.9) 

After this brief reminder let us return to the problem of deriving a reduced 
equation for the density matrix p of the total system field +atoms (1 1.4). 
The total temporal change of p consists of three parts: 

( 1) The change caused by the coherent interaction between$eld and atoms. 
This change is given as usual by 

1 ( )  coh = - + 0 9 p ~ -  

(2) The two other parts stem from the coupling of the field to its heatbaths 
and from the coupling of the atoms to their heatbaths, so that 

The change of p due to the coupling field-heatbath can be directly taken 
from (1 1.8), because the coherent motion of pf is taken care of by (1 1.1 1). 
The terms still to be considered of (1 1.8) are given by 

The last term in (1 1.12) describing the effect of the heatbaths on the atoms 
can again be taken from the general results from Vol. 1. According to that 
volume quite generally we have 
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Here we have summed up over the individual atoms p where it is assumed 
that the heatbaths of the individual atoms are statistically independent from 
each other. Because we deal with two-level atoms only, the indices i and j 
run over 1 and 2 only (here and in the following formulas we have corrected 
some minor misprints in Vol. 1). 

A are constants which we do not need to know explicitly because they 
are connected with phenomenological quantities, namely: 
( I )  the transition rate from level j to level m under incoherent processes, 

(2) the line-width connected with transitions between levels m and n, 

(3) frequency shifts for transitions connecting levels m and n 

Because frequency shifts can be absorbed in the original energies of the 
atomic levels ("renormalization"), we may assume that (1 1.17) vanishes, 
and as a more detailed analysis shows, we may even assume A to be real. 
In such a case and for the two-level atoms under consideration (1 1.15) and 
(1 1.16) simplify to 

where the term 

describes phase fluctuations which are not caused by real transitions. In 
order not to overload our further analysis we shall ignore the term (1 1.20) 
and refer the readers, who are interested in these specific details, to H. 
Haken, Laser Theory. 

Using our former notation a:a2 = a, . . . we can cast (1 1.14) into the form 

( 1 1.12) jointly with ( 1 1.1 1 ), ( 1 1.13) and ( 1 1.2 1) represents the desired density 



280 1 1. Quantum theory of the laser I1 

matrix equation. With respect to the degree of accuracy this density matrix 
equation is entirely equivalent to that of the quantum mechanical Langevin 
equations of section 10.3 (provided we include the terms ( 1 1.20) in ( 1 1.2 1)). 
It should be noted that both approaches imply the same kind of approxima- 
tion, namely it is assumed that the interaction between the field mode and 
the atoms is not so strong that the interaction of these individual systems 
with their individual heatbath is appreciably disturbed. In the case of a 
very strong interaction between field and atoms new kinds of effects may 
occur, for instance a quenching of the interaction between atoms and their 
heatbaths. 

In order to proceed further, one possibility is given by trying to solve the 
density matrix equation (11.12) directly. Approximate solutions of this 
density matrix equation were given in the literature. Readers interested in 
those approaches are referred to the references. In the context of the present 
book we rather wish to follow up the line indicated at the beginning of this 
section, namely to derive a classical Fokker-Planck equation starting from 
the quantum mechanical density matrix equation. To this end we have to 
provide a link between the quantum mechanical and the classical description 
by means of the method of quantum classical correspondence. 

11.2. A short course in quantum classical correspondence. The example of 
a damped field mode (harmonic oscillator) 

11.2.1. A formal analogy between quantum statistical and classical 
statistical averages 

The method which we are going t.o describe briefly is of interest both to 
laser theory and to nonlinear optics. Let us start from the quantum 
mechanical Langevin equation of a damped field mode. The equation of 
the annihilation operator b is given by (see also Vol. 1) 

By means of the transformations 

we can cast (1 1.22) into the simpler form 

g =  -&+ F ( t ) .  (1 1.25) 

This equation is analogous to a classical Langevin equation which we have 
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met in Vol. 1, namely 

This equation can be interpreted as that of the overdamped Brownian 
motion of a particle. We wish to exploit the analogy between (1 1.25) and 
(1 1.26) to devise a method how to calculate quantum mechanical expectation 
values by means of c-number procedures ("c" = "classical"). If the quantum 
mechanical oscillator is coupled to a heatbath, the proper definition of its 
quantum mechanical and quantum statistical expectation value ( b )  is given 

where p is the density matrix, and Tr means "trace". In order to evaluate 
(1 1.27) one has to solve, of course, the density matrix equation for p. As a 
further step towards the analogy we wish to establish, we consider how the 
evaluation of an average value corresponding to (1 1.27) would be done in 
classical physics. Here the average value of q is defined by 

where f(q, t) is the distribution function. As we know (see Vol. 1) f (q, t) dq 
gives us the probability of finding the particle at time t in the interval 
q . . q +dq. The distribution function f obeys a Fokker-Planck equation 
which according to Vol. 1, p. 29 1, is given by 

In order to make our following procedure understandable we must briefly 
remind the reader how the Fokker-Planck equation (1 1.29) is derived from 
the equation (1 1.26). (Readers interested in more details are referred to my 
book Synergetics. An Introduction.) 

11.2.2. A classical Fokker-Planck equation for the damped quantum 
mechanical oscillator 

Let us first consider the special case of ( 1 1.26) in which there is no fluctuating 
force F(t) .  Once the initial condition of q is fixed, q(t) is fixed also. In 
such a case we know that the particle will be at time t with certainty in the 
interval q . . . q + dq, provided q( t )  lies in that interval, and the probability 
will be 0 elsewhere. The distribution function describing this property is 
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simply given by the 6-function 

Now let us assume that the heatbath producing the fluctuating force F ( t )  
is acting on the particle coordinate q. This force causes random pushes so 
that the particle will follow up different paths for different realizations of 
the random events. When we now wish to know the probability of finding 
the particle at time t in the interval q q +dq we have to average the 
distribution function ( 1 1.30) over the different paths caused by the heatbath, 
i.e. we have to replace (1 1.30) by 

The form (1 1.31) jointly with the properties of the fluctuating forces can 
be used to derive the Fokker-Planck equation (1 1.29) which belongs to 
(1 1.26) (cf. H. Haken, Synergetics. An Introduction). In the present context 
another property of ( 1 1.3 1 ) is still more important, however. Namely let us 
use the Fourier representation of the 6-function, i.e. 

Inserting (1 1.32) in (1 1.3 1) and noting that the integration over the variable 
5 has nothing to do with the heatbath average we obtain 

or, using the same argument again we obtain 
+a 

( 1 . )  = exp[-iq&](e~p[iq(t)[])~ dB 
2~ 

(1 1.34) 

The statistical average over the exponential function which occurs in 
(1 1.34) is well known in statistical physics and is called the characteristic 
function X, 

After these preliminary steps we are in a position to define a distribution 
function for quantum mechanical variables. We first note that according to 
the basic principles of quantum theory classical observables, such as q(t),  
are replaced by operators b in quantum mechanics. As we know (see Vol. 
l ) ,  in quantum mechanics we have different choices with respect to the time 
dependence of b. In the Schrodinger picture the operators b, b+ are time 
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independent and all the time dependence of the quantum mechanical system 
is described by the wave function cp or, in a more elegant fashion, by the 
time dependent density matrix. Another description is based on the Heisen- 
berg picture where the operators b, b+ are time dependent, but the wave 
function is time independent. In the present context we shall use the 
Schrodinger picture which was already used without being mentioned 
explicitly in section 1 1.1. We now establish an analogy between the forma- 
tion of a statistical average such as in (1 1.35) and a quantum mechanical 
average such as in (1 1.27). First of all we define in an obvious way the 
quantum mechanical and quantum statistical average over exp[ib[] by 

But in this way we have now defined a quantum mechanical characteristic 
function which occurs in analogy to (1 1.35). While for the real variables 
q ( t )  the characteristic function (1 1.35) is sufficient to characterize all statis- 
tical properties required, in the case of b we have to deal in the classical 
domain with a complex variable, and in the quantum mechanical domain 
with an operator b and its Hermitean conjugate. Therefore instead of the 
one real variable 5 we have now to use a complex variable P and its complex 
conjugate p*. Therefore in generalizing (1 1.36) we may define a characteris- 
tic function x for the harmonic oscillator (field mode) by 

x(P, P*) = Tr{exp[iPb + i ~ *  b'] p ) .  (1 1.37) 

At this moment a fundamental difference between characteristic functions 
of classical stochastic variables, i.e. (1  1.35), and characteristic functions 
referring to operators, i.e. (1 1.37), becomes apparent. Namely because the 
operators b and b+ do not commute, we may define characteristic func- 
tions in various ways depending on the way we write down exponential 
functions containing b and b'. For instance, we would split the exponential 
function occurring in (1 1.37) into a product which leads us to the characteris- 
tic function 

But because the operators b and b' do not commute, (1 1.38) is a function 
different from (1 1.37). As the reader may recall, in quantum mechanics we 
read operators from the right to the left. Therefore in (1 1.38) the exponential 
function containing the operator b must be applied prior to the exponential 
function containing bt. If on the other hand we exchange the sequence 
between these two exponential functions we are led to a third characteristic 
function, namely 
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In this way the characteristic functions (1 1.37), (1 1.38), (1 1.39) will give 
rise to different distribution functions which are called the "Wigner distribu- 
tion function x", the "Glauber-Sudarshan distribution function x,", and 
the "Q-distribution function xo", respectively. In the following analysis we 
will use (1 1.38) as explicit example. 

Let us recall what our goal was. We wanted to find a distribution function 
corresponding to a quantum mechanical process. Our starting point was 
eq. (1 1.3 1) which defined a classical distribution function f for a classical 
variable q ( t ) .  The translation of this distribution function into one for 
quantum mechanical processes is provided by (1 1.34) where we have to 
replace the classical characteristic function (11.35) by the quantum 
mechanical characteristic function (1 1.38). To this end we have merely to 
take the Fourier transform of the characteristic function (1 1.38) where we 
replace the former real variable q by the complex variables u and u* and 
the single integration over 6 by a two-dimensional integration d2p. We shall 
not dwell on the mathematical details how to perform the integration in 
the complex plane. We rather exploit some formal properties and refer the 
reader to the specific literature for mathematical rigor. In analogy to (1 1.33), 
(1 1.34) we define the Glauber-Sudarshan distribution function by 

P(u,  u*) = rrP2 exp[-ipu - ip*u*] ,yp(p, P*) d2p, J 
or, making explicit use of (1 1.38) by 

What is known and what is unknown of the right-hand side of (1 1.41)? u 
and u* are independent variables, while ,6 and P* are integration variables.. 
bt  and b are operators with given properties. Therefore the only unknown 
quantity is the density matrix p. Or, in other words, once we know p, we 
can calculate P, at least in principle. Thus one way would be to solve the 
density matrix equation for p first and then to calculate (1 1.41). Our goal 
is more ambitious, however, because we wish to derive a Fokker-Planck 
equation for P. To this end we shall transform the density matrix equation 
for p into an equivalent equation for P. In order to achieve this goal we 
need some formal tricks. First we introduce the abbreviation 
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so that the characteristic function x can be written as 

Note that for sake of simplicity we shall drop the index P of x in the 
following. 

Let us first derive a differential equation for the characteristic function 
X .  To this end we differentiate both sides of (1 1.43) with respect to time 
and obtain 

'For dp ld t  in (1 1.44) we insert the r.h.s. of (1 1.13) where we make use of 
the explicit form of S and 6 (cf. (1 1.9), (1 1.10)). Furthermore we make use 
of a theorem on the cyclic property of traces which can be expressed by 
the relation 

In this way we rewrite (1 1.44) as 

It will be our goal to reexpress the r.h.s. of (1 1.46) by x where we shall 
admit that x may be differentiated with respect to P or P* or may be 
multiplied by these quantities. 

Let us consider to this end (1 1.42) more closely. When we differentiate 
the r.h.s. of (1 1.42) with respect to iP*, we readily find 

and by differentiating it with respect to iP* and iP we derive 

Furthermore using the commutation relation bbt - btb = 1 we can derive, 
as was shown explicitly in Vol. 1, the relation 

bO = iP*O + Ob. (1 1.49) 

Multiplying (1 1.49) from the left by bt we find 

b'bO = iP*b+O + btOb, 

where the right-hand side can be written again as a derivative with respect 
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to iP* and ip, 

As we may see from ( 1 1.48) and ( 1 1.5 1 ), the operator expressions of the 
left-hand sides may be expressed by derivatives of 0. In a similar way we 
can proceed with the remaining terms of (1 1.46) and we leave it as an 
exercise to the reader to derive the corresponding relations. 

We now show how relations of the form (1 1.48) can be used to express 
the r.h.s. of (1 1.46) by means of X .  To this end we study 

Using (1 1 .48) we may transform it into 

Because taking the trace does not refer to the variables P and P*, we can 
perform the differentiation in front of the trace so that we obtain 

According to (1 1.43), the remaining trace is identical with the characteristic 
function x so that we obtain as final result 

In quite the same way we can deal with all the other terms also, and we 
leave that treatment to the reader again as an exercise. Collecting all the 
terms we find 

which is the wanted equation for the characteristic function. In a last step 
of our analysis we wish to transform eq. (11.56), which refers to the 
characteristic function, into an equation for the P-distribution function. To 
this end we differentiate (1 1.41) on both sides with respect to time, which 
on the left-hand side yields 
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We express d x l d t  on the r.h.s. of (1 1.57) by the r.h.s. of (1 1.56). Let us 
again treat a specific term of the r.h.s. of (1 1.56) as an example. Let us 
consider the expression 

which gives rise, if inserted in (1 1.57), to 

The multiplication of the exponential function in (1 1.59) by iP  can be 
expressed by the differentiation of that exponential function with respect 
to u. Because the integration over p does not effect the differentiation of 
the exponential function with respect to u we can write (1 1.59) in the form 

We now perform a partial integration with respect to i p  which transforms 
the integral in (1 1.60) into one where the exponential function is differenti- 
ated with respect to ip. We shall assume that x vanishes at infinity so that 
the partial integration gives rise to the following final result: 

Evidently the r.h.s. of (1 1.61) can be expressed by 

where use of the definition of P (1 1.40) has been made. 
Let us briefly summarize what we have achieved so far. We have shown 

how the first term on the r.h.s. of (1 1.56) gives rise to a term in the equation 
for P we are looking for. The second term on the r.h.s. of (1 1.56) gives rise 
to 

a 
--(u*P(u, u*)), 

au* 

in quite an analogous fashion. Note that in both terms we have omitted the 
factor K for the moment. In a still simpler way one may demonstrate that 
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the last term in 

(iP*)(iP>x 

Collecting the 

theory of the laser I 1  

(1 1.56) (except for the constant factor) gives rise to 

terms (11.62)-(11.64) and using them on the r.h.s. of 
(1 1.57), we arrive at the fundamental equation for the classical distribution 
function P, 

Quite evidently we have found a Fokker-Planck equation in the classical 
variables u and u* so that the problem of solving a density matrix equation 
has been rigorously transformed into that of solving a completely classical 
Fokker-Planck equation. In the following we shall use a short-hand notation 
for (1 1.65), namely 

where Lf is the differential operator which occurs on the r.h.s. of (1 1.65). 
We leave it as an exercise to the reader to solve eq. (1 1.65). 

11.2.3 How to calculate quantum mechanical averages by classical averages 

At the beginning of this section we asked ourselves whether we can develop 
a formalism by which we can evaluate a quantum mechanical average, say 
of the form (11.27), by means of c-number procedures, i.e. by classical 
averages. We now want to demonstrate that this goal can be achieved and 
that in the specific problem (1 1.27) we find 

To derive this relation we write the 1.h.s. of (1 1.67) in a specific form, namely 

where 0 was defined by 

We now remind the reader of the properties of the &function. Without 
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searching for mathematical rigor we make use of the following properties: 

and 

where f is an arbitrary continuous function of P and P*. We now insert 
for f the expression 

in ( 1 1.70) and form 

We perform a partial integration over iP. By a change of the sequence of 
integrations we transform (1 1.73) into 

We note that by way of construction, (1 1.73) agrees with the 1.h.s. of ( I  1.67), 
whereas the r.h.s. of (1 1.74) can be expressed by P. In this way we indeed 
find 

Tr(bp) = uP(u, u*) d2u, I 
which agrees with the assertion (1 1.67). A basic step in this derivation was 
provided by (1 1.72) where we expressed the operator Ob by the derivative 
of 0 with respect to ip. This procedure may be generalized to the nth power 
of b so that 
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Performing the same steps as before we then verify 

Tr{bnp} = unP(u, u*) d2u. i 
Finally we may evaluate the trace 

by means of derivatives, namely by means of 

In this way we find again by repeating the steps as before that the following 
relation holds: 

Tr{(b)mbnp}  = 1 ( u * ) " u P(u, u*) d2u. 

An important remark must be made, namely the nice relation between the 
left- and the right-hand side of (1 1.80) holds only if the product of creation 
and annihilation operators b and b', respectively, is written in normal order, 
where the creation operators stand on the left-hand side of all annihilation 
operators. If we define a function of bi, b in normal order we have the 
translation rule 

~ r { f ( b + ,  b)p} = 1 f(u*, u) P(u, u*) d2u. (1 1.81) 

This is the final result of this section. 
Let us summarize what we have learned in this section. In order to study 

the stochastic process, which the operator b (or b+) undergoes, the action 
of a heatbath can be formulated in several ways: 
(1) by means of quantum mechanical Langevin equations; 
(2) by means of the solution of the density matrix equation and jointly by 
the evaluation of expectation values (quantum mechanical averages) by 
means of the solution of the density matrix equation; 
(3) we may solve in an entirely equivalent fashion a classical Fokker-Planck 
equation (1 1.65) and calculate quantum mechanical expectation values by 
means of an entirely classical integration via (1 1.81). 

In this way it has become possible to translate a quantum mechanical 
problem into a classical problem without any loss of generality. We have 
described this procedure for a special representation, namely the Glauber- 
Sudarshan representation (1 1.38). The reader may try it as an exercise to 
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formulate the corresponding treatment for the two other distribution func- 
tions based on (1 1.37) and (1 1.39). For the individual steps, which imply 
the differentiation of exponential functions of operators, we refer the reader 
to Vol. 1 where all the necessary tricks are presented. 

Exercises on section 1 1.2 

(1) Solve eq. (1 1.65) for the steady state, i.e. where d P l d  t = 0. 
Hint: Try the hypothesis 

and determine C by inserting P into ( 1  1.65). 

(2) Find time dependent solutions of (1 1.65). 
Hint: Try the hypothesis 

and determine the unknown functions u(t), u*(t), N(t) ,  h(t). 

11.3. Generalized Fokker-Planck equation of the laser 

In the foregoing section we have shown how the density matrix equation 
of a damped field mode can be transformed into a classical Fokker-Planck 
equation without any loss of "information". We may therefore ask the 
question whether a similar procedure can be applied to the density matrix 
equation of the laser (1 1.12) which comprises the field and the atomic (or 
electron) variables. There is, however, an obstacle which consists in the 
difference between Bose operators, b, bf ,  and Fermi operators of electrons 
af, a*. Though at a first sight their corresponding commutation relations 
differ only by a sign, it is well known to the experts that this causes 
considerable trouble when one tries to derive operator equations similar to 
those of the form (1 1.49). In spite of these difficulties it is possible to derive 
again a Fokker-Planck-type equation, though due to the specific properties 
of the Fermi operators this Fokker-Planck equation contains derivatives 
up to infinitely high order so that we call the corresponding equation 
"generalized Fokker-Planck equation". 

Since the detailed procedure does not give us any more physical insights 
than that of the preceding section, we shall not present these details here. 
We rather refer the reader to my book "Laser Theory" in which the detailed 
steps are presented. Here we rather present the main steps. 
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In analogy to our considerations when deriving the quantum mechanical 
Langevin equations we shall use pairs of operators a;, a t  in a form well 
known to us, namely 

Because we shall deal with a set of atoms distinguished by the index p we 
shall supplement the quantities on the right-hand sides of (1 1.82)-(11.84) 
by that index, 

In order to simplify the calculation we shall adopt the model of a single 
mode laser with a running wave so that the spatial dependence of the 
coupling coefficients g, can be transformed away. Because the field mode 
then interacts with the operator of the total dipole moment, we shall 
introduce that operator and its Hermitean conjugate as new operators 

Finally we introduce the sum over d, as a new variable which we call 2Sz 

The notation (1 1.86)-(11.88) stems from the fact that S', S-, and S, can 
be considered as spin operators as far as their commutation relations are 
concerned. We shall not use this fact here explicitly, though it plays a role 
in the detailed derivation of the generalized Fokker-Planck equation we 
wish to describe. 

In the foregoing section we have seen that one may establish a correspon- 
dence between the operators b, b' and u, u* 

In a similar fashion we introduce the correspondence 

From the formal point of view we now perform the same steps as above in 
section 11.2. We first have to define a characteristic function by means of 
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an exponential function in analogy to (1 1.43) and (1 1.42). Because of the 
operator properties of (1 1.86)-(11.88) we have several options with respect 
to an arrangement of the exponential functions. In the following we shall 
adopt the following choice: 

which is suggested by the analogy to the choice (1 1.42) we made before. It 
should be noted that other choices have been followed up in the literature 
as well, for instance one with an exchanged sequence of S+ and S-, or one, 
in which the operators St,  S-, S, occur as a linear combination within the 
same exponential function. Each of these individual choices has advantages 
and disadvantages, especially concerning the form of the solution of the 
Fokker-Planck equation and the way in which expectation values and 
correlation functions are e\ aluated. 

In order to define the characteristic function of the total system field 
mode +atoms we introduce the operator 

which in particular depends on the parameters 5, t*,  5, P and P*, 

It is now straightforward to formulate the distribution function of the laser 
by means of 

where the characteristic function is, of course, defined by 

As mentioned before, the explicit derivation of the final generalized Fokker- 
Planck equation is rather tedious so that we quote in the present context 
only the final result. The equation of the distribution function reads 

where the linear operator L is defined by 

L = Lf + LAf + LA. 



294 1 1. Quantum theory of the laser I1 

Its individual parts are as follows. Lf stems from the coupling of the field 
mode to the heatbath. It is given by (1 1.65) and is repeated here for the 
reader's convenience, 

LA, describes the coherent interaction between the field mode and the set 
of atoms and is explicitly given by 

Finally LA stems from the interaction of the atoms with their heatbaths. 
This term is the most complicated one and has the explicit form 

If the phases of the atomic dipole moments are destroyed not only by real 
transitions but also by virtual transitions, the following term must be added 
to the r.h.s. of (1 1.100) (where q = 26) :  

In the following considerations we shall not take care of this term explicitly 
but rather quote its effect at the last stage of our approach only. 

Clearly, the Fokker-Planck equation we derived here stems only from 
those parts of the original density matrix equation (1 1.12), which contains 
the coupling of the field and the atoms to their corresponding heatbath, 
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and from the interaction between the atoms to the field. The Hamiltonian 
describing the free motions of the field and atoms is not taken care of here. 
Indeed it can be shown that the free motion can be split off in a trivial way. 

(1 1.96) together with the expressions (1 1.97)-(11.100) represents the 
generalized Fokker-Planck equation of the laser. We note that some terms 
appear in the desired form of a Fokker-Planck equation containing first 
and second order derivatives only. However, also derivatives up to fourth 
order with respect to v and v* occur and derivatives with respect to D up 
to infinite order via the exponential functions. Therefore the question arises 
whether we can reduce this still rather complicated generalized Fokker- 
Planck equation to an ordinary Fokker-Planck equation. We shall discuss 
the corresponding procedure in the next section. 

11.4. Reduction of the generalized Fokker-Planck equation 

In this section we wish to show how the generalized Fokker-Planck equation, 
whose derivation we sketched in the previous section, can be reduced to 
an ordinary Fokker-Planck equation. To do  this we have to anticipate the 
size of the various quantities u, v, D in the laser. Of course, in the original 
equation of the general form 

in which L contains u, v, D and derivatives with respect to u, v, D, these 
quantities can have any size. Therefore a proper answer to the question 
what typical size these quantities will acquire in the laser can be given only 
once the function f is known. This function has the meaning of a distribution 
function and just tells us what size u, v, D will have when averaged over$ 
Here a difficulty quite typical for physics arises, because f is not known. 
Therefore in one way or another we have to anticipate J; or at least the 
order of magnitude of u, v, D induced by$ Because we expect that eventually 
a Fokker-Planck equation of the type (10.157) will result for a laser close 
to threshold, in our first step we shall be guided by the solution (10.164) 
of eq. (10.157). From it a certain order of magnitude for u, v, D results so 
that we can make an appropriate expansion of eq. ( 1  1.96) keeping the 
leading terms provided we have introduced a measure of smallness. As we 
shall see, in this way we can actually derive an equation of the form ( 10.157) 
at threshold so that our whole procedure is self-consistent. 

Before we present the main steps we make a general remark. As it will 
turn out, the choice of a smallness parameter depends on the region in 
which the laser is operated, i.e. if it is operated close to or away from its 
threshold. In the following we shall adopt an order of magnitude which is 
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typical for a laser at threshold. The other case is not so interesting because 
it leads us back to a treatment equivalent to linearization or quasi-lineariz- 
ation of quantum mechanical Langevin equations. Close to threshold the 
following relation is assumed to be valid 

Note that nth, must not be mixed up with nth, because nthr means "photon 
number close to threshold", whereas nth refers to the photon number present 
in thermal equilibrium. A relation between the size of the atomic dipole 
moments proportional to v and the field mode amplitude u can be estab- 
lished via the semiclassical theory where we assumed a steady state relation 
(which can be justified because close to threshold the effective relaxation 
time tends to zero (critical slowing down)). In this way we obtain 

In order to find an appropriate expansion parameter we assume that the 
density of the laser atoms po is kept fixed but that we let the dimension of 
the laser go to infinity. Denoting the total number of laser atoms by N and 
the laser volume by V we have, of course, 

so that with N -, we must assume 

The coupling constant g, which occurs in (1 1.103) depends on the volume 
so that 

v - ' / ~ K  ~ - 1 / 2 .  (1 1.106) 

From the behavior of the photon number close to threshold we conclude 

We further introduce the relations 

where we note that in general an additional term 77 occurs which is due to 
phase destroying processes not connected with real transitions. In order to 
simplify our procedure we shall ignore 7 here but we note that we insert 
it again into our final result. 
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Finally we know from the semiclassical theory that the threshold inversion 
is given by 

For what follows it is convenient to introduce some abbreviations, namely 

We note that because of (1  1.106), K of ( 1  1.1 1 1) is independent of N. On 
the other hand, rewriting ( 1 1.1 10) by means of ( 1 1.1 1 1 ), we find that the 
increase of 

is proportional to N. 
In the next step of our analysis we introduce normalized quantities which 

are of the order of unity close to threshold. Therefore we transform the 
field amplitude, the dipole moment, and the inversion according to 

While in the present context nth,, v,,, and Dthr merely serve as abbreviations, 
it will become evident later that these quantities are just the values of the 
photon number, of the total dipole moment and of the total inversion at 
threshold, respectively. 

Furthermore anticipating the results in a self-consistent fashion we put 

Because of ( 1 1.103) we find 
'7 

We now insert (1  1.1 15) into the r.b.s. of (1  1.101) where derivatives with 
respect to a quantity q are counted as q '  as concerns the order of magnitude. 
The resulting expression can be considered as a function of N'", and the 
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idea consists in expanding this expression into inverse powers of N I / ~ .  In 
order to find an equation which guarantees a bounded distribution function 
we have to include terms of order N-'". In this way we obtain 

and 

a * -  1 
- - v J G ~ / s ~ = N ~ ~ ~ - c . c .  
aii JK 

while L, retains its original form. We note that it is also possible to retain 
terms which are important away from threshold but this is not our concern 
here. 

If additional phase destroying processes are included, the factor w,, of 
a'/&? dfi* must be replaced by 

We decompose the complex classical variables u and v into their real 
and imaginary parts and write 

We further introduce the well known abbreviation 

Then it is an easy matter to cast the Fokker-Planck equation containing 
the terms ( I  1.1 18), (1  1.1 19) and (1  1.98) into the form 
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In the case of additional phase destroying processes Nw,, must be replaced 
by 

This Fokker-Planck equation still refers to the field and atomic variables. 
On the other hand we wish to treat a laser at threshold where, as we know 
from the semiclassical approach, we can eliminate the atomic variables. 
Indeed close to threshold we may elimicate the atomic variables from the 
Fokker-Planck equation in a simple fashion. This can be done in two ways, 
either in the Fokker-Blanck equation directly or via a Langevin equation. 
Which way is chosen is partly a way of personal taste, partly one of simplicity. 
In fact, the seeming round-about via Langevin equations is simpler so that 
we choose that way. As is shown in classical statistical physics, the Fokker- 
Planck equation (1 1 .l23) is entirely equivalent to the following set of 
Langevin equations: 

($+ y l l )  ( D - D o )  +2ig(v*u-vu*) =rD. (1 1.127) 

drift coefficients which occur in the Fokker-Planck equation ( 1 1.123) 
are connected with the fluctuating force by the relations 
The 

Qj = lim loT loT ( t )  ( t  d d ,  j = U, 9 D. (1 1.128) 
T+W 4T 

According to the Fokker-Planck equation (1  1.123), the diffusion coefficients 
read explicitly 

Note that (1 1.123) does not contain diffusion coefficients stemming from 
rD because they have been neglected due to their smallness. 

We now resort to the method of adiabatic elimination which we have 
used at various occasions in this book. To this end we assume that 

K 4 Y,  Y I I  (1 1.131) 
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holds. Under this assumption we may eliminate the atomic variables v and 
D adiabatically, whereby we end up with the classical Langevin equation 
for the field amplitude u alone, 

In it we have used the abbreviations 

Dthr was defined above (1 1.1 10). Under the assumption (1 1.13 I ) ,  the fluctuat- 
ing force r is given by 

By means of (1 1.128) and using the fact that T, and T, are uncorrelated 
we readily obtain 

where Q,, and Q, are given explicitly by (1 1.129) and (1 1.130). 
We now observe that the classical Langevin equation (1 1.132) possesses a 

classical Fokker-Planck equation which is identical with ( 10.15 1) of section 
10.5. But in section 10.5 we derived this classical Fokker-Planck equation 
in a heuristic fashion from the quantum mechanical CLangevin) equations, 
whereas here we derive it from the quantum mechanical equations via 
quantum classical correspondence. To complete our derivation we wish to 
cast Q into the form we used in section 10.5. Using (1 1.129), (1 1.130) we 
may write Q in the form 

By means of the relation 
1 
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Q acquires the form 

We 

and 

now remind the reader of the relation (1 1.109), i.e. 

27 = w12 + w21, 

of (10.39) and (10.40) from which we obtain for N atoms 

By means of (11.140) and (11.141) we transform (11.139) into 

K 
Q=,(nth +nsp), 

where nth is the number of thermal light quanta and (cf. (10.103)) 

the number of spontaneously emitted light quanta. (1 1.142) represents the 
Q we introduced in section 10.5. 

In conclusion we mention that the general Fokker-Planck equation 
(1 1.123) can be applied when the laser is operated well above laser threshold 
(where the adibatic elimination might no more be applicable). 

11.5. Concluding remarks 

The Fokker-Planck equation we derived in section 11.4 can be readily 
solved in the stationary state. The method of quantum classical correspon- 
dence allows us to calculate expectation values of the field operators b', b 
by means of classical expectation values using the classical distribution 
function f (or P in our former notation). 

In this way we have a well defined procedure how to evaluate for instance 
K2 introduced in section 10.4, at least in the case T = 0. In fact, the method 
of quantum classical correspondence can be extended also to time dependent 
correlation functions, provided they are in normal order and in a temporal 
sequence. Therefore K2 can be calculated for T # 0 also by means of classical 
averages (for more details, cf. H. Haken, Laser Theory). We hope that the 
reader has seen how the whole justification of our results presented in 
sections 10.4 and 10.5 works, at least in principle. 



Chapter 12 

A Theoretical Approach to the 

Two-Photon Laser 

12.1. Introduction 

In this book we have been concerned with laser action produced by optical 
transitions where each individual transition is accompanied with the gener- 
ation (or annihilation) of a single photon. In Vol. 1 we got acquainted with 
a process in which two photons of quantum energies h w ,  and h o 2  are 
absorbed simultaneously, whereby an electron of an atom makes a transition 
between two levels 1 and 2 and the relation h w ,  +hw2 = W2 - W, holds. In 
this relation, y. is the energy of the electron in its state j. Because on the 
microscopic level, quantum processes are reversible we must expect that 
there is also a possibility of the simultaneous emission of two photons by 
means of a single electronic transition. Provided these transitions are stimu- 
lated emission processes, we are led in a natural way to the concept of a 
two-photon laser. At the same time this problem provides us with a nice 
example how the methods developed in this book can be applied to a variety 
of optical processes. Incidentally we shall see how we may derive the various 
approximations such as the semiclassical approach from the fundamental 
quantum mechanical equations in a rather elegant fashion. 

In a fully quantum theoretical formulation we start from a Hamiltonian. 
It consists of the Hamiltonian of the field modes, that of the set of laser 
atoms, and that of the interaction between these two subsystems. As we 
know from Vol. 1, two-photon absorption can be caused by the virtual 
absorption of a single photon where the electron is first brought from state 
1 to an intermediate state i and from there by a second virtual absorption 
of a further photon to the final state 2. Instead of treating these individual 
virtual transitions explicitly we may start right away from a phenomenologi- 
cal Hamiltonian which describes the process of two-photon absorption (or 
emission) jointly with the corresponding electronic transition. We shall 
formulate this Hamiltonian in the subsequent section. 
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We then may proceed to the Heisenberg equations of motion for suitable 
creation and annihilation operators of photons. When we imagine that the 
field and the atoms are coupled to reservoirs, we may introduce into the 
Heisenberg equations of motion suitable damping terms and fluctuating 
forces. When we take the average over the quantum fluctuations and the 
quantum mechanical state of the system, we obtain semiclassical equations 
for the two-photon laser, which can be considered as the straightforward 
extension of the equations of the single-photon laser. It remains as a nice 
exercise for the reader to translate the other methods, like that of the density 
matrix equation or of the Fokker-Planck equation, to the two-photon laser. 
In the next section we shall perform the first steps of this program explicitly. 

12.2. Effective Hamiltonian, quantum mechanical Langevin equations and 
semiclassical equations 

The Hamiltonian H of the field modes coupled to a set of two-level atoms 
is given by 

where the individual terms are defined as follows: Hamiltonian of the field 
mode 

Hamiltonian of the atoms 

interaction Hamiltonian 

Eq. (12.4) describes the process of two-photon emission or absorption 
accompanied by a corresponding electronic transition in a phenomenologi- 
cal way. a,, a: are the usual dipole moment operators. Their significance 
becomes obvious in the present context when we recall that they are 
connected with the creation and annihilation operators of an electron in 
its individual levels by means of the relations 

a, =a:,a2,, and u:=a;,a ,,,. ( 12.5) 

For sake of simplicity we shall assume running waves so that the coupling 



304 12. A theoretical approach to the two-photon laser 

coefficients can be written in the form 

As a somewhat more detailed analysis shows the coupling coefficients g are 
symmetric with respect to the arguments A and A '  

We write the Heisenberg equation of motion of an arbitrary operator 0 in 
the form 

The second term on the right-hand side of (12.8) stems from the coupling 
between the system and the heatbaths and gives rise tc damping constants 
and fluctuating forces. It is a simple matter to evaluate the commutator on 
the right-hand side of (12.8). By means of the commutation relations of the 
operators bt, b, a,, . . . we obtain 

These are the quantum mechanical Langevin equations which can be con- 
sidered as a straightforward extension of the single photon case treated in 
section 10.3. In order to obtain semiclassical equations we replace the 
operators by their average values and replace for sake of convenience these 
average values by their arguments, e.g. 

We furthermore assume that we may factorize these averages into products 
of averages. Finally it is assumed that the fluctuating forces have the 
following property: 

In the next section we shall be concerned with the thus resulting equations 
which we do not need to write down explicitly once more. In the following 
we just have to interpret the quantities b, etc. as classical time dependent 
variables and to omit the fluctuating forces. 
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12.3. Elimination of atomic variables 

For sake of completeness we shall derive the main results for the whole set 
of modes A. Readers who are not interested in the rather complicated 
formulas of this section can skip it and proceed directly to section 12.4, in 
which we shall be concerned with the much simpler case of single mode 
operation and a homogeneously broadened atomic line. 

We assume that the classical field amplitudes bA are still small quantities 
and that the damping constants of the cavity modes, KA, are much smaller 
than y and I /  T, where I /  T <  y is assumed to hold. Under these circum- 
stances we may adopt the same iteration procedure as in section 6.4. In the 
first step we assume that the inversion is equal to the unsaturated inversion, 
i.e. 

dO, = d,,,). (12.14) 

Furthermore we assume that coherent modes have developed, 

bA = BA (t)  exp[-iflAt], (12.15) 

where BA ( t )  is an amplitude whose time dependence is assumed to be much 
slower than that of the accompanying exponential function. flA is the mode 
frequency when laser action takes place. In order to obtain the first approxi- 
mation we insert ( 12.14) and ( 12.15) into the semiclassical version of ( 12. lo). 
Under steady state conditions we obtain the solution 

where the slowly varying amplitude approximation has been made. In the 
next step of the iteration procedure we insert (12.15) and (12.16) into (12.11). 
The solution can be written in the form 

Because the coefficients C are rather complicated expressions, we do not 
exhibit them here explicitly but rather leave their explicit determination as 
an exercise to the reader. 

We now insert (12.18) and (1 2.15) into the classical version of (12.10). 
The solution is again straightforward and has the general form of 
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Again the explicit determination of the coefficients D is left as an exercise 
to the reader. We may now insert (12.19) into (12.9) which closes the circle, 
i.e. we find a self-consistency equation for the field modes bA. These 
equations have the general form 

For sake of completeness we have to write down the coefficients M and N 
explicitly. They read as follows: 

where we have used the abbreviation 

Quite evidently the equations (12.20) are the analogues of the equations 
(6.69) of the multimode laser which were valid somewhat above laser 
threshold. In the following we do not intend to present here the complete 
theory taking into account all modes but we rather wish to treat a particularly 
simple example, namely that in which only a single mode has a sufficiently 
long lifetime to support laser action. 

12.4. Single mode operation, homogeneously broadened line and running 
wave 

In this case there is only one field mode present so that A = A '  = A,. In the 
following we shall drop that index for simplicity so that 

Because we are dealing with running waves we may assume the form (12.6) 
and write 

lk,J2 == g2- (1 2.25) 
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We furthermore assume dwqo= do and introduce the sum over the atomic 
indices, p, 

C dw,0 = Ndo = Do, 
P 

where Do is the total unsaturated inversion. Finally we use the relation 
between the photon number n and [b12, 

1 bI2 = n. ( 12.27) 

Under these assumptions the equations ( 12.20) acquire the very simple form 

In order to bring out the main features we assume exact resonance, i.e. that 
the mode frequency in the unloaded cavity w is related to the atomic 
transition frequency of the homogeneously broadened line by 

2 0  = (3. ( 1  2.29) 

Under this assumption the mode frequency fl in the case that laser action 
takes place, agrees with w, 

By means of the hypothesis 

where B is a complex quantity, (12.28) is transformed into 

This equation can be considered as an analogue of the laser equation (6.48). 
We may write it in the form 

where the potential function V is explicitly given by 

V = K /  BJI -aD0(g2/ y)j B ~ ~ + $ D ~ ~ ~ ( T /  y2)1 BI8. ( 12.34) 

The potential is plotted for various values of the unsaturated inversion Do 
which serves as pump parameter (fig. 12.1). As can be seen, we are dealing 
with a first order phase transition. It requires always some energy input in 
order to reach the minimum of the potential V by an appropriate field 
amplitude B. For this reason it is important to initiate or help laser action 
by means of an injected signal which is in resonance with the mode frequency 
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lncreaslnq pump 

Fig. 12.1. The potential function V versus I BI for various values of the unsaturated inversion 
Do according to eq. (12.34). 

o. In such a case eq. (12.32) is replaced by 

where Bo is proportional to the amplitude of the injected signal. It is a 
simple matter to cast (12.35) again into the form (12.33) where the potential 
is now given by 

It is a nice exercise for the reader to discuss the form of the potential 
function V as a function of the parameters Do and B,. 

In this short chapter we have presented the simplest case of the two-photon 
laser to show some of the typical features introduced by this new photon 
emission mechanism. The case we have been treating is called the degenerate 
case, because the energy of the electronic transition is split into two equal 
amounts ko, = ko,. 

In the non-degenerate case the emission of two photons with energies 
ho, and ko, must be treated. In this case by a proper choice of the decay 
constants K ,  and K, these two modes may be selected. In such a case two 
equations for the modes A ,  and A, can be derived from the general eqs. 
(12.20) by means of specialization. Then the task remains to solve the 
remaining two equations. A detailed discussion will be beyond the scope 
of this book, however, so that we refer the interested reader to the literature. 



Chapter 13 

The Laser - Trailblazer of 

Synergetics 

13.1. What is synergetics about? 

At various occasions in this book we alluded to synergetics, and also to 
analogies between the behavior of a laser at threshold and phase transitions. 
In this chapter we wish to elaborate somewhat on these analogies and in 
particular on the significance of the laser as a prototype of systems which 
produce spatial or temporal structures by self-organization. 

Let us first explain the word "synergetics". It consists of two Greek words 
and means "cooperation", or "science of cooperation". When scientists 
wish to study the properties of their objects of research, very often they 
decompose them into individual parts. For instance, a physicist decomposes 
a crystal into its atoms, or a biologist decomposes an organ into its individual 
cells. In many cases it turns out that the properties of the total system 
cannot be explained by a mere superposition of the properties of the 
individual parts of the system. Rather the individual subsystems cooperate 
in a well defined fashion which sometimes even appears purposeful. In this 
way properties of the total system are created which even qualitatively differ 
from the properties of the individual subsystems. It is a main goal of 
synergetics to unearth general principles through which the individual 
subsystems produce macroscopic properties of the total system. The scope 
of this research program is rather broad because the individual subsystems 
may be, for instance, atoms, molecules, cells, computers, or even human 
individuals. The laser has played a fundamental role with respect to the 
discovery of these general principles. On the other hand, in the spirit of 
synergetics it has become possible to predict qualitatively new properties 
of laser light, e.g. chaotic laser light (cf. chapter 8). Therefore within the 
frame of this book we shall discuss some of the most important aspects of 
synergetics. We shall show that the transition from light of lamps to laser 
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light represents an instructive example of self-organization. Furthermore 
we wish to show that the laser is a typical example of a whole new class 
of phenomena, namely of nonequilibrium phase transitions. 

13.2. Self-organization and the slaving principle 

We have shown in chapter 10 that the statistical properties of laser light 
change at laser threshold drastically. Let us consider once again fig. 10.10. 
In this figure the normalized noise intensity is plotted against the pump 
power. According to that figure, the statistical properties of laser light change 
qualitatively at the laser threshold. Below laser threshold noise increases 
more and more while above threshold it decreases again. We have seen 
how to visualize this behavior. Below laser threshold, light consists of 
individual wave tracks which are emitted from the individual atoms indepen- 
dently of each other. Above laser threshold, a practically infinitely long 
wave track is produced. In order to make contact with other processes of 
self-organization let us interpret the processes in a lamp or in a laser by 
means of Bohr's model of the atom (fig. 13.1). A lamp produces its light 
in such a way that the excited electrons of the atoms make their transitions 
from the outer orbit to the inner orbit entirely independently of each other. 
On the other hand, the properties of laser light can be understood only if 
we assume that the transitions of the individual electrons occur in a corre- 
lated fashion. Let us translate these processes into an anthropomorphic 
picture. Imagine that some men stand at the border of a channel filled with 

Fig. 13.1. Upper part: The electric field strengths versus time in a lamp (left-hand side) and 
in a laser (right-hand side). Lower part: In Bohr's model of the atom an electron circles around 
the nucleus. When it makes its transition from the outer orbit to the inner orbit, it emits a 
light wave which is plotted in the upper part of this figure. In the lamp the electrons make 
their transitions to the lower orbit in an uncorrelated fashion. In the laser they make their 
transitions in phase, i.e. in a correlated fashion. 
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water. The men are assumed to symbolize the atoms, and the water the light 
field. By pushing bars into the water the men can excite the water to some 
motion. In order to describe the light produced by a lamp in a model-like 
fashion we let the men push their bars independently of each other into the 
water. In this way a randomly oscillating water surface appears, represent- 
ing incoherent light. In order to understand the coherence of laser light, 
we must assume that the men push their bars into the water in a well 
correlated fashion (fig. 13.2). In our daily life the latter process can easily 
be understood by assuming that there is a boss who gives the appropriate 
orders to the men when they have to push their bars into the water. But - 
and this is the decisive point - in the laser there is nobody who gives such 
orders to the atoms. Thus the behavior of the atoms is a typical example 
of self-organization. 

As it has turned out over the last one or two decades, there are many 
other branches in science, such as physics, chemistry, and biology, where 
similar processes involving self-organization take place. We use the laser 
example to demonstrate how self-organization is made possible. To this 

Fig. 13.2. Visualization of the behavior of a lamp or a laser. In both cases the atoms are 
represented by men and the light field by water in a channel at the border of which the men 
stand. By pushing bars into the water the men produce a water wave. In the case of a lamp 
this pushing occurs irregularly and independently. In the case of the laser the bars are pushed 
periodically and in phase. 
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end we use the equations of a single mode laser including fluctuating forces, 
but we shall assume for simplicity that the laser equations including their 
fluctuating forces refer to classical quantities. We furthermore transform 
the rapid oscillations with frequency w away so that the laser equations 
acquire the familiar form 

dd,/dt = (do - d,)/ T +2ig(A,B* -A: B). (13.3) 

In the last equation we have dropped the fluctuating forces because they 
are not so important. In many realistic cases the damping constant K is 
much smaller than the damping constant y. This gives rise to the following 
idea which we have exploited at several instances in our present book, e.g. 
in sections 6.3 and 6.4. Because K is small, we expect that B decreases only 
slowly according to eq. ( 13.1). As we have seen in chapter 10, B decreases 
below laser threshold with a damping constant which is even considerably 
smaller than K .  But also above laser threshold B relaxes very slowly when 
we take the laser process into account. 

According to (13.2) the temporal change of A, is caused by the field 
amplitude B standing on the r.h.s. (provided we neglect for the moment 
being fluctuations). According to (1 3.2) we shall expect that also A, changes 
only slowly. This immediately leads us to the inequality 

Because K is much smaller than y we can put the 1.h.s. of (13.2) practically 
to zero. That means that we can resolve (13.2) with respect to A,, 

This equation tells us that the amplitude of the dipoles, which is proportional 
to A,, is instantaneously given by the field amplitude B( t )  (and by the 
fluctuating force). This is probably the simplest example of a principle 
which has turned out to be of fundamental importance in synergetics and 
which is called the slaving principle. 

In the present context it can be formulated as follows. Fast relaxing 
quantities (e.g. A,) adopt their values instantaneously with respect to the 
values of slowly varying quantities (e.g. B(t)) or, to use a terminus technicus, 
fast relaxing quantities are slaved by slowly relaxing quantities. Within syner- 
ge t ic~  it is shown that this principle can be considerably extended in various 
ways (cf. for example section 7.3). But it is far beyond the scope of the 
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El field 

Fig. 13.3. Visualization of the slaving principle. Upper part: The electric field strength E slaves 
the atomic dipole moments and inversion. Lower part: First row of circles, below threshold 
fluctuations dominate and the dipole moments point into random directions; second row of 
circles, above threshold the dipole moments are slaved by E. 

present book to give here any more details. What is important in the present 
context is the fact that the slaving principle gives rise to an enormous 
reduction of the degrees of freedom (cf. fig. 13.3). Because A,(t) is pre- 
scribed by B(t),  all the atomic dipole moments have to obey the field. In 
a more detailed treatment of the laser case which we did in sections 6.3 
and 6.4 it can be shown that the inversion d, can be expressed by B also 
instantaneously. Because A, and d, can be expressed by B(t)  these quan- 
tities can be eliminated from eqs. (13.1)-(13.3) and we obtain (for not too 
big B's) the equation 

which we obtained before in this book. It determines the total behavior of 
the laser and thus the behavior of the individual dipole moments and the 
inversion of the individual atoms. Below laser threshold B is small. It 
transpires from (13.5) that in this case the behavior of the dipoles is 
essentially described by the fluctuations fp so that the behavior of the 
dipoles is entirely uncorrelated. Above laser threshold the coherent field B 
grows more and more and it can slave the degrees of freedom of the dipole 
moments and of the inversion. Within synergetics it has turned out that 
(13.6) is a quite typical equation describing effects of self-organization. For 
instance an equation of the type (13.6) describes the onset of a convection 
pattern in fluid dynamics (cf. section 8.3) or the occurrence of a macroscopic 
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pattern in chemical reactions. On the other hand in synergetics it is shown 
that there are also other classes of equations describing macroscopic proper- 
ties. But (13.6) was the first example of such type of equation in systems 
far from thermal equilibrium. 

13.3. Nonequilibrium phase transitions 

The laser was the first example in which the occurrence of nonequilibrium 
phase transitions could be demonstrated. Before we deal with this problem 
we wish to remind the reader of some important properties of phase 
transitions of systems in thermal equilibrium. Examples for phase transitions 
are provided by ferromagnets or superconductors. In both cases we are 
dealing with systems in thermal equilibrium. When we lower the temperature 
T below a critical temperature T,, the macroscopic behavior of such a 
system changes dramatically. In the ferromagnet suddenly a macroscopic 
magnetization is produced, while in a superconductor the electrical resist- 
ance disappears entirely. 

In order to treat such transitions, various theories were developed. The 
most well known theories are the Landau theory of phase transitions and 
the more recently developed theories based on the renormalization group 
by Wilson. For our purposes it will be sufficient to remind the reader of 
the Landau theory. Let us consider a system in thermal equilibrium and let 
us treat the ferromagnet as example. A ferromagnet can be considered as 
being composed of elementary magnets each with a magnetic moment p. 
Let us further assume that the elementary magnets can point in only two 
directions, up or down. Let us denote the number of elementary magnets 
showing upwards by MT and of those pointing downwards by M1. The 
total magnetization of the material is then given by 

In the following we replace the variable M by a variable q because we wish 
to treat the problem somewhat more generally. In the following we shall 
denote q as "order parameter", because it describes the degree of order of 
a system (e.g. of the ferromagnet). Let us recall some basic facts of thermody- 
namics. In the present case the free energy depends on two quantities, 
namely temperature T and magnetization q. If q is not too big, we may 
expand the free energy into a Taylor series, 

In many cases of practical interest the first and third derivative vanish for 
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symmetry reasons, 
9' = Pll= 0. 

In such a case (13.8) is reduced to 

where we have abbreviated the constant coefficients by a12  and P/4, 
respectively. 

It is shown in statistical physics that the probability of finding the system 
at temperature T and with a specific magnetization q is given by the formula 

f = N exp(-@(q, T)/ k,  T). 

In it k ,  is Boltzmann's constant and JV the normalization factor. The most 
probable order parameter is determined by the condition 9 = min! Let us 
investigate the position of the corresponding minimum or minima depending 
on the coefficient a. In the Landau theory of phase transitions this coefficient 
is assumed to be of the form 

i.e. it changes its sign at the critical temperature T = Tc. Therefore we shall 
distinguish between the two domains T >  Tc and T <  Tc (compare table 
13.1), i.e. for a, > 0 the minimum of 9 lies at q = q, = 0. Let us consider the 
entropy of the system. According to formulas of thermodynamics, S is given 
by 

= J W 9 ,  T )  (13.13) 
dT ' 

In the temperature range we thus obtain 

The second derivative of 9 with respect to temperature gives us the specific 
heat (besides a factor T)  

Using (13.14) we thus obtain 

Let us repeat the same steps for the case T <  Tc, i.e. a, <O.  This yields a 
new equilibrium value q = kq ,  and a new entropy represented in table 13.1. 
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Table 13.1 

State 

Disordered Ordered 

Temperature T >  Tc 

Parameter (external) a>O 

Most probable order parameter q, 90 = 0  

f ( q )  = max! 

F= min! 

Entropy, S  = -itF(q,, T) / i lT  

Broken symmetry 

S,, = -89(0 ,  T ) / d T  s,+ ( a 2 / ( 2 p ) ) ( ~ -  T,) 

Specific heat, c = T ( d S / d T )  

discontinuous at T  = Tc 

As one can derive from table 13.1 the entropy S is continuous at T = T,. 
When we calculate the specific heat, we obtain two different expressions 
below and above the critical temperature and thus a jump of the specific 
heat at T = T,. This phenomenon is called a phase transition of second 
order, because the second derivative of the free energy is discontinuous. 
But because the entropy is continuous, this transition is also called a 
continuous phase transition. In statistical physics also the temporal change 
of the order parameter is studied. Quite often in a purely phenomenological 
manner it is assumed that the temporal change of the order parameter is 
given by an equation of the form 

In our concrete example ( 13.1 O),  ( 13.17) acquires the form 

which coincides with (13.6) provided we assume B real and drop the 
fluctuating forces. 

In (13.17) and (13.18) we have omitted a constant factor on the r.h.s. 
which merely fixes the time scale. (13.1 8) allows us to discuss some typical 
phenomena of phase transitions which we came across in the realm of laser 
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theory in quite a different context. When we let a, in (13.18) tend to 0, we 
find a phenomenon which is denoted in phase transition theory as critical 
slowing down. We came across this phenomenon in section 6.3 in quite a 
different context. At the transition point a symmetry breaking instability 
occurs because for T < T, the equilibrium position q, = 0 becomes unstable 
and is replaced by one of the two equilibrium positions q, = J m  or 
q, = - Jla l / P .  Finally when we add fluctuating forces to (13.1 8) (cf. ( 13.6)), 
these forces are particularly efficient if a, is close to 0 and the restoring 
force goes with the third power of q so that at small values of q the restoring 
force is very small. In this case we are dealing with criticalfluctuations of q. 

So far we have reminded the reader of some fundamental concepts of 
phase transition theory of systems in thermal equilibrium. When we consider 
the individual formulas of the Landau theory of phase transitions we readily 
recognize a striking analogy with the laser equations. Indeed (13.1 1) with 
9 given by (13.10) precisely corresponds to the laser distribution function 
(with r = q). We thus recognize that the potential V of the fictitious particle 
we introduced in laser theory plays the same role as the free energy in phase 
transition theory of systems in thermal equilibrium. We further see that eq. 
(13.18) has precisely the same form as the laser equation as mentioned 
before. The main difference consists in the fact that q is a real variable 
whereas the field amplitude B is complex. But we readily see how to translate 
the concepts of critical slowing down, critical fluctuations and symmetry 
breaking into laser theory. From a formal point of view we observe in the 
case of the laser precisely the same phenomena which occur in phase 
transitions in thermal equilibrium. The decisive difference rests in the fact 
that the laser is a system far from thermal equilibrium. This system is open 
because energy is pumped all the time into it and is going out in form of 
laser light. We must clearly state that this analogy is purely formal. The 
pump power, or equivalently the unsaturated inversion, corresponds to 
temperature. As can be shown, the radiated laser power corresponds to the 
entropy. The specific heat is now replaced by the differential efficiency, i.e. 
by the change of emitted power when the pump power is changed. In spite 
of the fact that this analogy is purely formal, a discussion of laser light 
phenomena in terms of phase transition theory has proven very fruitful. 
This is particularly so because besides phase transitions of second order 
also such of first order are known. In such transitions a hysteresis loop 
occurs. Such phase transitions can be realized by specific experimental laser 
set-ups. 

In conclusion we wish to mention that nonequilibrium phase transitions 
have been found in the meantime in many other systems also, such as fluids 
and chemical reactions. 
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