Summary of Class 1 8.02 Tuesday 2/1/05 / Wed 2/2/05

Topics:  Introduction to TEAL; Fields; Review of Gravity; Electric Field
Related Reading:

Course Notes (Liao et al.):  Sections 1.1 — 1.6; 1.8; Chapter 2
Serway and Jewett: Sections 14.1 — 14.3; Sections 23.1-23.4
Giancoli: Sections 6.1 — 6.3; 6.6 — 6.7; Chapter 21

Topic Introduction

The focus of this course is the study of electricity and magnetism. Basically, this is the study
of how charges interact with each other. We study these interactions using the concept of
“fields” which are both created by and felt by charges. Today we introduce fields in general
as mathematical objects, and consider gravity as our first “field.” We then discuss how
electric charges create electric fields and how those electric fields can in turn exert forces on
other charges. The electric field is completely analogous to the gravitational field, where
mass is replaced by electric charge, with the small exceptions that (1) charges can be either
positive or negative while mass is always positive, and (2) while masses always attract,
charges of the same sign repel (opposites attract).

Scalar Fields
A scalar field is a function that gives us a single value of some variable for every point in
space — for example, temperature as a function of position. We write a scalar field as a scalar

function of position coordinates —e.g. T'(x,,z), T'(r,0,9) , or, more generically, T'(¥). We

can visualize a scalar field in several different ways:
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In these figures, the two dimensional function ¢(x, y) = - has

\/x2 -1-(y+d)2 \/x2 -1-(y—a’)2
been represented in a (A) contour map (where each contour corresponds to locations yielding
the same function value), a (B) color-coded map (where the function value is indicated by the
color) and a (C) relief map (where the function value is represented by “height”). We will
typically only attempt to represent functions of one or two spatial dimensions (these are 2D)
— functions of three spatial dimensions are very difficult to represent.
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Summary of Class 1 8.02 Tuesday 2/1/05 / Wed 2/2/05

Vector Fields

A vector is a quantity which has both a magnitude and a direction in space (such as velocity
or force). A vector field is a function that assigns a vector value to every point in space — for
example, wind speed as a function of position. We write a vector field as a vector function of

position coordinates — e.g. F(x, y,z) — and can also visualize it in several ways:
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Here we show the force of gravity vector field in a 2D plane passing through the Earth,
represented using a (A) vector diagram (where the field magnitude is indicated by the length
of the vectors) and a (B) “grass seed” or “iron filing” texture. Although the texture
representation does not indicate the absolute field direction (it could either be inward or
outward) and doesn’t show magnitude, it does an excellent job of showing directional details.
We also will represent vector fields using (C) “field lines.” A field line is a curve in space
that is everywhere tangent to the vector field.

N
~

Gravitational Field
As a first example of a physical vector field, we recall the gravitational force between two
masses. This force can be broken into two parts: the generation of a “gravitational field” g

by the first mass, and the force that that field exerts on the second mass (Fg =mg ). This way

of thinking about forces — that objects create fields and that other objects then feel the effects
of those fields — is a generic one that we will use throughout the course.

Electric Fields
Every charge creates around it an electric field, proportional to the size of the charge and
decreasing as the inverse square of the distance from the charge. If another charge enters this

electric field, it will feel a force (FE = qE).

Important Equations

Force of gravitational attraction between two masses: Fg =-G ]\f:n r
Strength of gravitational field created by a mass M: g= Zg = —G%f'
Force on mass m sitting in gravitational field g: Fg =mg
Strength of electric field created by a charge O: E= k, r—sz'
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Force on charge ¢ sitting in electric field E: FE =g4E
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Summary of Class 2 8.02 Thursday 2/3/05 / Monday 2/7/05

Topics:  Electric Charge; Electric Fields; Dipoles; Continuous Charge Distributions

Related Reading:
Course Notes (Liao et al.):  Section 1.6; Chapter 2
Serway and Jewett: Chapter 23
Giancoli: Chapter 21

Topic Introduction

Today we review the concept of electric charge, and describe both how charges create
electric fields and how those electric fields can in turn exert forces on other charges. Again,
the electric field is completely analogous to the gravitational field, where mass is replaced by
electric charge, with the small exceptions that (1) charges can be either positive or negative
while mass is always positive, and (2) while masses always attract, charges of the same sign
repel (opposites attract). We will also introduce the concepts of understanding and
calculating the electric field generated by a continuous distribution of charge.

Electric Charge

All objects consist of negatively charged electrons and positively charged protons, and hence,
depending on the balance of the two, can themselves be either positively or negatively
charged. Although charge cannot be created or destroyed, it can be transferred between
objects in contact, which is particularly apparent when friction is applied between certain
objects (hence shocks when you shuffle across the carpet in winter and static cling in the

dryer).

Electric Fields
Just as masses interact through a gravitational field, charges interact through an electric field.
Every charge creates around it an electric field, proportional to the size of the charge and

decreasing as the inverse square of the distance from the charge (E =k, %f'j . If another
r
charge enters this electric field, it will feel a force (FE = qE). If the electric field becomes

strong enough it can actually rip the electrons off of atoms in the air, allowing charge to flow
through the air and making a spark, or, on a larger scale, lightening.

Charge Distributions

Electric fields “superimpose,” or add, just as gravitational fields do. Thus the field generated
by a collection of charges is just the sum of the electric fields generated by each of the
individual charges. If the charges are discrete, then the sum is just vector addition. If the
charge distribution is continuous then the total electric field can be calculated by integrating

the electric fieldsJE generated by each small chunk of charge dg in the distribution.
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Summary of Class 2 8.02 Thursday 2/3/05 / Monday 2/7/05

Charge Density

When describing the amount of charge in a continuous charge distribution we often speak of
the charge density. This function tells how much charge occupies a small region of space at
any point in space. Depending on how the charge is distributed, we will either consider the
volume charge density o =dq/dV , the surface charge density o = dq/dA, or the linear

charge density A =dq/d(, where V, A and / stand for volume, area and length respectively.

Electric Dipoles

The electric dipole is a very common charge distribution consisting of a positive and negative

charge of equal magnitude ¢, placed some small distance d apart. We describe the dipole by
its dipole moment p, which has magnitude p = gd and points firom
the negative zo the positive charge. Like individual charges,
dipoles both create electric fields and respond to them. The field
created by a dipole is shown at left (its moment is shown as the

« purple vector). When placed in an external field, a dipole will
attempt to rotate in order to align with the field, and, if the field is
non-uniform in strength, will feel a force as well.

v

Important Equations

Electric force between two charges: ‘FE‘ =k g,
r

Repulsive (attractive) if charges have the same (opposite) signs

Strength of electric field created by a charge QO: E= k, %f‘ ,
r

r points from charge to observer who is measuring the field

Force on charge g sitting in electric field E: FE =qE
Electric dipole moment: |f)| =qd
Points from negative charge —¢q to positive charge +q.
Torque on a dipole in an external field: 7=pxE
Electric field from a discrete charge distribution: ~ E = 1 q—’zf'l _ ! q_,3 r,
Ame, S |”l| Arg, < |”,|

. . e = 1 (dg.
Electric field from continuous charge distribution: E j—qr

2
dre, s v

pdV  for a volume distribution
Charge Densities: dg=<0dA for a surface (area) distribution

Ad?¢  for a linear distribution

Important Nomenclature:

A hat (e.g. A ) over a vector means that that vector is a unit vector ( ‘A‘ =1)

The unit vector r points from the charge creating fo the observer measuring the field.
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Summary of Class 3 8.02 Friday 2/4/05

Topics:  Line and Surface Integrals

Topic Introduction

Today we go over some of the mathematical concepts we will need in the first few weeks of
the course, so that you see the mathematics before being introduced to the physics.
Maxwell’s equations as we will state them involve line and surface integrals over open and
closed surfaces. A closed surface has an inside and an outside, e.g. a basketball, and there is
no two dimensional contour that “bounds” the surface. In contrast, an open surface has no
inside and outside, e.g. a flat infinitely thin plate, and there is a two dimensional contour that
bounds the surface, e.g. the rim of the plate. There are four Maxwell’s equations:

(1)#1?:-61&:& 2 fpB-dA=0
s ) s

() §B-a5=-L2s @) GB-d = i, + pey ot
J t g dt

Equations (1) and (2) apply to closed surfaces. Equations (3) and (4) apply to open surfaces,
and the contour C represents the line contour that bounds those open surfaces.

There is not need to understand the details of the electromagnetic application right now; we
simply want to cover the mathematics in this problem solving session.

Line Integrals
The line integral of a scalar function f(x,y,z) along a path C is defined as

N
[ fryds=lim Y f(x,v,.2)8s,

As;—0 =1
where C has been subdivided into N segments, each with a length As, .

Line Integrals Involving Vector Functions
For a vector function

F=Fi+F j+Fk
the line integral along a path C is given by

[ Bds=| (Fi+Fj+Fk)(dci+dyj+dk)= [ Fdv+Fdy+F.de
where
ds=dxi+dyj+dzk

is the differential line element along C.
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Surface Integrals
A function F'(x,y) of two variables can be integrated over a surface S, and the result is a

double integral:
[[.Fx.yyda= [ F(x,y)dxdy

where dA = dxdy is a (Cartesian) differential area element on S. In particular, when
F(x,y)=1, we obtain the area of the surface S:

A:ﬂsdAzjjS dx dy

Surface Integrals Involving Vector Functions
For a vector function F(x, y, z), the integral over a surface S is is given by

”si"dgzﬂsi'ﬁdfl ZHSF;’ d4

where dA = dAn and f is a unit vector pointing in the normal direction of the surface. The
dot product F = F - is the component of F parallel to fi. The above quantity is called

“flux.” For an electric field E, the electric flux through a surface is

®, = [[ E-hdd= [ E,dd

Important Equations

The line integral of a vector function:
[(Feds=[ (Fi+F,j+ F.k)(dxi+dyj+dzk)=[ Fdv+Fdy+Fdz

The flux of a vector function: ®, = J.LE ‘NdA = ”S E dA
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Summary of Class 4 8.02 Tuesday 2/8/05 / Wednesday 2/9/05

Topics:  Working in Groups, Visualizations, Electric Potential, E from V

Related Reading:
Course Notes (Liao et al.):  Sections 3.1-3.5
Serway and Jewett: Sections 25.1-25.4
Giancoli: Chapter 23
Experiments: Experiment 1: Visualizations

Topic Introduction

We first discuss groups and what we expect from you in group work. We will then consider
the TEAL visualizations and how to use them, in Experiment 1. We then turn to the concept
of electric potential. Just as electric fields are analogous to gravitational fields, electric
potential is analogous to gravitational potential. We introduce from the point of view of
calculating the electric potential given the electric field. At the end of this class we consider
the opposite process, that is, how to calculate the electric field if we are given the electric
potential.

Potential Energy

Before defining potential, we first remind you of the more intuitive idea of potential energy.
You are familiar with gravitational potential energy, U (= mgh in a uniform gravitational
field g, such as is found near the surface of the Earth), which changes for a mass m only as
that mass changes its position. To change the potential energy of an object by AU, one must
do an equal amount of work W,,,, by pushing with a force F,,, large enough to move it:

AU=U,-U, = B -ds=W,

ext ext

How large a force must be applied? It must be equal and opposite to the force the object
feels due to the field it is sitting in. For example, if a gravitational field g is pushing down on
a mass m and you want to lift it, you must apply a force mg upwards, equal and opposite the
gravitational force. Why equal? If you don’t push enough then gravity will win and push it
down and if you push too much then you will accelerate the object, giving it a velocity and
hence kinetic energy, which we don’t want to think about right now.

This discussion is generic, applying to both gravitational fields and potentials and to electric
fields and potentials. In both cases we write:

B -
AU=U,-U,=—[ F-ds

where the force F is the force the field exerts on the object.

Finally, note that we have only defined differences in potential energy. This is because only
differences are physically meaningful — what we choose, for example, to call “zero energy” is
completely arbitrary.

Potential

Just as we define electric fields, which are created by charges, and which then exert forces on
other charges, we can also break potential energy into two parts: (1) charges create an
electric potential around them, (2) other charges that exist in this potential will have an
associated potential energy. The creation of an electric potential is intimately related to the
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Summary of Class 4 8.02  Tuesday 2/8/05 / Wednesday 2/9/05

creation of an electric field: AV =V, -V, = —Ij E-d§. As with potential energy, we only

define a potential difference. We will occasionally ask you to calculate “the potential,” but
in these cases we must arbitrarily assign some point in space to have some fixed potential. A
common assignment is to call the potential at infinity (far away from any charges) zero. In
order to find the potential anywhere else you must integrate from this place where it is known
(e.g. from A=, V4=0) to the place where you want to know it.

Once you know the potential, you can ask what happens to a charge ¢ in that potential. It
will have a potential energy U = gV. Furthermore, because objects like to move from high
potential energy to low potential energy, as long as the potential is not constant, the object
will feel a force, in a direction such that its potential energy is reduced. Mathematically that

is the same as saying that F =—V U (where the gradient operator V = ii +ic +if( ) and
ox Oy~ 0z
hence, since F= qE, E=-V/V . That is, if you think of the potential as a landscape of hills

and valleys (where hills are created by positive charges and valleys by negative charges), the
electric field will everywhere point the fastest way downhill.

Important Equations

Potential Energy (Joules) Difference: AU=U,-U,=- I jF -ds

Electric Potential Difference (Joules/Coulomb = Volt): AV =V, =V, = —J.jfl -ds
kQ

Electric Potential (Joules/coulomb) created by point charge: V beoint Charge (1) =

Potential energy U (Joules) of point charge ¢ in electric potential V- U=qV
Experiment 1: Visualizations

Preparation: Read materials from previous classes

Electricity and magnetism is a difficult subject in part because many of the physical
phenomena we describe are invisible. This is very different from mechanics, where you can
easily imagine blocks sliding down planes and cars driving around curves. In order to help
overcome this problem, we have created a number of visualizations that will be used
throughout the class. Today you will be introduced to a number of those visualizations
concerning charges and electric fields, and currents and magnetic fields.
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Summary of Class 5 8.02 Thursday 2/10/2005 / Monday 2/14/2005

Topics: Gauss’s Law

Related Reading:
Course Notes (Liao etal.):  Chapter 4
Serway and Jewett: Chapter 24
Giancoli: Chapter 22

Topic Introduction

In this class we look at a new way of calculating electric fields — Gauss's law. Not only is
Gauss's law (the first of four Maxwell’s Equations) an exceptional tool for calculating the
field from symmetric sources, it also gives insight into why E-fields have the r-
dependence that they do.

The idea behind Gauss’s law is that, pictorially, electric fields flow out of and into
charges. If you surround some region of space with a closed surface (think bag), then
observing how much field “flows” into or out of that surface tells you how much charge
is enclosed by the bag. For example, if you surround a positive charge with a surface
then you will see a net flow outwards, whereas if you surround a negative charge with a
surface you will see a net flow inwards.

Electric Flux
The picture of fields “flowing” from charges is formalized in the definition of the electric

flux. For any flat surface of area 4, the flux of an electric field E through the surface is
defined as @, = E- A, where the direction of A is normal to the surface. This captures

the idea that the “flow” we are interested in is through the surface — if E is parallel to the
surface then the flux @, =0.

We can generalize this to non-flat surfaces by breaking up the surface into small patches
which are flat and then integrating the flux over these patches. Thus, in general:

o, = [[E-da
N

Gauss’s Law
Gauss’s law states that the electric flux through any closed surface is proportional to the
total charge enclosed by the surface:

0, g} E-di -1
s &y

A closed surface is a surface which completely encloses a volume, and the integral over a
closed surface S is denoted by (ﬂi
N

Symmetry and Gaussian Surfaces
Although Gauss’s law is always true, as a tool for calculation of the electric field, it is
only useful for highly symmetric systems. The reason that this is true is that in order to

solve for the electric field E we need to be able to “get it out of the integral.” That is, we
need to work with systems where the flux integral can be converted into a simple
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Summary of Class 5 8.02 Thursday 2/10/2005 / Monday 2/14/2005

multiplication. Examples of systems that possess such symmetry and the corresponding
closed Gaussian surfaces we will use to surround them are summarized below:

Symmetry System Gaussian Surface
Cylindrical Infinite line Coaxial Cylinder

Planar Infinite plane Gaussian “Pillbox”
Spherical Sphere, Spherical shell Concentric Sphere

Solving Problems using Gauss’s law

Gauss’s law provides a powerful tool for calculating the electric field of charge
distributions that have one of the three symmetries listed above. The following steps are
useful when applying Gauss’s law:

(1)Identify the symmetry associated with the charge distribution, and the associated
shape of “Gaussian surfaces” to be used.

(2)Divide space into different regions associated with the charge distribution, and
determine the exact Gaussian surface to be used for each region. The electric field
must be constant or known (i.e. zero) across the Gaussian surface.

(3)For each region, calculate g, the charge enclosed by the Gaussian surface.

(4)For each region, calculate the electric flux @, through the Gaussian surface.

(5)Equate @, with ¢g__/¢&,, and solve for the electric field in each region.

Important Equations

Electric flux through a surface S: D, = ﬂ E-dA
S

Gauss’s law: D, :C.ﬁ)ﬁ,dg:ﬁ
S 2

Important Concepts

Gauss’s Law applies to closed surfaces—that is, a surface that has an inside and an
outside (e.g. a basketball). We can compute the electric flux through any surface, open or
closed, but to apply Gauss’s Law we must be using a closed surface, so that we can tell
how much charge is inside the surface.

Gauss’s Law is our first Maxwell’s equations, and concerns closed surfaces. Another of
Maxwell’s equations, the magnetic Gauss’s Law, @, = Cﬂ‘)ﬁdg =0, also applies to a
N

closed surface. Our third and fourth Maxwell’s equations will concern open surfaces, as
we will see.
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Summary of Class 6 8.02 Friday 2/11/05

Topics:  Continuous Charge Distributions

Related Reading:
Study Guide (Liao et al.): Sections 2.9-2.10; 2.13
Serway & Jewett: Section 23.5
Giancoli: Section 21.7

Topic Introduction

Today we are focusing on understanding and calculating the electric field generated by a
continuous distribution of charge. We will do several in-class problems which highlight
this concept and the associated calculations.

Charge Distributions

Electric fields “superimpose,” or add, just as gravitational fields do. Thus the field
generated by a collection of charges is just the sum of the electric fields generated by
each of the individual charges. If the charges are discrete, then the sum is just vector
addition. If the charge distribution is continuous then the total electric field can be
calculated by integrating the electric fields dE generated by each small chunk of charge
dg in the distribution.

Charge Density

When describing the amount of charge in a continuous charge distribution we often speak
of the charge density. This function tells how much charge occupies a small region of
space at any point in space. Depending on how the charge is distributed, we will either
consider the volume charge density p =dgq/dV , the surface charge density o = dg/dA, or
the linear charge density A =dg/d/, where V, A and / stand for volume, area and length

respectively.

Important Equations

Electric field from continuous charge distribution:
(NOTE: for point charge-like dq) 4re, 5,

=1
Il
—_—
—
\’~|§“
[ )

Charge Densities:
pdV  for a volume distribution

dq =50dA for a surface (area) distribution

Ad?  for a linear distribution
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Summary of Class 7 8.02  Tuesday 2/15/2005 / Wednesday 2/16/2005

Topics:  Conductors & Capacitors

Related Reading:
Course Notes (Liao et al.):  Sections 4.3-4.4; Chapter 5
Serway and Jewett: Chapter 26
Giancoli: Chapter 22

Experiments: (2) Electrostatic Force

Topic Introduction

Today we introduce two new concepts — conductors & capacitors. Conductors are materials
in which charge is free to move. That is, they can conduct electrical current (the flow of
charge). Metals are conductors. For many materials, such as glass, paper and most plastics
this is not the case. These materials are called insulators.

For the rest of the class we will try to understand what happens when conductors are put in
different configurations, when potentials are applied across them, and so forth. Today we
will describe their behavior in static electric fields.

Conductors

Since charges are free to move in a conductor, the electric field inside of an isolated
conductor must be zero. Why is that? Assume that the field were not zero. The field would
apply forces to the charges in the conductor, which would then move. As they move, they
begin to set up a field in the opposite direction.
An easy way to picture this is to think of a bar of
metal in a uniform external electric field (from

Einternal = -Eexternal left to right in the picture below). A net positive
charge will then appear on the right of the bar, a
Eiota = 0 net negative charge on the left. This sets up a

field opposing the original. As long as a net field
exists, the charges will continue to flow until they
set up an equal and opposite field, leaving a net
zero field inside the conductor.

v

Eexternal

Capacitance

Using conductors we can construct a very useful device which stores electric charge: the
capacitor. Capacitors vary in shape and size, but the basic configuration is two conductors
carrying equal but opposite charges (+Q). In order to build up charge on the two plates, a
potential difference A}V must be applied between them. The ability of the system to store

charge is quantified in its capacitance: C = Q / | AV|. Thus a large capacitance capacitor can

store a lot of charge with little “effort” — little potential difference between the two plates.

0 A simple example of a capacitor is pictured at left — the
| parallel plate capacitor, consisting of two plates of area 4, a
=k distance d apart. To find its capacitance we first arbitrarily
d -0 place charges =0 on the plates. We calculate the electric field
- between the plates (using Gauss’s Law) and integrate to obtain
W 4 the potential difference between them. Finally we calculate
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the capacitance: C =Q / | AV| = ¢,4/d . Note that the capacitance depends only on

geometrical factors, not on the amount of charge stored (which is why we were justified in
starting with an arbitrary amount of charge).

Energy

In the process of storing charge, a capacitor also stores electric energy. We can see this by
considering how you “charge” a capacitor. Imagine that you start with an uncharged
capacitor. Carry a small amount of positive charge from one plate to the other (leaving a net
negative charge on the first plate). Now a potential difference exists between the two plates,
and it will take work to move over subsequent charges. Reversing the process, we can
release energy by giving the charges a method of flowing back where they came from (more
on this in later classes). So, in charging a capacitor we put energy into the system, which can
later be retrieved. Where is the energy stored? In the process of charging the capacitor, we
also create an electric field, and it is in this electric field that the energy is stored. We assign
to the electric field a “volume energy density” ug, which, when integrated over the volume of
space where the electric field exists, tells us exactly how much energy is stored.

Important Equations

Capacitance: C= Q/|AV|
. . o 1 1 2
Energy Stored in a Capacitor: U==—= —Q|A V| = —C|A V|
2C 2 2
Energy Density in Electric Field: U, = %eoE g

Experiment 2: Electrostatic Force
Preparation: Read lab write-up. Calculate (using Gauss’s Law) the electric field and
potential between two infinite sheets of charge.

In this lab we will measure the permittivity of free space €y by measuring how much voltage
needs to be applied between two parallel plates in order to lift a piece of aluminum foil up off
of the bottom plate. How does this work? You will do a problem set problem with more
details, but the basic idea is that when you apply a voltage between the top and bottom plate
(assume the top is at a higher potential than the bottom) you put a positive charge on the top
plate and a negative charge on the bottom (it’s a capacitor). The foil, since it is sitting on the
bottom plate, will get a negative charge on it as well and then will feel a force lifting it up to
the top plate. When the force is large enough to overcome gravity the foil will float. Thus
by measuring the voltage required as a function of the weight of the foil, we can determine
the strength of the electrostatic force and hence the value of the fundamental constant &,.

Summary for Class 07 p.2/2



Summary of Class 8 8.02 Thursday 2/17/2005 / Tuesday 2/22/2005

Topics:  Capacitors & Dielectrics

Related Reading:
Course Notes (Liao et al.):  Sections 4.3-4.4; Chapter 5
Serway and Jewett: Chapter 26
Giancoli: Chapter 22

Experiments: (3) Faraday Ice Pail

Topic Introduction

Today we continue our discussion of conductors & capacitors, including an introduction to
dielectrics, which are materials which when put into a capacitor decrease the electric field
and hence increase the capacitance of the capacitor.

Conductors & Shielding

Last time we noted that conductors were equipotential surfaces, and
that all charge moves to the surface of a conductor so that the electric
field remains zero inside. Because of this, a hollow conductor very
effectively separates its inside from its outside. For example, when
charge is placed inside of a hollow conductor an equal and opposite
charge moves to the inside of the conductor to shield it. This leaves an
equal amount of charge on the outer surface of the conductor (in order
to maintain neutrality). How does it arrange itself? As shown in the
picture at left, the charges on the outside don’t know anything about
what is going on inside the conductor. The fact that the electric field is zero in the conductor
cuts off communication between these two regions. The same would happen if you placed a
charge outside of a conductive shield — the region inside the shield wouldn’t know about it.
Such a conducting enclosure is called a Faraday Cage, and is commonly used in science and
industry in order to eliminate the electromagnetic noise ever-present in the environment
(outside the cage) in order to make sensitive measurements inside the cage.

C
Capacitance a1
c Last time we introduced the idea of a

@l 2

AV, afo capacitor as a device to store charge. This g

T @ time we will discuss what happens when -
I/ I/ multiple capacitors are put together. There 4
0 -0 +0 0 are two distinct ways of putting circuit
elements (such as capacitors) together: in A
Series series and in parallel. Elements in series

0 (such as the capacitors and battery at left)
are connected one after another. As shown,
the charge on each capacitor must be the
same, as long as everything is initially
uncharged when the capacitors are connected (which is always the
case unless otherwise stated). In parallel, the capacitors have the same potential drop across
them (their bottoms and tops are at the same potential). From these setups we will calculate
the equivalent capacitance of the system — what one capacitor could replace the two
capacitors and store the same amount of charge when hooked to the same battery. It turns
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out that in parallel capacitors add (C,
(c! =C'+C").

equivalent

= C, + C,) while in series they add inversely

quivalent

Dielectrics

A dielectric is a piece of material that, when inserted into an electric field, has a reduced
electric field in its interior. Thus, if a dielectric is placed into a capacitor, the electric field in
that capacitor is reduced, as is hence the potential difference between the plates, thus

increasing the capacitor’s capacitance (remember, C = Q/ | AV| ). The effectiveness of a

dielectric is summarized in its “dielectric constant” K. The larger the dielectric constant, the
more the field is reduced (paper has k=3.7, Pyrex k=5.6). Why do we use dielectrics?
Dielectrics increase capacitance, which is something we frequently want to do, and can also
prevent breakdown inside a capacitor, allowing more charge to be pushed onto the plates
before the capacitor “shorts out” (before charge jumps from one plate to the other).

Important Equations

Capacitors in Series: Coivatens = €1+ G5!
Capacitors in Parallel: Copuivaten =G +C,
Gauss’s Law in Dielectric: @ KkE-dA =n
£
S 0

Experiment 3: Faraday Ice Pail
Preparation: Read lab write-up.

In this lab we will study electrostatic shielding, and how charges move on conductors when
other charges are brought near them. We will also learn how to use Data Studio, software for
collecting and presenting data that we will use for most of the remaining experiments this
semester. The idea of the experiment is quite simple. We will have two concentric
cylindrical cages, and can measure the potential difference between them. We can bring
charges (positive or negative) into any of the three regions created by these two cylindrical
cages. And finally, we can connect either cage to “ground” (e.g. the Earth), meaning that it
can pull on as much charge as it wants to respond to your moving around charges. The point
of the lab is to get a good understanding of what the responses are to you moving around
charges, and how the potential difference changes due to these responses.
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Summary of Class 9 8.02 Friday 2/18/05

Topics:  Gauss’s Law

Related Reading:
Course Notes (Liao etal.):  Chapter 4
Serway & Jewett: Chapter 24
Giancoli: Chapter 22

Topic Introduction

In today's class we will get more practice using Gauss’s Law to calculate the electric field
from highly symmetric charge distributions. Remember that the idea behind Gauss’s law is
that, pictorially, electric fields flow out of and into charges. If you surround some region of
space with a closed surface (think bag), then observing how much field “flows” into or out of
that surface (the flux) tells you how much charge is enclosed by the bag. For example, if you
surround a positive charge with a surface then you will see a net flow outwards, whereas if
you surround a negative charge with a surface you will see a net flow inwards.

Note: There are only three different symmetries (spherical, cylindrical and planar) and a
couple of different types of problems which are typically calculated of each symmetry (solids
— like the ball and slab of charge done in class, and nested shells). I strongly encourage you
to work through each of these problems and make sure that you understand how to choose
your Gaussian surface and how much charge is enclosed.

Electric Flux
For any flat surface of area A4, the flux of an electric field E through the surface is defined as
®, =E-A , where the direction of A is normal to the surface. This captures the idea that

the “flow” we are interested in is through the surface — if E is parallel to the surface then the
flux @, =0.

We can generalize this to non-flat surfaces by breaking up the surface into small patches
which are flat and then integrating the flux over these patches. Thus, in general:

®, = [[E-dA
S

Gauss’s Law
Recall that Gauss’s law states that the electric flux through any closed surface is proportional
to the total charge enclosed by the surface, or mathematically:

®, =fpE. dA = L=
s &
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Summary of Class 9 8.02 Friday 2/18/05

Symmetry and Gaussian Surfaces

Symmetry System Gaussian Surface
Cylindrical Infinite line Coaxial Cylinder

Planar Infinite plane Gaussian “Pillbox”
Spherical Sphere, Spherical shell Concentric Sphere

Although Gauss’s law is always true, as a tool for calculation of the electric field, it is only
useful for highly symmetric systems. The reason that this is true is that in order to solve for

the electric field E we need to be able to “get it out of the integral.” That is, we need to
work with systems where the flux integral can be converted into a simple multiplication.

This can only be done if the electric field is piecewise constant — that is, at the very least the
electric field must be constant across each of the faces composing the Gaussian surface.
Furthermore, in order to use this as a tool for calculation, each of these constant values must
either be E, the electric field we are tying to solve for, or a constant which is known (such as
0). This is important: in choosing the Gaussian surface you should not place it in such a way
that there are two different unknown electric fields leading to the observed flux.

Solving Problems using Gauss’s law

(1) Identify the symmetry associated with the charge distribution, and the associated shape of
“Gaussian surfaces” to be used.

(2) Divide the space into different regions associated with the charge distribution, and
determine the exact Gaussian surface to be used for each region. The electric field must

be constant and either what we are solving for or known (i.e. zero) across the Gaussian
surface.

(3) For each region, calculate g, the charge enclosed by the Gaussian surface.
(4) For each region, calculate the electric flux @, through the Gaussian surface.

(5) Equate @, with ¢, _/¢&,, and solve for the electric field in each region.

Important Equations

Electric flux through a surface S: O, = J.j E-dA
S

Gauss’s law: D, = q‘:ﬁﬁ,d* _ Dene
s o

Summary for Class 09 p.2/2



Summary of Class 10 8.02 Wednesday 2/23/05 / Thursday 2/24/05

Topics:  Current, Resistance, and DC Circuits

Related Reading:
Course Notes (Liao et al.):  Chapter 6; Sections 7.1 through 7.4
Serway and Jewett: Chapter 27; Sections 28.1 through 28.3
Giancoli: Chapter 25; Sections 26-1 through 26-3

Topic Introduction
In today's class we will define current, current density, and resistance and discuss how to
analyze simple DC (constant current) circuits using Kirchhoff’s Circuit Rules.

Current and Current Density
Electric currents are flows of electric charge. Suppose a collection of charges is moving
perpendicular to a surface of area 4, as shown in the figure

| —
+ — A + —
+ | —
| — D
T —-
1 — D) ey

The electric current / is defined to be the rate at which charges flow across the area 4. If
an amount of charge AQ passes through a surface in a time interval A¢, then the current /

AQ

is given by [ :A_t (coulombs per second, or amps). The current density J (amps per

square meter) is a concept closely related to current. The magnitude of the current
density J at any point in space is the amount of charge per unit time per unit area
i|--22

—=— . The current / is a scalar, but J is a vector.
At AA

flowing pass that point. That is,

Microscopic Picture of Current Density
If charge carriers in a conductor have number density n, charge ¢, and a drift velocity

v, , then the current density J is the product of n, ¢, and v .- In Ohmic conductors, the

drift velocity v, of the charge carriers is proportional to the electric field E in the

conductor. This proportionality arises from a balance between the acceleration due the
electric field and the deceleration due to collisions between the charge carriers and the
“lattice”. In steady state these two terms balance each other, leading to a steady drift

velocity (a “terminal” velocity) proportional to E. This proportionality leads directly to
the “microscopic” Ohm’s Law, which states that the current density J is equal to the

electric field E times the conductivity . The conductivity o of a material is equal to
the inverse of its resistivity o .
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Summary of Class 10 8.02 Wednesday 2/23/05 / Thursday 2/24/05

Electromotive Force

A source of electric energy is referred to as an electromotive force, or emf (symbol ).
Batteries are an example of an emf source. They can be thought of as a “charge pump”
that moves charges from lower potential to the higher one, opposite the direction they
would normally flow. In doing this, the emf creates electric energy, which then flows to
other parts of the circuit. The emf ¢ is defined as the work done to move a unit charge in
the direction of higher potential. The SI unit for ¢ is the volt (V), i.e. Joules/coulomb.

Kirchhoff’s Circuit Rules

In analyzing circuits, there are two fundamental (Kirchhoff’s) rules: (1) The junction rule
states that at any point where there is a junction between various current carrying
branches, the sum of the currents into the node must equal the sum of the currents out of
the node (otherwise charge would build up at the junction); (2) The loop rule states that
the sum of the voltage drops AV across all circuit elements that form a closed loop is
zero (this is the same as saying the electrostatic field is conservative).

If you travel through a battery from the negative to the positive terminal, the voltage drop
AV is +¢&, because you are moving against the internal electric field of the battery;
otherwise AV is -¢. If you travel through a resistor in the direction of the assumed flow
of current, the voltage drop is —/R, because you are moving parallel to the electric field in
the resistor; otherwise AV is +IR.

Steps for Solving Multi-loop DC Circuits

1) Draw a circuit diagram, and label all the quantities;

2) Assign a direction to the current in each branch of the circuit--if the actual direction is
opposite to what you have assumed, your result at the end will be a negative number;

3) Apply the junction rule to the junctions;

4) Apply the loop rule to the loops until the number of independent equations obtained is
the same as the number of unknowns.

Important Equations

Relation between J and I: 1 =J- J-dA
Relation between J and charge carriers: J = ngv 4
Microscopic Ohm’s Law: J=cE=E/p
Macroscopic Ohm’s Law: V =IR
Resistance of a conductor with resistivity o,
cross-sectional area 4, and length /: R=pl/ A
Resistors in series: R, =R +R,
Resistors in parallel: < = L
Req Rl RZ
Power: P=AV1I
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Summary of Class 11 8.02 Friday 2/25/05

Topics:  Capacitors

Related Reading:
Course Notes: Chapter 5
Serway & Jewett: Chapter 26
Giancoli: Chapter 24

Topic Introduction
Today we will practice calculating capacitance and energy storage by doing problem solving
#3. Below I include a quick summary of capacitance and some notes on calculating it.

Capacitance

Capacitors are devices that store electric charge. They vary in shape and size, but the basic
configuration is two conductors carrying equal but opposite charges (+Q). In order to build
up charge on the two plates, a potential difference AV must be applied between them. The
ability of the system to store charge is quantified in its capacitance: C = Q/ | AV|. Thus a

large capacitance capacitor can store a lot of charge with little “effort” — little potential
difference between the two plates.

A simple example of a capacitor is pictured at left — the parallel plate capacitor, consisting of
two plates of area A4, a distance d apart. To find its capacitance we do the following:

1) Arbitrarily place charges £Q on the two conductors

2) Calculate the electric field between the conductors (using Gauss’s Law)

3) Integrate to find the potential difference

Finally we calculate the capacitance, which for the parallel

0 plateis C = Q/ |AV| = ¢,4/d . Note that the capacitance
— depends only on geometrical factors, not on the amount of

d -0 charge stored (which is why we were justified in starting with
— an arbitrary amount of charge).

Energy
In the process of storing charge, a capacitor also stores electric energy. The energy is

. . : o 1 .
actually stored in the electric field, with a volume energy density given by u, = 58"E *. This

means that there are several ways of calculating the energy stored in a capacitor. The first is
to deal directly with the electric field. That is, you can integrate the energy density over the
volume in which there is an electric field. The second is to calculate the energy in the same
way that you charge a capacitor. Imagine that you start with an uncharged capacitor. Carry a
small amount of positive charge from one plate to the other (leaving a net negative charge on
the first plate). Now a potential difference exists between the two plates, and it will take
work to move over subsequent charges. A third method is to use one of the formulae that we
2
can calculate using the second method: U = ZQ_C = %Q|AV| = %C |AV|2 .
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Summary of Class 11 8.02 Friday 2/25/05

Important Equations

Capacitance: C= Q/|AV|
2
Energy Stored in a Capacitor: U= gC 5 Q|A V| —C |A V|

Energy Density in Electric Field: Uy = %guE 2
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Summary of Class 12 8.02 Tuesday 3/1/05 / Monday 2/28/05

Topics:  RC Circuits

Related Reading:
Course Notes (Liao etal.):  Chapter 7
Serway and Jewett: Chapter 26
Giancoli: Chapter 24

Experiments: (4) RC Circuits

Topic Introduction
Today we will continue our discussion of circuits, and see what we happens when we include
capacitors.

Circuits

Remember that the fundamental new concept when discussing circuits is that, as opposed to
when we were discussing electrostatics, charges are now allowed to flow. The amount of
flow is referred to as the current. A circuit can be considered to consist of two types of
objects: nodes and branches. The current is constant through any branch, because it has
nowhere else to go. Charges can’t sit down and take a break — there is always another charge
behind them pushing them along. At nodes, however, charges have a choice. However the
sum of the currents entering a node is equal to the sum of the currents exiting a node — all
charges come from somewhere and go somewhere.

In the last class we talked about batteries, which can lift the potentials of charges (like a ski
lift carrying them from the bottom to the top of a mountain), and resistors, which reduce the
potential of charges traveling through them.

When we first discussed capacitors, we stressed their ability to store charge, because the
charges on one plate have no way of getting to the other plate. They perform this same role
in circuits. There is no current through a capacitor — all the charges entering one plate of a
capacitor simply end up getting stopped there. However, at the same time that those charges
flow in, and equal number of charges flow off of the other plate, maintaining the current in
the branch. This is important: the current is the same on either side of the capacitor, there
just isn’t any current inside the capacitor.

A capacitor is fundamentally different in this way from a resistor and battery. As more
current flows to the capacitor, more charge builds up on its plates, and it becomes more and
more difficult to charge it (the potential difference across it increases). Eventually, when the
potential across the capacitor becomes equal to the potential driving the current (say, from a
battery), the current stops. Thus putting a capacitor in a circuit introduces a time-dependence
to the current flow.
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Summary of Class 12 8.02 Tuesday 3/1/05 / Monday 2/28/05

‘\({:\’ A simple RC circuit (a circuit with a battery, resistor, capacitor and
l switch) is shown at the top of the next page. When the switch is closed,
S current will flow in the circuit, but as time goes on this current will
€
I

decrease. We can write down the differential equation for current flow
by writing down Kirchhoff’s loop rules, recalling that |AV| =Q/C fora

+] -

capacitor and that the charge Q on the capacitor is related to current
flowing in the circuit by I =+dQ/dt, where the sign depends on whether the current is

flowing into the positively charged plate (+) or the negatively charged plate (-). We won’t do
this here, but the solution to this differential equation shows that the current decreases
exponentially from its initial value while the potential on the

capacitor grows exponentially to its final value. In fact, in RC Value

circuits any value that you could ask about (potential drop across HYalue, o

the resistor, across the capacitor, ...) either grows or decays pe
exponentially. The rate at which this change happens is dictated
by the “time constant” T, which for this simple circuit is given by !
T=RC. : .

Growth
Once the current stops what can happen? We have now charged
the capacitor, and the energy and charge stored is ready to escape. value, Decay
If we short out the battery (by replacing it with a wire, for o L

example) the charge will flow right back off (in the opposite

direction it flowed on) with the potential on the capacitor now .
decaying exponentially (along with the current) until all the charge s
has left and the capacitor is discharged. If the resistor is very small a
so that the time constant is small, this discharge can be very fast .
and — like the demo a couple weeks ago — explosive.

Important Equations

Exponential Decay: Value =Value,,, e

Exponential Increase: Value =Value,,, ( | o )
Simple RC Time Constant: 7= RC

Experiment 4: RC Circuits

Preparation: Read lab write-up.

This lab will allow you to explore the phenomena described above in a real circuit that you
build with resistors and capacitors. You will gain experience with measuring potential (a
voltmeter needs to be in parallel with the element we are measuring the potential drop
across) and current (an ammeter needs to be in series with the element we are measuring the
current through). You will also learn how to measure time constants (think about this before
class please) and see how changing circuit elements can change the time constant.
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8.02 Spring 2005

TEST ONE Thursday Evening 7:30- 9:00 pm March 3, 2005. The Friday class
immediately following on March 5 2005 is canceled because of the evening exam.

What We Expect From You On The Exam

(1) Ability to calculate the electric field of both discrete and continuous charge
distributions. We may give you a problem on setting up the integral for a continuous
charge distribution, although we do not necessarily expect you to do the integral,
unless it is particularly easy. You should be able to set up problems like: calculating
the field of a small number of point charges, the field of the perpendicular bisector of
a finite line of charge; the field on the axis of a ring of charge; and so on.

(2) To be able to recognize and draw the electric field line patterns for a small number of
discrete charges, for example two point charges of the same sign, or two point
charges of opposite sign, and so on.

(3) To be able to apply the principle of superposition to electrostatic problems.

(4) An understanding of how to calculate the electric potential of a discrete set of
N
charges, that is the use of the equation V(r) = z 9,
r—r,

for the potential of N
o a4re, |

charges ¢; located at positions r; . Also you must know how to calculate the
configuration energy necessary to assemble this set of charges.

(5) The ability to calculate the electric potential given the electric field and the electric
field given the electric potential, e.g. being able to apply the equations

b
AV, ,,=V,~V,=—[E-dl and E=-VV.

atob

(6) An understanding of how to use Gauss's Law. In particular, we may give you a
problem that involves either finding the electric field of a uniformly filled cylinder of
charge, or of a slab of charge, or of a sphere of charge, and also the potential
associated with that electric field. You must be able to explain the steps involved in

this process clearly, and in particular to argue how to evaluate IE dA on every part

of the closed surface to which you apply Gauss's Law, even those parts for which this
integral is zero.

(7) An understanding of capacitors, including calculations of capacitance, and the effects
of dielectrics on them.

(8) To be able to answer qualitative conceptual questions that require no calculation. There
will be concept questions similar to those done in class, where you will be asked to make
a qualitative choice out of a multiple set of choices, and to explain your choice
qualitatively in words.



Summary of Class 14 8.02 Monday 3/7/05 / Tuesday 3/8/05

Topics:  Magnetic Fields

Related Reading:
Course Notes (Liao et al.):  Chapter 8
Serway and Jewett: Chapter 26
Giancoli: Chapter 29
Experiments: (5) Magnetic Fields of a Bar Magnet and of the Earth

Topic Introduction

Today we begin a major new topic in the course — magnetism. In some ways magnetic fields
are very similar to electric fields: they are generated by and exert forces on electric charges.
There are a number of differences though. First of all, magnetic fields only interact with (are
created by and exert forces on) charges that are moving. Secondly, the simplest magnetic
objects are not monopoles (like a point charge) but are instead dipoles.

Dipole Fields

We will begin the class by studying the magnetic field generated by bar magnets and by the
Earth. It turns out that both bar magnets and the Earth act like magnetic dipoles. Magnetic
dipoles create magnetic fields identical in shape to the electric fields generated by electric
dipoles. We even describe them in the same way, saying that they consist of a North pole (+)
and a South pole (-) some distance apart, and that magnetic field lines flow from the North
pole to the South pole. Magnetic dipoles even behave in magnetic fields the same way that
electric dipoles behave in electric fields (namely they feel a torque trying to align them with
the field, and if the field is non-uniform they will feel a force). This is how a compass works.
A compass is a little bar magnet (a magnetic dipole) which is free to rotate in the Earth’s
magnetic field, and hence it rotates to align with the Earth’s field (North pole pointing to
Earth’s magnetic South — which happens to be at Earth’s geographic North now). If you
want to walk to the geographic North (Earth’s magnetic South) you just go the direction the
N pole of the magnet (typically painted to distinguish it) is pointing.

Despite these similarities, magnetic dipoles are different from electric dipoles, in that if you
cut an electric dipole in half you will find a positive charge and a negative charge, while if
you cut a magnetic dipole in half you will be left with two new magnetic dipoles. There is no
such thing as an isolated “North magnetic charge” (a magnetic monopole).

Lorenz Force

In addition to being created by and interacting with magnetic dipoles, magnetic fields are
also created by and interact with electric charges — but only when those charges are in
motion. We will discuss their creation by charges in the next several classes and in this class
will focus on the force that a moving charge feels in a magnetic field. This force is called the
Lorenz Force and is given by F = gvxB (where q is the charge of the particle, v its velocity
and B the magnetic field). The fact that the force depends on a cross product of the charge
velocity and the field can make forces from magnetic fields very non-intuitive.

If you haven’t worked with cross products in a while, I strongly encourage you to read the
vector analysis review module. Rapid calculation of at least the direction of cross-products
will dominate the class for the rest of the course and it is vital that you understand what they
mean and how to compute them.
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Recall that the cross product of two vectors is perpendicular to both of the vectors. This
means that the force F = ¢vxB is perpendicular to both the velocity of the charge and the

magnetic field. Thus charges will follow curved trajectories while moving in a magnetic
field, and can even move in circles (in a plane perpendicular to the magnetic field). The
ability to make charges curve by applying a magnetic field is used in a wide variety of
scientific instruments, from mass spectrometers to particle accelerators, and we will discuss
some of these applications in class.

Important Equations
Force on Moving Charges in Magnetic Field:

EN
[

Q9
<
X
o

Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

Preparation: Read lab write-up.

In this lab you will measure the magnetic field generated by a bar magnet and by the Earth,
thus getting a feeling for magnetic field lines generated by magnetic dipoles. Recall that as
opposed to electric fields generated by charges, where the field lines begin and end at those
charges, fields generated by dipoles have field lines that are closed loops (where part of the
loop must pass through the dipole).
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Summary of Class 15 8.02 Wednesday 3/9/05 / Thursday 3/10/05

Topics:  Magnetic Fields: Creating Magnetic Fields — Biot-Savart

Related Reading:

Course Notes (Liao et al.):  Sections 9.1 — 9.2

Serway and Jewett: Sections 30.1 — 30.2

Giancoli: Sections 28.1 — 28.3
Experiments: (6) Magnetic Force on Current-Carrying Wires

Topic Introduction

Last class we focused on the forces that moving charges fee/ when in a magnetic field.
Today we will extend this to currents in wires, and then discuss how moving charges and
currents can also create magnetic fields. The presentation is analogous to our discussion of
charges creating electric fields. We first describe the magnetic field generated by a single
charge and then proceed to collections of moving charges (currents), the fields from which
we will calculate using superposition — just like for continuous charge distributions.

Lorenz Force on Currents
Since a current is nothing more than moving charges, a current carrying wire will also feel a

force when placed in a magnetic field: F = /L.xB (where I is the current, and L is a vector
pointing along the axis of the wire, with magnitude equal to the length of the wire).

Field from a Single Moving Charge
Just as a single electric charge creates an electric field which is proportional to charge q and
falls off as 17, a single moving electric charge additionally creates a magnetic field given by

gt d v 2x r
4z r

Note the similarity to Coulomb’s law for the electric field — the field is proportional to the

charge ¢, obeys an inverse square law in 7, and depends on a constant, the permeability of

free space o =471 x 107 T m/A. The difference is that the field no longer points along f but

is instead perpendicular to it (because of the cross product).

Field from a Current: Biot-Savart Law
We can immediately switch over from discrete charges to currents by replacing ¢ v with /ds :

df;:&]dg)(f

dr 7
This is the Biot-Savart formula, and, like the differential form of Coulomb’s Law, provides a
generic method for calculating fields — here magnetic fields generated by currents. The ds in
this formula is a small length of the wire carrying the current /, so that / ds plays the same
role that dg did when we calculated electric fields from continuous charge distributions. To
find the total magnetic field at some point in space you integrate over the current distribution
(e.g. along the length of the wire), adding up the field generated by each little part of it ds.

Right Hand Rules

Because of the cross product in the Biot-Savart Law, the direction of the resulting magnetic
field is not as simple as when we were working with electric fields. In order to quickly see
what direction the field will be in, or what direction the force on a moving particle will be in,
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u
T AA
we can use a “Right Hand Rule.” At times it seems that everyone has their own, 1
unique, right hand rule. Certainly there are a number of them out there, and you ﬂ\_
should feel free to use whichever allow you to get the correct answer. Here I %;‘
describe the three that I use (starting with one useful for today’s lab).
The important thing to remember is that cross-products yield a result which is
perpendicular to both of the input vectors. The only open question is in which of Ll
the two perpendicular directions will the result point (e.g. if the vectors are in the |
floor does their cross product point up or down?). Using your RIGHT hand: [ )
I

1) For determining the direction of the dipole moment of a coil of wire: wrap a
your fingers in the direction of current. Your thumb points in the direction of the u
North pole of the dipole (in the direction of the dipole moment p of the coil). @

2) For determining the direction of the magnetic field generated by a 4
current: fields wrap around currents the same direction that your 3
fingers wrap around your thumb. At any point the field points tangent J
to the circle your fingers will make as you twist your hand keeping v
your thumb along the current. X

3) For determining the direction of the force of a field on a moving
charge: open your hand perfectly flat. Put your thumb along v and
your fingers along B. Your palm points along the direction of the
force.

Important Equations

Force on Current-Carrying Wire of Length L: F=/LxB
. . . = VXr = Idsxr
Biot-Savart — Field created by moving charge; current: B = f o 4 2X r ; dB = f—o dszx r
Tor T r

Experiment 6: Magnetic Force on Current-Carrying Wires
Preparation: Read lab write-up.

In this lab you will be able to feel the force between a current carrying wire and a permanent
magnet. Before making the measurements try to determine what kind of force you should

feel. For straight wires the easiest way to determine this is to use the formula F = /L x B and
to determine what direction the field is in remembering that the permanent magnet is a
dipole, creating fields which loop from its North to its South pole. For a coil of wire, the
easiest way to determine the force is to think of the coil as a magnet itself. A coil of wire
creates a field very much like that you measured last time for the Earth and the bar magnets.
In fact, we will treat a coil of wire just like a dipole. So to determine the force on the coil,
replace it in your mind with a bar magnet (oriented with the N pole pointing the way your
thumb does when you wrap your fingers in the direction of current) and ask “How will these
two magnets interact?”
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Summary of Class 16 8.02 Friday 3/11/05

Topics:  Magnetic Fields: Force and Torque on a Current Loop

Related Reading:
Course Notes (Liao et al.)  Sections 8.3 —8.4; 9.1 -9.2
Serway and Jewett: Sections 29.2 — 29.3; 30.1 —30.2
Giancoli: Sections 27.3 —27.5; 28.1 —28.3

Topic Introduction

In today’s class we calculate the force and torque on a rectangular loop of wire. We then
make a fundamental insight (that hopefully you had during the lab a couple of days ago) that
a loop of current looks an awful lot like a magnetic dipole. We define the magnetic dipole
moment [ and then do a calculation using that moment.

Lorenz Force on Currents

A piece of current carrying wire placed in a magnetic field will feel a force: dF = Ids xB
(where ds is a small segment of wire carrying a current /). We can integrate this force along

the length of any wire to determine the total force on that wire.
W

Right Hand Rules
Recall that there are three types of calculations we do that involve cross-products

when working with magnetic fields: (1) the creation of a magnetic moment W, (2) e

the creation of a magnetic field from a segment of wire (Biot-Savart) and (3) the %;_
force on a moving charge (or segment of current carrying wire). The directions of

each of these can be determined using a right hand rule. I reproduce the three that
I like here:

I

1) For determining the direction of the dipole moment of a coil of wire: wrap [
your fingers in the direction of current. Your thumb points in the direction of the A
North pole of the dipole (in the direction of the dipole moment W of the coil). u

2) For determining the direction of the magnetic field generated by a £
current: fields wrap around currents the same direction that your 3
fingers wrap around your thumb. At any point the field points tangent
to the circle your fingers will make as you twist your hand keeping
your thumb along the current.

3) For determining the direction of the force of a field on a moving
charge or current: open your hand perfectly flat. Put your thumb
along v (or I for a current carrying wire) and your fingers along B.
Your palm points along the direction of the force.

Torque Vector

I’1l tack on one more right hand rule for those of you who don’t remember what the direction
of a torque T means. If you put your thumb in the direction of the torque vector, the object
being torque will want to rotate the direction your fingers wrap around your thumb (very
similar to RHR #2 above).
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Important Equations
Force on Current-Carrying Wire Segment:
Magnetic Moment of Current Carrying Wire:

Torque on Magnetic Moment:

Summary for Class 16
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Summary of Class 17 8.02 Monday 3/14/05 / Tuesday 3/15/05

Topics:  Magnetic Dipoles

Related Reading:
Course Notes (Liao et al.):  Sections 8.4,9.1 —9.2,9.5
Serway & Jewett: Sections 30.1 — 30.2
Giancoli: Sections 28.1 —28.3, 28.6
Experiments: (7) Forces and Torques on Magnetic Dipoles

Topic Introduction
This class continues a topic that was introduced on Friday — magnetic dipoles.

Magnetic Dipole Moment 0
In the Friday problem solving session we saw that the torque on a loop of A
current in a magnetic field could be written in the same form as the torque

on an electric dipole in an electric field, % = jix B, where the dipole moment

is written p = IA , with the direction of A, the area vector, determined by a -
right hand rule: B
|

Right Hand Rule for Direction of Dipole Moment

To determine the direction of the dipole moment of a coil of wire: wrap
your fingers in the direction of current. Your thumb points in the direction
of the North pole of the dipole (in the direction of the dipole moment p of
the coil).

o |

Forces on Magnetic Dipole Moments

So we have looked at the fields created by dipoles and
the torques they feel when placed in magnetic fields.
Today we will look at the forces they feel in fields. Just
as with electric dipoles, magnetic dipoles only feel a
force when in a non-uniform field. Although it is
possible to calculate forces on dipole moments using an

—

equation (F = (ﬁ . ﬁ) ﬁ) it’s actually much more

Dipole —

instructive to think about what forces will result by
thinking of the dipole as one bar magnet, and imagining
what arrangement of bar magnets would be required to create the non-uniform magnetic field
in which it is sitting. Once this has been done, determining the force is straight forward
(opposite poles of magnets attract).

As an example of this, consider a current loop sitting in a diverging magnetic field (pictured
above). In what direction is the force on the loop?

Summary for Class 17 p. 12
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In order to answer this question one could use the right hand rule and
N find that the force on every current element is outward and downward,
so the net force is down. An often easier way is to realize that the
S current loop looks like a bar magnet with its North pole facing up and
that the way to create a field as pictured is to put another bar magnet
with North pole up below it (as pictured at left). Once redrawn in this
fashion it is clear the dipole will be attracted downwards, towards the
.N source of the magnetic field.

A third way to think about the forces on dipoles in fields is by looking
S at their energy in a field: U = —ji-B. That is, dipoles can reduce their

energy by rotating to align with an external field (hence the torque).
Once aligned they will move to high B regions in order to further
reduce their energy (make it more negative).

Important Equations

Magnetic Moment of Current Carrying Wire: i = /A (direction from RHR above)
Torque on Magnetic Moment: T=NxX B
Energy of Moment in External Field: U=-i-B

Experiment 7: Forces and Torques on Magnetic Dipoles
Preparation: Read lab write-up.

This lab will be performed through a combination of lecture demonstrations and table top
measurements. The goal is to understand the forces and torques on magnetic dipoles in
uniform and non-uniform magnetic fields. To investigate this we use the “TeachSpin
apparatus,” which consists of a Helmholtz coil (two wire coils that can produce either
uniform or non-uniform magnetic fields depending on the direction of current flow in the
coils) and a small bar magnet which is free both to move and rotate.
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Summary of Class 18 8.02 Wednesday 3/16/0S / Thursday 3/17/05

Topics:  Magnetic Levitation; Ampere’s Law

Related Reading:
Course Notes (Liao etal.):  Chapter 9
Serway & Jewett: Chapter 30
Giancoli: Chapter 28
Experiments: (8) Magnetic Forces

Topic Introduction

Today we cover two topics. At first we continue the discussion of forces on dipoles in non!]
uniform fields, and show some examples of using this to levitate objects — frogs, sumo
wrestlers, etc. After a lab in which we measure magnetic forces and obtain a measurement of
Lo, we then consider Ampere’s Law, the magnetic equivalent of Gauss’s Law.

Magnetic Levitation

Last time we saw that when magnetic dipoles are in non-uniform fields that they feel a force.
If they are aligned with the field they tend to seek the strongest field (just as electric dipoles
in a non-uniform electric field do). If they are anti-aligned with the field they tend to seek the
weakest field. These facts can be easily seen by considering the energy of a dipole in a

magnetic field: U = —ji-B. Unfortunately these forces can’t be used to stably levitate simple

bar magnets (try it — repulsive levitation modes are unstable to flipping, and attractive
levitation modes are unstable to “snapping” to contact). However, they can be used to levitate
diamagnets — materials who have a magnetic moment which always points opposite the
direction of field in which they are sitting. We begin briefly discussing magnetic materials,
for now just know that most materials are diamagnetic (water is, and hence so are frogs), and
that hence they don’t like magnetic fields. Using this, we can levitate them.

Neat, but is it useful? Possibly yes. Magnetic levitation allows the creation of frictionless
bearings, Maglev (magnetically levitated) trains, and, of course, floating frogs.

Ampere’s Law

With electric fields we saw that rather than always using Coulomb’s law, which gives a
completely generic method of obtaining the electric field from charge distributions, when the
distributions were highly symmetric it became more convenient to use Gauss’s Law to
calculate electric fields. The same is true of magnetic fields — Biot-Savart does not always
provide the easiest method of calculating the field. In cases where the current source is very
symmetric it turns out that Ampere’s Law, another of Maxwell’s four equations, can be used,
greatly simplifying the task.

Ampere’s law rests on the idea that if you have a curl in a magnetic field (that is, if it wraps
around in a circle) that the field must be generated by some current source inside that circle
(at the center of the curl). So, if we walk around a loop and add up the magnetic field heading
in our direction, then if, when we finish walking around, we have seen a net field wrapping in
the direction we walked, there must be some current penetrating the loop we just walked

where on the left we

enetrate

around. Mathematically this idea is expressed as: Cj)ﬁ ds=p,l .
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are integrating the magnetic field as we walk around a closed loop, and on the right we add
up the total amount of current penetrating the loop.

In the example pictured here, a single long wire carries current
out of the page. As we discussed in class, this generates a
magnetic field looping counter-clockwise around it (blue lines).
On the figure we draw two “Amperian Loops.” The first loop
(yellow) has current / penetrating it. The second loop (red) has
no current penetrating it. Note that as you walk around the
yellow loop the magnetic field always points in roughly the

same direction as the path: (]Sﬁ -d's # 0, whereas around the
red loop sometimes the field points with you, sometimes
against you: Cﬁﬁ ds=0.

We use Ampere’s law in a very similar way to how we used Gauss’s law. For highly
symmetric current distributions, we know that the produced magnetic field is constant along
certain paths. For example, in the picture above the magnetic field is constant around any
blue circle. The integral then becomes simple multiplication along those paths

(q.)ﬁ -d's = B-Path Length ) , allowing you to solve for B. For details and examples see the

course notes.

Important Equations
Energy of Dipole in Magnetic Field:

U=—ji-B
Ampere’s Law: Cﬁﬁ ds =

penetrate

Experiment 8: Magnetic Forces
Preparation: Read lab write-up.

Today we will measure another fundamental constant, p. In SI units, o is actually a defined
constant, of value 47 x 107 T m/A. We will measure p, by measuring the force between two
current loops, by balancing that force against the force of gravity. This is similar to our
measurement of gy by balancing the electric force on a piece of foil between two capacitor
plates against the force of gravity on it. The lab is straight-forward, but important for a
couple of reasons: 1) it is amazing that in 20 minutes you can accurately measure one of the
fundamental constants of nature and 2) it is important to understand how the currents in wires
lead to forces between them. For example, to make the coils repel, should the currents in
them be parallel or anti-parallel?
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Summary of Class 19 8.02 Friday 3/18/05

Topics:  Ampere’s Law

Related Reading:
Course Notes (Liao et al.):  Sections 9.3 -9.4;9.10.2,9.11.6,9.11.7
Serway & Jewett: Sections 30.3 — 30.4

Topic Introduction

In the last class we introduced Ampere’s Law. Today you will get some practice using it, to
calculate the magnetic field generated by a cylindrical shell of current and by a slab of
current.

Ampere’s Law

As previously discussed, Ampere’s law rests on the idea that if you have a curl in a magnetic
field (that is, if it wraps around in a circle) that the field must be generated by some current
source inside that circle (at the center of the curl). So, if we walk around a loop and add up
the magnetic field heading in our direction, then if, when we finish walking around, we have
seen a net field wrapping in the direction we walked, there must be some current penetrating
the loop we just walked around. Mathematically this idea is expressed as:

43]_% -d'S = ol ,.rare » Where on the left we are integrating the magnetic field as we walk

around a closed loop, and on the right we add up the total amount of current penetrating the
loop.

In the example pictured here, a single long wire carries current
out of the page. As we discussed in class, this generates a
magnetic field looping counter-clockwise around it (blue lines).
On the figure we draw two “Amperian Loops.” The first loop
(yellow) has current / penetrating it. The second loop (red) has
no current penetrating it. Note that as you walk around the
yellow loop the magnetic field always points in roughly the

same direction as the path: (]Sﬁ -d's # 0, whereas around the

red loop sometimes the field points with you, sometimes
against you: CJSE ds=0.

In Practice

In practice we use Ampere’s Law in the same fashion that we used Gauss’s Law. There are
essentially three symmetric current distributions in which we can use Ampere’s Law — for an
infinite cylindrical wire (or nested cylindrical shells), for an infinite slab of current (or sets of
slabs — like a solenoid), and for a torus (a slinky with the two ends tied together). As with
Gauss’s law, although the systems can be made more complicated, application of Ampere’s
Law remains the same:

1) Draw the system so that the current is running perpendicular to the page (into or out of).
I strongly recommend this step because it means that your Amperian loops will lie in the
plane of the page, making them easier to draw. Remember to use circles with dots/x’s to
indicate currents coming out of/into the page.
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2) Determine the symmetry of the system and choose a shape for the Amperian loop(s) —
circles for cylinders and toroids, rectangles for slabs. You should determine the direction
of the magnetic field everywhere at this point.

3) Determine the regions of space in which the field could be different (e.g. inside and
outside of the current)

Then, for each region:

4) Draw the Amperian loop — making sure that on the entire loop (for circular loops) or on
each segment of the loop (for rectangular loops) the field is constant and either what you
want to know or what you already know (e.g. 0 by symmetry). This is a crucial step
since it lets you turn the integral into a simple multiplication.

5) Calculate (]Sﬁ -ds . If you did step (4) correctly this is just B (Path Length) (summed on

each side for rectangular loops). Don’t forget that it is a dot product, so that if B is
perpendicular to your path the integral is zero.

6) Finally, determine the current punching through your Amperian loop. Often this is just a
matter of counting how many wires carrying current / pass through your loop.
Sometimes it is slightly more complicated, involving integration of the current density:

I=([3-dA
7) Equate and solve for the magnitude of B. Remember that you got the direction of B in 2.

Important Equations
Ampere’s Law: gSﬁ dS= ol oiraie
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Summary of Class 20 8.02 Monday 3/28/05 / Tuesday 3/29/05

Topics: Faraday’s Law

Related Reading:
Course Notes (Liao et al.):  Chapter 10
Serway & Jewett: Chapter 31
Giancoli: Chapter 29

Experiments: None

Topic Introduction

So far in this class magnetic fields and electric fields have been fairly well isolated. We have
seen that each type of field can be created by charges. Electric fields are generated by static
charges, and can be calculated either using Coulomb’s law or Gauss’s law. Magnetic fields
are generated by moving charges (currents), and can be calculated either using Biot-Savart or
Ampere’s law. In all of these cases the fields have been static — we have had constant
charges or currents making constant electric or magnetic fields.

Today we make two major changes to what we have seen before: we consider the interaction
of these two types of fields, and we consider what happens when they are not static. Today
we will discuss the final Maxwell’s equation, Faraday’s law, which explains that electric
fields can be generated not only by charges but also by magnetic fields that vary in time.

Faraday’s Law

It is not entirely surprising that electricity and magnetism are connected. We have seen, after
all, that if an electric field is used to accelerate charges (make a current) that a magnetic field
can result. Faraday’s law, however, is something completely new. We can now forget about
charges completely. What Faraday discovered is that a changing magnetic flux generates an
EMF (electromotive force). Mathematically:

E=- dj)g , where ®, = ”ﬁd}; is the magnetic flux, and & = Cj)fl'-dE’ is the EMF
t

In the formula above, E'is the electric field measured in the rest frame of the circuit, if the
circuit is moving. The above formula is deceptively simple, so I will discuss several
important points to consider when thinking about Faraday’s law.

WARNING: First, a warning. Many students confuse Faraday’s Law with Ampere’s Law.
Both involve integrating around a loop and comparing that to an integral across the area
bounded by that loop. Aside from this mathematical similarity, however, the two laws are
completely different. In Ampere’s law the field that is “curling around the loop” is the

magnetic field, created by a “current flux” (I = ” J. dg) that is penetrating the looping B

field. In Faraday’s law the electric field is curling, created by a changing magnetic flux. In
fact, there need not be any currents at all in the problem, although as we will see below
typically the EMF is measured by its ability to drive a current around a physical loop — a
circuit. Keeping these differences in mind, let’s continue to some details of Faraday’s law.
EMF: How does the EMF become apparent? Typically, when doing Faraday’s law
~— problems there will be a physical loop, a closed circuit, such as the one

Ré

[ ——

pictured at left. The EMF is then observed as an electromotive force
that drives a current in the circuit: & = /R . In this case, the path
walked around in calculating the EMF is the circuit, and hence the
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associated area across which the magnetic flux is calculated is the rectangular area bordered
by the circuit. Although this is the most typical initial use of Faraday’s law, it is not the only
one — we will see that it can be applied in “empty space” space as well, to determine the
creation of electric fields.

Changing Magnetic Flux: How do we get the magnetic flux ®p to change? Looking at the
integral in the case of a uniform magnetic field, ®, = J]ﬁ -dA = BAcos (6), hints at three

distinct methods: by changing the strength of the field, the area of the loop, or the angle of
the loop. Pictures of these methods are shown below.

x B decreasing x

X X
X X

X X X X X
X X X
X X

X X X X X X X
X

X X X X X X
X X X X X X X

X X X X X X X X

X X X X

In each of the cases pictured above, the magnetic flux into the page is decreasing with time
(because the (1) B field, (2) loop area or (3) projected area are decreasing with time). This
decreasing flux creates an EMF. In which direction? We can use Lenz’s Law to find out.

Lenz’s Law

Lenz’s Law is a non-mathematical statement of Faraday’s Law. It says that systems will
always act to oppose changes in magnetic flux. For example, in each of the above cases the
flux into the page is decreasing with time. The loop doesn’t want a decreased flux, so it will
generate a clockwise EMF, which will drive a clockwise current, creating a B field into the
page (inside the loop) to make up for the lost flux. This, by the way, is the meaning of the
minus sign in Faraday’s law. I recommend that you use Lenz’s Law to determine the
direction of the EMF and then use Faraday’s Law to calculate the amplitude. By the way,
just as with Faraday’s Law, you don’t need a physical circuit to use Lenz’s Law. Just
pretend that there is a wire in which current could flow and ask what direction it would need
to flow in order to oppose the changing flux. In general, opposing a change in flux means
opposing what is happening to change the flux (e.g. forces or torques oppose the change).

Important Equations

Faraday’s Law (in a coil of N turns): E=-N d;DtB
Magnetic Flux (through a single loop): D, = ”ﬁ -dA
EMF: E= (j)fl’ d3 where E'is the electric field

measured in the rest frame of the circuit,
if the circuit is moving.
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Topics:  Faraday’s Law; Mutual Inductance & Transformers

Related Reading:
Course Notes (Liao et al.):  Chapter 10; Section 11.1
Serway & Jewett: Chapter 31; Section 32.4
Giancoli: Chapter 29; Section 30.1
Experiments: (9) Faraday’s Law of Induction

Topic Introduction

Today we continue our discussion of induction (Faraday’s Law), discussing another
application — eddy current braking — and then continuing on to define mutual inductance and
transformers.

Faraday’s Law & Lenz’s Law
Remember that Faraday’s Law tells us that a changing magnetic flux generates an EMF
(electromotive force):

E=- d;DB , where @, = ”ﬁd;‘; is the magnetic flux, and € = Cf)ﬁ'-dﬁ' is the EMF
t

In the formula above, E'is the electric field measured in the rest frame of the circuit, if the
circuit is moving. Lenz’s Law tells us that the direction of that EMF is so as to oppose the
change in magnetic flux. That is, if there were a physical loop of wire where you are trying
to determine the direction of the EMF, a current would be induced in it that creates a flux to
either supplement a decreasing flux or decrease an increasing flux.

Applications

As we saw in the last class, a number of technologies rely on induction to work — generators,
microphones, metal detectors, and electric guitars to name a few. Another common
application is eddy current braking. A magnetic field penetrating a metal spinning disk (like
a wheel) will induce eddy currents in the disk, currents which circle inside the disk and exert
a torque on the disk, trying to stop it from rotating. This kind of braking system is commonly
used in trains. Its major benefit (aside from eliminating costly service to maintain brake
pads) is that the braking torque is proportional to angular velocity of the wheel, meaning that
the ride smoothly comes to a halt.

Mutual Inductance

As we saw last class, there are several ways of changing the flux through a loop — by
changing the angle between the loop and the field (generators), the area of the loop (the
sliding bar problem) or the strength of the field. In fact, this last method is the most
common. Combining this idea with the idea that magnetic fields are typically generated by
currents, we can see that changing currents generate EMFs. This is the idea of mutual
inductance: given any two circuits, a changing current in one will induce an EMF in the

) dl ) )
other, or, mathematically, &, =-M d—‘ , where M is the mutual inductance of the two
t

circuits. How does this work? The current in loop 1 produces a magnetic field (and hence
flux) through loop 2. If that current changes in time, the flux through 2 changes in time,
creating an EMF in loop 2. The mutual inductance, M, depends on geometry, both on how
well the current in the first loop can create a magnetic field and on how much magnetic flux
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through the second loop that magnetic field will create. Interestingly, mutual inductance is
symmetric — if you flip the subscripts in the above equation, it remains true.

Transformers

A major application of mutual inductance is the transformer, which
allows the easy modification of the voltage of AC (alternating
current) signals. At left is a picture/schematic of a step up
transformer, which will take an input signal on the primary (of
input voltage Vp) and create an output signal on the secondary (of,
in this case larger, output voltage Vs). How does it work? The
primary coil creates an oscillating magnetic field as an oscillating

Laminated current is driven through it. This magnetic field is “steered”

o e through the iron core — recall that ferromagnets like iron act like
wires for magnetic fields, allowing the field to be bent around in a loop, as is done here. As
the oscillating magnetic field punches through the many turns of the secondary coil, it
generates an oscillating flux through them, which will induce an EMF in the secondary. If all
else is equal and the core is perfect in its guiding of the field lines, the amount of flux
generated and received is directly proportional to the number of turns in each coil. Hence the
ratio of the output to input voltage is the same as the ratio of the number of turns in the
secondary to the number of turns in the primary. As pictured we have more turns in the
secondary, hence this is a “step up transformer,” with a larger output voltage than input.

The ease of creating transformers is a strong argument for using AC rather than DC power,
and is one of the reasons that our main power system is AC. Why? Before sending power
across transmission lines, the voltage is stepped up to a very high voltage (240,000 V), which
leads to lower energy losses as the currents flow through the transmission lines (think about
why this is the case). The voltage is then stepped down to 240 V before going into your
home.

Important Equations

Faraday’s Law (in a coil of N turns): E=-N dj)tB
Magnetic Flux (through a single loop): D, = ”ﬁ dA
EMEF: &= CJ.)E’ .d$ where E'is the electric field

measured in the rest frame of the circuit,
if the circuit is moving.

Mutual Inductance: &g =-M %
t

Experiment 9: Faraday’s Law of Induction
Preparation: Read lab write-up.
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Topics: Faraday’s Law

Related Reading:
Course Notes (Liao et al):  Chapter 10
Serway & Jewett: Chapter 31
Giancoli: Chapter 29

Experiments: None

Topic Introduction
Today we practice using Faraday’s Law to calculate the current in and force on a loop falling
through a magnetic field.

Faraday’s Law & Lenz’s Law
Remember that Faraday’s Law tells us that a changing magnetic flux generates an EMF
(electromotive force):

E=- dj)g , where ©, = ”ﬁd}; is the magnetic flux, and & = Cj)fl'-dE’ is the EMF
t

In the formula above, E'is the electric field measured in the rest frame of the circuit, if the
circuit is moving. The sign indicates that the EMF opposes the change in flux — I suggest
you use Lenz’s Law to get the direction and just report the magnitude of the EMF (i.e. drop
the minus sign). As is usual, the flux integral nearly always turns into a simple
multiplication: BA.

Lenz’s Law tells us that the direction of that EMF is so as to oppose the change in magnetic
flux. That is, if there were a physical loop of wire where you are trying to determine the
direction of the EMF, a current would be induced in it that creates a flux to either supplement
a decreasing flux or decrease an increasing flux. Remember that, in general, opposing a
change in flux means opposing what is happening to change the flux (e.g. forces or torques
oppose the change).

Important Equations

Faraday’s Law (in a coil of N turns): E=-N dj)B
t
Magnetic Flux (through a single loop): DO, = ”ﬁ -dA
EMF: &= Cj)ﬁ’ .ds where E'is the electric field

measured in the rest frame of the circuit,
if the circuit is moving.
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Topic:  Inductors

Related Reading:
Course Notes (Liao et al.):  Sections 11.1 —11.4
Serway & Jewett: Sections 32.1 —32.4
Giancoli: Sections 30.1 — 30.4

Topic Introduction

Today we continue thinking about Faraday’s Law, and move from mutual inductance, in
which the changing flux from one circuit induces an EMF in another, to self inductance, in
which the changing flux from a circuit induces an EMF in itself.

Self Inductance
Remember that we defined the mutual inductance between two circuits and gave the relation

1 . o . 1
&, =—M —L. The self inductance obeys a similar equation: & = —Lij— , and the same
t t

concept: when a circuit has a current in it, it creates a magnetic field, and hence a flux,
through itself. If that current changes, then the flux will change and hence an EMF will be
induced in the circuit. The action of that EMF will be to oppose the change in current (if the
current is decreasing it will try to make it bigger, if increasing it will try to make it smaller).
For this reason, we often refer to the induced EMF as the “back EMF.”

To calculate the self inductance (or inductance, for short) of an object consisting of N turns
of wire, imagine that a current / flows through it, and determine how much flux @ that
makes through the object itself. The self inductance is defined as L=N®, /I .

An inductor is a circuit element whose main characteristic is its inductance, L. It is drawn as
a coil B8 in circuit diagrams. The strong resemblance to a solenoid is intentional —
solenoids make very good inductors both because of their ability to make a strong field inside
themselves, and also because the field they produce is fairly well contained, and hence
doesn’t produce flux (and induce EMFs) in other, nearby circuits.

The role of an inductor is to oppose changing currents. At steady state, in a DC circuit, an
inductor is off — it induces no EMF as long as the current through it is constant. As soon as
you try to change the current through an inductor though, it will fight back. In this sense an
inductor is the opposite of a capacitor. If a capacitor is placed in a steady state current it will
eventually fill up and “open” the circuit, whereas an inductor looks like a short in this case.
On the other hand, when starting from its uncharged state, a capacitor looks like a short when
you first try to move current through it, while an inductor looks like an open circuit, as it
prevents the change (from no current to some current).
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LR Circuits
We can write down a differential equation for a simple circuit with an inductor, resistor and

battery in series using Kirchhoft’s loop rule, and using & = —L% for the potential drop that

would be measured if you were to walk across the inductor in the direction of current. Just
like RC circuits the solutions to this equation are exponential decays down to zero or up to
some constant value. Instead of RC, the time constant is now 7 = L/R (a big inductance
slows down the circuit as it is more effective at opposing changes, but now a big resistance
reduces the size of the current, and hence changes in the current that the inductor will see,
and hence decreases the time constant — speeds things up). Just as with RC circuits, you can
usually determine what is happening in the circuit just by thinking about what the elements
do (e.g. inductors do what they can to keep the current steady — including sourcing current if
they see the current decreasing).

Energy in B Fields

Where do inductors get the energy to source current when they need to? In capacitors we
found that energy was stored in the electric field between their plates. In inductors, energy is
similarly stored, only now its in the magnetic field. Just as with capacitors, where the
electric field was created by a charge on the capacitor, we now have a magnetic field created

when there is a current through the inductor. Thus, just as with the capacitor, we can discuss
2

. : 1 . .
both the energy in the inductor, U = ELI ?, and the more generic energy density u, = ,
Hy
stored in the magnetic field. Again, although we introduce the magnetic field energy density
when talking about energy in inductors, it is a generic concept — whenever a magnetic field is
created it takes energy to do so, and that energy is stored in the field itself.

Important Equations

Self Inductance, L: L= N jDB
dl
EMF Induced by Inductor: E= _LE
. 1
Energy stored in Inductor: U = ELI 2
BZ
Energy Density in B Field: Uy =
2,

Time Constant of an LR Circuit: t=L/R
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Summary of Class 25 8.02 Monday 4/11/05 / Tuesday 4/12/05

Topics:  Undriven LRC Circuits

Related Reading:
Course Notes (Liao et al.):  Sections 11.5-11.6
Serway & Jewett: Sections 32.5-32.6
Giancoli: Sections 30.5-30.6
Experiments: (10) LR and Undriven LRC Circuits

Topic Introduction

Today we investigate a new type of circuit — one which consists of both capacitors and
inductors. We will see that the resulting current in these circuits will oscillate, in a fashion
completely analogous to the oscillation of a mass on a spring, and we will do a lab to
measure the properties of this oscillation.

Mass on a Spring: Simple Harmonic Motion

Consider a simple system consisting of a mass hanging on a spring. When the mass is pulled
down and released it oscillates up and down. How do we understand this? One way is to
look at the forces on the mass. When it is extended past its resting point the spring will want
to pull it up. If compressed the spring will want to push it down.

This leads directly to a second way of thinking about it: a differential equation for the
motion of the mass, F =mx = —kx, where X means two time derivatives of the
displacement, x (in other words, acceleration). The solution to this differential equation is

simple harmonic motion: x = x, cos( wt) where o =.Jk/m .

A third way of thinking about this is to consider the energy in the system. As the mass
moves, energy oscillates between kinetic energy of the mass and potential energy stored in
the spring. If there is no damping in the system (no friction) to dissipate the energy of the
oscillation it will continue forever.

LC Circuits

R a b
Wy " Each of these ways of thinking can be applied to the circuit
e—1 ] at left: an LC circuit. Imagine that the switch is left in
T Cea position a until the capacitor is fully charged and then the
switch is thrown to position b. This is analogous to pulling

down a mass and then releasing it. Why? Remember our
first way of thinking about the mass-spring combination above. The mass wants to keep
moving at a constant velocity, but the spring eventually gets extended or compressed as
much as it can and manages to force the mass to come to a rest and move in the opposite
direction. Here the capacitor will want to discharge and hence will start to drive a current
through the inductor. Eventually all the charges will have run off of the capacitor, so it won’t
“push” anymore, but now the inductor will want to keep the current flowing through it that it
already has (this is what inductors do — they have inertia). It will keep the current flowing,
but that will eventually fill up the capacitor which will stop the current and send it back the
other direction. That is, the inductor is the mass (the current is the velocity of the mass) and
the capacitor is the spring. Instead of position we talk about charge on the capacitor g. Our

Summary for Class 25 p. 12



Summary of Class 25 8.02 Monday 4/11/05 / Tuesday 4/12/05

differential equation is the same, ¥ =—Lg = ¢/C, and has the same solution: ¢ =g, cos( )

where @ =/1/LC .

We can also think about energy here, where it oscillates between being stored in the electric
field in the capacitor and the magnetic field in the inductor. As long as there is no dissipation
(resistance) is the circuit the oscillations will continue forever.

LRC Circuits

Q If we add a resistor in series with the capacitor and
) inductor we will provide a method of energy loss in the
N system. Whenever current flows some energy will be
~ lost to heat in the resistor, and hence the oscillations
SR < 20L will eventually damp out to zero. The exact path the
TP charge will take as it oscillates to zero depends on the
t relative sizes of L, R and C, but will typically look
S something like the curve to the left, where the
//'RQD e Re2L oscillations are bounded by an “envelope” which is
- exponentially decaying to zero as a function of time.

Q

Important Equations

Natural Frequency of LC Circuit: @, =——

Experiment 10: LR and Undriven LRC Circuits

Preparation: Read lab write-up.

This lab consists of two parts. In the first you will measure the inductance of a solenoid by
putting it in an LR circuit and measuring the time constant T = L/R of the circuit. In the
second you will use that inductor in an LRC circuit and measure the frequency of the

]
NiTel

resulting oscillations, determining that it is o, =
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Summary of Class 26 8.02 Wednesday 4/13/05 / Thursday 4/14/05

Topics:  Driven LRC Circuits

Related Reading:
Course Notes (Liao et al.):  Chapter 12
Serway & Jewett: Chapter 33
Giancoli: Chapter 31
Experiments: (11) Driven LRC Circuits

Topic Introduction

Today we continue our investigation of LRC circuits but add a new circuit element — the AC
power supply. This acts as a drive in the circuit and the current responds by moving at the
drive frequency. However, depending on the frequency of the drive, the current may be out
of phase (either leading or lagging the drive) and its amplitude can also vary. This is easily
seen in mechanical systems. For a fantastic example, go to the Kendall T station and play
with the pendula — depending on how fast you drive them they will respond either in phase or
out of phase with your drive, and they will either move a little or a lot. This also
demonstrates the notion of resonance. When your drive frequency matches the natural
frequency of the system, the amplitude increases greatly, and we say the system is “in
resonance.”

Mechanical Analogs
Recall from last time that we have a relationship between
inductance and mass (they both have inertia), between
capacitance and spring constant (they both push when being
“stretched” in either direction) and between resistance and
dampers (they both dissipate energy when there is
motion/current). Our AC power supply is the equivalent of a
force pushing on the mass in an oscillating fashion. As
mentioned above, when a mechanical system is driven at its
o nhatural frequency (the frequency it would oscillate at if not
driven) then the system is in resonance, and the amplitude of the
motion increases greatly. At left is a typical plot of the amplitude of motion versus drive
frequency. Can you observe this at the Kendall T? On a swingset?

Xm ax
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1
1
1
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1
|
1
1
1
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1
|
1
1
1
I
L

Q)

One Element at a Time

In order to understand how this resonance happens in an RLC circuit, its easiest to build up
an intuition of how each individual circuit element responds to oscillating currents. A
resistor obeys Ohm’s law: V=IR. It doesn’t care whether the current is constant or
oscillating — the amplitude of voltage doesn’t depend on the frequency and neither does the
phase (the response voltage is always in phase with the current).

A capacitor is different. Here if you drive current at a low frequency the capacitor will fill up
and have a large voltage across it, whereas if you drive current a high frequency the capacitor
will begin discharging before it has a chance to completely charge, and hence it won’t build
up as large a voltage. We see that the voltage is frequency dependent and that the current
leads the voltage (with an uncharged capacitor you see the current flow and then the
charge/potential on the capacitor build up).

An inductor is similar to a capacitor but the opposite. The voltage is still frequency
dependent but the inductor will have a larger voltage when the frequency is high (it doesn’t
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like change and high frequency means lots of change). Now the current /ags the voltage — if
you try to drive a current through an inductor with no current in it, the inductor will
immediately put up a fight (create an EMF) and then later allow current to flow.

When we put these elements together we will see that at low frequencies the capacitor will
“dominate” (it fills up limiting the current) whereas at high frequencies the inductor will

dominate (it fights the rapid changes). At resonance (@ =./1/LC) the frequency is such that

these two effects balance and the current will be largest in the circuit. Also at this frequency
the current is in phase with the driving voltage (the AC power supply).

Seeing it Mathematically — Phasors
It turns out that a nice way of looking at these relationships is thru
Vou : phasor diagrams. A phasor is just a vector whose magnitude is the
amplitude of either the voltage or current through a given circuit
@ i element and whose angle corresponds to the phase of that voltage or
]'0 VVOR current. In thinking about time dependence of a signal, we allow the
phasors to rotate about the origin (in a counterclockwise fashion) with
time, and only look at their component along the y-axis. This
component oscillates, just like the current and voltages in the circuit.
We use phasors because they allow us to add voltages across different circuit elements even
though those voltages are not in phase with each other (so you can’t just add them as
numbers). For example, the phasor diagram above illustrates the relationship of voltages in
a series LRC circuit. The current / is assigned to be at “0 phase” (along the x-axis). The
phase of the voltage across the resistor is the same. The voltage across the inductor L leads
(is ahead of /) and the voltage across the capacitor C lags (is behind /). If you add up (using
vector arithmetic) the voltages across R, L & C (the red and dashed blue & green lines
respectively) you must arrive at the voltage across the power supply. This then gives you a
rapid way of understanding the phase between the drive (the power supply) and the response
(the current) — here labeled ¢.

Important Equations
Impedance of R, L, C: R =R (in phase), X = % (Ileads), X, =L (Ilags)
@

Experiment 11: Driven LRC Circuits

Preparation: Read lab write-up.

This lab consists of two parts. In the first you will see how qualitatively the amplitude and
phase of the current in an LRC circuit change as a function of drive frequency. In the second
you will plot the amplitude dependence and measure the quality factor (Q) of the circuit.
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Summary of Class 27

Topics:
Related Reading:

Course Notes (Liao et al.):

Serway & Jewett:
Giancoli:

Topic Introduction

Driven LRC Circuits

8.02 Friday 4/15/05

Chapter 12
Chapter 33
Chapter 31

Today’s problem solving focuses on the driven RLC circuit, which we discussed last class.

Terminology: Resistance, Reactance, Impedance
Before starting I would like to remind you of some terms that we throw around nearly
interchangeably, although they aren’t. When discussing resistors we talk about their

resistance R, which gives the relationship between voltage across them and current through
them. For capacitors and inductors we do the same, introducing the term reactance X. That
is, Vo=IoX, just like V=IR. What is the difference? In resistors the current is in phase with
the voltage across them. In capacitors and inductors the current is /2 out of phase with the
voltage across them (current leads in a capacitor, lags in an inductor). This is why I can only
write the relationship for the amplitudes V, = [(X and net for the time dependent values
V=IX. When talking about combinations of resistors, inductors and capacitors, we use the
impedance Z: Vo= 1yZ. For a general Z the phase is neither 0 (as for R) or 7/2 (as for X).

I, Resonance
Recall that when you drive an RLC circuit, that the current

d());lllge. r, L-like: in the circuit depends on the frequency of the drive. Two
[ leads e $>0 typical response curves (I vs. drive ®) are shown at left,
I lags showing that at resonance (® = o) the current is a
Ao )\ maximum, and that as the drive is shifted away from the
Ry >R,

resonance frequency, the magnitude of the current

decreases. In addition to the magnitude of the current, the

phase shift between the drive and the current also changes.
©; At low frequencies, the capacitor dominates the circuit (it

fills up more readily, meaning it has a higher impedance),
so the circuit looks “capacitance-like” — the current leads the drive voltage. At high
frequencies the inductor dominates the circuit (the rapid changes means it is fighting hard all
the time, and has a high impedance), so the circuit looks “inductor-like” — the current lags the
drive voltage. Notice that the resistor has the effect of reducing the overall amplitude of the
current, and that its effect is particularly acute on resonance. This is because on resonance
the impedance of the circuit is dominated by the resistance, whereas off resonance the
impedance is dominated by either capacitance (at low frequencies) or inductance (at high
frequencies).
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VOL 4

Seeing it Mathematically — Phasors
It turns out that a nice way of looking at these
relationships is thru phasor diagrams. A phasor is just a
¢ vector whose magnitude is the amplitude of either the
—;—F voltage or current through a given circuit element and
V whose angle corresponds to the phase of that voltage or
OR current. In thinking about time dependence of a signal,
we allow the phasors to rotate about the origin (in a
counterclockwise fashion) with time, and only look at
their component along the y-axis. This component
oscillates, just like the current and voltages in the circuit, even though the total amplitude of
the signal (the length of the vector) stays the same.
We use phasors because they allow us to add voltages across different circuit elements even
though those voltages are not in phase with each other (so you can’t just add them as
numbers). For example, the phasor diagram above illustrates the relationship of voltages in
a series LRC circuit. The current / is assigned to be at “0 phase” (along the x-axis). The
phase of the voltage across the resistor is the same. The voltage across the inductor L leads
(is ahead of /) and the voltage across the capacitor C lags (is behind /). If you add up (using
vector arithmetic) the voltages across R, L & C (the red and dashed blue & green lines
respectively) you must arrive at the voltage across the power supply. This then gives you a
rapid way of understanding the phase between the drive (the power supply voltage V) and
the response (the current) — here labeled ¢.

Power

Power dissipation in AC circuits is very similar to power dissipation in DC circuits — only the
resistors dissipate any power. The big difference is that now the power dissipated, like
everything else, oscillates in time. We thus discuss the idea of average power dissipation.

To average a function that oscillates in time, we integrate it over a period of the oscillation,

T
and divide by that period: < P >= %J‘P(t)dt (if you don’t see why this is the case, draw
0

some arbitrary function and ask yourself what the average height is — it’s the area under the
curve divided by the length). Conveniently, the average of sin’(wt) (or cos*(wt)) is %. Thus

although the instantaneous power dissipated by a resistor is P(t)=1 (t)2 R, the average

> R, where “RMS” stands for “root mean square” (the

rms

power is given by < P>=L11'R=1
square root of the time average of the function squared).

Important Equations

Impedance of R, L, C: R =R (in phase), X .= % (Ileads), X, =L (Ilags)
@
Impedance of Series RLC Circuit:  Z = \/ R +(X, - X, )2 Look at phasor
Y _x diagram to see this!
Phase in Series RLC Circuit: ¢ = tan™ (L—CJ Pythagorean Theorem
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Topics: Maxwell’s Equations, EM Radiation & Energy Flow

Related Reading:
Course Notes (Liao et al.):  Chapter 13
Serway & Jewett: Chapter 34
Giancoli: Chapter 32

Topic Introduction

Today we will put together much of the physics we have learned in the class to see how
electricity and magnetism interact with each other. We begin by finalizing Maxwell’s
Equations, and then describe their result — electromagnetic (EM) radiation. Finally, we will
discuss how energy flows in electric and magnetic fields.

Maxwell’s Equations
Now that we have all of Maxwell’s equations, let’s review:

(1)@51?:-&:& (2)<ﬂ>1§-d&=o
N 80 N
. dod S dd
() E-ds=-—2 (4) PBds = p ], + pg, — -
C C

(1) Gauss’s Law states that electric charge creates diverging electric fields.

(2) Magnetic Gauss’s Law states that there are no magnetic charges (monopoles).

(3) Faraday’s Law states that changing magnetic fields can induce electric fields (which curl
around the changing flux).

(4) Ampere-Maxwell’s Law states that magnetic fields are created both by currents and by
changing electric fields, and that in each case the field curls around its creator.

The last piece of this last equation is the one piece you have not seen and we will justify its
addition in class. These equations are the cornerstone of the theory of electricity and

magnetism. Together with the Lorentz Force (f? =g(E+Vx ﬁ)) they pretty much describe

all of E&M, and from them we can derive mathematically the major equations you learned
this semester (like Coulomb’s Law and Biot-Savart). People even put them on T-shirts.
They are important and you should try hard to keep them in mind.

Electromagnetic Radiation

The fact that changing magnetic fields create electric fields and that changing electric fields
create magnetic fields means that oscillating electric and magnetic fields can propagate
through space (each pushing forward the other). This is electromagnetic (EM) radiation. It
is the single most useful discovery we discuss in this class, not only allowing us to
understand natural phenomena, like light, but also to create EM radiation to carry a variety of
useful information: radio, broadcast television and cell phone signals, to name a few, are all
EM radiation. In order to understand the mathematics of EM radiation you need to
understand how to write an equation for a traveling wave (a wave that propagates through
space as a function of time). Any function that is written f(x-vt) satisfies this property. Ast
increases, a function of this form moves to the right (increasing x) with velocity v. You can
see this as follows: At t=0 f(0) is at x=0. At a later time t=t, f(0) is at x=vt. That is, the
function has moved a distance vt during a time t.
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Sinusoidal traveling waves (plane waves) look like waves both as a function of position and
as a function of time. If you sit at one position and watch the wave travel by you say that it
has a period 7, inversely related to its frequency f, and angular frequency,

a)(T =f'= 27mf1) . If instead you freeze time and look at a wave as a function of position,

you say that it has a wavelength A, inversely related to its wavevector & (/1 =27k™ ) . Using

this notation, we can rewrite our function f(x-vt) = fysin(kx-wt), where v = w/k.

We typically treat both electric and magnetic fields as plane waves as they propagate through
space (if you have one you must have the other). They travel at the speed of light (v=c).
They also obey two more constraints. First, their magnitudes are fixed relative to each other:
Ey = cBy (check the units!) Secondly, E & B always oscillate at right angles to each other
and to their direction of propagation (they are transverse waves). That is, if the wave is
traveling in the z-direction, and the E field points in the x-direction then the B field must

point along the y-direction. More generally we write ExB = p , where pis the direction of
propagation.

Energy and the Poynting Vector

As EM Waves travel through space they carry energy with them. This is clearly true — light
from the sun warms us up. It also makes sense in light of the fact that energy is stored in
electric and magnetic fields, so if those fields move through space then the energy moves
with them. It turns out that we can describe how much energy passes through a given area

per unit time by the Poynting Vector: S = #LOEXE . Note that this points in the direction of

propagation of the EM waves (from above) which makes sense — the energy is carried in the
same direction that the waves are traveling. The Poynting Vector is also useful in thinking
about energy in circuit components. For example, consider a cylindrical resistor. The
current flows through it in the direction that the electric field is pointing. The B field curls
around. The Poynting vector thus points radially into the resistor — the resistor consumes
energy. We will repeat this exercise for capacitors and inductors in class.

Important Equations

(1)#1?:.61&:& 2 fpB-dA=0
) : S 80 S

Maxwell’s Equations:

(3)<_|'>E ds=—9%s (4)95E-d§=y1 + 1L,E a0,
S dt S 0" enc 0%0

E(¥,t)=E,sin(kp-F—ot)E ' oA

EM Plane Waves: . with £, =cB; ExB=p; w=ck

(F,t)=B,sin(kp-¥—wt)B

Poynting Vector:
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Topics:  Displacement Current & Energy Flow

Related Reading:
Course Notes (Liao et al.):  Chapter 13
Serway and Jewett: Chapter 34
Giancoli: Chapter 32

Topic Introduction
Today we will put into practice the ideas of displacement current and the Poynting Vector.

Displacement Current

Recall that the displacement current is what we call the ability to create a magnetic field by
allowing an electric field to change in time. Although calling it a “current” isn’t strictly
(DE
dt
much like a current, creating a magnetic field that curls around it. We derived the idea from
thinking about a capacitor. In a capacitor, no current flows between the plates, but when the
capacitor is charging or discharging (with a current / flowing onto/off of the capacitor plates)
then the electric field between the plates changes, and the displacement current looks like a
current / as well, uniformly distributed across the plates and flowing between them.

accurate (there is no flowing charge), the displacement current /, = ¢, does act very

Energy and the Poynting Vector
The Poynting Vector S = ﬂLOE x B describes how much energy passes through a given area

per unit time, and points in the direction of energy flow. Although this is commonly used
when thinking about electromagnetic radiation, it generically tells you about energy flow,
and is particularly useful in thinking about energy in circuit components. For example,
consider a cylindrical resistor. The current flows through it in the direction that the electric
field points. The B field curls around. The Poynting vector thus points radially into the
resistor — the resistor consumes energy. In today’s problem solving session you will
calculate the Poynting vector in a capacitor, and will find that if the capacitor is charging
then S points in towards the center of the capacitor (energy flows into the capacitor) whereas
if the capacitor is discharging S points outwards (it is giving up energy).

Important Equations
dd,

Displacement Current: /, = ¢,

t
Poynting Vector: S=_LExB

Ho
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Topics: Maxwell’s Equations, EM Radiation & The Wave Equation

Related Reading:
Course Notes (Liao et al.):  Chapter 13
Serway & Jewett: Chapter 34
Giancoli: Chapter 32

Topic Introduction
Today we will derive the facts about EM waves that were simply stated in the last class. We
will also derive the wave equation from our full set of Maxwell’s Equations.

Maxwell’s Equations and EM Radiation
Everything about EM radiation is derivable from Maxwell’s equations so they bear repeating:

(1)3@517:-6111:& @ fpB-dA=0
S 80 S

(3)¢Ed§:_d53 (4)¢]§d§:/’lolenc+ﬂ080 ch)E
g t J dt

Today we will use Faraday’s Law (3) and Maxwell-Ampere’s Law (4) to show that
propagating magnetic fields generate electric fields and that propagating electric fields
generate magnetic fields, leading to commingled EM waves that propagate together through
space. In the process we will derive the wave equation for electromagnetic radiation, which

shows that electromagnetic waves propagate at a speed
1

VHE,

Note that we have experimentally measured these two constants in Experiments 2 and 8§, in a
manner that was easily possible in the 1800’s, and our results from those experiments was
within 20% of the accepted value of the speed of light.

CcC=

Deriving the Wave Equation:

We take an electromagnetic wave
propagating in the positive x-direction and
polarized as shown in the figure.
Applying the Maxwell-Ampere’s Law to
the loop shown to the left, we will derive
the following differential relation between
the electric and magnetic fields of the
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For the same wave as show above, applying
Faraday’s Law to the loop shown to the left,
we will derive another differential relation
between the electric and magnetic fields of the
. wave:

oE, 0B

Yy _ z

ox ot

If we then combine the two relations we have
above, we find that the electric field of the
wave must satisfy the one dimensional wave

equation

O’E, O’E,
w2 My
ox ot

The solutions to this equation are waves propagating at the speed of light. We will also

derive the relations we have previously stated between the magnitudes and direction of E and
B.

Important Equations

(1) fpE-dR = 2) §pB-dA =0
Maxwell’s Equations: a:) o ; dd
- - 5 W ra E
(3)€£Eds— dt (4)€£B ds_ﬂOIenc+ﬂ0€0

EM Plane Waves: . _ with E,=cB,; ExB=p; o=ck
B(¥,t)=B,sin(kp-¥—wr)B
, O’E, O’E,
1D Wave Equation: W = l,E, ¥
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Topics:  Generating EM Radiation

Related Reading:
Course Notes (Liao et al.):  Chapter 13
Serway & Jewett: Chapter 34
Giancoli: Chapter 32

Experiments: (12) Microwave Generator

Topic Introduction

Today we will talk about how to generate electromagnetic waves. We will also discuss one
of the most common types of antennae, the quarter-wavelength antenna, and then do a lab
using a type of this antenna, called the spark-gap transmitter.

Polarization
As mentioned in the last class, EM waves are transverse waves — the E & B fields are both
perpendicular to the direction of propagation p as well as to each other. Given p, the E & B

fields can thus oscillate along an infinite number of directions (any direction perpendicular to
p). We call the axis that the E field is oscillating along the polarization axis (often a

“polarization direction” is stated, but since the E field oscillates, sometimes E points along
the polarization direction, sometimes opposite it). When light has a specific polarization
direction we say that it is polarized. Most light (for example, that coming from the sun or
from light bulbs) is unpolarized — the electric fields are oscillating along lots of different
axes. However, in certain cases light can become polarized. A very common example is that
when light scatters off of a surface only the polarization which is parallel to that surface
survives. This is why Polaroid sunglasses are useful. They stop all light which is
horizontally polarized, thus blocking a large fraction of light which reflects off of horizontal
surfaces (glare). If you happen to own a pair of Polaroid sunglasses, you can find other
situations in which light becomes polarized. Rainbows, for example, are polarized. So is the
sky under the right conditions (can you figure out what the conditions are?) This is because
the blue light that you see in the sky is scattered sun light.

y Generating Plane Electromagnetic Waves: How
do we generate plane electromagnetic waves? We do
this by shaking a sheet of charge up and down,
making waves on the electric field lines of the charges
in the sheet. We discuss this process quantitatively in
‘ this lecture, and show that the work that we do to
| shake the sheet up and down provides exactly the
@ / amount of energy carried away in electromagnetic
. waves.
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- Quarter-Wavelength Antenna: How do we

+ generate electric dipole radiation? Again, by

+ shaking charge, but this time not an infinite plane of
tehi charge, but a line of charge on an antenna. At left is

s an illustration of a quarter wavelength antenna. It is
+

B 1 | T | B quite simple in principle. An oscillator drives
' charges back and forth from one end of the antenna

S @ ®_> S to the other (at the moment pictured the top is
E l E positive the bottom negative, but this will change in

— half a period). This separation of charge creates an
= electric field that points from the positive to the
- negative side of the antenna. This field also begins
f=1 to propagate away from the antenna (in the
|~ direction of the Poynting vector S). When the
charge changes sides the field will flip directions — hence you have an oscillating electric
field that is propagating away from the antenna. This changing E field generates a changing
B field, as pictured, and you thus have an electromagnetic wave. Why is this called a quarter
wavelength antenna? The length of each part of the antenna above (e.g. the top half) is about
equal in length to % of the wavelength if the radiation that it produces. Why is that? The
charges move at close to the speed of light in the antenna so that in making one complete
oscillation of the wave (by moving from the top to the bottom and back again) they move
about as far as the wave has itself (one wavelength).

Important Equations

(1) pE-dR = En @) pB-dk=0
Maxwell’s Equations: s ; @ ’ dd
(3)<ﬁEd§:_ dB (4)¢E.d§:ﬂ0]enc+/’l0€0 .
! p S dt

=

E(F,t)=E,sin(kp-F— )
(F,t)=B,sin(kp-F—at)

EM Plane Waves: with E, =cB,; ExB=p; o=ck

=
=

Experiment 12: Microwaves

Preparation: Read lab write-up.

In today’s lab you will create microwaves (EM radiation with a wavelength of several
centimeters) using a spark gap transmitter. This is a type of quarter wavelength antenna that
works on the principles described above. You will measure the polarization of the produced
EM waves, and try to understand the intensity distribution created by such an antenna (where
is the signal the strongest? The weakest?) You will also measure the wavelength of the
radiation by creating a standing wave by reflecting the waves off of a metal wall and
allowing them to interfere with the waves created by the antenna.

Summary for Class 32 p.2/2
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Topics: Interference

Related Reading:
Course Notes (Liao et al.):  Chapter 14
Serway & Jewett: Chapter 37-38
Giancoli: Chapter 32

Experiments: 13: Interference

Topic Introduction

Today we will investigate the subject of interference, both theoretically and experimentally.
We not only have a fun lab — you get to play with a laser, shining it through slits and
bouncing it off of CDs — but one that is also very useful in solidifying your conceptual
picture of interference. Make sure that you pay attention to this latter aspect as this material
will be covered on the final.

The General Picture
The picture at left forms the basis of all the
phenomena we will observe today. Two different
— _ waves (red & blue) arrive at a single position in
&U% ﬁ?:;g:ﬁg’: space (at the screen). If they are in phase then
ﬂvﬂvﬂv they add constructively and you see a bright spot.
If they are out of phase then the add destructively
and you see nothing (dark spot). In today’s
Destructive | €XPeriments the relative phase between the
Interference | incoming waves changes as a function of lateral
U position on the screen.
The key to creating interference is creating phase
shift between two waves that are then brought together at a single position. A common way
to do that is to add extra path length to one of the waves relative to the other. We will look at
a variety of systems in which that happens.

Consider two traveling waves, moving through space:

Look here as function of time

—> | Look here as function of time

Two Slit Interference
The first phenomenon we consider is two slit
P interference. Light from the laser hits two very narrow

- s, "7 11 slits, which then act like in-phase point sources of light.
. g v In traveling from the slits to the screen, however, the
i B " |, light from the two slits travel different distances. In the
he 0 picture at left the light from the bottom slit travels
5 further than the light from the top slit. This extra path

length introduces a phase shift between the two waves
and leads to a position dependent interference pattern
on the screen.

Here the extra path length is 6 =d sin ( 0 ) , leading to a phase shift ¢ given by % = 2i .

V4
Realizing that phase shifts that are multiples of 21 give us constructive interference while
odd multiples of w lead to destructive interference leads to the following conditions:

Maxima: d sin (6)=mA ; Minima: d sin (6)=(m+1) 2

Summary for Class 33 p. 1/1
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Diffraction

The next kind of interference we consider is light going through
a single slit, interfering with itself. This is called diffraction,
and arises from the finite width of the slit (« in the picture at
left). The resultant effect is not nearly as easy to derive as that

: from two-slit interference (which, as you can see from above, is
a 10 straight-forward). The result for the anglular locations of the

minima is a sin (0) =mA.

Putting it Together
If you have two wide slits, that is, slits that exhibit both diffraction and interference, the
pattern observed on a distant screen is as follows:

Diffraction envelope \

Determined by slit width a

Interference
"fine" structure

L Determined by separation d

between slits
Here the amplitude modulation (the red envelope) is set by the diffraction (the width of the
slits), while the “individual wiggles” are due to the interference between the light coming
from the two different slits. You know that this must be the case because d must be larger
than a, and hence the minima locations, which go like 1/d, are closer together for the two slit
pattern than for the single slit pattern.

Important Equations

. AL ¢ m constructive
Interference Conditions — == L

A 2zm |m+5 destructive
Two Slit Maxima: dsin (6)=ma

Single Slit (Diffraction) Minima: g sin (6)=mA

Experiment 13: Interference
Preparation: Read lab write-up.

The lab investigates the phenomena discussed above.

Summary for Class 33 p.2/2
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Fields

1.1 Action at a Distance versus Field Theory

“... In order therefore to appreciate the requirements of the science [of
electromagnetism], the student must make himself familiar with a
considerable body of most intricate mathematics, the mere retention of
which in the memory materially interferes with further progress ...”

James Clerk Maxwell [1855]

Classical electromagnetic field theory emerged in more or less complete form in 1873 in
James Clerk Maxwell’s A Treatise on Electricity and Magnetism. Maxwell based his
theory in large part on the intuitive insights of Michael Faraday. The wide acceptance of
Maxwell’s theory has caused a fundamental shift in our understanding of physical reality.
In this theory, electromagnetic fields are the mediators of the interaction between
material objects. This view differs radically from the older *“action at a distance” view
that preceded field theory.

What is “action at a distance?” It is a worldview in which the interaction of two material
objects requires no mechanism other than the objects themselves and the empty space
between them. That is, two objects exert a force on each other simply because they are
present. Any mutual force between them (for example, gravitational attraction or electric
repulsion) is instantaneously transmitted from one object to the other through empty
space. There is no need to take into account any method or agent of transmission of that
force, or any finite speed for the propagation of that agent of transmission. This is known
as “action at a distance” because objects exert forces on one another (“action”) with
nothing but empty space (“distance”) between them. No other agent or mechanism is
needed.

Many natural philosophers objected to the *“action at a distance” model because in our
everyday experience, forces are exerted by one object on another only when the objects
are in direct contact. In the field theory view, this is always true in some sense. That is,
objects that are not in direct contact (objects separated by apparently empty space) must
exert a force on one another through the presence of an intervening medium or
mechanism existing in the space between the objects.

The force between the two objects is transmitted by direct “contact” from the first object
to an intervening mechanism immediately surrounding that object, and then from one
element of space to a neighboring element, in a continuous manner, until the force is
transmitted to the region of space contiguous to the second object, and thus ultimately to
the second object itself.



Although the two objects are not in direct contact with one another, they are in direct
contact with a medium or mechanism that exists between them. The force between the
objects is transmitted (at a finite speed) by stresses induced in the intervening space by
the presence of the objects. The “field theory” view thus avoids the concept of “action at
a distance” and replaces it by the concept of *action by continuous contact.” The
“contact” is provided by a stress, or “field,” induced in the space between the objects by
their presence.

This is the essence of field theory, and is the foundation of all modern approaches to
understanding the world around us. Classical electromagnetism was the first field theory.
It involves many concepts that are mathematically complex. As a result, even now it is
difficult to appreciate. In this first chapter of your introduction to field theory, we discuss
what a field is, and how we represent fields. We begin with scalar fields.

1.2 Scalar Fields

A scalar field is a function that gives us a single value of some variable for every point in
space. As an example, the image in Figure 1.2.1 shows the nighttime temperatures
measured by the Thermal Emission Spectrometer instrument on the Mars Global
Surveyor (MGS). The data were acquired during the first 500 orbits of the MGS mapping
mission. The coldest temperatures, shown in purple, are —120°C while the warmest,
shown in white, are —65°C.

The view is centered on Isidis Planitia (15N, 270W), which is covered with warm
material, indicating a sandy and rocky surface. The small, cold (blue) circular region to
the right is the area of the Elysium volcanoes, which are covered in dust that cools off
rapidly at night. At this season the north polar region is in full sunlight and is relatively
warm at night. It is winter in the southern hemisphere and the temperatures are extremely
low.

Figure 1.2.1 Nighttime temperature map for Mars

The various colors on the map represent the surface temperature. This map, however, is
limited to representing only the temperature on a two-dimensional surface and thus, it
does not show how temperature varies as a function of altitude. In principal, a scalar



field provides values not only on a two-dimensional surface in space but for every point
in space.

Figure 1.2.2 illustrates the variation of temperature as a function of height above the
surface of the Earth, which is a third dimension which complements the two dimensions
shown in Figure 1.2.1.
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Figure 1.2.2 Atmospheric temperature variation as a function of altitude above the
Earth’s surface

How do we represent three-dimensional scalar fields? In principle, one could create a
three-dimensional atmospheric volume element and color it to represent the temperature
variation.

Figure 1.2.3 Spherical coordinates

Another way is to simply represent the temperature variation by a mathematical function.
For the Earth we shall use spherical coordinates (r,8,¢) shown in Figure 1.2.3 with the
origin chosen to coincide with the center of the Earth. The temperature at any point is
characterized by a function T(r,8,¢). In other words, the value of this function at the
point with coordinates (r,6,¢) is a temperature with given units. The temperature
function T(r,8,¢) is an example of a “scalar field.” The term “scalar” implies that

temperature at any point is a number rather than a vector (a vector has both magnitude
and direction).



Example 1.1: Half-Frozen /Half-Baked Planet

As an example of a scalar field, consider a planet with an atmosphere that rotates with the
same angular frequency about its axis as the planet orbits about a nearby star, i.e., one
hemisphere always faces the star. Let R denote the radius of the planet. Use spherical
coordinates (r,6, #) with the origin at the center of the planet, and choose ¢ =z/2 for the
center of the hemisphere facing the star. A simplistic model for the temperature variation
at any point is given by

T(r,0,4)=[T,+T,sin> 0+T,(L+sing) [e ™ (1.2.1)

where T,, T,, T,, and « are constants. The dependence on the variable r in the term

e "R indicates that the temperature decreases exponentially as we move radially away
from the surface of the planet. The dependence on the variable @ in the term sin®@
implies that the temperature decreases as we move toward the poles. Finally, the ¢
dependence in the term (1+sin¢) indicates that the temperature decreases as we move
away from the center of the hemisphere facing the star.

A scalar field can also be used to describe other physical quantities such as the
atmospheric pressure. However, a single number (magnitude) at every point in space is
not sufficient to characterize quantities such as the wind velocity since a direction at
every point in space is needed as well.

1.2.1 Representations of a Scalar Field

A field, as stated earlier, is a function that has a different value at every point in space. A
scalar field is a field for which there is a single number associated with every point in
space. We have seen that the temperature of the Earth’s atmosphere at the surface is an
example of a scalar field. Another example is

P(x,y,2) = 1 — 13 (1.2.2)

\/x2+(y+d)2+22 \/x2+(y—d)2+22

This expression defines the value of the scalar function ¢ at every point(x,y, z) in space.

How do visually represent a scalar field defined by an equation such as Eq. (1.2.2)?
Below we discuss three possible representations.

1. Contour Maps
One way is to fix one of our independent variables (z, for example) and then show a

contour map for the two remaining dimensions, in which the curves represent lines of
constant values of the function ¢. A series of these maps for various (fixed) values of z



then will give a feel for the properties of the scalar function. We show such a contour
map in the xy-plane at z = 0 for Eq. (1.2.2), namely,

1 U3
\/x2+(y+d)2 \/x2+(y—d)2

Various contour levels are shown in Figure 1.2.4, for d =1, labeled by the value of the
function at that level.

¢(x,y,0) =

(1.2.3)

Figure 1.2.4 A contour map in the xy-plane of the scalar field given by Eq. (1.2.3).

2. Color-Coding

Another way we can represent the values of the scalar field is by color-coding in two
dimensions for a fixed value of the third. This was the scheme used for illustrating the
temperature fields in Figures 1.2.1 and 1.2.2. In Figure 1.2.5 a similar map is shown for
the scalar field ¢(x,y,0). Different values of ¢(x,y,0) are characterized by different

colors in the map.

=2 0 2

Figure 1.2.5 A color-coded map in the xy-plane of the scalar field given by Eq. (1.2.3).



3. Relief Maps

A third way to represent a scalar field is to fix one of the dimensions, and then plot the
value of the function as a height versus the remaining spatial coordinates, say x and vy,
that is, as a relief map. Figure 1.2.6 shows such a map for the same function ¢(x,y,0).

Figure 1.2.6 A relief map of the scalar field given by Eq. (1.2.3).

1.3 Vector Fields

A vector is a quantity which has both a magnitude and a direction in space. Vectors are
used to describe physical quantities such as velocity, momentum, acceleration and force,
associated with an object. However, when we try to describe a system which consists of a
large number of objects (e.g., moving water, snow, rain,...) we need to assign a vector to
each individual object.

As an example, let’s consider falling snowflakes, as shown in Figure 1.3.1. As snow falls,
each snowflake moves in a specific direction. The motion of the snowflakes can be
analyzed by taking a series of photographs. At any instant in time, we can assign, to each
snowflake, a velocity vector which characterizes its movement.

Figure 1.3.1 Falling snow.



The falling snow is an example of a collection of discrete bodies. On the other hand, if
we try to analyze the motion of continuous bodies such as fluids, a velocity vector then
needs to be assigned to every point in the fluid at any instant in time. Each vector
describes the direction and magnitude of the velocity at a particular point and time. The
collection of all the velocity vectors is called the velocity vector field. An important
distinction between a vector field and a scalar field is that the former contains
information about both the direction and the magnitude at every point in space, while
only a single variable is specified for the latter. An example of a system of continuous
bodies is air flow.

1.4 Fluid Flow

Animation 1.1: Sources and Sinks
In general, a vector field ﬁ(X, Yy, Z) can be written as
If(x, y,2)=F, (XY, z)i+ F (%Y, z)]+ F, (XY, z)l2 (1.4.2)

where the components are scalar fields. Below we use fluids to examine the properties
associated with a vector field since fluid flows are the easiest vector fields to visualize.

In Figure 1.4.1 we show physical examples of a fluid flow field, where we represent the
fluid by a finite number of particles to show the structure of the flow. In Figurel.4.1(a),
particles (fluid elements) appear at the center of a cone (a “source”) and then flow
downward under the effect of gravity. That is, we create particles at the origin, and they
subsequently flow away from their creation point. We also call this a diverging flow,
since the particles appear to “diverge” from the creation point. Figure 1.4.1(b) is the
converse of this, a converging flow, or a “sink” of particles.

.
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Figue ..1 () A

[ AR
n example of a source of particles and the flow associated with a
source, (b) An example of a sink of particles and the flow associated with a sink.

Another representation of a diverging flow is in depicted in Figure 1.4.2.



Figure 1.4.2 Representing the flow field associated with a source using textures.
Here the direction of the flow is represented by a texture pattern in which the direction of
correlation in the texture is along the field direction.

Figure 1.4.3(a) shows a source next to a sink of lesser magnitude, and Figure 1.4.3(b)
shows two sources of unequal strength.

Figure 1.4.3 The flow fields associated with (a) a source (lower) and a sink (upper)
where the sink is smaller than the source, and (b) two sources of unequal strength.

Finally, in Figure 1.4.4, we illustrate a constant downward flow interacting with a
diverging flow (source). The diverging flow is able to make some headway “upwards”
against the downward constant flow, but eventually turns and flows downward,
overwhelmed by the strength of the “downward” flow.




Figure 1.4.4 A constant downward flow interacting with a diverging flow (source).
In the language of vector calculus, we represent the flow field of a fluid by

V=Vv,i+v j+vk (1.4.2)

A point (x,y,z) isasource if the divergence of V(x,y,z) is greater than zero. That is,

ov
vy, )= Qe M N g (1.4.3)
ox oy oz
where
ve2is 9k Ok (1.4.4)
ox oy 0z

is the del operator. On the other hand, (x,y,z) is a sink if the divergence of v(x,y,z) is
less than zero. When V-V(x,y,z) =0, then the point (x,y,z) is neither a source nor a
sink. A fluid whose flow field has zero divergence is said to be incompressible.

Animation 1.2: Circulations

A flow field which is neither a source nor a sink may exhibit another class of behavior -
circulation. In Figure 1.4.5(a) we show a physical example of a circulating flow field
where particles are not created or destroyed (except at the beginning of the animation),
but merely move in circles. The purely circulating flow can also be represented by
textures, as shown in Figure 1.4.5(b).

Figure 1.4.5 (a) An example of a circulating fluid. (b) Representing a circulating flow
using textures.

A flow field can have more than one system of circulation centered about different points
in space. In Figure 1.4.6(a) we show a flow field with two circulations. The flows are in
opposite senses, and one of the circulations is stronger than the other. In Figure 1.4.6(b)
we have the same situation, except that now the two circulations are in the same sense.




Figure 1.4.6 A flow with two circulation centers with (a) opposite directions of
circulation. (b) the same direction of circulation

In Figure 1.4.7, we show a constant downward flow interacting with a counter-clockwise
circulating flow. The circulating flow is able to make some headway against the
downward constant flow, but eventually is overwhelmed by the strength of the
“downward” flow.

Figure 1.4.7 A constant downward flow interacting with a counter-clockwise circulating
flow.

In the language of vector calculus, the flows shown in Figures 1.4.5 through 1.4.7 are
said to have a non-zero curl, but zero divergence. In contrast, the flows shown in Figures
1.4.2 through 1.4.4 have a zero curl (they do not move in circles) and a non-zero
divergence (particles are created or destroyed).

Finally, in Figure 1.4.8, we show a fluid flow field that has both a circulation and a
divergence (both the divergence and the curl of the vector field are non-zero). Any
vector field can be written as the sum of a curl-free part (no circulation) and a
divergence-free part (no source or sink). We will find in our study of electrostatics and
magnetostatics that the electrostatic fields are curl free (e.g. they look like Figures 1.4.2
through 1.4.4) and the magnetic fields are divergence free (e.g. they look like Figures
1.4.5 and 1.4.6). Only when dealing with time-varying situations will we encounter
electric fields that have both a divergence and a curl. Figure 1.4.8 depicts a field whose
curl and divergence are non-vanishing. As far as we know even in time-varying situations
magnetic fields always remain divergence-free. Therefore, magnetic fields will always
look like the patterns shown in Figures 1.4.5 through 1.4.7.
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Figure 1.4.8 A flow field that has both a source (divergence) and a circulation (curl).

1.4.1 Relationship Between Fluid Fields and Electromagnetic Fields

Vector fields that represent fluid flow have an immediate physical interpretation: the
vector at every point in space represents a direction of motion of a fluid element, and we
can construct animations of those fields, as above, which show that motion. A more
general vector field, for example the electric and magnetic fields discussed below, do not
have that immediate physical interpretation of a flow field. There is no “flow” of a fluid
along an electric field or magnetic field.

However, even though the vectors in electromagnetism do not represent fluid flow, we
carry over many of the terms we use to describe fluid flow to describe electromagnetic
fields as well. For example we will speak of the flux (flow) of the electric field through a
surface. If we were talking about fluid flow, “flux” would have a well-defined physical
meaning, in that the flux would be the amount of fluid flowing across a given surface per
unit time. There is no such meaning when we talk about the flux of the electric field
through a surface, but we still use the same term for it, as if we were talking about fluid
flow. Similarly we will find that magnetic vector field exhibit patterns like those shown
above for circulating flows, and we will sometimes talk about the circulation of magnetic
fields. But there is no fluid circulating along the magnetic field direction.

We use much of the terminology of fluid flow to describe electromagnetic fields because
it helps us understand the structure of electromagnetic fields intuitively. However, we
must always be aware that the analogy is limited.

1.5 Gravitational Field
The gravitational field of the Earth is another example of a vector field which can be used
to describe the interaction between a massive object and the Earth. According to

Newton’s universal law of gravitation, the gravitational force between two massesm and
M is given by
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(1.5.1)

where r is the distance between the two masses and r is the unit vector located at the
position of m that points from M towards m. The constant of proportionality is the

gravitational constant G =6.67x10"""N-m?/kg® . Notice that the force is always

attractive, with its magnitude being proportional to the inverse square of the distance
between the masses.

As an example, if M is the mass of the Earth, the gravitational field gat a point P in
space, defined as the gravitational force per unit mass, can be written as

F .
Q:!jmﬁg:—Ger (1.5.2)

N

From the above expression, we see that the field is radial and points toward the center of
the Earth, as shown in Figure 1.5.1.
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Figure 1.5.1 Gravitational field of the Earth.

Near the Earth’s surface, the gravitational field g is approximately constant: g=-gr ,
where

g:G%gz98mB2 (1.5.3)

E

and R is the radius of Earth. The gravitational field near the Earth’s surface is depicted
in Figure 1.5.2.
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Figure 1.5.2 Uniform gravitational field near the surface of the Earth.

Notice that a mass in a constant gravitational field does not necessarily move in the
direction of the field. This is true only when its initial velocity is in the same direction as
the field. On the other hand, if the initial velocity has a component perpendicular to the
gravitational field, the trajectory will be parabolic.

1.6 Electric Fields

The interaction between electric charges at rest is called the electrostatic force. However,
unlike mass in gravitational force, there are two types of electric charge: positive and
negative. Electrostatic force between charges falls off as the inverse square of their
distance of separation, and can be either attractive or repulsive. Electric charges exert
forces on each other in a manner that is analogous to gravitation. Consider an object
which has chargeQ . A “test charge” that is placed at a point P a distance r from Q will

experience a Coulomb force:

F. = ke%? (16.1)

where T is the unit vector that points from Q toq. The constant of proportionality
k, =9.0x10°N-m?/C? is called the Coulomb constant. The electric field at P is defined
as

E = lim —= =k Qs (1.6.2)
q—

€r2

o) |m'|'|1

The SI unit of electric field isnewtons/coulomb (N/C). If Q is positive, its electric field

points radially away from the charge; on the other hand, the field points radially inward
ifQ is negative (Figure 1.6.1). In terms of the field concept, we may say that the charge

Q creates an electric field E which exerts a force F, =gEon q.
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Figure 1.6.1 Electric field for positive and negative charges

1.7 Magnetic Field

Magnetic field is another example of a vector field. The most familiar source of magnetic
fields is a bar magnet. One end of the bar magnet is called the North pole and the other,
the South pole. Like poles repel while opposite poles attract (Figure 1.7.1).

F—[s I B s|—v
Figure 1.7.1 Magnets attracting and repelling

If we place some compasses near a bar magnet, the needles will align themselves along
the direction of the magnetic field, as shown in Figure 1.7.2.
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Figure 1.7.2 Magnetic field of a bar magnet

The observation can be explained as follows: A magnetic compass consists of a tiny bar
magnet that can rotate freely about a pivot point passing through the center of the magnet.
When a compass is placed near a bar magnet which produces an external magnetic field,
it experiences a torque which tends to align the north pole of the compass with the

external magnetic field.
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The Earth’s magnetic field behaves as if there were a bar magnet in it (Figure 1.7.3).
Note that the south pole of the magnet is located in the northern hemisphere.

Figure 1.7.3 Magnetic field of the Earth

1.8 Representations of a Vector Field

How do we represent vector fields? Since there is much more information (magnitude
and direction) in a vector field, our visualizations are correspondingly more complex
when compared to the representations of scalar fields.

Let us introduce an analytic form for a vector field and discuss the various ways that we
represent it. Let

xf+(y+d)j+zl§ 1 xf+(y—d)j+zl2

E 1y Yo = N
(x.y.2) [X*+(y+d)*+2°]"* 3[x*+(y-d)*+z°]**

(1.8.1)

This field is proportional to the electric field of two point charges of opposite signs, with
the magnitude of the positive charge three times that of the negative charge. The positive
charge is located at (0,—d,0) and the negative charge is located at (0,d,0). We discuss

how this field is calculated in Section 2.7.

1.8.1 Vector Field Representation

Figure 1.8.1 is an example of a “vector field” representation of Eq. (1.8.1), in the plane
where z = 0. We show the charges that would produce this field if it were an electric
field, one positive (the orange charge) and one negative (the blue charge). We will
always use this color scheme to represent positive and negative charges.
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Figure 1.8.1 A *“vector field” representation of the field of two point charges, one
negative and one positive, with the magnitude of the positive charge three times that of
the negative charge. In the applet linked to this figure, one can vary the magnitude of the
charges and the spacing of the vector field grid, and move the charges about.

In the vector field representation, we put arrows representing the field direction on a
rectangular grid. The direction of the arrow at a given location represents the direction of
the vector field at that point. In many cases, we also make the length of the vector
proportional to the magnitude of the vector field at that point. But we also may show
only the direction with the vectors (that is make all vectors the same length), and color-
code the arrows according to the magnitude of the vector. Or we may not give any
information about the magnitude of the field at all, but just use the arrows on the grid to
indicate the direction of the field at that point.

Figure 1.8.1 is an example of the latter situation. That is, we use the arrows on the vector
field grid to simply indicate the direction of the field, with no indication of the magnitude
of the field, either by the length of the arrows or their color. Note that the arrows point
away from the positive charge (the positive charge is a “source” for electric field) and
towards the negative charge (the negative charge is a “sink” for electric field).

1.8.2 Field Line Representation

There are other ways to represent a vector field. One of the most common is to draw
“field lines.” Faraday called the field lines for electric field “lines of force.” To draw a
field line, start out at any point in space and move a very short distance in the direction of
the local vector field, drawing a line as you do so. After that short distance, stop, find the
new direction of the local vector field at the point where you stopped, and begin moving
again in that new direction. Continue this process indefinitely. Thereby you construct a
line in space that is everywhere tangent to the local vector field. If you do this for
different starting points, you can draw a set of field lines that give a good representation
of the properties of the vector field. Figure 1.8.2 below is an example of a field line
representation for the same two charges we used in Figure 1.8.1.
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The field lines are everywhere tangent to the local field direction.

In summary, the field lines are a representation of the collection of vectors that constitute
the field, and they are drawn according to the following rules:

(1) The direction of the field line at any point in space is tangent to the field at that point.

(2) The field lines never cross each other, otherwise there would be two different field
directions at the point of intersection.

1.8.3 Grass Seeds and Iron Filings Representations

The final representation of vector fields is the “grass seeds” representation or the “iron
filings” representation. For an electric field, this name derives from the fact that if you
scatter grass seeds in a strong electric field, they will orient themselves with the long axis
of the seed parallel to the local field direction. They thus provide a dense sampling of the
shape of the field. Figure 1.8.4 is a “grass seeds” representation of the electric field for
the same two charges in Figures 1.8.1 and 1.8.2.

Figure 1.8.4: A *grass seeds” representation of the electric field that we considered in
Figures 1.8.1 and 1.8.2. In the applet linked to this figure, one can generate “grass seeds”
representations for different amounts of charge and different positions.
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The local field direction is in the direction in which the texture pattern in this figure is
correlated. This “grass seeds” representation gives by far the most information about the
spatial structure of the field.

We will also use this technique to represent magnetic fields, but when used to represent
magnetic fields we call it the *“iron filings” representation. This name derives from the
fact that if you scatter iron filings in a strong magnetic field, they will orient themselves
with their long axis parallel to the local field direction. They thus provide a dense
sampling of the shape of the magnetic field.

A frequent question from the student new to electromagnetism is “What is between the
field lines?” Figures 1.8.2 and 1.8.4 make the answer to that question clear. What is
between the field lines are more field lines that we have chosen not to draw. The field
itself is a continuous feature of the space between the charges.

1.8.4 Motion of Electric and Magnetic Field Lines

In this course we will show the spatial structure of electromagnetic fields using all of the
methods discussed above. In addition, for the field line and the grass seeds and iron
filings representation, we will frequently show the time evolution of the fields. We do
this by having the field lines and the grass seed patterns or iron filings patterns move in
the direction of the energy flow in the electromagnetic field at a given point in space.
The flow is in the direction of ExB, the cross product of the electric field E and the
magnetic field B, and is perpendicular to both E and B . This is very different from our
representation of fluid flow fields above, where the direction of the flow is in the same
direction as the velocity field itself. We will discuss the concept on energy flow in
electromagnetic fields toward the end of the course.

We adopt this representation for time-changing electromagnetic fields because these
fields can both support the flow of energy and can store energy as well. We will discuss
quantitatively how to compute this energy flow later, when we discuss the Poynting
vector in Chapter 13. For now we simply note that when we animate the motion of the
field line or grass seeds or iron filings representations, the direction of the pattern motion
indicates the direction in which energy in the electromagnetic field is flowing.

1.9 Summary

In this chapter, we have discussed the concept of fields. A scalar field T(x,y,z)is a
function on all the coordinates of space. Examples of a scalar field include temperature
and pressure. On the other hand, a vector field ﬁ(x, y,z) is a vector each of whose
components is a scalar field. A vector field F(x, y, z) has both magnitude and direction at
every point (x,y, z) in space. Gravitational, electric and magnetic fields are all examples
of vector fields.
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1.10 Solved Problems

1.10.1 Vector Fields
Make a plot of the following vector fields:
(a) V=3i-5]

This is an example of a constant vector field in two dimensions. The plot is depicted in
Figure 1.10.1:

4 52 vs 4 6
_.2
]
Figure 1.10.1
(b) v=r
Figure 1.10.2
N
(© V:r—z
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In two dimensions, using the Cartesian coordinates where ¥ = xi+ yj, Vcan be written as

V= = 32

r_r Xi+Yj
r2 r3 (XZ + yZ)
The plot is shown in Figure 1.10.3(a). Both the gravitational field of the Earth gand the

electric field E due to a point charge have the same characteristic behavior as V. In three
dimensions where ¥ = Xi + yj+ zk , the plot looks like that shown in Figure 1.10.3(b).

4 ol ]
. |
III e ,_,,_1|_ //
I'.II g ; % f/ III
-4 | | IIII . ‘lx III
‘. I|II / | //
2.5 ““"‘“.“* | //
X TR B Il /
(a) (b)
Figure 1.10.3

_ 3xy» 2 2—X21
(d) v= r5y|+ yr5 j

v 10

-10 =5

& Figure 1.10.4

The plot is characteristic of the electric field due to a point electric dipole located at the
origin.

20



1.10.2 Scalar Fields

Make a plot of the following scalar functions in two dimensions:
1
(@) f(==

In two dimensions, we may write r = /x> +y’ .

Figure 1.10.5

Figure 1.10.5 can be used to represent the electric potential due to a point charge located
at the origin. Notice that the mesh size has been adjusted so that the singularity at r =0 is
not shown.

1 1

\/xz +(y-1)° _\/x2 +(y+1)?

(b) f(x,y)=

Figure 1.10.6

This plot represents the potential due to a dipole with the positive charge located
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aty =1and the negative charge aty =-1. Again, singularities at (x, y) =(0,+1)are not
shown.

1.11 Additional Problems

1.11.1 Plotting Vector Fields

Plot the following vector fields:

e ic_c xf+y] 2 2% 27
@ yi-xj () ﬁ(' Do© 7 (d) 2yi (&) x"i+y’]
()] Y= (9) xyf—xj (h) cos X1 +sin y]

1.11.2 Position Vector in Spherical Coordinates
In spherical coordinates (see Figure 1.2.3), show that the position vector can be written as

F=rsin@cosgi+rsindsingj+rcosfk

1.11.3 Electric Field

A charge +1 is situated at the point (—1,0,0) and a charge —1 is situated at the point

(1,0,0). Find the electric field of these two charges at an arbitrary point (0, y,0) on the
y-axis.

1.11.4 An Object Moving in a Circle

A particle moves in a circular path of radius r in the xy-plane with a constant angular
speed @ =d@/dt. At some instant t, the particle is at P, as shown in Figure 1.11.1.
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)

_ Figure 1.11.1

(a) Write down the position vector F(t) .
(b) Calculate the velocity and acceleration of the particle at P.

(c) Express the unit vectors r and 0 in polar coordinates in terms of the unit vectors i
and j in Cartesian coordinates.

1.11.5 Vector Fields

(a) Find a vector field in two dimensions which points in the negative radial direction and
has magnitude 1.

(b) Find a vector field in two dimensions which makes an angle of 45° with the x-axis
and has a magnitude (x+ y)2 atany point(x,y).

(c) Find a vector field in two dimensions whose direction is tangential and whose
magnitude at any point (x, y) is equal to its distance from the origin.

(d) Find a vector field in three dimensions which is in the positive radial direction and
whose magnitude is 1.

1.11.6 Object Moving in Two Dimensions

An object moving in two dimensions has a position vector
r(t) =asin a)ti+bcosa)t]

where a, b and o are constants.

(a) How far is the object from the origin at time t?
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(b) Find the velocity and acceleration as function of time for the object.

(c) Show that the path of the object is elliptical.

1.11.7 Law of Cosines

Two sides of the triangle in Figure 1.11.2(a) form an angle €. The sides have lengths a
and b.

=

a A
@ (b)

Figure 1.11.2 Law of cosines

The length of the side opposite @ is given by the relation triangle identity
¢’ =a’+b*-2abcosd.

Suppose we describe the two given sides of the triangles by the vectors A and B, with
|A|=a and |B|=b, as shown in Figure 1.11.2(b)

(a) What is the geometric meaning of the vector C=B—A ?

(b) Show that the magnitude of C is equal to the length of the opposite side of the
triangle shown in Figure 1.11.2(a), that is, |C|=c.

1.11.8 Field Lines

A curve y=y(x) is called a field line of the vector field F(x,y) if at every point

(xo, yo) on the curve, If(xo, yO) is tangent to the curve (see Figure 1.11.3).
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y=y(x)
F:(_\‘o, )

X
Figure 1.11.3

A

Show that the field lines y=y(x) of a vector field F(x,y)=F, (X, y)f+ F (X))
represent the solutions of the differential equation

dy _F(xy)
dx  F.(xY)
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Coulomb’s Law

2.1 Electric Charge

There are two types of observed electric charge, which we designate as positive and
negative. The convention was derived from Benjamin Franklin’s experiments. He rubbed
a glass rod with silk and called the charges on the glass rod positive. He rubbed sealing
wax with fur and called the charge on the sealing wax negative. Like charges repel and
opposite charges attract each other. The unit of charge is called the Coulomb (C).

The smallest unit of “free” charge known in nature is the charge of an electron or proton,
which has a magnitude of

e=1.602x10"C (2.1.1)
Charge of any ordinary matter is quantized in integral multiples of e. An electron carries
one unit of negative charge, —e, while a proton carries one unit of positive charge, +e. In

a closed system, the total amount of charge is conserved since charge can neither be
created nor destroyed. A charge can, however, be transferred from one body to another.

2.2 Coulomb's Law

Consider a system of two point charges, g, and q,, separated by a distance r in vacuum.
The force exerted by g, on g, is given by Coulomb's law:

E, =k 3%¢ (2.2.1)

where k, is the Coulomb constant, and =T /r is a unit vector directed from g, to q,,
as illustrated in Figure 2.2.1(a).

(a)

Figure 2.2.1 Coulomb interaction between two charges

Note that electric force is a vector which has both magnitude and direction. In SI units,
the Coulomb constantk, is given by



=8.9875x10°N-m?/C? (2.2.2)

where
1

= =8.85x10"* C?/N-m? 2.2.3
0T A(899x10° N-m2/C?) / @23)

is known as the “permittivity of free space.” Similarly, the force on ¢, due to g, is given

by F,, = —F,,, asillustrated in Figure 2.2.1(b). This is consistent with Newton's third law.

As an example, consider a hydrogen atom in which the proton (nucleus) and the electron
are separated by a distance r =5.3x10™"* m. The electrostatic force between the two

particles is approximately F, =k.e?/r?>=8.2x10"° N. On the other hand, one may show

that the gravitational force is only F, ~3.6x107

neglected when dealing with electrostatic forces!

N . Thus, gravitational effect can be

Animation 2.1: Van de Graaff Generator

Consider Figure 2.2.2(a) below. The figure illustrates the repulsive force transmitted
between two objects by their electric fields. The system consists of a charged metal
sphere of a van de Graaff generator. This sphere is fixed in space and is not free to move.
The other object is a small charged sphere that is free to move (we neglect the force of
gravity on this sphere). According to Coulomb’s law, these two like charges repel each
another. That is, the small sphere experiences a repulsive force away from the van de
Graaff sphere.

_____,;7\

__\__.‘ —

N
.
.
e
AR

Figure 2.2.2 (a) Two charges of the same sign that repel one another because of the
“stresses” transmitted by electric fields. We use both the “grass seeds” representation
and the “field lines” representation of the electric field of the two charges. (b) Two
charges of opposite sign that attract one another because of the stresses transmitted by
electric fields.

The animation depicts the motion of the small sphere and the electric fields in this
situation. Note that to repeat the motion of the small sphere in the animation, we have



the small sphere “bounce off” of a small square fixed in space some distance from the
van de Graaff generator.

Before we discuss this animation, consider Figure 2.2.2(b), which shows one frame of a
movie of the interaction of two charges with opposite signs. Here the charge on the small
sphere is opposite to that on the van de Graaff sphere. By Coulomb’s law, the two objects
now attract one another, and the small sphere feels a force attracting it toward the van de
Graaff. To repeat the motion of the small sphere in the animation, we have that charge
“bounce off” of a square fixed in space near the van de Graaff.

The point of these two animations is to underscore the fact that the Coulomb force
between the two charges is not “action at a distance.” Rather, the stress is transmitted by
direct “contact” from the van de Graaff to the immediately surrounding space, via the
electric field of the charge on the van de Graaff. That stress is then transmitted from one
element of space to a neighboring element, in a continuous manner, until it is transmitted
to the region of space contiguous to the small sphere, and thus ultimately to the small
sphere itself. Although the two spheres are not in direct contact with one another, they
are in direct contact with a medium or mechanism that exists between them. The force
between the small sphere and the van de Graaff is transmitted (at a finite speed) by
stresses induced in the intervening space by their presence.

Michael Faraday invented field theory; drawing “lines of force” or “field lines” was his
way of representing the fields. He also used his drawings of the lines of force to gain
insight into the stresses that the fields transmit. He was the first to suggest that these
fields, which exist continuously in the space between charged objects, transmit the
stresses that result in forces between the objects.

2.3 Principle of Superposition

Coulomb’s law applies to any pair of point charges. When more than two charges are
present, the net force on any one charge is simply the vector sum of the forces exerted on
it by the other charges. For example, if three charges are present, the resultant force
experienced by g, due to g, and g, will be

Fy = Fis + Py (2.3.1)
The superposition principle is illustrated in the example below.
Example 2.1: Three Charges

Three charges are arranged as shown in Figure 2.3.1. Find the force on the charge g,
assuming that @, =6.0x10°C , g,=-0,=-6.0x10°C , @,=+3.0x10°C and
a=2.0x10"m.



g, + X
Figure 2.3.1 A system of three charges
Solution:

Using the superposition principle, the force on q, is

. 1 R R
F=Fy+F; = q1C]23 s+ qzng P
4rey \ 1 I3

In this case the second term will have a negative coefficient, since g, is negative. The
unit vectors f,, and r,, do not point in the same directions. In order to compute this sum,

we can express each unit vector in terms of its Cartesian components and add the forces
according to the principle of vector addition.

From the figure, we see that the unit vector r,, which points from g, to g, can be written
as

o :c039i+sin9]:g(i+j)

Similarly, the unit vector T, =i points from g, to g,. Therefore, the total force is

|33 _ 1 (q1q3 'r‘ls n 9,% fzsj_ 1 ( 4% ﬂ(?+])+ (_le)qs 'I‘]

drg, | 1’ s  47s, (f2a)? 2
_ LG (V2 ), V2
4dre, a 4 4

upon adding the components. The magnitude of the total force is given by



2 2 Y2
e o 1oag(v2 ) (V2
4, % || 4 4
0
) (6.0x107°C)(3.0x10°°C)
(2.0x107°m)?

=(9.0x10°N-m’/C? (0.74) =3.0N

The angle that the force makes with the positive x-axis is

F
g=tant| =L |=tan G =151.3°
F, ~1++/21/4

Note there are two solutions to this equation. The second solution 4 =-28.7° is incorrect
because it would indicate that the force has positive i and negative j components.

For a system of N charges, the net force experienced by the jth particle would be

N
F, = Zl Fi (2.3.2)
i

where I*:ij denotes the force between particles i and j. The superposition principle

implies that the net force between any two charges is independent of the presence of
other charges. This is true if the charges are in fixed positions.

2.4 Electric Field

The electrostatic force, like the gravitational force, is a force that acts at a distance, even
when the objects are not in contact with one another. To justify such the notion we
rationalize action at a distance by saying that one charge creates a field which in turn acts
on the other charge.

An electric charge g produces an electric field everywhere. To quantify the strength of
the field created by that charge, we can measure the force a positive “test charge” q,

experiences at some point. The electric field E is defined as:

E=lim’e (2.4.1)

0p—0 qO

We take g,to be infinitesimally small so that the field g, generates does not disturb the
“source charges.” The analogy between the electric field and the gravitational field
g = lim F, /m,is depicted in Figure 2.4.1.

my—0
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Figure 2.4.1 Analogy between the gravitational field § and the electric field E .

From the field theory point of view, we say that the charge q creates an electric field
E which exerts a force F, = g,E on a test chargeq, .

Using the definition of electric field given in Eq. (2.4.1) and the Coulomb’s law, the
electric field at a distance r from a point charge q is given by

-1 9; (2.4.2)
Are, 1

Using the superposition principle, the total electric field due to a group of charges is
equal to the vector sum of the electric fields of individual charges:

E=YE=Y 1 G5 (2.4.3)

~ Are, I’
Animation 2.2: Electric Field of Point Charges
Figure 2.4.2 shows one frame of animations of the electric field of a moving positive and

negative point charge, assuming the speed of the charge is small compared to the speed of
light.

Figure 2.4.2 The electric fields of (a) a moving positive charge, (b) a moving negative
charge, when the speed of the charge is small compared to the speed of light.



2.5 Electric Field Lines

Electric field lines provide a convenient graphical representation of the electric field in
space. The field lines for a positive and a negative charges are shown in Figure 2.5.1.

(a) (b)

Figure 2.5.1 Field lines for (a) positive and (b) negative charges.

Notice that the direction of field lines is radially outward for a positive charge and
radially inward for a negative charge. For a pair of charges of equal magnitude but
opposite sign (an electric dipole), the field lines are shown in Figure 2.5.2.

Figure 2.5.2 Field lines for an electric dipole.

The pattern of electric field lines can be obtained by considering the following:

(1) Symmetry: For every point above the line joining the two charges there is an
equivalent point below it. Therefore, the pattern must be symmetrical about the line
joining the two charges

(2) Near field: Very close to a charge, the field due to that charge predominates.
Therefore, the lines are radial and spherically symmetric.

(3) Far field: Far from the system of charges, the pattern should look like that of a single
point charge of value Q=>.Q. Thus, the lines should be radially outward, unless

Q=0.

(4) Null point: This is a point at which E =0, and no field lines should pass through it.



The properties of electric field lines may be summarized as follows:
e The direction of the electric field vector E at a point is tangent to the field lines.

e The number of lines per unit area through a surface perpendicular to the line is
devised to be proportional to the magnitude of the electric field in a given region.

e The field lines must begin on positive charges (or at infinity) and then terminate on
negative charges (or at infinity).

e The number of lines that originate from a positive charge or terminating on a negative
charge must be proportional to the magnitude of the charge.

e No two field lines can cross each other; otherwise the field would be pointing in two
different directions at the same point.
2.6 Force on a Charged Particle in an Electric Field

Consider a charge +g moving between two parallel plates of opposite charges, as shown
in Figure 2.6.1.

Figure 2.6.1 Charge moving in a constant electric field

Let the electric field between the plates be E:—Ey], with E, >0. (In Chapter 4, we

shall show that the electric field in the region between two infinitely large plates of
opposite charges is uniform.) The charge will experience a downward Coulomb force

F,=qE (2.6.1)

Note the distinction between the charge q that is experiencing a force and the charges on
the plates that are the sources of the electric field. Even though the charge g is also a
source of an electric field, by Newton’s third law, the charge cannot exert a force on

itself. Therefore, E is the field that arises from the “source” charges only.

According to Newton’s second law, a net force will cause the charge to accelerate with an
acceleration



a—re _9E_ 955 (2.6.2)
m m

Suppose the particle is at rest (v, =0) when it is first released from the positive plate.
The final speed v of the particle as it strikes the negative plate is

2yqE
v, =2|a,|y= Ty (2.6.3)

where vy is the distance between the two plates. The Kkinetic energy of the particle when it
strikes the plate is

K :%mvi =qE,y (2.6.4)

2.7 Electric Dipole
An electric dipole consists of two equal but opposite charges, +g and —q, separated by a

distance 2a, as shown in Figure 2.7.1.

P(xp0) v E,

Figure 2.7.1 Electric dipole

The dipole moment vector p which points from—q to +q (in the +Y - direction) is given
by

p=20aj (2.7.1)

The magnitude of the electric dipole is p=2qga, where q>0. For an overall charge-
neutral system having N charges, the electric dipole vector p is defined as

F
z

(2.7.2)
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where T, is the position vector of the charge g,. Examples of dipoles include HCL, CO,

H,O and other polar molecules. In principle, any molecule in which the centers of the
positive and negative charges do not coincide may be approximated as a dipole. In
Chapter 5 we shall also show that by applying an external field, an electric dipole
moment may also be induced in an unpolarized molecule.

2.7.1 The Electric Field of a Dipole

What is the electric field due to the electric dipole? Referring to Figure 2.7.1, we see that
the x-component of the electric field strength at the point P is

q (cosé cosej q X X
E = v - - (2.7.3)
4re, ( r’ r’ 4zz, [xz +(y- a)z]sl2 [xz +(y+ a)ZT/2

+

where
r’=r>+a*x2racosd=x’+(yFa)’ (2.7.4)

Similarly, the y -component is

E _ q (sm&_sm&}_ q y—a y+a (2.7.5)

Yo, rP 1P ) 4w ES +(y—a)2]3/2 ) ES +(y+a)2]3/2

+

In the “point-dipole” limit wherer > a, one may verify that (see Solved Problem 2.13.4)
the above expressions reduce to

E, =P singcoso (2.7.6)
Are,r
and
p 2
E, = 3cos“ 6 -1 2.7.7
y 47&90!’3( ) ( )

where sin@=x/rand cos@=y/r. With3prcos® = 3p - F and some algebra, the electric
field may be written as

E(F) = L(—E + M) (2.7.8)

4rg,\ 1 r°

Note that Eg. (2.7.8) is valid also in three dimensions where F = Xi + y]+ zk . The
equation indicates that the electric field E due to a dipole decreases with r as 1/r?,
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unlike the 1/r? behavior for a point charge. This is to be expected since the net charge of
a dipole is zero and therefore must fall off more rapidly than 1/r? at large distance. The

electric field lines due to a finite electric dipole and a point dipole are shown in Figure
2.7.2.

¥ "

§

= g 2

Figure 2.7.2 Electric field lines for (a) a finite dipole and (b) a point dipole.

Animation 2.3: Electric Dipole

Figure 2.7.3 shows an interactive ShockWave simulation of how the dipole pattern arises.
At the observation point, we show the electric field due to each charge, which sum
vectorially to give the total field. To get a feel for the total electric field, we also show a
“grass seeds” representation of the electric field in this case. The observation point can be
moved around in space to see how the resultant field at various points arises from the
individual contributions of the electric field of each charge.

Figure 2.7.3 An interactive ShockWave simulation of the electric field of an two equal
and opposite charges.

2.8 Dipole in Electric Field

What happens when we place an electric dipole in a uniform field E = Ei, with the
dipole moment vector p making an angle with the x-axis? From Figure 2.8.1, we see that

the unit vector which points in the direction of p is cos 01 +sin 0]. Thus, we have

P = 2qga(cos @i +sind]) (2.8.1)

12



Figure 2.8.1 Electric dipole placed in a uniform field.

As seen from Figure 2.8.1 above, since each charge experiences an equal but opposite
force due to the field, the net force on the dipole is F,,, =F, +F_=0. Even though the net

force vanishes, the field exerts a torque a toque on the dipole. The torque about the
midpoint O of the dipole is

— —

r, x If+ +F xF = (acoseh asin ej)x (F, f) + (—acos@f—asin ej)x (-F i)
=asindF, (k) +asin @ F (—k) (2.8.2)
= 2aF sin 6(-k)

where we have used F, =F =F . The direction of the torque is —k , or into the page.
The effect of the torquet is to rotate the dipole clockwise so that the dipole moment
p becomes aligned with the electric field E. With F = qE , the magnitude of the torque
can be rewritten as

7 =2a(qE)sin 8 = (2aq)Esin g = pEsing
and the general expression for toque becomes
T=pxE (2.8.3)

Thus, we see that the cross product of the dipole moment with the electric field is equal to
the torque.

2.8.1 Potential Energy of an Electric Dipole
The work done by the electric field to rotate the dipole by an angle d& is

dW =-7d@ =—-pEsingdé (2.8.4)

13



The negative sign indicates that the torque opposes any increase in&. Therefore, the total
amount of work done by the electric field to rotate the dipole from an angle 6, to & is

W = j:o (—pEsin#)d@ = pE(cosd—cos ) (2.8.5)

The result shows that a positive work is done by the field when cosé >cosé,. The

change in potential energy AU of the dipole is the negative of the work done by the
field:

AU =U —-U, =-W = —pE(cos§—cosé, ) (2.8.6)

where U, = —PE cos g, is the potential energy at a reference point. We shall choose our
reference point to bed, = z/2 so that the potential energy is zero there,U, =0. Thus, in
the presence of an external field the electric dipole has a potential energy

U=-pEcoséd=-p-E (2.8.7)

A system is at a stable equilibrium when its potential energy is a minimum. This takes
place when the dipole p is aligned parallel to E , making U a minimum with

U, =-pE. On the other hand, when pand E are anti-parallel, U__ =+pE is a
maximum and the system is unstable.

If the dipole is placed in a non-uniform field, there would be a net force on the dipole in
addition to the torque, and the resulting motion would be a combination of linear

acceleration and rotation. In Figure 2.8.2, suppose the electric field E at +q differs from
the electric field E_ at —q.

F 41 q ﬁ+
E(x—a) * E(x-ka)
Figure 2.8.2 Force on a dipole

Assuming the dipole to be very small, we expand the fields about x:

E.(x+a)~ E(x)+a[d—Ej, E (x-a)~ E(x)—a(d—Ej (2.8.8)
dx dx

The force on the dipole then becomes

14



F,=q(E.-E)= 2qa(d—E]? = p(d—Ej? (2.8.9)
dx dx

An example of a net force acting on a dipole is the attraction between small pieces of
paper and a comb, which has been charged by rubbing against hair. The paper has
induced dipole moments (to be discussed in depth in Chapter 5) while the field on the
comb is non-uniform due to its irregular shape (Figure 2.8.3).

Figure 2.8.3 Electrostatic attraction between a piece of paper and a comb

2.9 Charge Density

The electric field due to a small number of charged particles can readily be computed
using the superposition principle. But what happens if we have a very large number of
charges distributed in some region in space? Let’s consider the system shown in Figure
2.9.1:

Figure 2.9.1 Electric field due to a small charge element Adg..

2.9.1 Volume Charge Density

Suppose we wish to find the electric field at some point P . Let’s consider a small
volume element AV, which contains an amount of charge Ag,. The distances between

charges within the volume element AV, are much smaller than compared to r, the
distance between AV, and P . In the limit where AV. becomes infinitesimally small, we
may define a volume charge density o(r) as

Ag _ dg

p(F) = AIJiTo AV = Y (2.9.1)

15



The dimension of p(F) is charge/unit volume (C/m?) in SI units. The total amount of
charge within the entire volume V is

Q=Y. Aq = [p(F)dV (2.9.2)

The concept of charge density here is analogous to mass density p, (). When a large

number of atoms are tightly packed within a volume, we can also take the continuum
limit and the mass of an object is given by

hﬂzjgﬂﬂdv (2.9.3)

2.9.2 Surface Charge Density

In a similar manner, the charge can be distributed over a surface S of area Awith a
surface charge density o (lowercase Greek letter sigma):

dﬂ=§% (2.9.4)

The dimension of o is charge/unit area (C/m?) in Sl units. The total charge on the entire
surface is:

QzﬂoGNA (2.9.5)

2.9.3 Line Charge Density

If the charge is distributed over a line of length ¢, then the linear charge density A4
(lowercase Greek letter lambda) is

Mﬂ=%% (2.9.6)

where the dimension of 4 is charge/unit length (C/m). The total charge is now an
integral over the entire length:

Q=IAGN£ (2.9.7)

line
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If charges are uniformly distributed throughout the region, the densities (o,o or 1) then
become uniform.

2.10 Electric Fields due to Continuous Charge Distributions

The electric field at a point P due to each charge element dq is given by Coulomb’s law:

1 dg; (2.10.1)
Arey 1

dE =

where r is the distance fromdq toP and Tt is the corresponding unit vector. (See Figure

2.9.1). Using the superposition principle, the total electric field E is the vector sum
(integral) of all these infinitesimal contributions:

ot jd—qf (2.10.2)

This is an example of a vector integral which consists of three separate integrations, one
for each component of the electric field.

Example 2.2: Electric Field on the Axis of a Rod

A non-conducting rod of length ¢ with a uniform positive charge density A and a total
charge Q is lying along the x-axis, as illustrated in Figure 2.10.1.

v

dg=hdx'

dE = |

Xp I

Figure 2.10.1 Electric field of a wire along the axis of the wire

Calculate the electric field at a point P located along the axis of the rod and a distance X,
from one end.

Solution:

The linear charge density is uniform and is given by A =Q//. The amount of charge
contained in a small segment of length dx’ is dg= Adx’.

17



Since the source carries a positive charge Q, the field at P points in the negative x

direction, and the unit vector that points from the source to P ist = —i. The contribution
to the electric field due to dqis

dE = 1 d_qu 1 ﬂ(ff;((_i)z_ 1 Qd?i"
Are, ¥ dre, X Arey U X

Integrating over the entire length leads to

E-foE=— 1 QJW%:_LE[L L }i:_ L Q § (haoy

0 X2 Argy (\ X, Xo+/ Argy Xy (L +X,)

Notice that when P is very far away from the rod, x, > ¢, and the above expression
becomes

12;

Er1 Q
Arey Xg

(2.10.4)

The result is to be expected since at sufficiently far distance away, the distinction
between a continuous charge distribution and a point charge diminishes.

Example 2.3: Electric Field on the Perpendicular Bisector

A non-conducting rod of length ¢ with a uniform charge density A and a total charge Q

is lying along the x-axis, as illustrated in Figure 2.10.2. Compute the electric field at a
point P, located at a distance y from the center of the rod along its perpendicular bisector.

. : Figure 2.10.2
Solution:

We follow a similar procedure as that outlined in Example 2.2. The contribution to the
electric field from a small length element dx’ carrying charge dq = Adx’is

18



gt d9_ 1 A (2.10.5)

Arey 1'% Ame, X +y?

Using symmetry argument illustrated in Figure 2.10.3, one may show that the X -
component of the electric field vanishes.

dE \/“JE
P

Figure 2.10.3 Symmetry argument showing that E, =0.

The y-component of dE is

dE,=dEcoso=—+ Z% _¥y _ 1 A 5106
dre, X“+Y° (X2 +y?  Ame, (XT+Y7)
By integrating over the entire length, the total electric field due to the rod is
3 3 1 012 /Iydx’ 012
Ey _J-dEy - 471'80 J—f;/Z (X!2 + y2)3/2 - 472'50 I 0]2 (X!2 + y )3/2 (2107)

By making the change of variable: x'=ytand’, which gives dx'=ysec’#'d@’, the
above integral becomes

2 ysec? 0'de’ 1 0 sec’0'de’ 1 (o sec’0'de’
I 2 312 _J Y :_2_[ = _[
2 (x +y) 0 y*(sec® @' +1) y

o (tan’ 0 +1)%2  y2)0 secd?

Z_J' dQ,Z_ZJ' 0s0'do’ = 2sin@
vsecd y°o- y?

(2.10.8)

which gives

Ey: 1 2/15|n6?: 1 2_/1 012 (2.10.9)
dre, Y drey Y Y2 +(012)?
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In the limit where y > 7, the above expression reduces to the “point-charge” limit:

1 22002 1 A 1 Q

E ~ - = = 2.10.10
Y lmey y Yy bme, yP Arme, Y ( )
On the other hand, when 7>y, we have
E ~ L 24 (2.10.11)
Are, Y

In this infinite length limit, the system has cylindrical symmetry. In this case, an
alternative approach based on Gauss’s law can be used to obtain Eq. (2.10.11), as we

shall show in Chapter 4. The characteristic behavior of E, /E, (with E, = Q/4zs,(*) as
a function of y/ /¢ is shown in Figure 2.10.4.

E,/Eq

10

Figure 2.10.4 Electric field of a non-conducting rod as a function of y/ /.

Example 2.4: Electric Field on the Axis of a Ring

A non-conducting ring of radius R with a uniform charge density A and a total charge Q
is lying in the xy - plane, as shown in Figure 2.10.5. Compute the electric field at a point
P, located at a distance z from the center of the ring along its axis of symmetry.

dE

T e

x* .dq

Figure 2.10.5 Electric field at P due to the charge element dg.
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Solution:

Consider a small length element d/’ on the ring. The amount of charge contained within
this element is dg=A1d/¢' = ARd¢'. Its contribution to the electric field at P is

dE = (2.10.12)

1 4
brey v Ame, X

% Figure 2.10.6

Using the symmetry argument illustrated in Figure 2.10.6, we see that the electric field at
P must point in the +z direction.

dE, =dEcosp= -+ 4RIP 2 _ A Redg 54013
Aney R°+2° \JR2+ 22 4rme, (R +27)
Upon integrating over the entire ring, we obtain
A Rz A 27Rz 1 Qz
- d¢' = = 2.10.14
Y drng, (R2+22)3’2<~f> 9 4rgy (R*+2°)¥%  4neg, (R* +12°)%? ( )

where the total charge is Q = A(27R). A plot of the electric field as a function of z is
given in Figure 2.10.7.

EJEy

0.4

0.2

-0.2

04

Figure 2.10.7 Electric field along the axis of symmetry of a non-conducting ring of
radius R, with E, = Q/47¢,R?.
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Notice that the electric field at the center of the ring vanishes. This is to be expected from
symmetry arguments.

Example 2.5: Electric Field Due to a Uniformly Charged Disk

A uniformly charged disk of radius R with a total charge Q lies in the xy-plane. Find the
electric field at a pointP, along the z-axis that passes through the center of the disk
perpendicular to its plane. Discuss the limit where R>z.

Solution:
By treating the disk as a set of concentric uniformly charged rings, the problem could be

solved by using the result obtained in Example 2.4. Consider a ring of radius r" and
thicknessdr’, as shown in Figure 2.10.8.

Figure 2.10.8 A uniformly charged disk of radius R.

By symmetry arguments, the electric field at P points in the+z -direction. Since the ring
has a charge dq=o(2zr'dr’), from Eq. (2.10.14), we see that the ring gives a

contribution
1 zdq 1 z(2zor'dr’)

dE = = 2.10.15
: 4re, (I”2 + 22)3/2 4re, (I”2 + 22)3/2 ( )

Integrating from r'=0to r' = R, the total electric field at P becomes

2 IR?* 4+ 7°

22

o J~R rdr’ oz IRZHZ du oz u

E,=|dE, = = =
! -[ L2800 (rP 4227 4g, 07 U¥P 4g, (-1/2)

(2.10.16)

__az{ 1 _1}_a{i_ Z }
260 | JR2+22 22| 26|12l JRZ+22
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The above equation may be rewritten as

g {l— : } z>0
28, J22+R? |

E, - (2.10.17)
o} YA
—| - 1-——|, <0
2¢, { \VZ° +R? }

The electric field E,/E, (E, =o/2¢,) as a function of z/R is shown in Figure 2.10.9.

EJEy

|

Figure 2.10.9 Electric field of a non-conducting plane of uniform charge density.

To show that the *“point-charge” limit is recovered for z> R, we make use of the
Taylor-series expansion:

z rR2 )Y’ 1R? 1R?
1———1—(1+—] :1—[1———+-..jz__ (2.10.18)
YA

N
This gives

2 2
- o R2 _ 1 07[2R _ 1 22 (2.10.19)
26, 27° Ams, 1 Are, 1

which is indeed the expected “point-charge” result. On the other hand, we may also
consider the limit where R > z. Physically this means that the plane is very large, or the
field point P is extremely close to the surface of the plane. The electric field in this limit
becomes, in unit-vector notation,

ilz, z>0
_ 2¢,
E= (2.10.20)
-i&, z<0
2¢,
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The plot of the electric field in this limit is shown in Figure 2.10.10.
E.‘.

o
2¢,

a

25

Figure 2.10.10 Electric field of an infinitely large non-conducting plane.
Notice the discontinuity in electric field as we cross the plane. The discontinuity is given
by

AE,=E, -E, =——[——J =2 (2.10.21)

As we shall see in Chapter 4, if a given surface has a charge density o, then the normal
component of the electric field across that surface always exhibits a discontinuity with
AE, =ol¢g,.

2.11 Summary

e The electric force exerted by a charge g, on a second charge g, is given by
Coulomb’s law:

'312 — ke Ch(jz r= 1 ql?Z r
r dre, r
where
1 9 2 2
k, = =8.99x10° N-m“/C
4re,

is the Coulomb constant.

e The electric field at a point in space is defined as the electric force acting on a test
charge q, divided by q,:

go—0 qO
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The electric field at a distance r from a charge q is

e

";
Are, r*

Using the superposition principle, the electric field due to a collection of point
charges, each having charge g. and located at a distance r. away is

= 1 g -
E= — .
4m52:ﬁ'

A particle of mass m and charge g moving in an electric field E has an acceleration

QD)
Il
3 |f

An electric dipole consists of two equal but opposite charges. The electric dipole
moment vector p points from the negative charge to the positive charge, and has a
magnitude
p=2aq
The torque acting on an electric dipole places in a uniform electric field E is
7=pxE
The potential energy of an electric dipole in a uniform external electric field E is
U=-p-E
The electric field at a point in space due to a continuous charge element dq is

1 dq.
— T

dE =

drg, 1

At sufficiently far away from a continuous charge distribution of finite extent, the
electric field approaches the “point-charge” limit.
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2.12 Problem-Solving Strategies

In this chapter, we have discussed how electric field can be calculated for both the
discrete and continuous charge distributions. For the former, we apply the superposition
principle:

E-- L y4p

Arey, SN,

For the latter, we must evaluate the vector integral

where r is the distance from dq to the field point P and t is the corresponding unit
vector. To complete the integration, we shall follow the procedures outlined below:

1

Arey ¥

o
o]

(1) Start with dE = r

N

(2) Rewrite the charge element dq as

Ad/ (length)
dg=<0cdA (area)
pdVv (volume)

depending on whether the charge is distributed over a length, an area, or a volume.

(3) Substitute dq into the expression for dE .

(4) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and
express the differential element ( d/, dA or dV ) and r in terms of the coordinates (see
Table 2.1 below for summary.)

Cartesian (x, Y, z) Cylindrical (o, ¢, z) Spherical (r, 6, @)
dl dx, dy, dz dp, pdg¢, dz dr, rdé, rsingd¢
dA | dxdy, dydz, dzdx | dpdz, pd¢dz, pdgdp | rdrdé, rsin@drdg, r’sinddode
dv dx dy dz pdpdgdz r’sin@drdédg

Table 2.1 Differential elements of length, area and volume in different coordinates

26




(5) Rewrite dE in terms of the integration variable(s), and apply symmetry argument to
identify non-vanishing component(s) of the electric field.

(6) Complete the integration to obtain E .

In the Table below we illustrate how the above methodologies can be utilized to compute
the electric field for an infinite line charge, a ring of charge and a uniformly charged disk.

Line charge Ring of charge Uniformly charged disk
b
Figure PG
e - =
(2) Express dg in
terms of charge dg=Adx dg=A4d/
density
Adx’ Adl dA
(3) Write down dE dE =k, —— dE =k, — g
r r r?
(4) Rewrite r and the dx’ d/=Rd¢ dA=2zr'dr'
differential element y yi
in terms of the cosf = I’ cosfd =— cosf =—
appropriate r r
coordinates r'=x?+y? r— /Rz 4 72 r=+r? 4+ 72
(5) Apply symmetry | dE, =dE cosd dE, = dE cos @ dE, =dEcosé
argument to identify , , 'y
non-vanishing . % ] ﬂ;RZ—dngm _ 2mozr'dr’
component(s) of dE (X" +y°%) (R +2%) e (r’2 Jr22)3/2
RAz
E, =k =5 3/2§>d¢l r'dr’
E =kA Imiyz R+2) E, =270k .[ (r? +72)2
2 (¢ +y?) (27R2)z o (r*+2%)
(6) Integrate to get E %4 02 e—(R2+22)3’2 ,
Y (122 +y? =2m0K,| ————
Qz |Z| V2 +R?
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2.13 Solved Problems

2.13.1 Hydrogen Atom

In the classical model of the hydrogen atom, the electron revolves around the proton with
a radius of r =0.53x107m . The magnitude of the charge of the electron and proton is
e=1.6x10"C.

(a) What is the magnitude of the electric force between the proton and the electron?

(b) What is the magnitude of the electric field due to the proton at r?

(c) What is ratio of the magnitudes of the electrical and gravitational force between
electron and proton? Does the result depend on the distance between the proton and the

electron?

(d) In light of your calculation in (b), explain why electrical forces do not influence the
motion of planets.

Solutions:

(a) The magnitude of the force is given by

1 ¢?
<

© Ame, v

Now we can substitute our numerical values and find that the magnitude of the force
between the proton and the electron in the hydrogen atom is

o (9.0x10°N-m?*/C*)(1.6x107" C)?

3 2 =8.2x10°N
(5.3x10*m)

(b) The magnitude of the electric field due to the proton is given by

e 1 g _ (9.0x10°N-m*/C?*)(1.6x107™ C)

= d AR =5.76x10"N/C
A, 1 (0.5x107" m)

(c) The mass of the electron is m =9.1x10"kg and the mass of the proton is

m, =1.7x10"%kg . Thus, the ratio of the magnitudes of the electric and gravitational
force is given by
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1 € 1,
— e
~ £47ng rzj Ame, (9.0x10°N-m?/C?)(1.6x10™ C)* 2 9%10®
4 (G mpme) Gm,m,  (6.67x10 *N-m?/kg?)(1.7x10 7 kg)(9.1x10 Tkg)

r.2

which is independent of r, the distance between the proton and the electron.

(d) The electric force is 39 orders of magnitude stronger than the gravitational force
between the electron and the proton. Then why are the large scale motions of planets
determined by the gravitational force and not the electrical force. The answer is that the
magnitudes of the charge of the electron and proton are equal. The best experiments show
that the difference between these magnitudes is a number on the order of10?*. Since
objects like planets have about the same number of protons as electrons, they are
essentially electrically neutral. Therefore the force between planets is entirely determined
by gravity.

2.13.2 Millikan Oil-Drop Experiment

An oil drop of radius r=1.64x10°m and mass density p, =8.51x10?kg/m® is

allowed to fall from rest and then enters into a region of constant external field E applied
in the downward direction. The oil drop has an unknown electric charge q (due to

irradiation by bursts of X-rays). The magnitude of the electric field is adjusted until the
gravitational force Ifg =mg=-mg j on the oil drop is exactly balanced by the electric

force, F, =gE. Suppose this balancing occurs when the electric field is
E=-E, j=—(1.92x10° N/C) ], with E, =1.92x10° N/C.

(a) What is the mass of the oil drop?
(b) What is the charge on the oil drop in units of electronic charge e =1.6x107° C?

Solutions:

(@) The mass density p,; times the volume of the oil drop will yield the total mass M of
the oil drop,

4
M = puV = P (57”3)

where the oil drop is assumed to be a sphere of radius r with volume V =47r%/3 .

Now we can substitute our numerical values into our symbolic expression for the mass,
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M =p,, (gﬂﬁ) = (8.51x10° kg/mS)(%’”j (1.64x10°° m)® =1.57x10 **kg

(b) The oil drop will be in static equilibrium when the gravitational force exactly balances
the electrical force: Ifg +F, =0. Since the gravitational force points downward, the
electric force on the oil must be upward. Using our force laws, we have

0=mj+gE = mg=—qgE,

With the electrical field pointing downward, we conclude that the charge on the oil drop
must be negative. Notice that we have chosen the unit vector j to point upward. We can
solve this equation for the charge on the oil drop:

-14 2
q :_m:_(1.57x10 kg)5(9.80m/s ):—8.03><10’19C
E 1.92x10° N/C

y

Since the electron has charge e =1.6x107° C, the charge of the oil drop in units of eis

q 8.02x10"°C _

e 16x10°C

You may at first be surprised that this number is an integer, but the Millikan oil drop
experiment was the first direct experimental evidence that charge is quantized. Thus,
from the given data we can assert that there are five electrons on the oil drop!

2.13.3 Charge Moving Perpendicularly to an Electric Field

An electron is injected horizontally into a uniform field produced by two oppositely
charged plates, as shown in Figure 2.13.1. The particle has an initial velocity v, =v, i

perpendicular to E .

— |5

|

Screen

Figure 2.13.1 Charge moving perpendicular to an electric field
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(a) While between the plates, what is the force on the electron?
(b) What is the acceleration of the electron when it is between the plates?

(c) The plates have length L, in the x-direction. At what time t, will the electron leave
the plate?

(d) Suppose the electron enters the electric field at time t =0. What is the velocity of the
electron at time t, when it leaves the plates?

(e) What is the vertical displacement of the electron after time t, when it leaves the
plates?

(f) What angle &, does the electron make 6, with the horizontal, when the electron leaves
the plates at timet, ?

(9) The electron hits the screen located a distance L, from the end of the plates at a time
t,. What is the total vertical displacement of the electron from time t =0 until it hits the
screenat t, ?

Solutions:

(a) Since the electron has a negative charge, q = —e, the force on the electron is
Fe=QE=-eE=(-€)(-E,)j=¢E,]

where the electric field is written asE = -E, ] with E, > 0. The force on the electron is

upward. Note that the motion of the electron is analogous to the motion of a mass that is
thrown horizontally in a constant gravitational field. The mass follows a parabolic
trajectory downward. Since the electron is negatively charged, the constant force on the
electron is upward and the electron will be deflected upwards on a parabolic path.

(b) The acceleration of the electron is

and its direction is upward.
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(c) The time of passage for the electron is given by t, =L, /v,. The time t, is not affected
by the acceleration because v, , the horizontal component of the velocity which
determines the time, is not affected by the field.

(d) The electron has an initial horizontal velocity, V, :vo?. Since the acceleration of the
electron is in the +y -direction, only the y -component of the velocity changes. The
velocity at a later time t, is given by

_ 2 2 2 T _ 0 eEy T2 eEyl—1 2
V=VXI+Vyj:V0I+aytlj—V0I+?tlj—vol+ -~ i

(e) From the figure, we see that the electron travels a horizontal distance L, in the time
t, =L, /v, and then emerges from the plates with a vertical displacement

1o 1LY
e b

() When the electron leaves the plates at timet,, the electron makes an angle &, with the
horizontal given by the ratio of the components of its velocity,

v eE. /m /v eE
v A mv,

X

(g) After the electron leaves the plate, there is no longer any force on the electron so it
travels in a straight path. The deflection y, is

E, LL,

2
mv,

y,=L,tan g, =

and the total deflection becomes

1eE L° eE LL, eE L (1
y=hty, 2 my,’ mv,2 mv,2 \ 2 L+l

2.13.4 Electric Field of a Dipole
Consider the electric dipole moment shown in Figure 2.7.1.

(a) Show that the electric field of the dipole in the limit where r > a is
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£, =—P singcosd, E,=—L(3c0s20-1)
4reyr 4reyr

where sin@=x/r and cos@=y/r.

(b) Show that the above expression for the electric field can also be written in terms of
the polar coordinates as

E(r,0) =E,f+E,0

where

_ 2pcosé E psiné

0

E

r

dre,r® drg,r®

Solutions:

(a) Let’s compute the electric field strength at a distance r > a due to the dipole. The x-
component of the electric field strength at the point P with Cartesian coordinates (x, y,0)
is given by

e __d [cos@_cose_] q X X

x = 4z, r+z 2 - A, [XZ +(y_a)2]3/2 _I:Xz +(y+a)2}3/2

where
r’=r?+a’F2racoséd = x* +(yFa)°

Similarly, the y -component is given by

q (sing, sing q y—a y+a
E, = - ! 5 , 1312 5 , 1312
&y [x +(y—a) ] [x +(y+a) ]

Y odgg, | r? r?

We shall make a polynomial expansion for the electric field using the Taylor-series
expansion. We will then collect terms that are proportional to 1/r*and ignore terms that
are proportional to 1/r°, where r = +(x* + y?)"2.

We begin with
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2

a2 i 2a -3/2
+ _—y
r

[X2 +(y+ a)2]—3/2 = [Xz " y2 ral+ 2ay]‘3/2 — 0 [l

In the limit where r >> a, we use the Taylor-series expansion with s = (a° + 2ay)/r’:

(1+s)™¥ :l_ES+_S -

and the above equations for the components of the electric field becomes

6xya

5

-
dre, r

2
E, = g (_§+6yaj+m

Y N re

and

where we have neglected the O(s?)terms. The electric field can then be written as

= 2 2 q 2a;: 6ya, = = p |3yx: (3y° 2
E=Ei+E j=——|-j+ Xi+ = i+ -1
" v 47:50{ R ( yj)} 4 gor{ r? ( r? )

where we have made used of the definition of the magnitude of the electric dipole
moment p =2aq.

In terms of the polar coordinates, with sin@ = x/rand cos@ =y/r (as seen from Figure
2.13.4), we obtain the desired results:

E - 3P sinfcosd, E, = P (300320—1)

“ Age,r? drg,r®

(b) We begin with the expression obtained in (a) for the electric dipole in Cartesian
coordinates:

A

E(r,0) = 47z§0r3 [3sin 0cosdi + (3cos® 6 - 1)]}

With a little algebra, the above expression may be rewritten as
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E(r,0) = 47r§0r3 [Zcose(sin 01 + cosH]) +sin@cosdi + (cos?0 - 1)]}

- 47r§ 5 [ZCose(sin i + cos@]) +sin e(cosef —sin 9])}
0

where the trigonometric identity (cos® @ —1) = —sin?@ has been used. Since the unit

vectors rand @ in polar coordinates can be decomposed as

r sin9?+c059]
0 =cosdi—sindj,

the electric field in polar coordinates is given by

E(r,e):4 P [20036?+sin96}

and the magnitude of E is

E = E2+E“’2:—p 3cos.26?+11/2
(& 2) 47r50r3( )
2.13.5 Electric Field of an Arc

A thin rod with a uniform charge per unit length A is bent into the shape of an arc of a
circle of radius R. The arc subtends a total angle 26,, symmetric about the x-axis, as

shown in Figure 2.13.2. What is the electric field E at the origin O?
Solution:

Consider a differential element of length d/=Rd@&, which makes an angle @ with the

X - axis, as shown in Figure 2.13.2(b). The amount of charge it carries is
dg=4d/=ARdé@.

The contribution to the electric field at O is

1 Zdéo
4re,

dE =

L dg,_ 1 d_?(_cosgg_singj): (~cosi-sin4j)

Arey 1 - 4rey R
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5 R -~ Rde

0 a, ’ . x
dE )

Figure 2.13.2 (a) Geometry of charged source. (b) Charge element dq

Integrating over the angle from -6, to +6, , we have

A ~ 6 . ~
2 (~sin g +cos)| % =L 2Asin;
4rey R -6, 4re, R

20" dH(—coséﬁ—sin@])=
drey R%

We see that the electric field only has the x-component, as required by a symmetry
argument. If we take the limit , — 7, the arc becomes a circular ring. Since sinz =0,
the equation above implies that the electric field at the center of a non-conducting ring is
zero. This is to be expected from symmetry arguments. On the other hand, for very
small g,, sin g, = 6, and we recover the point-charge limit:

= 12i6: 1 216R:_ 1 Q-
4re, R 4re, R’ 4rg, R®

where the total charge on the arc is Q = A¢ = A(2R6,) .

2.13.6 Electric Field Off the Axis of a Finite Rod

A non-conducting rod of length ¢ with a uniform charge density A and a total charge Q

is lying along the x-axis, as illustrated in Figure 2.13.3. Compute the electric field at a
point P, located at a distance y off the axis of the rod.

.1I

[

x

[ ¢ " Figure 2.13.3
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Solution:

The problem can be solved by following the procedure used in Example 2.3. Consider a
length element dx’ on the rod, as shown in Figure 2.13.4. The charge carried by the
elementis dg=Adx’.

o ¢ " Figure 2.13.4
The electric field at P produced by this element is

! d%f_ 1 Adx (—sine’i+cose'])

dE = =
Arey X +y

Are, 1
where the unit vector t has been written in Cartesian coordinates: ¥ =—sin@'i+cosé'j.

In the absence of symmetry, the field at P has both the x- and y-components. The x-
component of the electric field is

dE, - 1 Adx sing’ — 1  Adx X _ 1 AX"dx

drgy X? +y? brgy X? +y? \/sz +y? drg, (X% +y?)*?

Integrating from x'=x, to x"=X,, we have

2 2
X, +Yy

A J‘Xz Xdx' A4 1pdwidu A T
12 2
% (X +y%)

- 32 )22 T3
4re, e, 29%+y U 4re, X +yt

A 1 B 1 A y B y
Are, \/x22+y2 \/xf+y2 Are,y \/x22+y2 \/xf+y2
A

= Iney (cos6,—cosé,)

Similarly, the y-component of the electric field due to the charge element is
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1 Adx cosd — 1 Adx y 1 Aydx

dE, = 2. 2 2, .2 = 2, 2
e, X' +y dre, X+Yy° x2+y? drg, (XT+Y7)

y

3/2

Integrating over the entire length of the rod, we obtain

dx’ Ay 1
= cosf'dd’' =
J.Xi (X/2+y )3/2 472'5 y J

(sing,—siné,)

y ~

472'5 Areyy

where we have used the result obtained in Eq. (2.10.8) in completing the integration.

In the infinite length limit where x, - —o and X, >+ , with x, =ytané , the
corresponding angles are 6§, =-x/2 and 6, =+x/2 . Substituting the values into the
expressions above, we have

1 22

E.=0, E =
dre, Y

y

in complete agreement with the result shown in Eq. (2.10.11).

2.14 Conceptual Questions

1. Compare and contrast Newton’s law of gravitation, Fg:Gmlmzlrz, and
Coulomb’s law, F, =kg,q, /r?.

2. Can electric field lines cross each other? Explain.

3. Two opposite charges are placed on a line as shown in the figure below.

—-q 3q

The charge on the right is three times the magnitude of the charge on the left.
Besides infinity, where else can electric field possibly be zero?

4.  Atest charge is placed at the point P near a positively-charged insulating rod.
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How would the magnitude and direction of the electric field change if the
magnitude of the test charge were decreased and its sign changed with everything
else remaining the same?

5. An electric dipole, consisting of two equal and opposite point charges at the ends of
an insulating rod, is free to rotate about a pivot point in the center. The rod is then
placed in a non-uniform electric field. Does it experience a force and/or a torque?

2.15 Additional Problems
2.15.1 Three Point Charges

Three point charges are placed at the corners of an equilateral triangle, as shown in
Figure 2.15.1.

9.00 uC
+

L
VAR

\
') N\

'/' \ 0.600 m

AY
N,

.r/;

A 60.0° \
P ’ N
< M = x

3.00 pC 6.00 pC

Figure 2.15.1 Three point charges

Calculate the net electric force experienced by (a) the 9.00 4C charge, and (b) the
—6.00 xC charge.

2.15.2 Three Point Charges

A right isosceles triangle of side a has charges g, +2q and —q arranged on its vertices, as
shown in Figure 2.15.2.
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[

4 @ - -Figure 2.15.2

What is the electric field at point P, midway between the line connecting the +q and —q
charges? Give the magnitude and direction of the electric field.

2.15.3 Four Point Charges

Four point charges are placed at the corners of a square of side a, as shown in Figure
2.15.3.

a
3q iq

a a

4q - 2q

a

Figure 2.15.3 Four point charges

(@) What is the electric field at the location of charge q ?

(b) What is the net force on 2q?

2.15.4 Semicircular Wire

A positively charged wire is bent into a semicircle of radius R, as shown in Figure 2.15.4.

* Figure 2.15.4

40



The total charge on the semicircle is Q. However, the charge per unit length along the
semicircle is non-uniform and given by A = 4, cosé .

(@) What is the relationship between 4, , R and Q?

(b) If a charge q is placed at the origin, what is the total force on the charge?

2.15.5 Electric Dipole

An electric dipole lying in the xy-plane with a uniform electric field applied in the +x -
direction is displaced by a small angle &from its equilibrium position, as shown in Figure
2.155.

Figure 2.15.5

The charges are separated by a distance 2a, and the moment of inertia of the dipole is I.
If the dipole is released from this position, show that its angular orientation exhibits
simple harmonic motion. What is the frequency of oscillation?

2.15.6 Charged Cylindrical Shell and Cylinder

(@) A uniformly charged circular cylindrical shell of radius R and height h has a total

charge Q. What is the electric field at a point P a distance z from the bottom side of the
cylinder as shown in Figure 2.15.6? (Hint: Treat the cylinder as a set of ring charges.)

h v

o
X

Figure 2.15.6 A uniformly charged cylinder
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(b) If the configuration is instead a solid cylinder of radius R, height h and has a
uniform volume charge density. What is the electric field at P? (Hint: Treat the solid
cylinder as a set of disk charges.)

2.15.7 Two Conducting Balls

Two tiny conducting balls of identical mass m and identical charge q hang from non-

conducting threads of length |. Each ball forms an angle & with the vertical axis, as
shown in Figure 2.15.9. Assume that & is so small that tan@ ~siné.

—

|
(/6
|
|
|

+

|“— f’_*‘ Figure 2.15.9

(a) Show that, at equilibrium, the separation between the balls is

r—( q°/ j/s
2me,my

(b) If I =1.2x10°cm, m=1.0x10"g, and x=5.0cm, what is q?

2.15.8 Torque on an Electric Dipole

An electric dipole consists of two charges g, =+2e and q,=-2e (e=1.6x10"°C),

separated by a distance d =10° m. The electric charges are placed along the y-axis as
shown in Figure 2.15.10.

Figure 2.15.10
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Suppose a constant external electric field E,,, = (3?+3])N/C is applied.
(a) What is the magnitude and direction of the dipole moment?
(b) What is the magnitude and direction of the torque on the dipole?

(c) Do the electric fields of the charges g, and g, contribute to the torque on the dipole?
Briefly explain your answer.
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Physics 8.02T

For now, please sit anywhere, 9 to a table



Class 1: Outline

Hour 1:
Why Physics?
Why Studio Physics? (& How?)
Vector and Scalar Fields
Hour 2:
Gravitational fields
Electric fields



Why Physics?



Why Study Physics?

Understand/appreciate nature
e Lightning
e Soap Films
e Butterfly Wings
e Sunsets

PO1 -



Why Study Physics?
Electromagnetic phenomena
led directly to Einstein’s
discovery of the nature of
space and time, see his
paper
ON THE
ELECTRODYNAMICS
OF MOVING BODIES

A. Einstein June 30, 1905

In the last class of the term before the review,

we will explain to you how this comes about

PO1 -


http://www.fourmilab.ch/etexts/einstein/specrel/www/
http://www.fourmilab.ch/etexts/einstein/specrel/www/
http://www.fourmilab.ch/etexts/einstein/specrel/www/

Why Study Physics?

 Understand/Appreciate Nature

e Understand Technology
§ Electric Guitar
§ Ground Fault Interrupts
8 Microwave Ovens
§Radio Towers

PO1 -



Why Study Physics?

 Understand/Appreciate Nature

e Understand Technology

e Learn to Solve Difficult Problems
e It's Required

PO1 -



Why Studio Physics?



Why The TEAL/Studio Format?

Problems with Large Lectures:
Lecture/recitations are passive
No labs - lack of physical intuition
E&M is abstract, hard to visualize

TEAL/Studio Addresses Problems:

_ectures - Interactive, Collaborative Learning
ncorporates desk top experiments
ncorporates visualization/simulations

Bottom Line: Learn More, Retain More, Do Better

PO1- 9



Why The TEAL/Studio Format?

By standard assessment measures,
TEAL shows a factor of two increase
In learning gains as compared to
lecture/recitation format

(see Dori and Belcher, “How Does TEAL
Affect Student Learning of E&M

Concepts?”, Journal of the Learning
Sciences 14(2) 2004.)

Bottom Line: Learn More, Retain More, Do Better

PO1-10



Overview of TEAL/Studio

Collaborative Learning
Groups of 3, Tables of 9
You teach, you discuss, you learn

In-Class Problem Solving
Desktop Experiments
Teacher-Student Interaction
Visualizations

PRS Questions

POIL =1L



Personal Response System
(PRS) Question:
Physics Experience

Pick up the nearest PRS
(under the table in a holder)

PO1-12



Your Responsibilities

Before Class:
Read Summary
In Class: (You must be present for credit)

Problem Solving, Desktop Experiments,
PRS

After Class:
Read Study Guide, Review Visualizations
Homework (Tuesdays 4:15 pm)

Exams
3 Midterms (45%) + Final (25%)

PO1-13



To Encourage Collaboration,
Grades Are NOT Curved In 8.02:

m O O T >

+
>=95

<95 & >=90

<85 & >=80 <80 & >=75

</0 & >=67

<67 & >=64
<60 & >=55
<b5

<90 & >=85
<75 & >=70
<64 & >=60

PO1-14



Honesty Issues

Problem Sets:
Please work together BUT
Submit your own, uncopied work
In Class Assignments:
Must sign your own name to submitted work
Signing another’s name is COD offense
PRS:
Use only your assigned PRS
Using another’s PRS is COD offense

POl -15



Physics 8.02 Staff

Includes:
Lecturer
Demo Group
Graduate TA
UGrad TAS



Textbooks

“Introduction to E & M”
Liao, Dourmashkin, and Belcher

Supplemental (not required):

Serway & Jewett 6" Edition; Giancoli;

Prefer something else? Let me know!

Important. Find something you can read

POIL A7



Common Questions & Answers

e Dysfunctional Group? -
e Must Miss Class? .
e Must Miss HW? .
e Must Miss Exam? .

@ d® d D

Exam dates & times are online

Do NOT schedule early vacation departures, etc.
without consulting these times!

Grad TA
Grad TA
Grad TA
me ASAP

Any Questions?

PO1-18



Physics Is not Math...



...but we use concepts from 18.02

*Gradients E=-VV

Path Integrals AV s—jfé-dé
Qn

»Surface Integrals {pE-dA = -
S 0

*\/olume Integrals sz,odv

PO1 -20



PRS Question:
Math Background



Don't Worry!

* For many this is new & | will introduce
concepts before use (yell at me if not!)

e Concepts are VERY Important —
mechanics are almost trivial

Math introduction/review:

A time will be scheduled
Presentation slides will be posted

oIl 72



So what physics do we learn in
8.02 anyway??7??



What's the Physics?

8.01: Intro. to basic physics concepts:
motion, force, energy, ...

How does matter interact?

Four Fundamental Forces:

Long range: Gravity (8.01 ... Gen.Relativity)
Short Range: Strong and Weak
Mid Range: Electromagnetic (8.02)

PO1 -24



8.02: Electricity and Magnetism

Also new way of thinking...
How do objects interact at a distance?

Fields  We will learn about E & M Fields:
how they are created & what they effect

Big Picture Summary:
- _'_Qn = —’__dCDB
Maxwell SEﬁE IAS . CE Jes=

Equations: q‘_ji@dﬁi:o
S

Lorentz Force: F= q(E+\7>< B)

PO1 -25



Today: Fields
In General, then
Gravitational & Electric

PO1 -26



Scalar Fields

31

o )
Goondland |

f rang - Juf Foo
i pre e TRl
- g T wuel r .
i ¥y e £ e ﬂ
- % g L -_ .|._I e p
Tl -r-;l-I . -;'l.di '. nec " = ;:ir-— - - l-:.j—._
' I'.i = I: - - _Ldrgjtiﬂl J'

HiEH Temperature(F) Ending Thu Mar 24 2005 7PM EST
CFri Mar 25 2005 00Z) e

l'*‘.ﬂ
@ Mational Digital Forecast Database w
i

Graphic created 037242005  3:18PM EST by .

e.g. Temperature: Every location has
associated value (number with units)
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Scalar Fields - Contours
EEER R - EN

Low Temperature(F) Endi g Fri Mar 25 2005 7AM EST

@ CFri Mar 25 2005 1220 SRR T, ;
U National Digital Forecas t Database aw
Graphic created 03/24/2005 3:16PHM EST Ty g

» Colors represent surface temperature
» Contour lines show constant temperatures
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Fields are 3D

120 B - i
' 70

100 | | 0.001 mb- 60

- Mesopause - I iR ¢ T — T(X1ylz)
80 0.01 mb- 50 _ ) )
%m— MES'DSPHEHED1 = U% * Hard '[O V|Sual|ze
: 2 Workin 2D

50 —--------- Stratopause }- --------- 1mb- 30

20 40 s60°C
40 80 120 °F

-100-80 —60 —40 -20 0
-120 -80 -40 ©
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Vector Fields

Vector (magnitude, direction) at every
point in space

M1Hd5pd(Kts} 2 WindDir For Thu Mar 24 2005 7AM EST
CThu Mar 24 2005 12F)  #0, :

@ Mational Digital Forecast Database w

Experimental graphic created 037242005 6:18AM EST Ty, fF

Example: Wind Velocity Vector Field
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Vector Field Examples

Begin with Fluid Flow

POl -31



Vector Field Examples
Flows With Sources

(http://ocw.mit.edu/ans7870/8/8.02T/fO4/visualizations/vectorfields/02-particleSource/02-
ParticleSource 320.html)

P01 -32


http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/02-particleSource/02-ParticleSource_320.html
http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/02-particleSource/02-ParticleSource_320.html
http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/02-particleSource/02-ParticleSource_320.html

Vector Field Examples
Flows With Sinks

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/01-particleSink/01-
ParticleSink 320.html)
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http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/01-particleSink/01-ParticleSink_320.html
http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/01-particleSink/01-ParticleSink_320.html
http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/01-particleSink/01-ParticleSink_320.html

Vector Field Examples
Circulating Flows

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/03-
particleCirculate/03-PartCircMotion 320.html)
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http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/03-particleCirculate/03-PartCircMotion_320.html
http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/03-particleCirculate/03-PartCircMotion_320.html
http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/vectorfields/03-particleCirculate/03-PartCircMotion_320.html

Visualizing Vector Fields:
Three Methods

Vector Field Diagram

Arrows (different colors or length) in direction of field
on uniform grid.

Field Lines
Lines tangent to field at every point along line

Grass Seeds
Textures with streaks parallel to field direction

All methods illustrated in

http://ocw.mit.edu/ans/870/8/8.02T/f04/visualization
s/electrostatics/39-pcharges/39-
twocharges320.html
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http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/electrostatics/39-pcharges/39-twocharges320.html
http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/electrostatics/39-pcharges/39-twocharges320.html
http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/electrostatics/39-pcharges/39-twocharges320.html

Vector Fields — Field Lines

 Direction of field line at any point Is
tangent to field at that point

e Field lines never cross each other

PO1 -36



PRS Question:
Vector Field

In General: Don’t pick up unit until ready to answer
Then I'll know when class is ready
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Vector Fields — “Grass Seeds”

ource/Sink

Although we don’t know absolute direction,
we can determine relative direction

PO1 -38



PRS Questions:
“Grass Seed” Visualizations



Weird Field Contest

Purpose
Gain familiarity with vector fields

Winner

Displayed in MIT Museum EXxhibit
Due Date

Turn in with 2"d PSet in Separate Box
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Another Vector Field:
Gravitational Field



Example Of Vector Field:

Gravitation
Gravitational Force: _ Mm ..
Fg = -0 —r
I
!
Gravitational Field: \ } e
\ 1 I'4
: N
. Fy  GMm/r® M, |~ —&—
g=—"= =-G— S/ T \
m m I 7 ¥
7 { %,
{

M : Mass of Earth
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Example Of Vector Field:

Gravitation
Gravitational Field: !
\ ] '
M _ N\ 1 r'4
g—_Gr—r F, = mg \Q e
[ S — 1‘4—-4—0«1—-
Created by M Felt by m / I N
/7 N
7 t %,

N\

I' . unit vector from M to m
~ T M _.
I = — :>Q:—G—3r

I I

M : Mass of Earth
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In Class Problem

y Find the gravitational
field g at point P
NI
Bonus: Where would
you put another mass
d »7 - —
" 2a m to make the field g
become 0 at P?
m/ X

NOTE: Solutions will be posted within one day of class
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From Gravitational to
Electric Fields



Electric Charge (~Mass)

Two types of electric charge: positive and negative
Unit of charge is the coulomb [C]

Charge of electron (negative) or proton (positive) is
-19
te, €e=1.002x10"C
Charge Is quantized
Q==x=Ne
Charge is conserved

n—>p+e+v € +e D> y+vy
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Electric Force (~Gravity)

The electric force between charges g, and g, Is

(a) repulsive if charges have same signs
(b) attractive if charges have opposite signs

//;>\*_ P 4,
r ) ,
< F
\<f/// ) Ve 12
+4 J

q, K,
%_
K, (a) q, (b)

Like charges repel and opposites attract !!
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Coulomb's Law

Coulomb’s Law: E Kk q,9, ~
Force by g, on g, - 2 r

)\/FD ke_

\/

‘11

—8.9875x10° N m?/C?

[ : unit vector from g, to 0,
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r: F qqu

r r
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Coulomb’'s Law: Example
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The Superposition Principle

Many Charges Present:
Net force on any charge Is vector sum of forces
from other individual charges

Example: L3 - -
F -
p Fs — F13 T Mg
a F23
4> (— &) -—---
" g5
In general:
“ //x/ia o N
Fj = ZFU-
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Electric Field (~Qg)

The electric field at a point is the force acting
on a test charge g, at that point, divided by
the charge q; :

— F "
E = P

qO E

For a point charge Q; E=k ﬂf

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/electrostatics/04-MovingChargePosElec/04-
MovChrgPosElec 223 320.html PO1 -51
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Superposition Principle

The electric field due to a collection of N point
charges Is the vector sum of the individual electric
fields due to each charge
— — —_— N —
Eow =B +E,+....= ) E

total
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Summary Thus Far

Mass M Charge g (%)
. M . . n
CREATE: (g=-G—r E:ke%r
I I
FEEL: F, =mg Fe =qE

This Is easlest way to picture field
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Fields

1.1 Action at a Distance versus Field Theory

“... In order therefore to appreciate the requirements of the science [of
electromagnetism], the student must make himself familiar with a
considerable body of most intricate mathematics, the mere retention of
which in the memory materially interferes with further progress ...”

James Clerk Maxwell [1855]

Classical electromagnetic field theory emerged in more or less complete form in 1873 in
James Clerk Maxwell’s A Treatise on Electricity and Magnetism. Maxwell based his
theory in large part on the intuitive insights of Michael Faraday. The wide acceptance of
Maxwell’s theory has caused a fundamental shift in our understanding of physical reality.
In this theory, electromagnetic fields are the mediators of the interaction between
material objects. This view differs radically from the older *“action at a distance” view
that preceded field theory.

What is “action at a distance?” It is a worldview in which the interaction of two material
objects requires no mechanism other than the objects themselves and the empty space
between them. That is, two objects exert a force on each other simply because they are
present. Any mutual force between them (for example, gravitational attraction or electric
repulsion) is instantaneously transmitted from one object to the other through empty
space. There is no need to take into account any method or agent of transmission of that
force, or any finite speed for the propagation of that agent of transmission. This is known
as “action at a distance” because objects exert forces on one another (“action”) with
nothing but empty space (“distance”) between them. No other agent or mechanism is
needed.

Many natural philosophers objected to the *“action at a distance” model because in our
everyday experience, forces are exerted by one object on another only when the objects
are in direct contact. In the field theory view, this is always true in some sense. That is,
objects that are not in direct contact (objects separated by apparently empty space) must
exert a force on one another through the presence of an intervening medium or
mechanism existing in the space between the objects.

The force between the two objects is transmitted by direct “contact” from the first object
to an intervening mechanism immediately surrounding that object, and then from one
element of space to a neighboring element, in a continuous manner, until the force is
transmitted to the region of space contiguous to the second object, and thus ultimately to
the second object itself.



Although the two objects are not in direct contact with one another, they are in direct
contact with a medium or mechanism that exists between them. The force between the
objects is transmitted (at a finite speed) by stresses induced in the intervening space by
the presence of the objects. The “field theory” view thus avoids the concept of “action at
a distance” and replaces it by the concept of *action by continuous contact.” The
“contact” is provided by a stress, or “field,” induced in the space between the objects by
their presence.

This is the essence of field theory, and is the foundation of all modern approaches to
understanding the world around us. Classical electromagnetism was the first field theory.
It involves many concepts that are mathematically complex. As a result, even now it is
difficult to appreciate. In this first chapter of your introduction to field theory, we discuss
what a field is, and how we represent fields. We begin with scalar fields.

1.2 Scalar Fields

A scalar field is a function that gives us a single value of some variable for every point in
space. As an example, the image in Figure 1.2.1 shows the nighttime temperatures
measured by the Thermal Emission Spectrometer instrument on the Mars Global
Surveyor (MGS). The data were acquired during the first 500 orbits of the MGS mapping
mission. The coldest temperatures, shown in purple, are —120°C while the warmest,
shown in white, are —65°C.

The view is centered on Isidis Planitia (15N, 270W), which is covered with warm
material, indicating a sandy and rocky surface. The small, cold (blue) circular region to
the right is the area of the Elysium volcanoes, which are covered in dust that cools off
rapidly at night. At this season the north polar region is in full sunlight and is relatively
warm at night. It is winter in the southern hemisphere and the temperatures are extremely
low.

Figure 1.2.1 Nighttime temperature map for Mars

The various colors on the map represent the surface temperature. This map, however, is
limited to representing only the temperature on a two-dimensional surface and thus, it
does not show how temperature varies as a function of altitude. In principal, a scalar



field provides values not only on a two-dimensional surface in space but for every point
in space.

Figure 1.2.2 illustrates the variation of temperature as a function of height above the
surface of the Earth, which is a third dimension which complements the two dimensions
shown in Figure 1.2.1.
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Figure 1.2.2 Atmospheric temperature variation as a function of altitude above the
Earth’s surface

How do we represent three-dimensional scalar fields? In principle, one could create a
three-dimensional atmospheric volume element and color it to represent the temperature
variation.

Figure 1.2.3 Spherical coordinates

Another way is to simply represent the temperature variation by a mathematical function.
For the Earth we shall use spherical coordinates (r,8,¢) shown in Figure 1.2.3 with the
origin chosen to coincide with the center of the Earth. The temperature at any point is
characterized by a function T(r,8,¢). In other words, the value of this function at the
point with coordinates (r,6,¢) is a temperature with given units. The temperature
function T(r,8,¢) is an example of a “scalar field.” The term “scalar” implies that

temperature at any point is a number rather than a vector (a vector has both magnitude
and direction).



Example 1.1: Half-Frozen /Half-Baked Planet

As an example of a scalar field, consider a planet with an atmosphere that rotates with the
same angular frequency about its axis as the planet orbits about a nearby star, i.e., one
hemisphere always faces the star. Let R denote the radius of the planet. Use spherical
coordinates (r,6, #) with the origin at the center of the planet, and choose ¢ =z/2 for the
center of the hemisphere facing the star. A simplistic model for the temperature variation
at any point is given by

T(r,0,4)=[T,+T,sin> 0+T,(L+sing) [e ™ (1.2.1)

where T,, T,, T,, and « are constants. The dependence on the variable r in the term

e "R indicates that the temperature decreases exponentially as we move radially away
from the surface of the planet. The dependence on the variable @ in the term sin®@
implies that the temperature decreases as we move toward the poles. Finally, the ¢
dependence in the term (1+sin¢) indicates that the temperature decreases as we move
away from the center of the hemisphere facing the star.

A scalar field can also be used to describe other physical quantities such as the
atmospheric pressure. However, a single number (magnitude) at every point in space is
not sufficient to characterize quantities such as the wind velocity since a direction at
every point in space is needed as well.

1.2.1 Representations of a Scalar Field

A field, as stated earlier, is a function that has a different value at every point in space. A
scalar field is a field for which there is a single number associated with every point in
space. We have seen that the temperature of the Earth’s atmosphere at the surface is an
example of a scalar field. Another example is

P(x,y,2) = 1 — 13 (1.2.2)

\/x2+(y+d)2+22 \/x2+(y—d)2+22

This expression defines the value of the scalar function ¢ at every point(x,y, z) in space.

How do visually represent a scalar field defined by an equation such as Eq. (1.2.2)?
Below we discuss three possible representations.

1. Contour Maps
One way is to fix one of our independent variables (z, for example) and then show a

contour map for the two remaining dimensions, in which the curves represent lines of
constant values of the function ¢. A series of these maps for various (fixed) values of z



then will give a feel for the properties of the scalar function. We show such a contour
map in the xy-plane at z = 0 for Eq. (1.2.2), namely,

1 U3
\/x2+(y+d)2 \/x2+(y—d)2

Various contour levels are shown in Figure 1.2.4, for d =1, labeled by the value of the
function at that level.

¢(x,y,0) =

(1.2.3)

Figure 1.2.4 A contour map in the xy-plane of the scalar field given by Eq. (1.2.3).

2. Color-Coding

Another way we can represent the values of the scalar field is by color-coding in two
dimensions for a fixed value of the third. This was the scheme used for illustrating the
temperature fields in Figures 1.2.1 and 1.2.2. In Figure 1.2.5 a similar map is shown for
the scalar field ¢(x,y,0). Different values of ¢(x,y,0) are characterized by different

colors in the map.

=2 0 2

Figure 1.2.5 A color-coded map in the xy-plane of the scalar field given by Eq. (1.2.3).



3. Relief Maps

A third way to represent a scalar field is to fix one of the dimensions, and then plot the
value of the function as a height versus the remaining spatial coordinates, say x and vy,
that is, as a relief map. Figure 1.2.6 shows such a map for the same function ¢(x,y,0).

Figure 1.2.6 A relief map of the scalar field given by Eq. (1.2.3).

1.3 Vector Fields

A vector is a quantity which has both a magnitude and a direction in space. Vectors are
used to describe physical quantities such as velocity, momentum, acceleration and force,
associated with an object. However, when we try to describe a system which consists of a
large number of objects (e.g., moving water, snow, rain,...) we need to assign a vector to
each individual object.

As an example, let’s consider falling snowflakes, as shown in Figure 1.3.1. As snow falls,
each snowflake moves in a specific direction. The motion of the snowflakes can be
analyzed by taking a series of photographs. At any instant in time, we can assign, to each
snowflake, a velocity vector which characterizes its movement.

Figure 1.3.1 Falling snow.



The falling snow is an example of a collection of discrete bodies. On the other hand, if
we try to analyze the motion of continuous bodies such as fluids, a velocity vector then
needs to be assigned to every point in the fluid at any instant in time. Each vector
describes the direction and magnitude of the velocity at a particular point and time. The
collection of all the velocity vectors is called the velocity vector field. An important
distinction between a vector field and a scalar field is that the former contains
information about both the direction and the magnitude at every point in space, while
only a single variable is specified for the latter. An example of a system of continuous
bodies is air flow.

1.4 Fluid Flow

Animation 1.1: Sources and Sinks
In general, a vector field ﬁ(X, Yy, Z) can be written as
If(x, y,2)=F, (XY, z)i+ F (%Y, z)]+ F, (XY, z)l2 (1.4.2)

where the components are scalar fields. Below we use fluids to examine the properties
associated with a vector field since fluid flows are the easiest vector fields to visualize.

In Figure 1.4.1 we show physical examples of a fluid flow field, where we represent the
fluid by a finite number of particles to show the structure of the flow. In Figurel.4.1(a),
particles (fluid elements) appear at the center of a cone (a “source”) and then flow
downward under the effect of gravity. That is, we create particles at the origin, and they
subsequently flow away from their creation point. We also call this a diverging flow,
since the particles appear to “diverge” from the creation point. Figure 1.4.1(b) is the
converse of this, a converging flow, or a “sink” of particles.

.

. - r e
.o ,% Yy

Figue ..1 () A

[ AR
n example of a source of particles and the flow associated with a
source, (b) An example of a sink of particles and the flow associated with a sink.

Another representation of a diverging flow is in depicted in Figure 1.4.2.



Figure 1.4.2 Representing the flow field associated with a source using textures.
Here the direction of the flow is represented by a texture pattern in which the direction of
correlation in the texture is along the field direction.

Figure 1.4.3(a) shows a source next to a sink of lesser magnitude, and Figure 1.4.3(b)
shows two sources of unequal strength.

Figure 1.4.3 The flow fields associated with (a) a source (lower) and a sink (upper)
where the sink is smaller than the source, and (b) two sources of unequal strength.

Finally, in Figure 1.4.4, we illustrate a constant downward flow interacting with a
diverging flow (source). The diverging flow is able to make some headway “upwards”
against the downward constant flow, but eventually turns and flows downward,
overwhelmed by the strength of the “downward” flow.




Figure 1.4.4 A constant downward flow interacting with a diverging flow (source).
In the language of vector calculus, we represent the flow field of a fluid by

V=Vv,i+v j+vk (1.4.2)

A point (x,y,z) isasource if the divergence of V(x,y,z) is greater than zero. That is,

ov
vy, )= Qe M N g (1.4.3)
ox oy oz
where
ve2is 9k Ok (1.4.4)
ox oy 0z

is the del operator. On the other hand, (x,y,z) is a sink if the divergence of v(x,y,z) is
less than zero. When V-V(x,y,z) =0, then the point (x,y,z) is neither a source nor a
sink. A fluid whose flow field has zero divergence is said to be incompressible.

Animation 1.2: Circulations

A flow field which is neither a source nor a sink may exhibit another class of behavior -
circulation. In Figure 1.4.5(a) we show a physical example of a circulating flow field
where particles are not created or destroyed (except at the beginning of the animation),
but merely move in circles. The purely circulating flow can also be represented by
textures, as shown in Figure 1.4.5(b).

Figure 1.4.5 (a) An example of a circulating fluid. (b) Representing a circulating flow
using textures.

A flow field can have more than one system of circulation centered about different points
in space. In Figure 1.4.6(a) we show a flow field with two circulations. The flows are in
opposite senses, and one of the circulations is stronger than the other. In Figure 1.4.6(b)
we have the same situation, except that now the two circulations are in the same sense.




Figure 1.4.6 A flow with two circulation centers with (a) opposite directions of
circulation. (b) the same direction of circulation

In Figure 1.4.7, we show a constant downward flow interacting with a counter-clockwise
circulating flow. The circulating flow is able to make some headway against the
downward constant flow, but eventually is overwhelmed by the strength of the
“downward” flow.

Figure 1.4.7 A constant downward flow interacting with a counter-clockwise circulating
flow.

In the language of vector calculus, the flows shown in Figures 1.4.5 through 1.4.7 are
said to have a non-zero curl, but zero divergence. In contrast, the flows shown in Figures
1.4.2 through 1.4.4 have a zero curl (they do not move in circles) and a non-zero
divergence (particles are created or destroyed).

Finally, in Figure 1.4.8, we show a fluid flow field that has both a circulation and a
divergence (both the divergence and the curl of the vector field are non-zero). Any
vector field can be written as the sum of a curl-free part (no circulation) and a
divergence-free part (no source or sink). We will find in our study of electrostatics and
magnetostatics that the electrostatic fields are curl free (e.g. they look like Figures 1.4.2
through 1.4.4) and the magnetic fields are divergence free (e.g. they look like Figures
1.4.5 and 1.4.6). Only when dealing with time-varying situations will we encounter
electric fields that have both a divergence and a curl. Figure 1.4.8 depicts a field whose
curl and divergence are non-vanishing. As far as we know even in time-varying situations
magnetic fields always remain divergence-free. Therefore, magnetic fields will always
look like the patterns shown in Figures 1.4.5 through 1.4.7.

10



Figure 1.4.8 A flow field that has both a source (divergence) and a circulation (curl).

1.4.1 Relationship Between Fluid Fields and Electromagnetic Fields

Vector fields that represent fluid flow have an immediate physical interpretation: the
vector at every point in space represents a direction of motion of a fluid element, and we
can construct animations of those fields, as above, which show that motion. A more
general vector field, for example the electric and magnetic fields discussed below, do not
have that immediate physical interpretation of a flow field. There is no “flow” of a fluid
along an electric field or magnetic field.

However, even though the vectors in electromagnetism do not represent fluid flow, we
carry over many of the terms we use to describe fluid flow to describe electromagnetic
fields as well. For example we will speak of the flux (flow) of the electric field through a
surface. If we were talking about fluid flow, “flux” would have a well-defined physical
meaning, in that the flux would be the amount of fluid flowing across a given surface per
unit time. There is no such meaning when we talk about the flux of the electric field
through a surface, but we still use the same term for it, as if we were talking about fluid
flow. Similarly we will find that magnetic vector field exhibit patterns like those shown
above for circulating flows, and we will sometimes talk about the circulation of magnetic
fields. But there is no fluid circulating along the magnetic field direction.

We use much of the terminology of fluid flow to describe electromagnetic fields because
it helps us understand the structure of electromagnetic fields intuitively. However, we
must always be aware that the analogy is limited.

1.5 Gravitational Field
The gravitational field of the Earth is another example of a vector field which can be used
to describe the interaction between a massive object and the Earth. According to

Newton’s universal law of gravitation, the gravitational force between two massesm and
M is given by

11



(1.5.1)

where r is the distance between the two masses and r is the unit vector located at the
position of m that points from M towards m. The constant of proportionality is the

gravitational constant G =6.67x10"""N-m?/kg® . Notice that the force is always

attractive, with its magnitude being proportional to the inverse square of the distance
between the masses.

As an example, if M is the mass of the Earth, the gravitational field gat a point P in
space, defined as the gravitational force per unit mass, can be written as

F .
Q:!jmﬁg:—Ger (1.5.2)

N

From the above expression, we see that the field is radial and points toward the center of
the Earth, as shown in Figure 1.5.1.
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Figure 1.5.1 Gravitational field of the Earth.

Near the Earth’s surface, the gravitational field g is approximately constant: g=-gr ,
where

g:G%gz98mB2 (1.5.3)

E

and R is the radius of Earth. The gravitational field near the Earth’s surface is depicted
in Figure 1.5.2.
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Figure 1.5.2 Uniform gravitational field near the surface of the Earth.

Notice that a mass in a constant gravitational field does not necessarily move in the
direction of the field. This is true only when its initial velocity is in the same direction as
the field. On the other hand, if the initial velocity has a component perpendicular to the
gravitational field, the trajectory will be parabolic.

1.6 Electric Fields

The interaction between electric charges at rest is called the electrostatic force. However,
unlike mass in gravitational force, there are two types of electric charge: positive and
negative. Electrostatic force between charges falls off as the inverse square of their
distance of separation, and can be either attractive or repulsive. Electric charges exert
forces on each other in a manner that is analogous to gravitation. Consider an object
which has chargeQ . A “test charge” that is placed at a point P a distance r from Q will

experience a Coulomb force:

F. = ke%? (16.1)

where T is the unit vector that points from Q toq. The constant of proportionality
k, =9.0x10°N-m?/C? is called the Coulomb constant. The electric field at P is defined
as

E = lim —= =k Qs (1.6.2)
q—

€r2

o) |m'|'|1

The SI unit of electric field isnewtons/coulomb (N/C). If Q is positive, its electric field

points radially away from the charge; on the other hand, the field points radially inward
ifQ is negative (Figure 1.6.1). In terms of the field concept, we may say that the charge

Q creates an electric field E which exerts a force F, =gEon q.
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Figure 1.6.1 Electric field for positive and negative charges

1.7 Magnetic Field

Magnetic field is another example of a vector field. The most familiar source of magnetic
fields is a bar magnet. One end of the bar magnet is called the North pole and the other,
the South pole. Like poles repel while opposite poles attract (Figure 1.7.1).

F—[s I B s|—v
Figure 1.7.1 Magnets attracting and repelling

If we place some compasses near a bar magnet, the needles will align themselves along
the direction of the magnetic field, as shown in Figure 1.7.2.
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Figure 1.7.2 Magnetic field of a bar magnet

The observation can be explained as follows: A magnetic compass consists of a tiny bar
magnet that can rotate freely about a pivot point passing through the center of the magnet.
When a compass is placed near a bar magnet which produces an external magnetic field,
it experiences a torque which tends to align the north pole of the compass with the

external magnetic field.
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The Earth’s magnetic field behaves as if there were a bar magnet in it (Figure 1.7.3).
Note that the south pole of the magnet is located in the northern hemisphere.

Figure 1.7.3 Magnetic field of the Earth

1.8 Representations of a Vector Field

How do we represent vector fields? Since there is much more information (magnitude
and direction) in a vector field, our visualizations are correspondingly more complex
when compared to the representations of scalar fields.

Let us introduce an analytic form for a vector field and discuss the various ways that we
represent it. Let

xf+(y+d)j+zl§ 1 xf+(y—d)j+zl2

E 1y Yo = N
(x.y.2) [X*+(y+d)*+2°]"* 3[x*+(y-d)*+z°]**

(1.8.1)

This field is proportional to the electric field of two point charges of opposite signs, with
the magnitude of the positive charge three times that of the negative charge. The positive
charge is located at (0,—d,0) and the negative charge is located at (0,d,0). We discuss

how this field is calculated in Section 2.7.

1.8.1 Vector Field Representation

Figure 1.8.1 is an example of a “vector field” representation of Eq. (1.8.1), in the plane
where z = 0. We show the charges that would produce this field if it were an electric
field, one positive (the orange charge) and one negative (the blue charge). We will
always use this color scheme to represent positive and negative charges.
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Figure 1.8.1 A *“vector field” representation of the field of two point charges, one
negative and one positive, with the magnitude of the positive charge three times that of
the negative charge. In the applet linked to this figure, one can vary the magnitude of the
charges and the spacing of the vector field grid, and move the charges about.

In the vector field representation, we put arrows representing the field direction on a
rectangular grid. The direction of the arrow at a given location represents the direction of
the vector field at that point. In many cases, we also make the length of the vector
proportional to the magnitude of the vector field at that point. But we also may show
only the direction with the vectors (that is make all vectors the same length), and color-
code the arrows according to the magnitude of the vector. Or we may not give any
information about the magnitude of the field at all, but just use the arrows on the grid to
indicate the direction of the field at that point.

Figure 1.8.1 is an example of the latter situation. That is, we use the arrows o